research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An indenide-tethered N-heterocyclic stannylene

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland
*Correspondence e-mail: M.Haddow@hw.ac.uk, S.Mansell@hw.ac.uk

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 16 December 2019; accepted 14 January 2020; online 21 January 2020)

The structure of (μ-1κN:2(η2),κ2N,N′-(2-{[2,6-bis(propan-2-yl)phen­yl]aza­nid­yl}eth­yl)[2-(1H-inden-1-yl)eth­yl]aza­nido)(1,4,7,10,13,16-hexa­oxa­cyclo­octa­dec­ane-1κ6O)lithiumtin, [LiSn(C8H16O4)(C25H31N2)], at 100 K has monoclinic (P21/n) symmetry. Analysis of the coordination of the Sn to the indenyl ring shows that the Sn inter­acts in an η2 fashion. A database survey showed that whilst this coordination mode is unusual for Ge and Pb compounds, Sn displays a wider range of coordination modes to cyclo­penta­dienyl ligands and their derivatives.

1. Chemical context

N-heterocyclic stannylenes (NHSns) are the tin analogues of N-heterocyclic carbenes (NHCs). With an unsaturated backbone, they have been found to be thermally unstable (Gans-Eichler et al., 2002[Gans-Eichler, T., Gudat, D. & Nieger, M. (2002). Angew. Chem. Int. Ed. 41, 1888-1891.], Gans-Eichler et al. 2006[Gans-Eichler, T., Gudat, D., Nättinen, K. & Nieger, M. (2006). Chem. Eur. J. 12, 1162-1173.]), but with a saturated backbone they are thermally robust (Mansell et al., 2008[Mansell, S. M., Russell, C. A. & Wass, D. F. (2008). Inorg. Chem. 47, 11367-11375.]) and show inter­esting binding properties including a higher propensity for bridging coordination modes (Mansell et al., 2011[Mansell, S. M., Herber, R. H., Nowik, I., Ross, D. H., Russell, C. A. & Wass, D. F. (2011). Inorg. Chem. 50, 2252-2263.]).

[Scheme 1]

We have sought to install NHSns into a tethered ligand system using a fluorenyl group linked to the NHSn with a C2H4 linker, but this resulted in dimeric species with Sn—N dative bonding, even upon addition of suitable Rh salts (Roselló-Merino & Mansell, 2016[Roselló-Merino, M. & Mansell, S. M. (2016). Dalton Trans. 45, 6282-6293.]). In this contribution we analyse the crystal structure of a monomeric NHSn with an indenyl donor group.

2. Structural commentary

The crystal structure of the title compound 2 shows a deprotonated indenide moiety connected to a di­amido­stannylene unit via a C2H4 linker. The lithium cation is bound to the less sterically hindered N atom [Li—N = 2.043 (7) Å], as well as to the 12-crown-4 tetra­dentate ether ligand (Fig. 1[link]). The Sn atom is bonded to two N atoms [Sn—N = 2.157 (3) and 2.089 (3) Å] and there appears to be an η2 inter­action with the indenyl anion [Sn⋯C = 2.734 (3) and 2.701 (3) Å] with Sn⋯C distances that are similar to those in stannocene [Sn(η5-Cp)2], Sn⋯C = 2.56 (2)–2.85 (3) Å (Atwood et al., 1981[Atwood, J. L., Hunter, W. E., Cowley, A. H., Jones, R. A. & Stewart, C. A. (1981). J. Chem. Soc. Chem. Commun. pp. 925-927.]). The formation of 2 shows that the soft NHSn lone pair does not inter­act with the relatively hard Li cation, unlike the situation in the lithium complexes of tethered NHCs previously published (Evans & Mansell, 2019[Evans, K. J. & Mansell, S. M. (2019). Chem. Eur. J. 25, 3766-3769.]; Evans et al., 2019[Evans, K. J., Campbell, C. L., Haddow, M. F., Luz, C., Morton, P. A. & Mansell, S. M. (2019). Eur. J. Inorg. Chem. pp. 4894-4901.]).

[Figure 1]
Figure 1
Displacement ellipsoid plot of 2 (shown at the 50% probability level) with all H atoms removed for clarity.

3. Database survey

For the structure of 2, two Sn⋯C distances are much shorter [2.734 (3) and 2.701 (3) Å] than the other three [3.193 (3), 3.222 (3) and 3.486 (3) Å] in the five-membered ring of the indenyl moiety. The only two other crystallographically characterized Sn-indenyl complexes [Sn{1,3-(SiMe3)2C9H5}2] and [Sn(C5Me5){1,3-(SiMe3)2C9H5}] (Jones & Cowley, 2005[Jones, J. N. & Cowley, A. H. (2005). Chem. Commun. pp. 1300-1302.]), have much less pronounced differences in the shortest and longest bond lengths [maximum range of 0.26 Å compared to 2, which has a range of 0.785 Å] although the bond lengths to two carbon atoms in the ring are shorter than the remaining three, which always includes the two benzannulated carbon atoms. This has been termed η3+η2 coordination (Calhorda & Veiros, 1999[Calhorda, M. J. & Veiros, L. F. (1999). Coord. Chem. Rev. 185-186, 37-51.]).

By surveying the coordination of cyclo­penta­dienyl ligands to main group atoms using the CSD (Version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), we can clearly see the flexible coordination modes of tin compared to other group 14 metals. The position of the metal was projected onto the plane of the Cp ring and these datapoints were expanded according to C5v symmetry (i.e. there are ten symmetry-equivalent data points for each crystal structure). The results are shown in Fig. 2[link]ac for germanium, tin and lead, respectively. Germanium and lead are almost always projected near the centre of the Cp ring; however, tin shows a wide range of projection points. The datapoints for this structure are displayed in red in Fig. 2[link]b, showing the distinct inter­action with two carbon centres, a unique coordination mode for group 14 metals.

[Figure 2]
Figure 2
Projection plots of metal position onto idealized Cp ring.

4. Synthesis and crystallization

Synthesis of [Sn{(N,N′-κ2-(C9H7)C2H4NC2H4N(2,6-iPr2C6H3)}]2, 1

To a solution of (C9H7)C2H4N(H)C2H4N(H)(2,6-iPr2C6H3) (Roselló-Merino & Mansell, 2016[Roselló-Merino, M. & Mansell, S. M. (2016). Dalton Trans. 45, 6282-6293.]) (330 mg, 0.91 mmol) in THF (5 ml), Sn[N(SiMe3)2]2 (400 mg, 0.91 mmol) dissolved in THF (2 ml) was added slowly at room temperature under nitro­gen in a two-necked-flask in a glovebox. After 2 h, the solvent was removed by pipette and the precipitate was washed five times with 5 ml of petroleum ether by dispersing it and pipetting off the solvent after the residue had settled. Evaporation of the remaining solvent under high vacuum yielded the desired product as a light-yellow solid (348 mg, 0.73 mmol, 80%).

1H NMR (400 MHz, 298 K, d8-THF): δ = 7.5–6.9 (m, Ar-H), 6.28 (m), 3.67 (d), 3.48 (m), 3.38 (m), 3.00 (m), 2.88 (m), 2.79 (m), 1.19 (d); 119Sn (149 MHz, 298 K, d8-THF); δ = 79.7 ppm. Analysis calculated for C25H32N2Sn: C 62.65, H 6.73, N 5.85; Found: C 62.53, H 6.66, N 5.68

Synthesis of indenide-tethered N-heterocyclic stannylene 2

To 1 (10 mg, 0.03 mmol) in a glass vial under nitro­gen in a glovebox was added Li[N(SiMe3)2] (5 mg, 0.03 mmol) in THF (0.5 mL) then 12-crown-4 (11 mg, 0.6 mmol) in THF (0.2 ml). This vial was placed in a freezer, producing a small number of single crystals. Reactions on larger scales led to concentrations that were too high, leading to decomposition processes. The material that was produced was not soluble in d8-THF.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were positioned geometrically (C—H = 095–1.00 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 1
Experimental details

Crystal data
Chemical formula [LiSn(C8H16O4)(C25H32N2)]
Mr 661.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.9766 (8), 17.7991 (14), 18.8402 (14)
β (°) 95.510 (4)
V3) 3330.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.80
Crystal size (mm) 0.20 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.614, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25958, 7615, 5184
Rint 0.051
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 1.04
No. of reflections 7615
No. of parameters 374
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.36, −0.59
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(µ-1κN:2(η2),κ2N,N'-(2-{[2,6-Bis(propan-2-yl)\ phenyl]azanidyl}ethyl)[2-(1H-inden-1-yl)ethyl]azanido)(1,4,7,10,13,16-\ hexaoxacyclooctadecane-1κ6O)lithiumtin top
Crystal data top
[LiSn(C8H16O4)(C25H32N2)]F(000) = 1376
Mr = 661.35Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9766 (8) ÅCell parameters from 7023 reflections
b = 17.7991 (14) Åθ = 2.4–25.7°
c = 18.8402 (14) ŵ = 0.80 mm1
β = 95.510 (4)°T = 100 K
V = 3330.1 (4) Å3Block, pale yellow
Z = 40.20 × 0.20 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5184 reflections with I > 2σ(I)
φ and ω scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 27.5°, θmin = 2.5°
Tmin = 0.614, Tmax = 0.746h = 1211
25958 measured reflectionsk = 2320
7615 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0367P)2 + 2.6456P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7615 reflectionsΔρmax = 1.36 e Å3
374 parametersΔρmin = 0.59 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.62831 (2)0.62730 (2)0.73575 (2)0.01853 (8)
O10.7755 (3)0.69869 (14)0.93346 (13)0.0333 (6)
O20.9148 (3)0.75607 (14)0.82933 (13)0.0337 (6)
O30.7698 (3)0.88333 (13)0.83378 (12)0.0291 (6)
O40.6260 (3)0.82577 (14)0.93572 (12)0.0311 (6)
N10.5656 (3)0.73222 (15)0.77937 (13)0.0189 (6)
N20.4936 (3)0.58853 (15)0.80578 (14)0.0208 (6)
C10.5055 (4)0.70370 (19)0.62151 (17)0.0221 (8)
C20.4399 (3)0.63288 (19)0.62289 (16)0.0215 (7)
H20.36540.62200.64900.026*
C30.5018 (4)0.58133 (19)0.57967 (17)0.0226 (8)
H30.47650.53030.57180.027*
C40.6080 (3)0.61883 (18)0.55015 (16)0.0202 (7)
C50.7031 (4)0.5971 (2)0.50330 (17)0.0233 (8)
H50.70440.54680.48650.028*
C60.7938 (4)0.6485 (2)0.48200 (19)0.0293 (9)
H60.85700.63350.45010.035*
C70.7942 (4)0.7236 (2)0.50699 (19)0.0303 (9)
H70.85690.75870.49130.036*
C80.7050 (4)0.7461 (2)0.55352 (18)0.0264 (8)
H80.70680.79650.57030.032*
C90.6111 (4)0.69545 (18)0.57669 (17)0.0198 (8)
C100.4676 (4)0.77556 (19)0.65700 (17)0.0235 (8)
H10A0.37280.77200.66810.028*
H10B0.47380.81770.62320.028*
C110.5574 (4)0.79301 (18)0.72628 (17)0.0237 (8)
H11A0.64950.80440.71390.028*
H11B0.52240.83870.74820.028*
C120.4363 (4)0.72044 (19)0.80929 (18)0.0231 (8)
H12A0.36230.72000.77030.028*
H12B0.41980.76220.84200.028*
C130.4379 (4)0.64653 (19)0.84949 (18)0.0249 (8)
H13A0.49370.65130.89560.030*
H13B0.34530.63280.85920.030*
C140.4705 (4)0.51260 (18)0.82625 (18)0.0226 (8)
C150.5655 (4)0.47385 (19)0.87310 (18)0.0251 (8)
C160.5425 (4)0.3981 (2)0.8873 (2)0.0331 (9)
H160.60600.37140.91860.040*
C170.4290 (5)0.3613 (2)0.8567 (2)0.0381 (11)
H170.41650.30940.86580.046*
C180.3346 (4)0.3998 (2)0.8133 (2)0.0330 (9)
H180.25600.37450.79330.040*
C190.3522 (4)0.4757 (2)0.79801 (18)0.0250 (8)
C200.6928 (4)0.5109 (2)0.90675 (19)0.0271 (8)
H200.68650.56570.89520.033*
C210.7086 (5)0.5034 (3)0.9890 (2)0.0440 (11)
H21A0.62930.52471.00850.066*
H21B0.78930.53051.00840.066*
H21C0.71720.45021.00200.066*
C220.8186 (4)0.4806 (2)0.8764 (2)0.0392 (10)
H22A0.82780.42680.88710.059*
H22B0.89800.50740.89810.059*
H22C0.81060.48800.82470.059*
C230.2422 (4)0.5165 (2)0.75159 (19)0.0283 (9)
H230.27220.56960.74620.034*
C240.2197 (4)0.4818 (2)0.6765 (2)0.0389 (10)
H24A0.30440.48280.65410.058*
H24B0.15120.51080.64750.058*
H24C0.18930.42970.68020.058*
C250.1108 (4)0.5182 (2)0.7863 (2)0.0414 (11)
H25A0.04460.54870.75730.062*
H25B0.12660.54020.83410.062*
H25C0.07640.46690.79000.062*
C260.9184 (4)0.6953 (3)0.9438 (2)0.0452 (11)
H26A0.94760.64950.97080.054*
H26B0.95450.73970.97090.054*
C270.9679 (5)0.6939 (2)0.8719 (2)0.0455 (11)
H27A1.06750.69620.87680.055*
H27B0.94050.64610.84770.055*
C280.9884 (4)0.8245 (2)0.8415 (2)0.0401 (10)
H28A1.07470.82220.81970.048*
H28B1.00790.83380.89330.048*
C290.9000 (4)0.8856 (2)0.8075 (2)0.0345 (10)
H29A0.94230.93510.81830.041*
H29B0.89030.87890.75510.041*
C300.7597 (4)0.9279 (2)0.8967 (2)0.0361 (10)
H30A0.75810.98210.88470.043*
H30B0.83730.91810.93230.043*
C310.6316 (4)0.9053 (2)0.9252 (2)0.0392 (10)
H31A0.62390.93120.97120.047*
H31B0.55450.92110.89150.047*
C320.6960 (5)0.8007 (2)1.00139 (19)0.0410 (11)
H32A0.64390.81331.04190.049*
H32B0.78520.82531.00910.049*
C330.7122 (5)0.7179 (3)0.9960 (2)0.0458 (12)
H33A0.76750.69911.03870.055*
H33B0.62280.69340.99410.055*
Li10.7127 (7)0.7726 (3)0.8523 (3)0.0278 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02406 (13)0.01671 (12)0.01436 (11)0.00045 (11)0.00054 (8)0.00026 (10)
O10.0362 (17)0.0370 (15)0.0244 (14)0.0082 (13)0.0093 (12)0.0053 (12)
O20.0389 (17)0.0315 (15)0.0302 (14)0.0023 (13)0.0007 (13)0.0025 (12)
O30.0337 (15)0.0291 (14)0.0247 (13)0.0079 (12)0.0034 (11)0.0044 (11)
O40.0347 (16)0.0370 (16)0.0213 (13)0.0083 (13)0.0008 (12)0.0036 (12)
N10.0259 (17)0.0167 (14)0.0134 (14)0.0006 (12)0.0010 (12)0.0006 (11)
N20.0271 (17)0.0167 (15)0.0190 (14)0.0017 (12)0.0050 (13)0.0030 (12)
C10.025 (2)0.0235 (18)0.0161 (17)0.0013 (16)0.0060 (15)0.0011 (15)
C20.0216 (18)0.0272 (19)0.0143 (15)0.0012 (16)0.0047 (13)0.0016 (15)
C30.030 (2)0.0181 (18)0.0182 (17)0.0015 (15)0.0031 (16)0.0018 (14)
C40.0253 (19)0.0199 (18)0.0145 (15)0.0028 (16)0.0033 (14)0.0011 (14)
C50.029 (2)0.0232 (18)0.0164 (17)0.0020 (16)0.0016 (15)0.0038 (14)
C60.030 (2)0.038 (2)0.0213 (19)0.0017 (17)0.0049 (16)0.0022 (16)
C70.030 (2)0.032 (2)0.029 (2)0.0108 (17)0.0036 (18)0.0006 (17)
C80.034 (2)0.0197 (19)0.0250 (19)0.0028 (16)0.0008 (17)0.0059 (15)
C90.026 (2)0.0186 (17)0.0131 (16)0.0013 (15)0.0067 (14)0.0005 (13)
C100.031 (2)0.0213 (18)0.0168 (17)0.0023 (16)0.0039 (15)0.0013 (14)
C110.033 (2)0.0183 (18)0.0184 (17)0.0011 (16)0.0029 (16)0.0046 (14)
C120.026 (2)0.0223 (19)0.0206 (18)0.0024 (16)0.0031 (16)0.0038 (15)
C130.028 (2)0.027 (2)0.0199 (17)0.0024 (16)0.0001 (15)0.0042 (15)
C140.033 (2)0.0181 (18)0.0190 (17)0.0004 (16)0.0139 (16)0.0018 (14)
C150.033 (2)0.0246 (19)0.0195 (18)0.0022 (17)0.0120 (16)0.0016 (15)
C160.040 (3)0.029 (2)0.032 (2)0.0072 (19)0.0117 (19)0.0048 (17)
C170.056 (3)0.023 (2)0.039 (2)0.007 (2)0.025 (2)0.0043 (18)
C180.039 (3)0.029 (2)0.032 (2)0.0115 (18)0.0089 (19)0.0018 (17)
C190.029 (2)0.0254 (19)0.0222 (18)0.0050 (16)0.0121 (16)0.0064 (15)
C200.030 (2)0.027 (2)0.0251 (19)0.0017 (17)0.0044 (16)0.0071 (16)
C210.043 (3)0.061 (3)0.028 (2)0.002 (2)0.002 (2)0.007 (2)
C220.039 (3)0.037 (2)0.044 (3)0.005 (2)0.012 (2)0.007 (2)
C230.029 (2)0.025 (2)0.031 (2)0.0057 (16)0.0043 (18)0.0043 (15)
C240.042 (3)0.044 (3)0.031 (2)0.005 (2)0.0024 (19)0.0105 (19)
C250.040 (3)0.039 (2)0.047 (3)0.006 (2)0.012 (2)0.009 (2)
C260.041 (3)0.047 (3)0.044 (3)0.003 (2)0.012 (2)0.011 (2)
C270.043 (3)0.038 (2)0.053 (3)0.006 (2)0.008 (2)0.001 (2)
C280.036 (3)0.042 (3)0.043 (2)0.011 (2)0.007 (2)0.007 (2)
C290.040 (2)0.031 (2)0.034 (2)0.0124 (19)0.0101 (19)0.0029 (18)
C300.045 (3)0.029 (2)0.035 (2)0.0048 (19)0.010 (2)0.0086 (18)
C310.044 (3)0.034 (2)0.040 (2)0.002 (2)0.008 (2)0.0114 (19)
C320.048 (3)0.059 (3)0.0156 (19)0.016 (2)0.0013 (18)0.0004 (19)
C330.057 (3)0.061 (3)0.017 (2)0.014 (2)0.004 (2)0.006 (2)
Li10.038 (4)0.028 (3)0.017 (3)0.005 (3)0.004 (3)0.000 (3)
Geometric parameters (Å, º) top
Sn1—N12.157 (3)C15—C161.398 (5)
Sn1—N22.089 (3)C15—C201.515 (5)
O1—C261.422 (5)C16—H160.9500
O1—C331.430 (5)C16—C171.386 (6)
O1—Li12.068 (6)C17—H170.9500
O2—C271.438 (5)C17—C181.371 (6)
O2—C281.430 (5)C18—H180.9500
O2—Li12.123 (7)C18—C191.395 (5)
O3—C291.435 (4)C19—C231.521 (5)
O3—C301.437 (4)C20—H201.0000
O3—Li12.090 (6)C20—C211.548 (5)
O4—C311.431 (5)C20—C221.526 (5)
O4—C321.432 (4)C21—H21A0.9800
O4—Li12.091 (7)C21—H21B0.9800
N1—C111.470 (4)C21—H21C0.9800
N1—C121.471 (4)C22—H22A0.9800
N1—Li12.043 (7)C22—H22B0.9800
N2—C131.463 (4)C22—H22C0.9800
N2—C141.430 (4)C23—H231.0000
C1—C21.422 (5)C23—C241.540 (5)
C1—C91.420 (5)C23—C251.521 (5)
C1—C101.508 (5)C24—H24A0.9800
C2—H20.9500C24—H24B0.9800
C2—C31.408 (5)C24—H24C0.9800
C3—H30.9500C25—H25A0.9800
C3—C41.411 (5)C25—H25B0.9800
C4—C51.411 (5)C25—H25C0.9800
C4—C91.452 (4)C26—H26A0.9900
C5—H50.9500C26—H26B0.9900
C5—C61.374 (5)C26—C271.486 (6)
C6—H60.9500C27—H27A0.9900
C6—C71.418 (5)C27—H27B0.9900
C7—H70.9500C28—H28A0.9900
C7—C81.367 (5)C28—H28B0.9900
C8—H80.9500C28—C291.504 (6)
C8—C91.400 (5)C29—H29A0.9900
C10—H10A0.9900C29—H29B0.9900
C10—H10B0.9900C30—H30A0.9900
C10—C111.542 (5)C30—H30B0.9900
C11—H11A0.9900C30—C311.489 (5)
C11—H11B0.9900C31—H31A0.9900
C12—H12A0.9900C31—H31B0.9900
C12—H12B0.9900C32—H32A0.9900
C12—C131.517 (5)C32—H32B0.9900
C13—H13A0.9900C32—C331.487 (6)
C13—H13B0.9900C33—H33A0.9900
C14—C151.412 (5)C33—H33B0.9900
C14—C191.410 (5)
N2—Sn1—N179.49 (10)C15—C20—C22112.1 (3)
C26—O1—C33114.4 (3)C21—C20—H20107.5
C26—O1—Li1110.9 (3)C22—C20—H20107.5
C33—O1—Li1109.3 (3)C22—C20—C21109.6 (3)
C27—O2—Li1107.4 (3)C20—C21—H21A109.5
C28—O2—C27114.2 (3)C20—C21—H21B109.5
C28—O2—Li1109.4 (3)C20—C21—H21C109.5
C29—O3—C30114.0 (3)H21A—C21—H21B109.5
C29—O3—Li1110.8 (3)H21A—C21—H21C109.5
C30—O3—Li1109.9 (3)H21B—C21—H21C109.5
C31—O4—C32113.9 (3)C20—C22—H22A109.5
C31—O4—Li1108.6 (3)C20—C22—H22B109.5
C32—O4—Li1107.8 (3)C20—C22—H22C109.5
C11—N1—Sn1112.15 (19)H22A—C22—H22B109.5
C11—N1—C12111.9 (3)H22A—C22—H22C109.5
C11—N1—Li1100.8 (3)H22B—C22—H22C109.5
C12—N1—Sn1108.64 (19)C19—C23—H23107.7
C12—N1—Li1113.1 (3)C19—C23—C24111.7 (3)
Li1—N1—Sn1110.2 (2)C19—C23—C25111.5 (3)
C13—N2—Sn1115.1 (2)C24—C23—H23107.7
C14—N2—Sn1127.8 (2)C25—C23—H23107.7
C14—N2—C13115.8 (3)C25—C23—C24110.4 (3)
C2—C1—C10127.4 (3)C23—C24—H24A109.5
C9—C1—C2106.8 (3)C23—C24—H24B109.5
C9—C1—C10125.7 (3)C23—C24—H24C109.5
C1—C2—H2125.1H24A—C24—H24B109.5
C3—C2—C1109.8 (3)H24A—C24—H24C109.5
C3—C2—H2125.1H24B—C24—H24C109.5
C2—C3—H3126.0C23—C25—H25A109.5
C2—C3—C4107.9 (3)C23—C25—H25B109.5
C4—C3—H3126.0C23—C25—H25C109.5
C3—C4—C9107.5 (3)H25A—C25—H25B109.5
C5—C4—C3133.8 (3)H25A—C25—H25C109.5
C5—C4—C9118.7 (3)H25B—C25—H25C109.5
C4—C5—H5119.9O1—C26—H26A110.3
C6—C5—C4120.1 (3)O1—C26—H26B110.3
C6—C5—H5119.9O1—C26—C27107.0 (3)
C5—C6—H6119.6H26A—C26—H26B108.6
C5—C6—C7120.8 (3)C27—C26—H26A110.3
C7—C6—H6119.6C27—C26—H26B110.3
C6—C7—H7119.8O2—C27—C26111.0 (4)
C8—C7—C6120.5 (3)O2—C27—H27A109.4
C8—C7—H7119.8O2—C27—H27B109.4
C7—C8—H8119.7C26—C27—H27A109.4
C7—C8—C9120.5 (3)C26—C27—H27B109.4
C9—C8—H8119.7H27A—C27—H27B108.0
C1—C9—C4108.0 (3)O2—C28—H28A110.5
C8—C9—C1132.5 (3)O2—C28—H28B110.5
C8—C9—C4119.4 (3)O2—C28—C29106.0 (3)
C1—C10—H10A108.9H28A—C28—H28B108.7
C1—C10—H10B108.9C29—C28—H28A110.5
C1—C10—C11113.3 (3)C29—C28—H28B110.5
H10A—C10—H10B107.7O3—C29—C28110.2 (3)
C11—C10—H10A108.9O3—C29—H29A109.6
C11—C10—H10B108.9O3—C29—H29B109.6
N1—C11—C10114.7 (3)C28—C29—H29A109.6
N1—C11—H11A108.6C28—C29—H29B109.6
N1—C11—H11B108.6H29A—C29—H29B108.1
C10—C11—H11A108.6O3—C30—H30A110.5
C10—C11—H11B108.6O3—C30—H30B110.5
H11A—C11—H11B107.6O3—C30—C31106.2 (3)
N1—C12—H12A109.6H30A—C30—H30B108.7
N1—C12—H12B109.6C31—C30—H30A110.5
N1—C12—C13110.3 (3)C31—C30—H30B110.5
H12A—C12—H12B108.1O4—C31—C30111.3 (3)
C13—C12—H12A109.6O4—C31—H31A109.4
C13—C12—H12B109.6O4—C31—H31B109.4
N2—C13—C12108.5 (3)C30—C31—H31A109.4
N2—C13—H13A110.0C30—C31—H31B109.4
N2—C13—H13B110.0H31A—C31—H31B108.0
C12—C13—H13A110.0O4—C32—H32A110.3
C12—C13—H13B110.0O4—C32—H32B110.3
H13A—C13—H13B108.4O4—C32—C33107.3 (3)
C15—C14—N2121.0 (3)H32A—C32—H32B108.5
C19—C14—N2119.3 (3)C33—C32—H32A110.3
C19—C14—C15119.7 (3)C33—C32—H32B110.3
C14—C15—C20122.3 (3)O1—C33—C32110.6 (3)
C16—C15—C14118.6 (4)O1—C33—H33A109.5
C16—C15—C20119.1 (3)O1—C33—H33B109.5
C15—C16—H16119.4C32—C33—H33A109.5
C17—C16—C15121.3 (4)C32—C33—H33B109.5
C17—C16—H16119.4H33A—C33—H33B108.1
C16—C17—H17120.1O1—Li1—O280.6 (2)
C18—C17—C16119.9 (4)O1—Li1—O3131.0 (3)
C18—C17—H17120.1O1—Li1—O481.4 (2)
C17—C18—H18119.5O3—Li1—O279.5 (2)
C17—C18—C19121.0 (4)O3—Li1—O480.7 (2)
C19—C18—H18119.5O4—Li1—O2133.3 (3)
C14—C19—C23121.7 (3)N1—Li1—O1114.9 (3)
C18—C19—C14119.4 (4)N1—Li1—O2116.7 (3)
C18—C19—C23118.9 (3)N1—Li1—O3114.1 (3)
C15—C20—H20107.5N1—Li1—O4110.0 (3)
C15—C20—C21112.4 (3)
Sn1—N1—C11—C1054.6 (3)C13—N2—C14—C1592.8 (4)
Sn1—N1—C12—C1341.9 (3)C13—N2—C14—C1988.4 (4)
Sn1—N2—C13—C1227.7 (3)C14—N2—C13—C12164.2 (3)
Sn1—N2—C14—C1573.5 (4)C14—C15—C16—C170.4 (5)
Sn1—N2—C14—C19105.3 (3)C14—C15—C20—C21126.3 (4)
O1—C26—C27—O254.0 (5)C14—C15—C20—C22109.8 (4)
O2—C28—C29—O353.8 (4)C14—C19—C23—C24118.9 (4)
O3—C30—C31—O454.0 (4)C14—C19—C23—C25117.1 (4)
O4—C32—C33—O154.1 (5)C15—C14—C19—C184.0 (5)
N1—C12—C13—N245.8 (4)C15—C14—C19—C23175.6 (3)
N2—C14—C15—C16175.5 (3)C15—C16—C17—C182.0 (6)
N2—C14—C15—C202.8 (5)C16—C15—C20—C2155.4 (4)
N2—C14—C19—C18174.8 (3)C16—C15—C20—C2268.5 (4)
N2—C14—C19—C235.6 (5)C16—C17—C18—C191.3 (6)
C1—C2—C3—C40.0 (4)C17—C18—C19—C141.7 (5)
C1—C10—C11—N154.3 (4)C17—C18—C19—C23177.9 (3)
C2—C1—C9—C40.6 (4)C18—C19—C23—C2461.6 (4)
C2—C1—C9—C8177.3 (4)C18—C19—C23—C2562.4 (4)
C2—C1—C10—C11102.2 (4)C19—C14—C15—C163.3 (5)
C2—C3—C4—C5179.4 (3)C19—C14—C15—C20178.4 (3)
C2—C3—C4—C90.4 (4)C20—C15—C16—C17178.7 (3)
C3—C4—C5—C6177.9 (4)C26—O1—C33—C3290.1 (4)
C3—C4—C9—C10.6 (4)C27—O2—C28—C29166.0 (3)
C3—C4—C9—C8177.8 (3)C28—O2—C27—C2683.4 (4)
C4—C5—C6—C70.5 (5)C29—O3—C30—C31167.3 (3)
C5—C4—C9—C1179.2 (3)C30—O3—C29—C2889.4 (4)
C5—C4—C9—C82.0 (5)C31—O4—C32—C33165.3 (3)
C5—C6—C7—C80.8 (6)C32—O4—C31—C3082.2 (4)
C6—C7—C8—C90.6 (6)C33—O1—C26—C27166.2 (3)
C7—C8—C9—C1177.1 (4)Li1—O1—C26—C2742.0 (4)
C7—C8—C9—C40.8 (5)Li1—O1—C33—C3235.0 (4)
C9—C1—C2—C30.4 (4)Li1—O2—C27—C2638.1 (4)
C9—C1—C10—C1181.5 (4)Li1—O2—C28—C2945.6 (4)
C9—C4—C5—C61.9 (5)Li1—O3—C29—C2835.1 (4)
C10—C1—C2—C3176.5 (3)Li1—O3—C30—C3142.3 (4)
C10—C1—C9—C4176.4 (3)Li1—O4—C31—C3037.9 (4)
C10—C1—C9—C80.3 (6)Li1—O4—C32—C3344.7 (4)
C11—N1—C12—C13166.3 (3)Li1—N1—C11—C10171.8 (3)
C12—N1—C11—C1067.8 (4)Li1—N1—C12—C1380.7 (3)
 

Funding information

Funding for this research was provided by: Engineering and Physical Sciences Research Council (PhD scholarship to K. J. Evans); Daphne Jackson Trust (award to M. F. Haddow).

References

First citationAtwood, J. L., Hunter, W. E., Cowley, A. H., Jones, R. A. & Stewart, C. A. (1981). J. Chem. Soc. Chem. Commun. pp. 925–927.  CSD CrossRef Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalhorda, M. J. & Veiros, L. F. (1999). Coord. Chem. Rev. 185–186, 37–51.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, K. J., Campbell, C. L., Haddow, M. F., Luz, C., Morton, P. A. & Mansell, S. M. (2019). Eur. J. Inorg. Chem. pp. 4894–4901.  CSD CrossRef Google Scholar
First citationEvans, K. J. & Mansell, S. M. (2019). Chem. Eur. J. 25, 3766–3769.  CSD CrossRef CAS PubMed Google Scholar
First citationGans-Eichler, T., Gudat, D., Nättinen, K. & Nieger, M. (2006). Chem. Eur. J. 12, 1162–1173.  PubMed CAS Google Scholar
First citationGans-Eichler, T., Gudat, D. & Nieger, M. (2002). Angew. Chem. Int. Ed. 41, 1888–1891.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJones, J. N. & Cowley, A. H. (2005). Chem. Commun. pp. 1300–1302.  CSD CrossRef Google Scholar
First citationMansell, S. M., Herber, R. H., Nowik, I., Ross, D. H., Russell, C. A. & Wass, D. F. (2011). Inorg. Chem. 50, 2252–2263.  CSD CrossRef CAS PubMed Google Scholar
First citationMansell, S. M., Russell, C. A. & Wass, D. F. (2008). Inorg. Chem. 47, 11367–11375.  CSD CrossRef PubMed CAS Google Scholar
First citationRoselló-Merino, M. & Mansell, S. M. (2016). Dalton Trans. 45, 6282–6293.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds