research communications
3PO4·7D2O
of the deuterated heptahydrate of potassium phosphate, KaInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bX-Ray Centre, Getreidemarkt 9, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
Deuterated potassium orthophosphate heptahydrate, K3PO4·7D2O, crystallizes in the Sohnke P21, and its was determined from 2017 Friedel pairs [Flack parameter 0.004 (16)]. Each of the three crystallographically unique K+ cations is surrounded by six water molecules and one oxygen atom from the orthophosphate group, using a threshold for K—O bonds of 3.10 Å. The highly irregular coordination polyhedra are linked by corner- and edge-sharing into a three-dimensional network that is consolidated by an intricate network of O—D⋯O hydrogen bonds of medium strength.
CCDC reference: 1976170
1. Chemical context
Following projects devoted to studying the formation and crystal chemistry of hydrous arsenate and phosphate phases of monovalent metals, viz. NaH2AsO4 (Ring et al., 2017), K2HAsO4(H2O)2.5 and K2HAsO4(H2O)6 (Stöger et al., 2012), M2HXO4·2H2O (M = Rb, Cs; X = P, As; Stöger & Weil, 2014), and several acidic thallium(I) arsenate phases (Schroffenegger et al., 2019), we became interested in the system K3PO4/H2O. Although hydrate phases of potassium orthophosphate have been known for a very long time to exist for the 3-hydrate and the 7-hydrate (Gmelin, 1938), crystal-structure determinations of these two phases or of any other hydrate of K3PO4 have not been reported so far. Previous investigations on the trihydrate revealed that the of K3PO4·3H2O is incommensurately modulated below 300 K (Stöger, 2020). To better elucidate the role of hydrogen bonding in this structure with the aid of single-crystal neutron diffraction, we started crystal-growth experiments to obtain the deuterium analogue K3PO4·3D2O. The title compound, K3PO4·7D2O, was the unexpected product of such a crystallization attempt at temperatures below the freezing point of pure water, and its is reported here.
2. Structural commentary
Taking 3.1 Å as the upper limit of K—O bond lengths in the first coordination sphere, each of the three crystallographically independent potassium cations is surrounded by six water molecules and one oxygen atom of the phosphate group (Fig. 1). The highly irregular coordination polyhedra show K—O bond lengths ranging between 2.6665 (9) and 3.0151 Å (Table 1). The overall mean of 2.821 Å for the 21 bonds is in good agreement with the value of 2.861 Å calculated from 469 individual K—O bonds in crystal structures with coordination numbers of 7 for the potassium cation (Gagné & Hawthorne, 2016). The [K(D2O)6O] polyhedra share corners and edges to build up a three-dimensional network (Fig. 2). Each water molecule is a donor group of two slightly bent O—D⋯O hydrogen bonds, but only two of the water molecules (O3w, O6w) also serve as acceptor groups for one hydrogen bond. All other hydrogen bonds are directed towards the O atoms of the phosphate group, with O1 being twofold, O2 threefold, O3 fourfold and O4 threefold acceptor atoms, respectively (Fig. 3). Judging from the O⋯O distances [range 2.6931 (12)–2.9025 (13) Å; Table 2], hydrogen bonds of medium strength are formed in the The PO4 tetrahedron shows almost equal P—O bond lengths typical of a fully deprotonated orthophosphate group (mean 1.546 Å), with marginal angular distortions.
|
A bond-valence analysis (Brown, 2002), using the parameters of Brese & O'Keeffe (1991), reveals bond-valence sums (BVS, in valence units) of K1 = 1.18, K2 = 1.08, K3 = 1.11, and P1 = 4.85, in good agreement with the expected values of +1 and +5, respectively. The four oxygen atoms of the orthophosphate tetrahedron are considerably underbonded and show BVS values of 1.53 (O1), 1.22 (O2), 1.10 (O3) and 1.38 (O4). O1 with the highest BVS of the four phosphate O atoms has two K+ cations as additional bonding partners, O4 with the second highest BVS has one additional K+ as bonding partner whereas O2 and O3 with the lowest BVS values are solely bonded to the P atom. The four O atoms compensate for underbonding by means of their role as acceptor atoms in hydrogen bonding (see above).
3. Database survey
In the Inorganic Structure Database (ICSD; Zagorac et al., 2019), the crystal structures of not less than 14 different phases in the system K2O/P2O5/H2O are listed, including partly protonated PO4 or other condensed phosphate groups, and/or phases with water molecules. The only other phosphates of an alkali metal, thallium or ammonium with a fully deprotonated orthophosphate group are Na3PO4(H2O)8 (Larbot & Durand, 1983), Na3PO4(H2O)0.5 (Averbuch-Pouchot & Durif, 1983) and (NH4)3(PO4)·3H2O (Mootz & Wunderlich, 1970). As a result of the different size of the Na+ cation compared to K+, the role of NH4+ as an active species in hydrogen bonding, and the different amounts of water molecules in these three crystal structures, there is no evident structural relation to K3PO4·7D2O.
4. Synthesis and crystallization
Commercial anhydrous K3PO4 (Sigma–Aldrich) was dissolved in a small amount of warm D2O. Cooling to 255 K afforded rod-like crystals of the title heptahydrate that grew over night, with maximum edge lengths in the millimetre range.
5. Refinement
Crystal data, data collection and structure . Positions of the D atoms were located in a difference-Fourier map and were refined freely under consideration of scattering factors for hydrogen atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1976170
https://doi.org/10.1107/S2056989020000201/hb7876sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020000201/hb7876Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: Jana2006 (Petříček et al., 2014); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).K3PO4·7D2O | F(000) = 348 |
Mr = 352.5 | Dx = 2.000 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 7382 reflections |
a = 7.8325 (7) Å | θ = 2.6–32.6° |
b = 9.3406 (8) Å | µ = 1.34 mm−1 |
c = 8.4471 (7) Å | T = 100 K |
β = 108.727 (2)° | Rod, colourless |
V = 585.28 (9) Å3 | 0.46 × 0.09 × 0.01 mm |
Z = 2 |
Bruker Kappa APEXII CCD diffractometer | 4273 independent reflections |
Radiation source: X-ray tube | 4127 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.021 |
ω– and φ–scans | θmax = 32.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −10→11 |
Tmin = 0.54, Tmax = 0.99 | k = −14→14 |
9464 measured reflections | l = −12→10 |
Refinement on F | 1 constraint |
R[F2 > 2σ(F2)] = 0.016 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F2) = 0.020 | (Δ/σ)max = 0.019 |
S = 1.02 | Δρmax = 0.16 e Å−3 |
4273 reflections | Δρmin = −0.13 e Å−3 |
193 parameters | Absolute structure: 2017 Friedel pairs used in the refinement (Flack, 1983) |
0 restraints | Absolute structure parameter: 0.004 (16) |
x | y | z | Uiso*/Ueq | ||
K1 | 0.42550 (3) | 0.01804 (2) | 0.73444 (3) | 0.00950 (6) | |
K2 | −0.14458 (3) | −0.00537 (2) | 0.62341 (3) | 0.00990 (6) | |
K3 | 0.52865 (3) | 0.39152 (2) | 0.81480 (3) | 0.01224 (6) | |
P1 | 0.02505 (3) | 0.04285 (3) | 0.25261 (3) | 0.00571 (7) | |
O1 | 0.08740 (10) | 0.03291 (8) | 0.44490 (9) | 0.00823 (19) | |
O2 | −0.06671 (10) | −0.09902 (8) | 0.17723 (10) | 0.0101 (2) | |
O3 | −0.10938 (10) | 0.16905 (8) | 0.19358 (10) | 0.0092 (2) | |
O4 | 0.18924 (10) | 0.07033 (8) | 0.19270 (10) | 0.0086 (2) | |
O1w | 0.50577 (11) | 0.08478 (8) | 0.45314 (11) | 0.0119 (2) | |
O2w | 0.22528 (11) | 0.27301 (8) | 0.61723 (11) | 0.0106 (2) | |
O3w | 0.23569 (11) | −0.22553 (8) | 0.56243 (11) | 0.0116 (2) | |
O4w | −0.18873 (12) | 0.20109 (9) | 0.83725 (11) | 0.0129 (2) | |
O5w | 0.53272 (11) | 0.15028 (9) | 1.03669 (11) | 0.0126 (2) | |
O6w | 0.71314 (11) | −0.16355 (8) | 0.86601 (11) | 0.0119 (2) | |
O7w | 0.17243 (11) | −0.04581 (9) | 0.88427 (10) | 0.0103 (2) | |
D11 | 0.564 (2) | 0.161 (2) | 0.442 (2) | 0.027 (5)* | |
D12 | 0.409 (3) | 0.091 (2) | 0.390 (3) | 0.033 (5)* | |
D21 | 0.172 (3) | 0.315 (2) | 0.680 (2) | 0.034 (5)* | |
D22 | 0.173 (3) | 0.213 (2) | 0.570 (3) | 0.037 (6)* | |
D31 | 0.182 (2) | −0.162 (2) | 0.506 (3) | 0.031 (5)* | |
D32 | 0.179 (3) | −0.261 (3) | 0.642 (3) | 0.052 (7)* | |
D41 | −0.153 (2) | 0.1885 (19) | 0.936 (3) | 0.022 (4)* | |
D42 | −0.113 (3) | 0.258 (3) | 0.837 (3) | 0.049 (7)* | |
D51 | 0.477 (2) | 0.2098 (19) | 1.068 (2) | 0.021 (4)* | |
D52 | 0.634 (2) | 0.1654 (19) | 1.093 (2) | 0.023 (4)* | |
D61 | 0.776 (3) | −0.143 (2) | 0.950 (3) | 0.031 (5)* | |
D62 | 0.759 (2) | −0.240 (2) | 0.842 (2) | 0.023 (4)* | |
D71 | 0.132 (2) | −0.123 (2) | 0.877 (2) | 0.023 (4)* | |
D72 | 0.166 (2) | −0.0150 (19) | 0.973 (2) | 0.019 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.01055 (8) | 0.00951 (9) | 0.00895 (9) | 0.00141 (6) | 0.00384 (7) | 0.00041 (7) |
K2 | 0.00815 (8) | 0.01323 (9) | 0.00836 (9) | 0.00028 (7) | 0.00272 (7) | −0.00109 (7) |
K3 | 0.01205 (9) | 0.00943 (9) | 0.01200 (11) | −0.00261 (7) | −0.00067 (8) | 0.00104 (7) |
P1 | 0.00639 (10) | 0.00552 (10) | 0.00530 (11) | −0.00037 (8) | 0.00201 (8) | 0.00003 (8) |
O1 | 0.0102 (3) | 0.0084 (3) | 0.0056 (3) | 0.0002 (2) | 0.0020 (2) | −0.0001 (2) |
O2 | 0.0131 (3) | 0.0080 (3) | 0.0086 (3) | −0.0040 (3) | 0.0027 (3) | −0.0020 (3) |
O3 | 0.0086 (3) | 0.0090 (3) | 0.0099 (4) | 0.0029 (2) | 0.0028 (3) | 0.0022 (3) |
O4 | 0.0089 (3) | 0.0088 (3) | 0.0092 (4) | −0.0002 (2) | 0.0046 (3) | 0.0004 (2) |
O1w | 0.0078 (3) | 0.0150 (4) | 0.0114 (4) | −0.0011 (3) | 0.0010 (3) | 0.0026 (3) |
O2w | 0.0091 (3) | 0.0103 (3) | 0.0120 (4) | −0.0011 (3) | 0.0026 (3) | −0.0033 (3) |
O3w | 0.0127 (3) | 0.0109 (3) | 0.0123 (4) | 0.0032 (3) | 0.0056 (3) | 0.0032 (3) |
O4w | 0.0182 (4) | 0.0112 (3) | 0.0102 (4) | −0.0007 (3) | 0.0059 (3) | 0.0003 (3) |
O5w | 0.0084 (3) | 0.0168 (4) | 0.0122 (4) | −0.0016 (3) | 0.0030 (3) | −0.0033 (3) |
O6w | 0.0111 (3) | 0.0099 (3) | 0.0122 (4) | 0.0020 (3) | 0.0003 (3) | −0.0024 (3) |
O7w | 0.0126 (3) | 0.0098 (3) | 0.0091 (4) | −0.0010 (3) | 0.0041 (3) | −0.0008 (3) |
K1—O5w | 2.7153 (10) | K3—O5w | 2.9246 (10) |
K1—O1w | 2.7183 (11) | P1—O1 | 1.5414 (8) |
K1—O7w | 2.7381 (10) | P1—O2 | 1.5440 (8) |
K1—O6w | 2.7532 (9) | P1—O4 | 1.5472 (10) |
K1—O3w | 2.8479 (9) | P1—O3 | 1.5523 (8) |
K1—O2w | 2.8486 (9) | O1w—D11 | 0.86 (2) |
K1—O1 | 2.9757 (9) | O1w—D12 | 0.778 (18) |
K2—O1 | 2.7317 (10) | O2w—D21 | 0.87 (2) |
K2—O4w | 2.7391 (10) | O2w—D22 | 0.73 (2) |
K2—O7w | 2.7659 (9) | O3w—D31 | 0.796 (19) |
K2—O1wi | 2.7836 (9) | O3w—D32 | 0.98 (3) |
K2—O2wii | 2.8269 (9) | O4w—D41 | 0.80 (2) |
K2—O3wiii | 3.0144 (9) | O4w—D42 | 0.79 (2) |
K2—O6wi | 3.0151 (10) | O5w—D51 | 0.80 (2) |
K3—O2w | 2.6665 (9) | O5w—D52 | 0.795 (17) |
K3—O4iv | 2.7867 (9) | O6w—D61 | 0.748 (19) |
K3—O4wv | 2.7983 (10) | O6w—D62 | 0.85 (2) |
K3—O5wvi | 2.8344 (10) | O7w—D71 | 0.783 (19) |
K3—O1wiv | 2.8394 (10) | O7w—D72 | 0.823 (19) |
K3—O7wvi | 2.9094 (9) | ||
O1—K1—O1w | 70.45 (2) | O1wiv—K3—O5wvi | 79.89 (3) |
O1—K1—O2w | 55.25 (2) | O1wiv—K3—O7wvi | 114.35 (2) |
O1—K1—O3w | 55.73 (2) | O2w—K3—O4wv | 107.76 (3) |
O1—K1—O5w | 132.58 (3) | O2w—K3—O5w | 84.57 (2) |
O1—K1—O6w | 139.24 (2) | O2w—K3—O5wvi | 112.79 (3) |
O1—K1—O7w | 78.74 (2) | O2w—K3—O7wvi | 159.36 (3) |
O1w—K1—O2w | 76.14 (3) | O4wv—K3—O5w | 67.74 (3) |
O1w—K1—O3w | 88.09 (3) | O4wv—K3—O5wvi | 139.02 (2) |
O1w—K1—O5w | 128.98 (3) | O4wv—K3—O7wvi | 70.82 (3) |
O1w—K1—O6w | 96.04 (3) | O5w—K3—O5wvi | 109.99 (3) |
O1w—K1—O7w | 149.19 (2) | O5w—K3—O7wvi | 75.81 (2) |
O2w—K1—O3w | 110.59 (2) | O5wvi—K3—O7wvi | 69.21 (2) |
O2w—K1—O5w | 85.18 (3) | O1—P1—O2 | 109.32 (4) |
O2w—K1—O6w | 160.60 (2) | O1—P1—O3 | 109.69 (5) |
O2w—K1—O7w | 86.75 (3) | O1—P1—O4 | 109.83 (4) |
O3w—K1—O5w | 142.78 (3) | O2—P1—O3 | 109.96 (4) |
O3w—K1—O6w | 86.52 (2) | O2—P1—O4 | 109.46 (5) |
O3w—K1—O7w | 74.04 (3) | O3—P1—O4 | 108.56 (4) |
O5w—K1—O6w | 86.26 (3) | K2—O1—P1 | 123.21 (4) |
O5w—K1—O7w | 73.48 (3) | K3vii—O4—P1 | 131.03 (4) |
O6w—K1—O7w | 107.41 (3) | K1—O1w—K2v | 86.80 (2) |
O1—K2—O1wi | 113.18 (3) | K1—O1w—K3vii | 124.16 (3) |
O1—K2—O2wii | 74.56 (3) | K2v—O1w—K3vii | 92.60 (3) |
O1—K2—O3wiii | 71.77 (3) | K1—O2w—K2iii | 146.43 (4) |
O1—K2—O4w | 121.27 (3) | K1—O2w—K3 | 81.32 (2) |
O1—K2—O6wi | 153.61 (2) | K2iii—O2w—K3 | 95.43 (3) |
O1—K2—O7w | 82.62 (3) | D21—O2w—D22 | 113 (3) |
O1wi—K2—O2wii | 83.93 (2) | K1—O3w—D31 | 78.3 (13) |
O1wi—K2—O3wiii | 55.91 (2) | K1—O3w—D32 | 101.6 (14) |
O1wi—K2—O4w | 79.41 (3) | D31—O3w—D32 | 114 (2) |
O1wi—K2—O6wi | 88.99 (3) | K2—O4w—K3i | 131.87 (3) |
O1wi—K2—O7w | 159.32 (3) | K2—O4w—D41 | 120.6 (14) |
O2wii—K2—O3wiii | 107.43 (3) | K2—O4w—D42 | 102.2 (19) |
O2wii—K2—O4w | 160.62 (3) | K3i—O4w—D41 | 99.7 (15) |
O2wii—K2—O6wi | 94.81 (3) | K3i—O4w—D42 | 98.8 (17) |
O2wii—K2—O7w | 114.15 (3) | D41—O4w—D42 | 95 (2) |
O3wiii—K2—O4w | 70.97 (3) | K1—O5w—K3viii | 89.03 (2) |
O3wiii—K2—O6wi | 134.55 (3) | K1—O5w—D51 | 126.3 (11) |
O3wiii—K2—O7w | 122.36 (2) | K1—O5w—D52 | 126.4 (16) |
O4w—K2—O6wi | 75.19 (3) | K3viii—O5w—D51 | 104.9 (14) |
O4w—K2—O7w | 80.90 (3) | K3viii—O5w—D52 | 99.4 (13) |
O6wi—K2—O7w | 79.91 (3) | D51—O5w—D52 | 102.5 (18) |
O4iv—K3—O1wiv | 58.26 (2) | K1—O6w—D61 | 115.4 (16) |
O4iv—K3—O2w | 142.03 (3) | K1—O6w—D62 | 140.5 (11) |
O4iv—K3—O4wv | 76.51 (3) | D61—O6w—D62 | 104 (2) |
O4iv—K3—O5w | 129.11 (2) | K1—O7w—K2 | 101.53 (3) |
O4iv—K3—O5wvi | 75.37 (3) | K1—O7w—D71 | 120.0 (16) |
O4iv—K3—O7wvi | 58.52 (2) | K1—O7w—D72 | 127.9 (12) |
O1wiv—K3—O2w | 85.85 (3) | K2—O7w—D71 | 80.0 (11) |
O1wiv—K3—O4wv | 109.19 (3) | K2—O7w—D72 | 112.2 (11) |
O1wiv—K3—O5w | 168.35 (2) | D71—O7w—D72 | 105 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x, y−1/2, −z+1; (iii) −x, y+1/2, −z+1; (iv) −x+1, y+1/2, −z+1; (v) x+1, y, z; (vi) −x+1, y+1/2, −z+2; (vii) −x+1, y−1/2, −z+1; (viii) −x+1, y−1/2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—D11···O3wiv | 0.86 (2) | 1.91 (2) | 2.7255 (13) | 158 (2) |
O1w—D12···O4 | 0.78 (2) | 1.98 (2) | 2.7391 (11) | 164 (2) |
O2w—D21···O2iii | 0.87 (2) | 1.85 (2) | 2.7149 (13) | 177 (2) |
O2w—D22···O1 | 0.73 (2) | 1.99 (2) | 2.7029 (11) | 167 (3) |
O3w—D31···O1 | 0.80 (2) | 1.97 (2) | 2.7242 (11) | 159 (2) |
O3w—D32···O3ii | 0.98 (3) | 1.77 (3) | 2.7395 (14) | 171 (2) |
O4w—D41···O3ix | 0.80 (2) | 2.10 (2) | 2.8870 (14) | 169 (2) |
O4w—D42···O2iii | 0.79 (2) | 1.97 (2) | 2.7679 (13) | 177 (2) |
O5w—D51···O6wvi | 0.80 (2) | 2.11 (2) | 2.9025 (13) | 168 (2) |
O5w—D52···O3x | 0.80 (2) | 1.92 (2) | 2.6944 (12) | 166 (2) |
O6w—D61···O2x | 0.75 (2) | 1.96 (2) | 2.7087 (12) | 176 (2) |
O6w—D62···O4vii | 0.85 (2) | 1.86 (2) | 2.6931 (12) | 165 (2) |
O7w—D71···O3ii | 0.78 (2) | 2.02 (2) | 2.7498 (12) | 155 (2) |
O7w—D72···O4ix | 0.82 (2) | 1.97 (2) | 2.7859 (13) | 171 (2) |
Symmetry codes: (ii) −x, y−1/2, −z+1; (iii) −x, y+1/2, −z+1; (iv) −x+1, y+1/2, −z+1; (vi) −x+1, y+1/2, −z+2; (vii) −x+1, y−1/2, −z+1; (ix) x, y, z+1; (x) x+1, y, z+1. |
References
Averbuch-Pouchot, M. T. & Durif, A. (1983). J. Solid State Chem. 46, 193–196. CAS Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. Google Scholar
Bruker (2016). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Gmelin (1938). Gmelins Handbuch der Anorganischen Chemie, 8th ed., Kalium 22, pp. 984–992. Berlin: Verlag Chemie. Google Scholar
Larbot, A. & Durand, J. (1983). Acta Cryst. C39, 12–15. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Mootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1826–1835. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Ring, J., Lindenthal, L., Weil, M. & Stöger, B. (2017). Acta Cryst. E73, 1520–1522. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Schroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. & Kolitsch, U. (2019). J. Alloys Compd, 820, 153369. https://doi.org/10.1016/j.jallcom.2019.153369. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stöger, B. (2020). Unpublished results. Google Scholar
Stöger, B. & Weil, M. (2014). Acta Cryst. C70, 7–11. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Stöger, B., Weil, M. & Zobetz, E. (2012). Z. Kristallogr. 227, 859–868. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.