research communications
A new pseudopolymorph of perchlorinated neopentasilane: the benzene monosolvate Si(SiCl3)4·C6H6
aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de
A new pseudopolymorph of dodecachloropentasilane, namely a benzene monosolvate, Si5Cl12·C6H6, is described. There are two half molecules of each kind in the Both Si5Cl12 molecules are completed by crystallographic twofold symmetry. One of the benzene molecules is located on a twofold rotation axis with two C—H groups located on this rotation axis. The second benzene molecule has all atoms on a general position: it is disordered over two equally occupied orientations. No directional interactions beyond normal van der Waals contacts occur in the crystal.
Keywords: crystal structure; co-crystal; polymorphism; solvate.
CCDC reference: 1979631
1. Chemical context
Since the 1980s, silicon hydrides, such as Si(SiH3)4, have attracted considerable attention as precursors for the liquid phase deposition (LPD) of silicon thin films (Nishimura et al., 1985). In this context it should be noted that the perchlorinated neopentasilane Si(SiCl3)4 (Si5Cl12) is easily accessible in large amounts by the amine-induced (Meyer-Wegner et al., 2011; Tillmann et al., 2012) of perchloropolysilanes, e.g. Si2Cl6 or Si3Cl8 (Meyer-Wegner et al., 2011; Urry, 1970). Subsequent hydrogenation of Si(SiCl3)4 (I) then yields the neopentasilane Si(SiH3)4, which can be used as an LPD agent (Cannady & Zhou, 2008) (see Fig. 1).
In this paper we describe the structure of a new pseudo-polymorph of perchlorinated neopentasilane (I), namely the benzene monosolvate Si(SiCl3)4·C6H6, and make a comparison of its structure with those of Si(SiCl3)4 (Meyer-Wegner et al., 2011) and Si(SiCl3)4·SiCl4 (Fleming, 1972).
2. Structural commentary
There are two half molecules of each kind in the . Both Si5Cl12 molecules are completed by crystallographic twofold symmetry, with the rotation axes orientated in the [110] and [10] directions and the central Si atom located on the axis (Fig. 2). One of the benzene molecules is located on a twofold rotation axis propagating along the a or b axes with two C—H groups located on this rotation axis. The second benzene molecule has all atoms on general positions: it is disordered over two equally occupied orientations about a twofold rotation axis running in the [100] and [010] directions.
of (I)3. Supramolecular features
A view of the molecular packing of (I) (Fig. 3) reveals that the benzene molecules fill the voids between the dodecachloropentasilane molecules. There are no identified directional intermolecular interactions.
4. Database survey
There are two already known structures of dodecachloropentasilane: first, there is pure Si5Cl12 (Meyer-Wegner et al., 2011; CCDC deposition number 793308) and second, a with silicon tetrachloride (Fleming, 1972; CCDC deposition number 1592571). In each of these structures, the Si5Cl12 molecule is located on a special position. As noted above, in (I), both molecules in the are found on a twofold rotation axis. Compound (II) also crystallizes with two molecules in the One of them is located on a threefold rotation axis and the other is disordered about a special position of . In the second molecule, it is noteworthy that only the Si atoms carrying the Cl atoms are disordered: the central Si atom and the Cl atoms themselves are not disordered. In (III), the Si5Cl12 molecule is located on a special position of 23. The central Si atom is located at the intersection of the twofold and the threefold rotation axes (the twofold rotation axis coincides with a axis). The Si—Si and Si—Cl bond lengths in all three structures agree well (Table 1).
|
5. Synthesis and crystallization
The perchlorinated neopentasilane (I) was synthesized according to a literature procedure (Kaczmarczyk & Urry, 1960). Single crystals of Si(SiCl3)4·C6H6 were grown from a solution of Si(SiCl3)4 in benzene after one week at room temperature.
Si(SiCl3)4 (I). 29Si{1H}NMR (C6D6, external TMS): δ = −80.9 [Si(SiCl3)4], δ = 3.5 [Si(SiCl3)4].
6. Refinement
Crystal data, data collection and structure . The H atoms were refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). One of the benzene molecules is disordered over two equally occupied orientations: its carbon atoms were isotropically refined. The C—C distances in the non-disordered benzene molecule were restrained to 1.390 (2) Å. The crystal chosen for data collection was found to crystallize as a racemic twin.
details are summarized in Table 2Supporting information
CCDC reference: 1979631
https://doi.org/10.1107/S2056989020000900/hb7874sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020000900/hb7874Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015) and publCIF (Westrip, 2010).Cl12Si5·C6H6 | Dx = 1.769 Mg m−3 |
Mr = 643.96 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4122 | Cell parameters from 62511 reflections |
a = 11.9633 (4) Å | θ = 1.9–27.6° |
c = 33.7848 (16) Å | µ = 1.62 mm−1 |
V = 4835.3 (4) Å3 | T = 173 K |
Z = 8 | Block, colourless |
F(000) = 2528 | 0.28 × 0.18 × 0.16 mm |
Stoe IPDS II two-circle diffractometer | 4790 reflections with I > 2σ(I) |
ω scans | Rint = 0.047 |
Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001) | θmax = 27.1°, θmin = 1.8° |
Tmin = 0.803, Tmax = 1.0 | h = −14→15 |
39180 measured reflections | k = −15→15 |
5189 independent reflections | l = −43→43 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0375P)2 + 2.8317P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.075 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 0.39 e Å−3 |
5189 reflections | Δρmin = −0.42 e Å−3 |
207 parameters | Absolute structure: Flack x determined using 1905 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
5 restraints | Absolute structure parameter: 0.48 (5) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Si1 | 0.54973 (7) | 0.45027 (7) | 0.125000 | 0.0222 (3) | |
Si2 | 0.38834 (7) | 0.45056 (7) | 0.08678 (2) | 0.02447 (19) | |
Si3 | 0.54972 (8) | 0.29277 (8) | 0.16530 (3) | 0.0264 (2) | |
Cl21 | 0.40377 (8) | 0.34525 (8) | 0.04060 (2) | 0.0400 (2) | |
Cl22 | 0.25695 (7) | 0.39988 (8) | 0.11990 (3) | 0.0387 (2) | |
Cl23 | 0.35776 (8) | 0.60671 (7) | 0.06658 (3) | 0.0384 (2) | |
Cl31 | 0.49743 (8) | 0.15929 (7) | 0.13366 (3) | 0.0408 (2) | |
Cl32 | 0.70602 (8) | 0.26452 (9) | 0.18579 (3) | 0.0453 (2) | |
Cl33 | 0.44514 (8) | 0.31660 (9) | 0.21128 (3) | 0.0412 (2) | |
Si4 | 0.04988 (7) | −0.04988 (7) | 0.125000 | 0.0225 (3) | |
Si5 | 0.05165 (7) | 0.11311 (7) | 0.16232 (2) | 0.02420 (19) | |
Si6 | 0.20502 (8) | −0.05209 (8) | 0.08356 (3) | 0.0263 (2) | |
Cl51 | −0.05058 (7) | 0.09833 (8) | 0.20938 (2) | 0.0382 (2) | |
Cl52 | −0.00287 (8) | 0.24225 (7) | 0.12875 (3) | 0.0367 (2) | |
Cl53 | 0.20867 (7) | 0.14553 (8) | 0.18124 (3) | 0.0379 (2) | |
Cl61 | 0.23134 (9) | 0.10282 (8) | 0.06166 (3) | 0.0449 (2) | |
Cl62 | 0.17856 (9) | −0.15973 (8) | 0.03862 (2) | 0.0414 (2) | |
Cl63 | 0.34091 (8) | −0.10198 (9) | 0.11430 (3) | 0.0424 (2) | |
C1 | 0.000000 | 0.3434 (6) | 0.000000 | 0.100 (4) | |
H1 | 0.000000 | 0.263981 | 0.000000 | 0.120* | |
C2 | 0.0511 (5) | 0.4024 (4) | 0.03030 (13) | 0.094 (2) | |
H2 | 0.087169 | 0.363505 | 0.051231 | 0.113* | |
C3 | 0.0495 (5) | 0.5176 (4) | 0.03001 (14) | 0.090 (2) | |
H3 | 0.083717 | 0.556596 | 0.051284 | 0.107* | |
C4 | 0.000000 | 0.5786 (7) | 0.000000 | 0.087 (3) | |
H4 | 0.000000 | 0.657984 | 0.000000 | 0.104* | |
C5 | 0.5409 (8) | 0.8628 (10) | 0.0236 (3) | 0.051 (2)* | 0.5 |
H5 | 0.570943 | 0.806236 | 0.040196 | 0.062* | 0.5 |
C6 | 0.5561 (8) | 0.9738 (11) | 0.0335 (3) | 0.050 (2)* | 0.5 |
H6 | 0.594385 | 0.992910 | 0.057205 | 0.059* | 0.5 |
C7 | 0.5158 (9) | 1.0566 (8) | 0.0092 (3) | 0.054 (3)* | 0.5 |
H7 | 0.527035 | 1.132987 | 0.015732 | 0.065* | 0.5 |
C5' | 0.5145 (10) | 0.8339 (8) | 0.0086 (3) | 0.057 (3)* | 0.5 |
H5' | 0.526088 | 0.757264 | 0.014687 | 0.068* | 0.5 |
C6' | 0.5559 (9) | 0.9177 (12) | 0.0335 (3) | 0.058 (2)* | 0.5 |
H6' | 0.594991 | 0.897299 | 0.056942 | 0.069* | 0.5 |
C7' | 0.5410 (10) | 1.0290 (11) | 0.0247 (4) | 0.062 (3)* | 0.5 |
H7' | 0.569534 | 1.085379 | 0.041783 | 0.074* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0213 (4) | 0.0213 (4) | 0.0241 (6) | 0.0004 (5) | 0.0008 (3) | 0.0008 (3) |
Si2 | 0.0245 (4) | 0.0238 (4) | 0.0251 (4) | 0.0000 (3) | −0.0010 (3) | 0.0009 (3) |
Si3 | 0.0252 (4) | 0.0247 (4) | 0.0294 (4) | 0.0001 (4) | −0.0007 (3) | 0.0046 (3) |
Cl21 | 0.0521 (5) | 0.0364 (5) | 0.0316 (4) | −0.0014 (4) | 0.0003 (4) | −0.0084 (3) |
Cl22 | 0.0269 (4) | 0.0476 (5) | 0.0418 (4) | −0.0054 (4) | 0.0051 (3) | 0.0042 (4) |
Cl23 | 0.0464 (5) | 0.0278 (4) | 0.0411 (4) | 0.0058 (4) | −0.0079 (4) | 0.0060 (3) |
Cl31 | 0.0452 (5) | 0.0268 (4) | 0.0503 (5) | −0.0048 (4) | −0.0003 (4) | −0.0032 (4) |
Cl32 | 0.0317 (4) | 0.0461 (5) | 0.0579 (5) | 0.0068 (4) | −0.0113 (4) | 0.0116 (4) |
Cl33 | 0.0406 (5) | 0.0529 (6) | 0.0302 (4) | −0.0059 (4) | 0.0065 (4) | 0.0031 (4) |
Si4 | 0.0214 (4) | 0.0214 (4) | 0.0245 (6) | 0.0000 (5) | 0.0006 (3) | 0.0006 (3) |
Si5 | 0.0236 (4) | 0.0242 (4) | 0.0248 (4) | −0.0008 (3) | −0.0010 (3) | −0.0011 (3) |
Si6 | 0.0248 (4) | 0.0259 (4) | 0.0282 (4) | 0.0001 (4) | 0.0038 (3) | 0.0010 (3) |
Cl51 | 0.0366 (5) | 0.0486 (5) | 0.0295 (4) | 0.0010 (4) | 0.0072 (3) | −0.0013 (4) |
Cl52 | 0.0436 (5) | 0.0268 (4) | 0.0398 (4) | 0.0039 (4) | −0.0050 (4) | 0.0042 (3) |
Cl53 | 0.0282 (4) | 0.0428 (5) | 0.0429 (4) | −0.0063 (4) | −0.0069 (3) | −0.0033 (4) |
Cl61 | 0.0489 (5) | 0.0325 (4) | 0.0533 (5) | −0.0063 (4) | 0.0126 (4) | 0.0108 (4) |
Cl62 | 0.0520 (5) | 0.0404 (5) | 0.0317 (4) | 0.0053 (4) | 0.0022 (4) | −0.0084 (4) |
Cl63 | 0.0274 (4) | 0.0505 (5) | 0.0494 (5) | 0.0067 (4) | −0.0039 (4) | 0.0003 (4) |
C1 | 0.074 (6) | 0.043 (4) | 0.184 (11) | 0.000 | 0.056 (7) | 0.000 |
C2 | 0.068 (4) | 0.147 (7) | 0.067 (4) | 0.011 (4) | 0.001 (3) | 0.055 (4) |
C3 | 0.070 (4) | 0.138 (6) | 0.060 (3) | −0.026 (4) | 0.006 (3) | −0.037 (4) |
C4 | 0.067 (5) | 0.068 (5) | 0.125 (8) | 0.000 | 0.040 (5) | 0.000 |
Si1—Si2 | 2.3227 (11) | Si6—Cl61 | 2.0202 (13) |
Si1—Si2i | 2.3228 (11) | C1—C2 | 1.3855 (18) |
Si1—Si3i | 2.3246 (11) | C1—C2iii | 1.3855 (18) |
Si1—Si3 | 2.3247 (11) | C1—H1 | 0.9500 |
Si2—Cl21 | 2.0138 (12) | C2—C3 | 1.378 (3) |
Si2—Cl23 | 2.0221 (12) | C2—H2 | 0.9500 |
Si2—Cl22 | 2.0225 (12) | C3—C4 | 1.3824 (18) |
Si3—Cl33 | 2.0150 (13) | C3—H3 | 0.9500 |
Si3—Cl31 | 2.0209 (13) | C4—H4 | 0.9500 |
Si3—Cl32 | 2.0223 (13) | C5—C6 | 1.382 (15) |
Si4—Si5 | 2.3221 (11) | C5—H5 | 0.9500 |
Si4—Si5ii | 2.3222 (11) | C6—C7 | 1.375 (14) |
Si4—Si6 | 2.3250 (11) | C6—H6 | 0.9500 |
Si4—Si6ii | 2.3251 (11) | C7—H7 | 0.9500 |
Si5—Cl51 | 2.0138 (12) | C5'—C6' | 1.399 (15) |
Si5—Cl53 | 2.0218 (12) | C5'—H5' | 0.9501 |
Si5—Cl52 | 2.0243 (12) | C6'—C7' | 1.376 (15) |
Si6—Cl62 | 2.0158 (13) | C6'—H6' | 0.9500 |
Si6—Cl63 | 2.0194 (13) | C7'—H7' | 0.9500 |
Si2—Si1—Si2i | 107.85 (6) | C2—C1—C2iii | 118.8 (7) |
Si2—Si1—Si3i | 110.38 (3) | C2—C1—H1 | 120.6 |
Si2i—Si1—Si3i | 109.07 (3) | C2iii—C1—H1 | 120.6 |
Si2—Si1—Si3 | 109.07 (3) | C3—C2—C1 | 119.9 (6) |
Si2i—Si1—Si3 | 110.37 (3) | C3—C2—H2 | 120.1 |
Si3i—Si1—Si3 | 110.06 (7) | C1—C2—H2 | 120.1 |
Cl21—Si2—Cl23 | 109.46 (5) | C2—C3—C4 | 122.6 (6) |
Cl21—Si2—Cl22 | 108.20 (6) | C2—C3—H3 | 118.7 |
Cl23—Si2—Cl22 | 108.85 (6) | C4—C3—H3 | 118.7 |
Cl21—Si2—Si1 | 110.71 (5) | C3iii—C4—C3 | 116.3 (7) |
Cl23—Si2—Si1 | 109.84 (5) | C3iii—C4—H4 | 121.9 |
Cl22—Si2—Si1 | 109.75 (4) | C3—C4—H4 | 121.9 |
Cl33—Si3—Cl31 | 109.11 (6) | C6—C5—C5iv | 106.0 (6) |
Cl33—Si3—Cl32 | 109.50 (6) | C6—C5—H5 | 119.4 |
Cl31—Si3—Cl32 | 109.58 (6) | C5iv—C5—H5 | 134.6 |
Cl33—Si3—Si1 | 109.69 (5) | C5—C6—C7 | 120.0 (9) |
Cl31—Si3—Si1 | 109.31 (5) | C5—C6—C7iv | 104.5 (8) |
Cl32—Si3—Si1 | 109.63 (5) | C5—C6—H6 | 120.0 |
Si5—Si4—Si5ii | 108.07 (6) | C7—C6—H6 | 120.0 |
Si5—Si4—Si6 | 109.22 (3) | C7iv—C6—H6 | 135.5 |
Si5ii—Si4—Si6 | 110.07 (3) | C7iv—C7—C6 | 133.9 (6) |
Si5—Si4—Si6ii | 110.08 (3) | C6—C7—C6iv | 103.4 (9) |
Si5ii—Si4—Si6ii | 109.22 (3) | C7iv—C7—H7 | 105.9 |
Si6—Si4—Si6ii | 110.15 (7) | C6—C7—H7 | 120.2 |
Cl51—Si5—Cl53 | 109.35 (5) | C6iv—C7—H7 | 136.4 |
Cl51—Si5—Cl52 | 108.28 (6) | C5'iv—C5'—C6' | 134.3 (6) |
Cl53—Si5—Cl52 | 109.28 (6) | C5'iv—C5'—H5' | 105.1 |
Cl51—Si5—Si4 | 110.45 (5) | C6'—C5'—H5' | 120.6 |
Cl53—Si5—Si4 | 109.95 (5) | C6'iv—C5'—H5' | 136.3 |
Cl52—Si5—Si4 | 109.50 (5) | C7'—C6'—C5' | 121.1 (10) |
Cl62—Si6—Cl63 | 108.97 (6) | C7'—C6'—H6' | 119.4 |
Cl62—Si6—Cl61 | 109.56 (6) | C5'—C6'—H6' | 119.4 |
Cl63—Si6—Cl61 | 109.51 (6) | C5'iv—C6'—H6' | 134.0 |
Cl62—Si6—Si4 | 109.60 (5) | C6'—C7'—C7'iv | 104.6 (7) |
Cl63—Si6—Si4 | 109.65 (5) | C6'—C7'—H7' | 120.6 |
Cl61—Si6—Si4 | 109.54 (5) | C7'iv—C7'—H7' | 134.8 |
C2iii—C1—C2—C3 | 0.6 (4) | C7iv—C6—C7—C6iv | −1 (2) |
C1—C2—C3—C4 | −1.2 (9) | C5'iv—C5'—C6'—C7' | 0 (4) |
C2—C3—C4—C3iii | 0.6 (4) | C6'iv—C5'—C6'—C7' | 0.0 (10) |
C5iv—C5—C6—C7 | −1.7 (13) | C6'iv—C5'—C6'—C5'iv | 0 (3) |
C5iv—C5—C6—C7iv | −1.2 (10) | C5'—C6'—C7'—C7'iv | −0.1 (14) |
C5—C6—C7—C7iv | 2 (3) | C5'iv—C6'—C7'—C7'iv | −0.2 (11) |
C5—C6—C7—C6iv | 1.0 (9) |
Symmetry codes: (i) −y+1, −x+1, −z+1/4; (ii) −y, −x, −z+1/4; (iii) −x, y, −z; (iv) −x+1, y, −z. |
For (I), mean values of the two molecules are given. For (II), mean values of the non-disordered molecule are given. Because of the high symmetry of (III), there is only one value for each bond length. |
Si—Si | Si—Cl | |
(I) | 2.324 | 2.019 |
(II) | 2.340 | 2.026 |
(III) | 2.332 (9) | 1.994 (7) |
References
Cannady, J. P. & Zhou, X. (2008). WO2008051328. Google Scholar
Fleming, D. K. (1972). Acta Cryst. B28, 1233–1236. CrossRef IUCr Journals Google Scholar
Kaczmarczyk, A. & Urry, G. (1960). J. Am. Chem. Soc. 82, 751–752. CrossRef CAS Google Scholar
Meyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715–4719. Web of Science CAS PubMed Google Scholar
Nishimura, Y., Eguchi, T., Matsuda, H., Haruta, M., Hirai, Y. & Nakagiri, T. (1985). JP, 60219733 A 19851102. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tillmann, J., Meyer-Wegner, F., Nadj, A., Becker-Baldus, J., Sinke, T., Bolte, M., Holthausen, M. C., Wagner, M. & Lerner, H.-W. (2012). Inorg. Chem. 51, 8599–8606. Web of Science CSD CrossRef CAS PubMed Google Scholar
Urry, G. (1970). Acc. Chem. Res. 3, 306–312. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.