research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {4-[10,15,20-tris­­(4-meth­­oxy­phen­yl)porphyrin-5-yl]benzyl 2-diazo­acetato}­zinc(II)

CROSSMARK_Color_square_no_text.svg

aUniv Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
*Correspondence e-mail: gerard.simonneaux@univ-rennes1.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 December 2019; accepted 27 January 2020; online 31 January 2020)

In the title compound, [Zn(C50H36N6O5)], the ZnII cation is chelated by four pyrrole N atoms of the porphyrinate anion and coordinated by a symmetry-generated keto O atom of the diazo­ester group in a distorted square-pyramidal geometry. The mean Zn—N(pyrrole) bond length is 2.058 Å and the Zn—O(diazo­ester) bond length is 2.179 (4) Å. The zinc cation is displaced by 0.2202 (13) Å from the N4C20 mean plane of the porphyrinate anion toward the O atom; the involvement of this atom leads to a [100] polymeric chain in the crystal.

1. Chemical context

Among various functional groups, diazo derivatives are particularly attractive because of their high reactivities (Ye & McKervey, 1994[Ye, T. & McKervey, M. A. (1994). Chem. Rev. 94, 1091-1160.]). Since porphyrin macrocycles are important fluorescent probes, their functionalization by a diazo group may have many chemical and biological applications (Mix et al., 2016[Mix, K. A., Aronoff, M. R. & Raines, R. T. (2016). Chem. Biol. 11, 3233-3244.]). However, the present study of the title compound seems to be the only reported X-ray structure of a porphyrin bearing a diazo ester group at the periphery of a porphyrin ring. In contrast, many structures of five-coordinate zinc porphyrins of the type [Zn(Porph)(L)] (Porph = is a porphinato ligand and L is a neutral ligand) are known in the literature (Nasri et al., 2016[Nasri, S., Amiri, N., Turowska-Tyrk, I., Daran, J.-C. & Nasri, H. (2016). Acta Cryst. E72, 164-169.]). During the course of our previous studies on diazo compounds (Ferrand et al., 2005[Ferrand, Y., Le Maux, P. & Simonneaux, G. (2005). Tetrahedron Asymmetry, 16, 3829-3836.]; Galardon et al., 2000[Galardon, E., Le Maux, P. & Simonneaux, G. (2000). Tetrahedron, 56, 615-621.]), we reported the use of metalloporphyrins for catalytic cyclo­propanation and the insertion of diazo­ketone compounds in N—H bonds. (Nicolas et al., 2008[Nicolas, I., Le Maux, P. & Simonneaux, G. (2008). Tetrahedron Lett. 49, 5793-5795.], Nicolas et al., 2009[Nicolas, I., Roisnel, T., Le Maux, P. & Simonneaux, G. (2009). Tetrahedron Lett. 50, 5149-5151.]).

[Scheme 1]

In this work, we describe the crystal structure of the zinc porphyrin title complex, (I)[link], to obtain more insight into the structural relationship of zinc and a diazo­ester group (Carrie et al., 2016[Carrie, D., Srour, H., Le Maux, P. & Simonneaux, G. (2016). Tetrahedron Lett. 57, 1179-1182.]; Fleischer & Shachter, 1991[Fleischer, E. B. & Shachter, A. M. (1991). Inorg. Chem. 30, 3763-3769.])

2. Structural commentary

The asymmetric unit of (I)[link] is shown in Fig. 1[link]. In the crystal, the structure is a one-dimensional polymer, wherein the Zn2+ ion bonds to four pyrrole nitrogen atoms and to the diazo ester oxygen atom of an adjacent molecule [O60i: symmetry code: (i) x − 1, y, z], thereby defining the propagation of the chain, Figs. 2[link] and 3[link]. The bond lengths from the zinc ion to the pyrrole nitro­gen atoms span the range 2.046 (4)–2.073 (4) Å, which is comparable with those reported in the literature (Nasri et al., 2016[Nasri, S., Amiri, N., Turowska-Tyrk, I., Daran, J.-C. & Nasri, H. (2016). Acta Cryst. E72, 164-169.]). The Zn—O(diazo­ester) bond length is 2.179 (4) Å, which is slightly shorter than that of ZnTCPP(acetone) (TCPP = meso-tetra­(4-carb­oxy­phen­yl)porphyrin) [2.222 (2) Å; Chen et al., 2014[Chen, W. T., Yi, X. G., Luo, Z. G., Fu, H. R. & Liu, J. (2014). Russ. J. Phys. Chem. 88, 1228-1231.]]. The bond lengths of the diazo group have been previously estimated from X-ray data and ab initio calculations for a series of diazo­compounds (average parameters: N—N 1.1189 and N—C = 1.3263 Å). Remarkably little variance in these bond lengths occurs, even with varied functionality around the diazo moiety (Goodman et al., 1994[Goodman, J. M., James, J. J. & Whiting, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 109-115.]). For the title compound, the N—N and C—N bond lengths are 1.112 (10) and 1.285 (10) Å, respectively, which are close to those observed for an aromatic diazo­ketone [N—N =1.117 (8); C—N = 1.316 (9) Å; Yanez et al., 2003[Yanez, E. C., Arceo de la Pena, A., Muchowski, J. M. & Almanza, R. C. (2003). Rev. Soc. Quim. Mex. 47, 202-206.]].

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
Fragment of the polymeric structure of (I)[link]: atoms Zn1_1 and O60_1 are generated by the symmetry operations x + 1, y, z and x − 1, y, z, respectively.
[Figure 3]
Figure 3
The packing of (I)[link] showing side-by-side polymeric chains propagating in the [100] direction.

3. Supra­molecular features

Fig. 2[link] shows the polymeric nature of (I)[link] consisting of infinite [100] chains of Zn porphyrin units with the diazo­ester of one unit coordinated to the zinc atom of another: the mol­ecules are linked together in such a way as to make two different columns of porphyrin planes (Fig. 3[link]). There are no other significant inter­molecular contacts present.

4. Synthesis and crystallization

5-[4-(Hy­droxy­meth­yl)phen­yl]-10,15,20-(4-(trimeth­oxy)phen­yl)porphyrin and the zinc starting complex were synthesized using previously reported methods (Carrie et al., 2016[Carrie, D., Srour, H., Le Maux, P. & Simonneaux, G. (2016). Tetrahedron Lett. 57, 1179-1182.]).

To a distilled CH2Cl2 solution (5 ml) of zinc 5-[4-(hy­droxy­meth­yl)phen­yl]-10,15,20-tri­phenyl­porphyrin (100 mg, 0.12 mmol), 3 eq. of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; 0.36 mmol) were first added under argon at 273 K and then 1.5 eq. of bromo acetyl bromide (0.2 mmol). The reaction mixture was stirred for 10 min at room temperature. After cooling the solution again to 273 K, a THF solution of di­tosyl­hydrazine (2 eq.) and DBU (5 eq.) was added, and the mixture was stirred for 30 min at room temperature. The solution was then evaporated, dissolved in CH2Cl2 and purified through a silica gel column (CH2Cl2). Yield = 70%. Red prisms of (I)[link] were obtained by diffusion of pentane into a di­chloro­methane solution. UV/VIS (CH2Cl2): lmax, nm: 421, 548, 592.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The contribution of the disordered solvents to the calculated structure factors was estimated following the BYPASS algorithm (Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]), implemented as the SQUEEZE option in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). H atoms were finally included in their calculated positions (C—H = 0.95–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl H atoms were allowed to rotate, but not to tip, to best fit the electron density. The crystal studied was refined as an inversion twin.

Table 1
Experimental details

Crystal data
Chemical formula [Zn(C50H36N6O5)]
Mr 866.22
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 10.8054 (8), 19.3938 (14), 12.7467 (10)
β (°) 98.523 (3)
V3) 2641.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.32 × 0.30 × 0.10
 
Data collection
Diffractometer D8 VENTURE Bruker AXS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.704, 0.950
No. of measured, independent and observed [I > 2σ(I)] reflections 28170, 12068, 9931
Rint 0.047
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.04
No. of reflections 12068
No. of parameters 563
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.42
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.033 (15)
Computer programs: SAINT (Bruker, 2014[Bruker (2014). SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), APEX3 (Bruker, 2015[Bruker (2015). APEX3. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SXGRAPH (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CRYSCALC (Roisnel, local program, 2019).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2014); cell refinement: APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: SXGRAPH (Farrugia, 1999), Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSCALC (Roisnel, local program, 2019).

{4-[10,15,20-Tris(4-methoxyphenyl)porphyrin-5-yl]benzyl 2-diazoacetato}zinc(II) top
Crystal data top
[Zn(C50H36N6O5)]F(000) = 896
Mr = 866.22Dx = 1.089 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.8054 (8) ÅCell parameters from 9886 reflections
b = 19.3938 (14) Åθ = 2.5–27.4°
c = 12.7467 (10) ŵ = 0.51 mm1
β = 98.523 (3)°T = 150 K
V = 2641.7 (3) Å3Prism, red
Z = 20.32 × 0.30 × 0.10 mm
Data collection top
D8 VENTURE Bruker AXS
diffractometer
12068 independent reflections
Radiation source: Incoatec microfocus sealed tube9931 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.047
Detector resolution: 10.4167 pixels mm-1θmax = 27.5°, θmin = 2.1°
rotation images scansh = 1413
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 2425
Tmin = 0.704, Tmax = 0.950l = 1616
28170 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0738P)2 + 1.1085P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.024
12068 reflectionsΔρmax = 0.43 e Å3
563 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.033 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00556 (5)0.70060 (3)0.62458 (4)0.02718 (14)
N10.0900 (4)0.7458 (2)0.5081 (3)0.0273 (9)
N20.1436 (4)0.6737 (2)0.5139 (3)0.0279 (9)
N30.0613 (4)0.6355 (2)0.7323 (3)0.0280 (9)
N40.1702 (3)0.7083 (3)0.7288 (3)0.0264 (8)
C10.0353 (4)0.7599 (3)0.4074 (4)0.0258 (10)
C20.0846 (5)0.7376 (3)0.3602 (4)0.0284 (10)
C30.1656 (4)0.6983 (3)0.4102 (3)0.0282 (9)
C40.2887 (5)0.6744 (3)0.3615 (4)0.0294 (10)
H40.3270420.6832870.2908680.035*
C50.3383 (5)0.6375 (3)0.4341 (4)0.0341 (12)
H50.4176160.6153980.4250120.041*
C60.2463 (5)0.6384 (3)0.5294 (4)0.0267 (10)
C70.2652 (5)0.6058 (2)0.6254 (4)0.0257 (10)
C80.1758 (5)0.6049 (3)0.7185 (4)0.0304 (11)
C90.1968 (6)0.5711 (3)0.8157 (4)0.0401 (13)
H90.2693080.5463930.8277740.048*
C100.0913 (5)0.5821 (3)0.8860 (4)0.0331 (12)
H100.0759220.5658780.9571050.040*
C110.0068 (5)0.6227 (3)0.8337 (4)0.0281 (10)
C120.1111 (5)0.6462 (3)0.8823 (4)0.0309 (11)
C130.1928 (5)0.6856 (2)0.8307 (4)0.0281 (11)
C140.3165 (5)0.7062 (3)0.8786 (4)0.0345 (10)
H140.3556950.6960320.9486230.041*
C150.3662 (5)0.7428 (3)0.8045 (4)0.0327 (11)
H150.4466060.7636380.8132390.039*
C160.2751 (4)0.7442 (3)0.7105 (4)0.0266 (10)
C170.2948 (5)0.7755 (2)0.6138 (4)0.0262 (10)
C180.2070 (5)0.7756 (2)0.5209 (4)0.0263 (10)
C190.2248 (5)0.8106 (3)0.4230 (4)0.0325 (11)
H190.2962840.8362650.4109230.039*
C200.1203 (6)0.7995 (3)0.3528 (4)0.0408 (13)
H200.1051790.8147960.2812410.049*
C210.1269 (5)0.7562 (3)0.2450 (4)0.0305 (11)
C220.1727 (9)0.8212 (4)0.2161 (5)0.061 (2)
H220.1778630.8549170.2693520.073*
C230.2109 (9)0.8379 (4)0.1107 (6)0.067 (2)
H230.2368390.8836530.0923580.080*
C240.2119 (6)0.7893 (3)0.0320 (4)0.0434 (14)
C250.1649 (6)0.7242 (3)0.0607 (5)0.0475 (16)
H250.1624300.6896000.0083780.057*
C260.1217 (5)0.7103 (3)0.1663 (4)0.0395 (13)
H260.0866740.6662230.1843010.047*
O270.2603 (5)0.8092 (3)0.0664 (3)0.0585 (13)
C280.2763 (7)0.7571 (4)0.1445 (5)0.0555 (18)
H28A0.3207840.7179710.1188810.083*
H28B0.1942020.7418050.1594250.083*
H28C0.3249920.7753270.2096020.083*
C310.1521 (5)0.6269 (3)0.9941 (4)0.0298 (10)
C320.1745 (6)0.5584 (3)1.0261 (5)0.0419 (13)
H320.1605180.5220900.9756400.050*
C330.2178 (6)0.5436 (3)1.1330 (4)0.0380 (12)
H330.2313970.4968191.1538290.046*
C340.2405 (6)0.5930 (3)1.2067 (5)0.0424 (14)
C350.2166 (6)0.6622 (3)1.1777 (4)0.0397 (13)
H350.2294590.6975731.2296920.048*
C360.1744 (5)0.6783 (3)1.0732 (4)0.0363 (12)
H360.1599400.7252411.0539060.044*
O370.2872 (4)0.5733 (2)1.3082 (3)0.0470 (10)
C380.3071 (7)0.6249 (3)1.3886 (5)0.0478 (15)
H38A0.3630130.6605431.3678310.072*
H38B0.3450830.6038941.4556230.072*
H38C0.2267390.6458021.3976980.072*
C410.3889 (5)0.5724 (2)0.6304 (4)0.0260 (10)
C420.4812 (6)0.6063 (3)0.6729 (5)0.0387 (13)
H420.4659680.6521030.6978490.046*
C430.5957 (6)0.5764 (3)0.6808 (6)0.0464 (15)
H430.6589370.6020780.7076950.056*
C440.6171 (5)0.5084 (3)0.6488 (5)0.0353 (12)
C450.5207 (7)0.4725 (3)0.6066 (5)0.0497 (16)
H450.5324310.4257470.5852170.060*
C460.4128 (6)0.5049 (3)0.5969 (6)0.0454 (15)
H460.3507440.4807100.5660330.054*
O470.7270 (4)0.4728 (2)0.6512 (5)0.0628 (14)
C480.8253 (10)0.5098 (5)0.6903 (13)0.123 (5)
H48A0.8277080.5572360.6637820.184*
H48B0.8099860.5101770.7680630.184*
H48C0.9055430.4871770.6659440.184*
C540.6527 (5)0.8721 (3)0.6153 (4)0.0297 (11)
C550.5618 (5)0.9019 (3)0.6678 (5)0.0357 (12)
H550.5794640.9441670.7047450.043*
C560.4463 (6)0.8711 (3)0.6671 (5)0.0385 (13)
H560.3862370.8920120.7043790.046*
C510.4173 (5)0.8096 (3)0.6121 (4)0.0271 (10)
C520.5070 (5)0.7809 (2)0.5572 (4)0.0256 (10)
H520.4882550.7396510.5178250.031*
C530.6239 (5)0.8117 (3)0.5589 (4)0.0306 (11)
H530.6840420.7912550.5212890.037*
O580.8581 (4)0.89908 (19)0.7153 (3)0.0390 (9)
C590.9262 (5)0.8416 (3)0.7264 (5)0.0342 (12)
C570.7751 (5)0.9070 (3)0.6121 (4)0.0326 (11)
H57A0.8160410.8867030.5548100.039*
H57B0.7608180.9566110.5964210.039*
O600.9171 (4)0.7974 (2)0.6583 (3)0.0410 (9)
C611.0062 (7)0.8346 (3)0.8270 (6)0.0530 (18)
H611.0598750.7957910.8399110.064*
N621.0053 (7)0.8808 (4)0.8992 (6)0.076 (2)
N631.0095 (9)0.9222 (5)0.9599 (7)0.109 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0255 (2)0.0322 (3)0.0238 (2)0.0034 (3)0.00351 (18)0.0022 (3)
N10.022 (2)0.033 (2)0.027 (2)0.0035 (17)0.0065 (17)0.0021 (17)
N20.031 (2)0.033 (2)0.019 (2)0.0007 (17)0.0022 (17)0.0004 (16)
N30.027 (2)0.031 (2)0.024 (2)0.0103 (17)0.0004 (17)0.0036 (17)
N40.0224 (17)0.031 (2)0.0257 (18)0.0005 (19)0.0030 (14)0.0083 (19)
C10.020 (2)0.036 (3)0.022 (2)0.0022 (19)0.0038 (18)0.0054 (19)
C20.028 (2)0.032 (2)0.025 (2)0.000 (2)0.0030 (19)0.001 (2)
C30.029 (2)0.034 (2)0.020 (2)0.004 (3)0.0003 (16)0.000 (2)
C40.025 (2)0.039 (2)0.023 (2)0.004 (2)0.0003 (19)0.001 (2)
C50.029 (3)0.045 (3)0.028 (3)0.001 (2)0.005 (2)0.005 (2)
C60.029 (3)0.031 (2)0.021 (2)0.000 (2)0.0030 (19)0.0022 (18)
C70.029 (3)0.027 (2)0.023 (2)0.0018 (19)0.0078 (19)0.0022 (18)
C80.036 (3)0.034 (3)0.022 (2)0.006 (2)0.004 (2)0.0011 (19)
C90.038 (3)0.055 (3)0.027 (3)0.016 (3)0.002 (2)0.008 (2)
C100.028 (3)0.048 (3)0.023 (3)0.011 (2)0.001 (2)0.010 (2)
C110.028 (3)0.030 (2)0.026 (2)0.005 (2)0.004 (2)0.0047 (19)
C120.029 (3)0.038 (3)0.024 (2)0.001 (2)0.002 (2)0.006 (2)
C130.025 (2)0.032 (3)0.028 (2)0.0006 (18)0.0061 (19)0.0038 (17)
C140.031 (2)0.042 (3)0.030 (2)0.004 (3)0.0008 (18)0.004 (3)
C150.026 (3)0.042 (3)0.029 (3)0.008 (2)0.001 (2)0.004 (2)
C160.020 (2)0.032 (2)0.029 (2)0.0027 (19)0.0053 (19)0.0004 (19)
C170.026 (2)0.024 (2)0.029 (3)0.0067 (18)0.003 (2)0.0015 (18)
C180.026 (2)0.031 (2)0.022 (2)0.0014 (19)0.0065 (19)0.0029 (18)
C190.031 (3)0.041 (3)0.025 (3)0.010 (2)0.003 (2)0.005 (2)
C200.049 (3)0.051 (3)0.023 (3)0.002 (3)0.008 (2)0.012 (2)
C210.028 (3)0.039 (3)0.025 (3)0.000 (2)0.005 (2)0.006 (2)
C220.103 (6)0.042 (3)0.036 (3)0.013 (4)0.006 (4)0.006 (3)
C230.102 (7)0.043 (4)0.049 (4)0.018 (4)0.006 (4)0.005 (3)
C240.046 (3)0.060 (4)0.025 (3)0.005 (3)0.010 (2)0.019 (3)
C250.051 (4)0.062 (4)0.029 (3)0.014 (3)0.006 (3)0.001 (2)
C260.044 (3)0.038 (3)0.035 (3)0.017 (3)0.001 (2)0.004 (2)
O270.065 (3)0.079 (3)0.029 (2)0.018 (3)0.002 (2)0.012 (2)
C280.058 (4)0.080 (5)0.025 (3)0.002 (4)0.004 (3)0.017 (3)
C310.028 (3)0.034 (2)0.027 (3)0.004 (2)0.002 (2)0.001 (2)
C320.049 (3)0.041 (3)0.032 (3)0.002 (3)0.003 (3)0.008 (2)
C330.052 (3)0.033 (3)0.029 (3)0.005 (2)0.002 (2)0.007 (2)
C340.040 (3)0.054 (4)0.030 (3)0.007 (3)0.003 (2)0.009 (3)
C350.039 (3)0.055 (3)0.024 (3)0.008 (3)0.001 (2)0.003 (2)
C360.037 (3)0.042 (3)0.029 (3)0.001 (2)0.000 (2)0.006 (2)
O370.057 (3)0.046 (2)0.035 (2)0.000 (2)0.002 (2)0.0109 (18)
C380.048 (4)0.048 (3)0.043 (4)0.002 (3)0.009 (3)0.002 (3)
C410.030 (3)0.027 (2)0.021 (2)0.004 (2)0.0042 (19)0.0008 (18)
C420.041 (3)0.029 (3)0.050 (4)0.008 (2)0.017 (3)0.004 (2)
C430.032 (3)0.039 (3)0.072 (5)0.004 (2)0.018 (3)0.004 (3)
C440.034 (3)0.026 (2)0.045 (3)0.013 (2)0.005 (2)0.004 (2)
C450.059 (4)0.037 (3)0.056 (4)0.017 (3)0.018 (3)0.016 (3)
C460.037 (3)0.042 (3)0.059 (4)0.005 (3)0.015 (3)0.019 (3)
O470.038 (2)0.047 (2)0.108 (4)0.015 (2)0.025 (3)0.004 (3)
C480.079 (7)0.052 (5)0.259 (17)0.015 (5)0.096 (9)0.032 (7)
C540.030 (3)0.023 (2)0.036 (3)0.003 (2)0.006 (2)0.008 (2)
C550.036 (3)0.033 (3)0.039 (3)0.006 (2)0.011 (2)0.013 (2)
C560.043 (3)0.031 (3)0.044 (3)0.003 (2)0.015 (3)0.014 (2)
C510.024 (2)0.034 (2)0.022 (2)0.002 (2)0.0009 (19)0.0019 (19)
C520.024 (2)0.028 (2)0.024 (2)0.0025 (19)0.0008 (19)0.0022 (18)
C530.031 (3)0.030 (2)0.031 (3)0.001 (2)0.006 (2)0.007 (2)
O580.041 (2)0.0315 (19)0.043 (2)0.0015 (16)0.0017 (18)0.0020 (16)
C590.028 (3)0.027 (2)0.050 (3)0.003 (2)0.015 (2)0.007 (2)
C570.026 (3)0.032 (2)0.040 (3)0.004 (2)0.005 (2)0.001 (2)
O600.044 (2)0.037 (2)0.042 (2)0.0002 (17)0.0075 (18)0.0055 (17)
C610.055 (4)0.033 (3)0.063 (4)0.002 (3)0.017 (3)0.014 (3)
N620.079 (5)0.080 (5)0.066 (4)0.030 (4)0.001 (4)0.014 (4)
N630.109 (7)0.118 (7)0.089 (6)0.034 (6)0.021 (5)0.066 (6)
Geometric parameters (Å, º) top
Zn1—N22.046 (4)C26—H260.9500
Zn1—N12.051 (4)O27—C281.411 (9)
Zn1—N42.062 (4)C28—H28A0.9800
Zn1—N32.073 (4)C28—H28B0.9800
Zn1—O60i2.179 (4)C28—H28C0.9800
N1—C11.359 (6)C31—C321.401 (8)
N1—C181.378 (6)C31—C361.413 (8)
N2—C61.343 (7)C32—C331.403 (8)
N2—C31.392 (6)C32—H320.9500
N3—C81.359 (7)C33—C341.340 (8)
N3—C111.360 (7)C33—H330.9500
N4—C131.359 (6)C34—O371.371 (7)
N4—C161.379 (6)C34—C351.405 (9)
C1—C21.413 (7)C35—C361.378 (8)
C1—C201.452 (7)C35—H350.9500
C2—C31.385 (7)C36—H360.9500
C2—C211.517 (7)O37—C381.426 (8)
C3—C41.457 (7)C38—H38A0.9800
C4—C51.342 (8)C38—H38B0.9800
C4—H40.9500C38—H38C0.9800
C5—C61.451 (7)C41—C421.372 (8)
C5—H50.9500C41—C461.389 (8)
C6—C71.419 (7)C42—C431.383 (8)
C7—C81.415 (7)C42—H420.9500
C7—C411.495 (7)C43—C441.390 (8)
C8—C91.449 (7)C43—H430.9500
C9—C101.358 (8)C44—O471.377 (7)
C9—H90.9500C44—C451.423 (9)
C10—C111.443 (7)C45—C461.345 (9)
C10—H100.9500C45—H450.9500
C11—C121.407 (7)C46—H460.9500
C12—C131.403 (7)O47—C481.431 (10)
C12—C311.476 (7)C48—H48A0.9800
C13—C141.441 (7)C48—H48B0.9800
C14—C151.354 (7)C48—H48C0.9800
C14—H140.9500C54—C531.384 (7)
C15—C161.434 (7)C54—C551.394 (8)
C15—H150.9500C54—C571.492 (7)
C16—C171.418 (7)C55—C561.381 (8)
C17—C181.404 (7)C55—H550.9500
C17—C511.483 (7)C56—C511.397 (7)
C18—C191.458 (7)C56—H560.9500
C19—C201.350 (8)C51—C521.393 (7)
C19—H190.9500C52—C531.395 (7)
C20—H200.9500C52—H520.9500
C21—C261.347 (8)C53—H530.9500
C21—C221.384 (8)O58—C591.332 (6)
C22—C231.384 (10)O58—C571.486 (7)
C22—H220.9500C59—O601.213 (6)
C23—C241.374 (10)C59—C611.443 (9)
C23—H230.9500C57—H57A0.9900
C24—O271.342 (7)C57—H57B0.9900
C24—C251.389 (9)C61—N621.285 (10)
C25—C261.385 (8)C61—H610.9500
C25—H250.9500N62—N631.112 (10)
N2—Zn1—N189.95 (17)C26—C25—H25120.3
N2—Zn1—N4168.25 (18)C24—C25—H25120.3
N1—Zn1—N490.10 (16)C21—C26—C25123.3 (5)
N2—Zn1—N389.15 (16)C21—C26—H26118.3
N1—Zn1—N3167.43 (17)C25—C26—H26118.3
N4—Zn1—N388.25 (16)C24—O27—C28116.4 (5)
N2—Zn1—O60i91.84 (16)O27—C28—H28A109.5
N1—Zn1—O60i91.71 (16)O27—C28—H28B109.5
N4—Zn1—O60i99.90 (17)H28A—C28—H28B109.5
N3—Zn1—O60i100.85 (17)O27—C28—H28C109.5
C1—N1—C18106.9 (4)H28A—C28—H28C109.5
C1—N1—Zn1126.3 (3)H28B—C28—H28C109.5
C18—N1—Zn1126.3 (3)C32—C31—C36117.2 (5)
C6—N2—C3106.6 (4)C32—C31—C12122.4 (5)
C6—N2—Zn1127.7 (3)C36—C31—C12120.4 (5)
C3—N2—Zn1125.0 (3)C31—C32—C33119.7 (5)
C8—N3—C11107.5 (4)C31—C32—H32120.2
C8—N3—Zn1125.4 (3)C33—C32—H32120.2
C11—N3—Zn1126.5 (3)C34—C33—C32122.3 (5)
C13—N4—C16106.8 (4)C34—C33—H33118.8
C13—N4—Zn1127.5 (3)C32—C33—H33118.8
C16—N4—Zn1125.5 (3)C33—C34—O37117.8 (5)
N1—C1—C2125.7 (4)C33—C34—C35119.4 (5)
N1—C1—C20110.0 (4)O37—C34—C35122.8 (6)
C2—C1—C20124.3 (5)C36—C35—C34119.5 (5)
C3—C2—C1125.1 (5)C36—C35—H35120.2
C3—C2—C21117.1 (4)C34—C35—H35120.2
C1—C2—C21117.7 (4)C35—C36—C31121.8 (5)
C2—C3—N2126.5 (4)C35—C36—H36119.1
C2—C3—C4125.4 (4)C31—C36—H36119.1
N2—C3—C4108.2 (4)C34—O37—C38118.5 (5)
C5—C4—C3108.0 (5)O37—C38—H38A109.5
C5—C4—H4126.0O37—C38—H38B109.5
C3—C4—H4126.0H38A—C38—H38B109.5
C4—C5—C6106.1 (5)O37—C38—H38C109.5
C4—C5—H5127.0H38A—C38—H38C109.5
C6—C5—H5127.0H38B—C38—H38C109.5
N2—C6—C7125.6 (4)C42—C41—C46117.4 (5)
N2—C6—C5111.2 (4)C42—C41—C7121.1 (4)
C7—C6—C5123.3 (5)C46—C41—C7121.5 (5)
C8—C7—C6124.2 (5)C41—C42—C43122.6 (5)
C8—C7—C41117.6 (4)C41—C42—H42118.7
C6—C7—C41118.2 (4)C43—C42—H42118.7
N3—C8—C7126.8 (4)C42—C43—C44119.2 (6)
N3—C8—C9110.0 (5)C42—C43—H43120.4
C7—C8—C9123.3 (5)C44—C43—H43120.4
C10—C9—C8105.7 (5)O47—C44—C43125.1 (6)
C10—C9—H9127.2O47—C44—C45116.5 (5)
C8—C9—H9127.2C43—C44—C45118.4 (5)
C9—C10—C11107.9 (5)C46—C45—C44120.0 (5)
C9—C10—H10126.1C46—C45—H45120.0
C11—C10—H10126.1C44—C45—H45120.0
N3—C11—C12126.6 (4)C45—C46—C41122.4 (6)
N3—C11—C10108.9 (4)C45—C46—H46118.8
C12—C11—C10124.5 (5)C41—C46—H46118.8
C13—C12—C11124.2 (5)C44—O47—C48116.4 (6)
C13—C12—C31118.1 (5)O47—C48—H48A109.5
C11—C12—C31117.8 (5)O47—C48—H48B109.5
N4—C13—C12126.0 (5)H48A—C48—H48B109.5
N4—C13—C14109.8 (4)O47—C48—H48C109.5
C12—C13—C14124.2 (5)H48A—C48—H48C109.5
C15—C14—C13106.8 (4)H48B—C48—H48C109.5
C15—C14—H14126.6C53—C54—C55118.7 (5)
C13—C14—H14126.6C53—C54—C57120.1 (5)
C14—C15—C16107.4 (5)C55—C54—C57121.0 (5)
C14—C15—H15126.3C56—C55—C54121.2 (5)
C16—C15—H15126.3C56—C55—H55119.4
N4—C16—C17126.6 (4)C54—C55—H55119.4
N4—C16—C15109.2 (4)C55—C56—C51120.5 (5)
C17—C16—C15124.2 (4)C55—C56—H56119.7
C18—C17—C16124.4 (4)C51—C56—H56119.7
C18—C17—C51118.7 (4)C52—C51—C56118.2 (5)
C16—C17—C51117.0 (4)C52—C51—C17121.3 (4)
N1—C18—C17126.4 (4)C56—C51—C17120.5 (5)
N1—C18—C19109.2 (4)C51—C52—C53121.1 (5)
C17—C18—C19124.4 (5)C51—C52—H52119.4
C20—C19—C18106.8 (5)C53—C52—H52119.4
C20—C19—H19126.6C54—C53—C52120.3 (5)
C18—C19—H19126.6C54—C53—H53119.9
C19—C20—C1107.0 (5)C52—C53—H53119.9
C19—C20—H20126.5C59—O58—C57115.6 (4)
C1—C20—H20126.5O60—C59—O58122.0 (5)
C26—C21—C22117.1 (5)O60—C59—C61123.0 (5)
C26—C21—C2121.6 (5)O58—C59—C61114.9 (5)
C22—C21—C2121.3 (5)O58—C57—C54110.5 (4)
C23—C22—C21120.9 (6)O58—C57—H57A109.6
C23—C22—H22119.5C54—C57—H57A109.6
C21—C22—H22119.5O58—C57—H57B109.6
C24—C23—C22121.2 (6)C54—C57—H57B109.6
C24—C23—H23119.4H57A—C57—H57B108.1
C22—C23—H23119.4C59—O60—Zn1ii139.3 (4)
O27—C24—C23116.5 (6)N62—C61—C59120.3 (6)
O27—C24—C25125.7 (6)N62—C61—H61119.9
C23—C24—C25117.8 (5)C59—C61—H61119.9
C26—C25—C24119.4 (6)N63—N62—C61176.5 (11)
C18—N1—C1—C2178.4 (5)C51—C17—C18—C193.6 (7)
Zn1—N1—C1—C29.3 (7)N1—C18—C19—C201.7 (6)
C18—N1—C1—C200.7 (6)C17—C18—C19—C20179.4 (5)
Zn1—N1—C1—C20173.0 (4)C18—C19—C20—C12.0 (6)
N1—C1—C2—C30.9 (8)N1—C1—C20—C191.8 (6)
C20—C1—C2—C3178.3 (5)C2—C1—C20—C19179.5 (5)
N1—C1—C2—C21177.4 (5)C3—C2—C21—C2677.8 (7)
C20—C1—C2—C210.0 (8)C1—C2—C21—C26100.6 (6)
C1—C2—C3—N20.6 (9)C3—C2—C21—C22102.3 (7)
C21—C2—C3—N2177.7 (5)C1—C2—C21—C2279.3 (8)
C1—C2—C3—C4179.2 (5)C26—C21—C22—C230.1 (12)
C21—C2—C3—C40.9 (8)C2—C21—C22—C23179.9 (7)
C6—N2—C3—C2179.9 (5)C21—C22—C23—C244.0 (14)
Zn1—N2—C3—C28.7 (8)C22—C23—C24—O27174.6 (8)
C6—N2—C3—C41.2 (6)C22—C23—C24—C254.5 (12)
Zn1—N2—C3—C4172.5 (3)O27—C24—C25—C26177.7 (6)
C2—C3—C4—C5179.5 (5)C23—C24—C25—C261.3 (10)
N2—C3—C4—C50.6 (6)C22—C21—C26—C253.2 (10)
C3—C4—C5—C60.2 (6)C2—C21—C26—C25176.9 (6)
C3—N2—C6—C7178.5 (5)C24—C25—C26—C212.6 (10)
Zn1—N2—C6—C77.5 (7)C23—C24—O27—C28172.0 (7)
C3—N2—C6—C51.4 (6)C25—C24—O27—C287.0 (10)
Zn1—N2—C6—C5172.4 (3)C13—C12—C31—C32114.4 (6)
C4—C5—C6—N21.0 (6)C11—C12—C31—C3264.5 (7)
C4—C5—C6—C7178.9 (5)C13—C12—C31—C3663.4 (7)
N2—C6—C7—C81.3 (8)C11—C12—C31—C36117.7 (6)
C5—C6—C7—C8178.8 (5)C36—C31—C32—C330.2 (8)
N2—C6—C7—C41176.3 (5)C12—C31—C32—C33177.7 (5)
C5—C6—C7—C413.6 (7)C31—C32—C33—C340.9 (10)
C11—N3—C8—C7179.2 (5)C32—C33—C34—O37177.5 (6)
Zn1—N3—C8—C76.9 (8)C32—C33—C34—C352.2 (10)
C11—N3—C8—C90.3 (6)C33—C34—C35—C362.3 (9)
Zn1—N3—C8—C9171.9 (4)O37—C34—C35—C36177.4 (6)
C6—C7—C8—N31.5 (8)C34—C35—C36—C311.2 (9)
C41—C7—C8—N3176.1 (5)C32—C31—C36—C350.1 (8)
C6—C7—C8—C9179.8 (5)C12—C31—C36—C35177.9 (5)
C41—C7—C8—C92.6 (8)C33—C34—O37—C38177.4 (6)
N3—C8—C9—C100.6 (7)C35—C34—O37—C382.9 (9)
C7—C8—C9—C10179.5 (5)C8—C7—C41—C4281.1 (7)
C8—C9—C10—C110.6 (7)C6—C7—C41—C4296.7 (6)
C8—N3—C11—C12178.4 (5)C8—C7—C41—C4695.9 (6)
Zn1—N3—C11—C126.3 (8)C6—C7—C41—C4686.3 (7)
C8—N3—C11—C100.1 (6)C46—C41—C42—C431.5 (9)
Zn1—N3—C11—C10172.2 (4)C7—C41—C42—C43178.6 (6)
C9—C10—C11—N30.5 (7)C41—C42—C43—C442.8 (11)
C9—C10—C11—C12178.0 (5)C42—C43—C44—O47179.2 (6)
N3—C11—C12—C131.9 (9)C42—C43—C44—C451.5 (10)
C10—C11—C12—C13179.9 (5)O47—C44—C45—C46176.9 (7)
N3—C11—C12—C31179.4 (5)C43—C44—C45—C461.0 (10)
C10—C11—C12—C311.1 (8)C44—C45—C46—C412.4 (11)
C16—N4—C13—C12179.4 (5)C42—C41—C46—C451.2 (10)
Zn1—N4—C13—C126.5 (8)C7—C41—C46—C45175.9 (6)
C16—N4—C13—C141.2 (6)C43—C44—O47—C480.2 (12)
Zn1—N4—C13—C14175.3 (4)C45—C44—O47—C48177.9 (9)
C11—C12—C13—N41.8 (8)C53—C54—C55—C562.2 (9)
C31—C12—C13—N4179.5 (5)C57—C54—C55—C56177.2 (5)
C11—C12—C13—C14176.1 (5)C54—C55—C56—C511.0 (9)
C31—C12—C13—C142.6 (8)C55—C56—C51—C520.8 (9)
N4—C13—C14—C151.3 (7)C55—C56—C51—C17178.2 (5)
C12—C13—C14—C15179.5 (5)C18—C17—C51—C5271.5 (6)
C13—C14—C15—C160.9 (6)C16—C17—C51—C52108.0 (6)
C13—N4—C16—C17178.1 (5)C18—C17—C51—C56109.5 (6)
Zn1—N4—C16—C177.6 (8)C16—C17—C51—C5671.0 (7)
C13—N4—C16—C150.7 (6)C56—C51—C52—C531.5 (8)
Zn1—N4—C16—C15174.9 (4)C17—C51—C52—C53177.6 (5)
C14—C15—C16—N40.2 (6)C55—C54—C53—C521.5 (8)
C14—C15—C16—C17177.4 (5)C57—C54—C53—C52176.6 (5)
N4—C16—C17—C181.4 (8)C51—C52—C53—C540.3 (8)
C15—C16—C17—C18178.5 (5)C57—O58—C59—O602.9 (7)
N4—C16—C17—C51178.1 (5)C57—O58—C59—C61180.0 (5)
C15—C16—C17—C511.0 (7)C59—O58—C57—C5486.2 (5)
C1—N1—C18—C17178.2 (5)C53—C54—C57—O58108.5 (5)
Zn1—N1—C18—C176.0 (7)C55—C54—C57—O5876.6 (6)
C1—N1—C18—C190.5 (6)O58—C59—O60—Zn1ii174.5 (4)
Zn1—N1—C18—C19171.7 (3)C61—C59—O60—Zn1ii8.5 (9)
C16—C17—C18—N10.4 (8)O60—C59—C61—N62174.9 (7)
C51—C17—C18—N1179.1 (5)O58—C59—C61—N622.2 (10)
C16—C17—C18—C19176.9 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2014). SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX3. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarrie, D., Srour, H., Le Maux, P. & Simonneaux, G. (2016). Tetrahedron Lett. 57, 1179–1182.  CrossRef CAS Google Scholar
First citationChen, W. T., Yi, X. G., Luo, Z. G., Fu, H. R. & Liu, J. (2014). Russ. J. Phys. Chem. 88, 1228–1231.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrand, Y., Le Maux, P. & Simonneaux, G. (2005). Tetrahedron Asymmetry, 16, 3829–3836.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFleischer, E. B. & Shachter, A. M. (1991). Inorg. Chem. 30, 3763–3769.  CSD CrossRef CAS Web of Science Google Scholar
First citationGalardon, E., Le Maux, P. & Simonneaux, G. (2000). Tetrahedron, 56, 615–621.  CrossRef CAS Google Scholar
First citationGoodman, J. M., James, J. J. & Whiting, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 109–115.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMix, K. A., Aronoff, M. R. & Raines, R. T. (2016). Chem. Biol. 11, 3233–3244.  CAS Google Scholar
First citationNasri, S., Amiri, N., Turowska-Tyrk, I., Daran, J.-C. & Nasri, H. (2016). Acta Cryst. E72, 164–169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNicolas, I., Le Maux, P. & Simonneaux, G. (2008). Tetrahedron Lett. 49, 5793–5795.  CrossRef CAS Google Scholar
First citationNicolas, I., Roisnel, T., Le Maux, P. & Simonneaux, G. (2009). Tetrahedron Lett. 50, 5149–5151.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYanez, E. C., Arceo de la Pena, A., Muchowski, J. M. & Almanza, R. C. (2003). Rev. Soc. Quim. Mex. 47, 202–206.  CAS Google Scholar
First citationYe, T. & McKervey, M. A. (1994). Chem. Rev. 94, 1091–1160.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds