research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new pseudopolymorph of perchlorinated neo­penta­silane: the benzene monosolvate Si(SiCl3)4·C6H6

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 December 2019; accepted 23 January 2020; online 31 January 2020)

A new pseudopolymorph of dodeca­chloro­penta­silane, namely a benzene monosolvate, Si5Cl12·C6H6, is described. There are two half mol­ecules of each kind in the asymmetric unit. Both Si5Cl12 mol­ecules are completed by crystallographic twofold symmetry. One of the benzene mol­ecules is located on a twofold rotation axis with two C—H groups located on this rotation axis. The second benzene mol­ecule has all atoms on a general position: it is disordered over two equally occupied orientations. No directional inter­actions beyond normal van der Waals contacts occur in the crystal.

1. Chemical context

Since the 1980s, silicon hydrides, such as Si(SiH3)4, have attracted considerable attention as precursors for the liquid phase deposition (LPD) of silicon thin films (Nishimura et al., 1985[Nishimura, Y., Eguchi, T., Matsuda, H., Haruta, M., Hirai, Y. & Nakagiri, T. (1985). JP, 60219733 A 19851102.]). In this context it should be noted that the perchlorinated neo­penta­silane Si(SiCl3)4 (Si5Cl12) is easily accessible in large amounts by the amine-induced disproportionation (Meyer-Wegner et al., 2011[Meyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715-4719.]; Tillmann et al., 2012[Tillmann, J., Meyer-Wegner, F., Nadj, A., Becker-Baldus, J., Sinke, T., Bolte, M., Holthausen, M. C., Wagner, M. & Lerner, H.-W. (2012). Inorg. Chem. 51, 8599-8606.]) of perchloro­polysilanes, e.g. Si2Cl6 or Si3Cl8 (Meyer-Wegner et al., 2011[Meyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715-4719.]; Urry, 1970[Urry, G. (1970). Acc. Chem. Res. 3, 306-312.]). Subsequent hydrogenation of Si(SiCl3)4 (I)[link] then yields the neo­penta­silane Si(SiH3)4, which can be used as an LPD agent (Cannady & Zhou, 2008[Cannady, J. P. & Zhou, X. (2008). WO2008051328.]) (see Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Amine-induced disproportionation of Si2Cl6 and Si3Cl8: (i) + NMe3, or NMe2Et, or NEt3 in benzene at room temperature; (ii) + LiAlH4 in diethyl ether at room temperature

In this paper we describe the structure of a new pseudo-polymorph of perchlorinated neo­penta­silane (I)[link], namely the benzene monosolvate Si(SiCl3)4·C6H6, and make a comparison of its structure with those of Si(SiCl3)4 (Meyer-Wegner et al., 2011[Meyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715-4719.]) and Si(SiCl3)4·SiCl4 (Fleming, 1972[Fleming, D. K. (1972). Acta Cryst. B28, 1233-1236.]).

2. Structural commentary

There are two half mol­ecules of each kind in the asymmetric unit of (I)[link]. Both Si5Cl12 mol­ecules are completed by crystallographic twofold symmetry, with the rotation axes orientated in the [110] and [[\overline{1}]10] directions and the central Si atom located on the axis (Fig. 2[link]). One of the benzene mol­ecules is located on a twofold rotation axis propagating along the a or b axes with two C—H groups located on this rotation axis. The second benzene mol­ecule has all atoms on general positions: it is disordered over two equally occupied orientations about a twofold rotation axis running in the [100] and [010] directions.

[Figure 2]
Figure 2
A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) −y, −x, −z + [{1\over 4}]; (ii) 1 − y, 1 − x, −z + [{1\over 4}]; (iii) −x, y, −z; (iv) 1 − x, y, −z.

3. Supra­molecular features

A view of the mol­ecular packing of (I)[link] (Fig. 3[link]) reveals that the benzene mol­ecules fill the voids between the dodeca­chloro­penta­silane mol­ecules. There are no identified directional inter­molecular inter­actions.

[Figure 3]
Figure 3
Packing diagram of the title compound viewed down [010].

4. Database survey

There are two already known structures of dodeca­chloro­penta­silane: first, there is pure Si5Cl12 (Meyer-Wegner et al., 2011[Meyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715-4719.]; CCDC deposition number 793308) and second, a co-crystal with silicon tetra­chloride (Fleming, 1972[Fleming, D. K. (1972). Acta Cryst. B28, 1233-1236.]; CCDC deposition number 1592571). In each of these structures, the Si5Cl12 mol­ecule is located on a special position. As noted above, in (I)[link], both mol­ecules in the asymmetric unit are found on a twofold rotation axis. Compound (II) also crystallizes with two mol­ecules in the asymmetric unit. One of them is located on a threefold rotation axis and the other is disordered about a special position of site symmetry [\overline{3}]. In the second mol­ecule, it is noteworthy that only the Si atoms carrying the Cl atoms are disordered: the central Si atom and the Cl atoms themselves are not disordered. In (III), the Si5Cl12 mol­ecule is located on a special position of site symmetry 23. The central Si atom is located at the inter­section of the twofold and the threefold rotation axes (the twofold rotation axis coincides with a [\overline{4}] axis). The Si—Si and Si—Cl bond lengths in all three structures agree well (Table 1[link]).

Table 1
Bond lengths (Å) in the different structures containing Si5Cl12 mol­ecules

For (I)[link], mean values of the two mol­ecules are given. For (II), mean values of the non-disordered mol­ecule are given. Because of the high symmetry of (III), there is only one value for each bond length.

  Si—Si Si—Cl
(I) 2.324 2.019
(II) 2.340 2.026
(III) 2.332 (9) 1.994 (7)

5. Synthesis and crystallization

The perchlorinated neo­penta­silane (I)[link] was synthesized according to a literature procedure (Kaczmarczyk & Urry, 1960[Kaczmarczyk, A. & Urry, G. (1960). J. Am. Chem. Soc. 82, 751-752.]). Single crystals of Si(SiCl3)4·C6H6 were grown from a solution of Si(SiCl3)4 in benzene after one week at room temperature.

Si(SiCl3)4 (I). 29Si{1H}NMR (C6D6, external TMS): δ = −80.9 [Si(SiCl3)4], δ = 3.5 [Si(SiCl3)4].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). One of the benzene mol­ecules is disordered over two equally occupied orientations: its carbon atoms were isotropically refined. The C—C distances in the non-disordered benzene mol­ecule were restrained to 1.390 (2) Å. The crystal chosen for data collection was found to crystallize as a racemic twin.

Table 2
Experimental details

Crystal data
Chemical formula Cl12Si5·C6H6
Mr 643.96
Crystal system, space group Tetragonal, P4122
Temperature (K) 173
a, c (Å) 11.9633 (4), 33.7848 (16)
V3) 4835.3 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.62
Crystal size (mm) 0.28 × 0.18 × 0.16
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.803, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 39180, 5189, 4790
Rint 0.047
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.08
No. of reflections 5189
No. of parameters 207
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.42
Absolute structure Flack x determined using 1905 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.48 (5)
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Dodecachloropentasilane benzene monosolvate top
Crystal data top
Cl12Si5·C6H6Dx = 1.769 Mg m3
Mr = 643.96Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4122Cell parameters from 62511 reflections
a = 11.9633 (4) Åθ = 1.9–27.6°
c = 33.7848 (16) ŵ = 1.62 mm1
V = 4835.3 (4) Å3T = 173 K
Z = 8Block, colourless
F(000) = 25280.28 × 0.18 × 0.16 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4790 reflections with I > 2σ(I)
ω scansRint = 0.047
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
θmax = 27.1°, θmin = 1.8°
Tmin = 0.803, Tmax = 1.0h = 1415
39180 measured reflectionsk = 1515
5189 independent reflectionsl = 4343
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0375P)2 + 2.8317P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.39 e Å3
5189 reflectionsΔρmin = 0.42 e Å3
207 parametersAbsolute structure: Flack x determined using 1905 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
5 restraintsAbsolute structure parameter: 0.48 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.54973 (7)0.45027 (7)0.1250000.0222 (3)
Si20.38834 (7)0.45056 (7)0.08678 (2)0.02447 (19)
Si30.54972 (8)0.29277 (8)0.16530 (3)0.0264 (2)
Cl210.40377 (8)0.34525 (8)0.04060 (2)0.0400 (2)
Cl220.25695 (7)0.39988 (8)0.11990 (3)0.0387 (2)
Cl230.35776 (8)0.60671 (7)0.06658 (3)0.0384 (2)
Cl310.49743 (8)0.15929 (7)0.13366 (3)0.0408 (2)
Cl320.70602 (8)0.26452 (9)0.18579 (3)0.0453 (2)
Cl330.44514 (8)0.31660 (9)0.21128 (3)0.0412 (2)
Si40.04988 (7)0.04988 (7)0.1250000.0225 (3)
Si50.05165 (7)0.11311 (7)0.16232 (2)0.02420 (19)
Si60.20502 (8)0.05209 (8)0.08356 (3)0.0263 (2)
Cl510.05058 (7)0.09833 (8)0.20938 (2)0.0382 (2)
Cl520.00287 (8)0.24225 (7)0.12875 (3)0.0367 (2)
Cl530.20867 (7)0.14553 (8)0.18124 (3)0.0379 (2)
Cl610.23134 (9)0.10282 (8)0.06166 (3)0.0449 (2)
Cl620.17856 (9)0.15973 (8)0.03862 (2)0.0414 (2)
Cl630.34091 (8)0.10198 (9)0.11430 (3)0.0424 (2)
C10.0000000.3434 (6)0.0000000.100 (4)
H10.0000000.2639810.0000000.120*
C20.0511 (5)0.4024 (4)0.03030 (13)0.094 (2)
H20.0871690.3635050.0512310.113*
C30.0495 (5)0.5176 (4)0.03001 (14)0.090 (2)
H30.0837170.5565960.0512840.107*
C40.0000000.5786 (7)0.0000000.087 (3)
H40.0000000.6579840.0000000.104*
C50.5409 (8)0.8628 (10)0.0236 (3)0.051 (2)*0.5
H50.5709430.8062360.0401960.062*0.5
C60.5561 (8)0.9738 (11)0.0335 (3)0.050 (2)*0.5
H60.5943850.9929100.0572050.059*0.5
C70.5158 (9)1.0566 (8)0.0092 (3)0.054 (3)*0.5
H70.5270351.1329870.0157320.065*0.5
C5'0.5145 (10)0.8339 (8)0.0086 (3)0.057 (3)*0.5
H5'0.5260880.7572640.0146870.068*0.5
C6'0.5559 (9)0.9177 (12)0.0335 (3)0.058 (2)*0.5
H6'0.5949910.8972990.0569420.069*0.5
C7'0.5410 (10)1.0290 (11)0.0247 (4)0.062 (3)*0.5
H7'0.5695341.0853790.0417830.074*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0213 (4)0.0213 (4)0.0241 (6)0.0004 (5)0.0008 (3)0.0008 (3)
Si20.0245 (4)0.0238 (4)0.0251 (4)0.0000 (3)0.0010 (3)0.0009 (3)
Si30.0252 (4)0.0247 (4)0.0294 (4)0.0001 (4)0.0007 (3)0.0046 (3)
Cl210.0521 (5)0.0364 (5)0.0316 (4)0.0014 (4)0.0003 (4)0.0084 (3)
Cl220.0269 (4)0.0476 (5)0.0418 (4)0.0054 (4)0.0051 (3)0.0042 (4)
Cl230.0464 (5)0.0278 (4)0.0411 (4)0.0058 (4)0.0079 (4)0.0060 (3)
Cl310.0452 (5)0.0268 (4)0.0503 (5)0.0048 (4)0.0003 (4)0.0032 (4)
Cl320.0317 (4)0.0461 (5)0.0579 (5)0.0068 (4)0.0113 (4)0.0116 (4)
Cl330.0406 (5)0.0529 (6)0.0302 (4)0.0059 (4)0.0065 (4)0.0031 (4)
Si40.0214 (4)0.0214 (4)0.0245 (6)0.0000 (5)0.0006 (3)0.0006 (3)
Si50.0236 (4)0.0242 (4)0.0248 (4)0.0008 (3)0.0010 (3)0.0011 (3)
Si60.0248 (4)0.0259 (4)0.0282 (4)0.0001 (4)0.0038 (3)0.0010 (3)
Cl510.0366 (5)0.0486 (5)0.0295 (4)0.0010 (4)0.0072 (3)0.0013 (4)
Cl520.0436 (5)0.0268 (4)0.0398 (4)0.0039 (4)0.0050 (4)0.0042 (3)
Cl530.0282 (4)0.0428 (5)0.0429 (4)0.0063 (4)0.0069 (3)0.0033 (4)
Cl610.0489 (5)0.0325 (4)0.0533 (5)0.0063 (4)0.0126 (4)0.0108 (4)
Cl620.0520 (5)0.0404 (5)0.0317 (4)0.0053 (4)0.0022 (4)0.0084 (4)
Cl630.0274 (4)0.0505 (5)0.0494 (5)0.0067 (4)0.0039 (4)0.0003 (4)
C10.074 (6)0.043 (4)0.184 (11)0.0000.056 (7)0.000
C20.068 (4)0.147 (7)0.067 (4)0.011 (4)0.001 (3)0.055 (4)
C30.070 (4)0.138 (6)0.060 (3)0.026 (4)0.006 (3)0.037 (4)
C40.067 (5)0.068 (5)0.125 (8)0.0000.040 (5)0.000
Geometric parameters (Å, º) top
Si1—Si22.3227 (11)Si6—Cl612.0202 (13)
Si1—Si2i2.3228 (11)C1—C21.3855 (18)
Si1—Si3i2.3246 (11)C1—C2iii1.3855 (18)
Si1—Si32.3247 (11)C1—H10.9500
Si2—Cl212.0138 (12)C2—C31.378 (3)
Si2—Cl232.0221 (12)C2—H20.9500
Si2—Cl222.0225 (12)C3—C41.3824 (18)
Si3—Cl332.0150 (13)C3—H30.9500
Si3—Cl312.0209 (13)C4—H40.9500
Si3—Cl322.0223 (13)C5—C61.382 (15)
Si4—Si52.3221 (11)C5—H50.9500
Si4—Si5ii2.3222 (11)C6—C71.375 (14)
Si4—Si62.3250 (11)C6—H60.9500
Si4—Si6ii2.3251 (11)C7—H70.9500
Si5—Cl512.0138 (12)C5'—C6'1.399 (15)
Si5—Cl532.0218 (12)C5'—H5'0.9501
Si5—Cl522.0243 (12)C6'—C7'1.376 (15)
Si6—Cl622.0158 (13)C6'—H6'0.9500
Si6—Cl632.0194 (13)C7'—H7'0.9500
Si2—Si1—Si2i107.85 (6)C2—C1—C2iii118.8 (7)
Si2—Si1—Si3i110.38 (3)C2—C1—H1120.6
Si2i—Si1—Si3i109.07 (3)C2iii—C1—H1120.6
Si2—Si1—Si3109.07 (3)C3—C2—C1119.9 (6)
Si2i—Si1—Si3110.37 (3)C3—C2—H2120.1
Si3i—Si1—Si3110.06 (7)C1—C2—H2120.1
Cl21—Si2—Cl23109.46 (5)C2—C3—C4122.6 (6)
Cl21—Si2—Cl22108.20 (6)C2—C3—H3118.7
Cl23—Si2—Cl22108.85 (6)C4—C3—H3118.7
Cl21—Si2—Si1110.71 (5)C3iii—C4—C3116.3 (7)
Cl23—Si2—Si1109.84 (5)C3iii—C4—H4121.9
Cl22—Si2—Si1109.75 (4)C3—C4—H4121.9
Cl33—Si3—Cl31109.11 (6)C6—C5—C5iv106.0 (6)
Cl33—Si3—Cl32109.50 (6)C6—C5—H5119.4
Cl31—Si3—Cl32109.58 (6)C5iv—C5—H5134.6
Cl33—Si3—Si1109.69 (5)C5—C6—C7120.0 (9)
Cl31—Si3—Si1109.31 (5)C5—C6—C7iv104.5 (8)
Cl32—Si3—Si1109.63 (5)C5—C6—H6120.0
Si5—Si4—Si5ii108.07 (6)C7—C6—H6120.0
Si5—Si4—Si6109.22 (3)C7iv—C6—H6135.5
Si5ii—Si4—Si6110.07 (3)C7iv—C7—C6133.9 (6)
Si5—Si4—Si6ii110.08 (3)C6—C7—C6iv103.4 (9)
Si5ii—Si4—Si6ii109.22 (3)C7iv—C7—H7105.9
Si6—Si4—Si6ii110.15 (7)C6—C7—H7120.2
Cl51—Si5—Cl53109.35 (5)C6iv—C7—H7136.4
Cl51—Si5—Cl52108.28 (6)C5'iv—C5'—C6'134.3 (6)
Cl53—Si5—Cl52109.28 (6)C5'iv—C5'—H5'105.1
Cl51—Si5—Si4110.45 (5)C6'—C5'—H5'120.6
Cl53—Si5—Si4109.95 (5)C6'iv—C5'—H5'136.3
Cl52—Si5—Si4109.50 (5)C7'—C6'—C5'121.1 (10)
Cl62—Si6—Cl63108.97 (6)C7'—C6'—H6'119.4
Cl62—Si6—Cl61109.56 (6)C5'—C6'—H6'119.4
Cl63—Si6—Cl61109.51 (6)C5'iv—C6'—H6'134.0
Cl62—Si6—Si4109.60 (5)C6'—C7'—C7'iv104.6 (7)
Cl63—Si6—Si4109.65 (5)C6'—C7'—H7'120.6
Cl61—Si6—Si4109.54 (5)C7'iv—C7'—H7'134.8
C2iii—C1—C2—C30.6 (4)C7iv—C6—C7—C6iv1 (2)
C1—C2—C3—C41.2 (9)C5'iv—C5'—C6'—C7'0 (4)
C2—C3—C4—C3iii0.6 (4)C6'iv—C5'—C6'—C7'0.0 (10)
C5iv—C5—C6—C71.7 (13)C6'iv—C5'—C6'—C5'iv0 (3)
C5iv—C5—C6—C7iv1.2 (10)C5'—C6'—C7'—C7'iv0.1 (14)
C5—C6—C7—C7iv2 (3)C5'iv—C6'—C7'—C7'iv0.2 (11)
C5—C6—C7—C6iv1.0 (9)
Symmetry codes: (i) y+1, x+1, z+1/4; (ii) y, x, z+1/4; (iii) x, y, z; (iv) x+1, y, z.
Bond lengths (Å) in the different structures containing Si5Cl12 molecules top
For (I), mean values of the two molecules are given. For (II), mean values of the non-disordered molecule are given. Because of the high symmetry of (III), there is only one value for each bond length.
Si—SiSi—Cl
(I)2.3242.019
(II)2.3402.026
(III)2.332 (9)1.994 (7)
 

References

First citationCannady, J. P. & Zhou, X. (2008). WO2008051328.  Google Scholar
First citationFleming, D. K. (1972). Acta Cryst. B28, 1233–1236.  CrossRef IUCr Journals Google Scholar
First citationKaczmarczyk, A. & Urry, G. (1960). J. Am. Chem. Soc. 82, 751–752.  CrossRef CAS Google Scholar
First citationMeyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715–4719.  Web of Science CAS PubMed Google Scholar
First citationNishimura, Y., Eguchi, T., Matsuda, H., Haruta, M., Hirai, Y. & Nakagiri, T. (1985). JP, 60219733 A 19851102.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTillmann, J., Meyer-Wegner, F., Nadj, A., Becker-Baldus, J., Sinke, T., Bolte, M., Holthausen, M. C., Wagner, M. & Lerner, H.-W. (2012). Inorg. Chem. 51, 8599–8606.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationUrry, G. (1970). Acc. Chem. Res. 3, 306–312.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds