research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the deuterated hepta­hydrate of potassium phosphate, K3PO4·7D2O

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bX-Ray Centre, Getreidemarkt 9, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 December 2019; accepted 8 January 2020; online 10 January 2020)

Deuterated potassium orthophosphate hepta­hydrate, K3PO4·7D2O, crystallizes in the Sohnke space group P21, and its absolute structure was determined from 2017 Friedel pairs [Flack parameter 0.004 (16)]. Each of the three crystallographically unique K+ cations is surrounded by six water mol­ecules and one oxygen atom from the orthophosphate group, using a threshold for K—O bonds of 3.10 Å. The highly irregular coordination polyhedra are linked by corner- and edge-sharing into a three-dimensional network that is consolidated by an intricate network of O—D⋯O hydrogen bonds of medium strength.

1. Chemical context

Following projects devoted to studying the formation and crystal chemistry of hydrous arsenate and phosphate phases of monovalent metals, viz. NaH2AsO4 (Ring et al., 2017[Ring, J., Lindenthal, L., Weil, M. & Stöger, B. (2017). Acta Cryst. E73, 1520-1522.]), K2HAsO4(H2O)2.5 and K2HAsO4(H2O)6 (Stöger et al., 2012[Stöger, B., Weil, M. & Zobetz, E. (2012). Z. Kristallogr. 227, 859-868.]), M2HXO4·2H2O (M = Rb, Cs; X = P, As; Stöger & Weil, 2014[Stöger, B. & Weil, M. (2014). Acta Cryst. C70, 7-11.]), and several acidic thallium(I) arsenate phases (Schroffenegger et al., 2019[Schroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. & Kolitsch, U. (2019). J. Alloys Compd, 820, 153369. https://doi.org/10.1016/j.jallcom.2019.153369.]), we became inter­ested in the system K3PO4/H2O. Although hydrate phases of potassium orthophosphate have been known for a very long time to exist for the 3-hydrate and the 7-hydrate (Gmelin, 1938[Gmelin (1938). Gmelins Handbuch der Anorganischen Chemie, 8th ed., Kalium 22, pp. 984-992. Berlin: Verlag Chemie.]), crystal-structure determinations of these two phases or of any other hydrate of K3PO4 have not been reported so far. Previous investigations on the trihydrate revealed that the crystal structure of K3PO4·3H2O is incommensurately modulated below 300 K (Stöger, 2020[Stöger, B. (2020). Unpublished results.]). To better elucidate the role of hydrogen bonding in this structure with the aid of single-crystal neutron diffraction, we started crystal-growth experiments to obtain the deuterium analogue K3PO4·3D2O. The title compound, K3PO4·7D2O, was the unexpected product of such a crystallization attempt at temperatures below the freezing point of pure water, and its crystal structure is reported here.

2. Structural commentary

Taking 3.1 Å as the upper limit of K—O bond lengths in the first coordination sphere, each of the three crystallographically independent potassium cations is surrounded by six water mol­ecules and one oxygen atom of the phosphate group (Fig. 1[link]). The highly irregular coordination polyhedra show K—O bond lengths ranging between 2.6665 (9) and 3.0151 Å (Table 1[link]). The overall mean of 2.821 Å for the 21 bonds is in good agreement with the value of 2.861 Å calculated from 469 individual K—O bonds in crystal structures with coordination numbers of 7 for the potassium cation (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). The [K(D2O)6O] polyhedra share corners and edges to build up a three-dimensional network (Fig. 2[link]). Each water mol­ecule is a donor group of two slightly bent O—D⋯O hydrogen bonds, but only two of the water mol­ecules (O3w, O6w) also serve as acceptor groups for one hydrogen bond. All other hydrogen bonds are directed towards the O atoms of the phosphate group, with O1 being twofold, O2 threefold, O3 fourfold and O4 threefold acceptor atoms, respectively (Fig. 3[link]). Judging from the O⋯O distances [range 2.6931 (12)–2.9025 (13) Å; Table 2[link]], hydrogen bonds of medium strength are formed in the crystal structure. The PO4 tetra­hedron shows almost equal P—O bond lengths typical of a fully deprotonated orthophosphate group (mean 1.546 Å), with marginal angular distortions.

Table 1
Selected bond lengths (Å)

K1—O5w 2.7153 (10) K2—O6wi 3.0151 (10)
K1—O1w 2.7183 (11) K3—O2w 2.6665 (9)
K1—O7w 2.7381 (10) K3—O4iv 2.7867 (9)
K1—O6w 2.7532 (9) K3—O4wv 2.7983 (10)
K1—O3w 2.8479 (9) K3—O5wvi 2.8344 (10)
K1—O2w 2.8486 (9) K3—O1wiv 2.8394 (10)
K1—O1 2.9757 (9) K3—O7wvi 2.9094 (9)
K2—O1 2.7317 (10) K3—O5w 2.9246 (10)
K2—O4w 2.7391 (10) P1—O1 1.5414 (8)
K2—O7w 2.7659 (9) P1—O2 1.5440 (8)
K2—O1wi 2.7836 (9) P1—O4 1.5472 (10)
K2—O2wii 2.8269 (9) P1—O3 1.5523 (8)
K2—O3wiii 3.0144 (9)    
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) x+1, y, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—D11⋯O3wiv 0.86 (2) 1.91 (2) 2.7255 (13) 158 (2)
O1w—D12⋯O4 0.78 (2) 1.98 (2) 2.7391 (11) 164 (2)
O2w—D21⋯O2iii 0.87 (2) 1.85 (2) 2.7149 (13) 177 (2)
O2w—D22⋯O1 0.73 (2) 1.99 (2) 2.7029 (11) 167 (3)
O3w—D31⋯O1 0.80 (2) 1.97 (2) 2.7242 (11) 159 (2)
O3w—D32⋯O3ii 0.98 (3) 1.77 (3) 2.7395 (14) 171 (2)
O4w—D41⋯O3vii 0.80 (2) 2.10 (2) 2.8870 (14) 169 (2)
O4w—D42⋯O2iii 0.79 (2) 1.97 (2) 2.7679 (13) 177 (2)
O5w—D51⋯O6wvi 0.80 (2) 2.11 (2) 2.9025 (13) 168 (2)
O5w—D52⋯O3viii 0.80 (2) 1.92 (2) 2.6944 (12) 166 (2)
O6w—D61⋯O2viii 0.75 (2) 1.96 (2) 2.7087 (12) 176 (2)
O6w—D62⋯O4ix 0.85 (2) 1.86 (2) 2.6931 (12) 165 (2)
O7w—D71⋯O3ii 0.78 (2) 2.02 (2) 2.7498 (12) 155 (2)
O7w—D72⋯O4vii 0.82 (2) 1.97 (2) 2.7859 (13) 171 (2)
Symmetry codes: (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (vi) [-x+1, y+{\script{1\over 2}}, -z+2]; (vii) x, y, z+1; (viii) x+1, y, z+1; (ix) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The expanded asymmetric unit of K3PO4·7D2O showing the complete potassium coordination polyhedra. Displacement ellipsoids are displayed at the 74% probability level; O—D⋯O hydrogen bonds are indicated by green lines; symmetry codes refer to Table 1[link].
[Figure 2]
Figure 2
Network of corner- and edge-sharing [KO7] polyhedra in the crystal structure of K3PO4·7D2O, viewed along [00[\overline{1}]]. Displacement ellipsoids are displayed at the 90% probability level. For clarity, D atoms are not shown.
[Figure 3]
Figure 3
O—D⋯O hydrogen-bonding network (green lines) in the crystal structure of K3PO4·7D2O, viewed along [101]. Displacement ellipsoids are displayed at the 90% probability level.

A bond-valence analysis (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]), using the parameters of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), reveals bond-valence sums (BVS, in valence units) of K1 = 1.18, K2 = 1.08, K3 = 1.11, and P1 = 4.85, in good agreement with the expected values of +1 and +5, respectively. The four oxygen atoms of the orthophosphate tetra­hedron are considerably underbonded and show BVS values of 1.53 (O1), 1.22 (O2), 1.10 (O3) and 1.38 (O4). O1 with the highest BVS of the four phosphate O atoms has two K+ cations as additional bonding partners, O4 with the second highest BVS has one additional K+ as bonding partner whereas O2 and O3 with the lowest BVS values are solely bonded to the P atom. The four O atoms compensate for underbonding by means of their role as acceptor atoms in hydrogen bonding (see above).

3. Database survey

In the Inorganic Structure Database (ICSD; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]), the crystal structures of not less than 14 different phases in the system K2O/P2O5/H2O are listed, including partly protonated PO4 or other condensed phosphate groups, and/or phases with water mol­ecules. The only other phosphates of an alkali metal, thallium or ammonium with a fully deprotonated orthophosphate group are Na3PO4(H2O)8 (Larbot & Durand, 1983[Larbot, A. & Durand, J. (1983). Acta Cryst. C39, 12-15.]), Na3PO4(H2O)0.5 (Averbuch-Pouchot & Durif, 1983[Averbuch-Pouchot, M. T. & Durif, A. (1983). J. Solid State Chem. 46, 193-196.]) and (NH4)3(PO4)·3H2O (Mootz & Wunderlich, 1970[Mootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1826-1835.]). As a result of the different size of the Na+ cation compared to K+, the role of NH4+ as an active species in hydrogen bonding, and the different amounts of water mol­ecules in these three crystal structures, there is no evident structural relation to K3PO4·7D2O.

4. Synthesis and crystallization

Commercial anhydrous K3PO4 (Sigma–Aldrich) was dissolved in a small amount of warm D2O. Cooling to 255 K afforded rod-like crystals of the title hepta­hydrate that grew over night, with maximum edge lengths in the millimetre range.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Positions of the D atoms were located in a difference-Fourier map and were refined freely under consideration of scattering factors for hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula K3PO4·7D2O
Mr 352.5
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 7.8325 (7), 9.3406 (8), 8.4471 (7)
β (°) 108.727 (2)
V3) 585.28 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.34
Crystal size (mm) 0.46 × 0.09 × 0.01
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.54, 0.99
No. of measured, independent and observed [I > 3σ(I)] reflections 9464, 4273, 4127
Rint 0.021
(sin θ/λ)max−1) 0.759
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.020, 1.02
No. of reflections 4273
No. of parameters 193
Δρmax, Δρmin (e Å−3) 0.16, −0.13
Absolute structure 2017 Friedel pairs used in the refinement (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.004 (16)
Computer programs: APEX2 and SAINT-Plus (Bruker, 2016[Bruker (2016). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: Jana2006 (Petříček et al., 2014); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Potassium phosphate heptahydrate top
Crystal data top
K3PO4·7D2OF(000) = 348
Mr = 352.5Dx = 2.000 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7382 reflections
a = 7.8325 (7) Åθ = 2.6–32.6°
b = 9.3406 (8) ŵ = 1.34 mm1
c = 8.4471 (7) ÅT = 100 K
β = 108.727 (2)°Rod, colourless
V = 585.28 (9) Å30.46 × 0.09 × 0.01 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4273 independent reflections
Radiation source: X-ray tube4127 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.021
ω– and φ–scansθmax = 32.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1011
Tmin = 0.54, Tmax = 0.99k = 1414
9464 measured reflectionsl = 1210
Refinement top
Refinement on F1 constraint
R[F2 > 2σ(F2)] = 0.016Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F2) = 0.020(Δ/σ)max = 0.019
S = 1.02Δρmax = 0.16 e Å3
4273 reflectionsΔρmin = 0.13 e Å3
193 parametersAbsolute structure: 2017 Friedel pairs used in the refinement (Flack, 1983)
0 restraintsAbsolute structure parameter: 0.004 (16)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.42550 (3)0.01804 (2)0.73444 (3)0.00950 (6)
K20.14458 (3)0.00537 (2)0.62341 (3)0.00990 (6)
K30.52865 (3)0.39152 (2)0.81480 (3)0.01224 (6)
P10.02505 (3)0.04285 (3)0.25261 (3)0.00571 (7)
O10.08740 (10)0.03291 (8)0.44490 (9)0.00823 (19)
O20.06671 (10)0.09902 (8)0.17723 (10)0.0101 (2)
O30.10938 (10)0.16905 (8)0.19358 (10)0.0092 (2)
O40.18924 (10)0.07033 (8)0.19270 (10)0.0086 (2)
O1w0.50577 (11)0.08478 (8)0.45314 (11)0.0119 (2)
O2w0.22528 (11)0.27301 (8)0.61723 (11)0.0106 (2)
O3w0.23569 (11)0.22553 (8)0.56243 (11)0.0116 (2)
O4w0.18873 (12)0.20109 (9)0.83725 (11)0.0129 (2)
O5w0.53272 (11)0.15028 (9)1.03669 (11)0.0126 (2)
O6w0.71314 (11)0.16355 (8)0.86601 (11)0.0119 (2)
O7w0.17243 (11)0.04581 (9)0.88427 (10)0.0103 (2)
D110.564 (2)0.161 (2)0.442 (2)0.027 (5)*
D120.409 (3)0.091 (2)0.390 (3)0.033 (5)*
D210.172 (3)0.315 (2)0.680 (2)0.034 (5)*
D220.173 (3)0.213 (2)0.570 (3)0.037 (6)*
D310.182 (2)0.162 (2)0.506 (3)0.031 (5)*
D320.179 (3)0.261 (3)0.642 (3)0.052 (7)*
D410.153 (2)0.1885 (19)0.936 (3)0.022 (4)*
D420.113 (3)0.258 (3)0.837 (3)0.049 (7)*
D510.477 (2)0.2098 (19)1.068 (2)0.021 (4)*
D520.634 (2)0.1654 (19)1.093 (2)0.023 (4)*
D610.776 (3)0.143 (2)0.950 (3)0.031 (5)*
D620.759 (2)0.240 (2)0.842 (2)0.023 (4)*
D710.132 (2)0.123 (2)0.877 (2)0.023 (4)*
D720.166 (2)0.0150 (19)0.973 (2)0.019 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01055 (8)0.00951 (9)0.00895 (9)0.00141 (6)0.00384 (7)0.00041 (7)
K20.00815 (8)0.01323 (9)0.00836 (9)0.00028 (7)0.00272 (7)0.00109 (7)
K30.01205 (9)0.00943 (9)0.01200 (11)0.00261 (7)0.00067 (8)0.00104 (7)
P10.00639 (10)0.00552 (10)0.00530 (11)0.00037 (8)0.00201 (8)0.00003 (8)
O10.0102 (3)0.0084 (3)0.0056 (3)0.0002 (2)0.0020 (2)0.0001 (2)
O20.0131 (3)0.0080 (3)0.0086 (3)0.0040 (3)0.0027 (3)0.0020 (3)
O30.0086 (3)0.0090 (3)0.0099 (4)0.0029 (2)0.0028 (3)0.0022 (3)
O40.0089 (3)0.0088 (3)0.0092 (4)0.0002 (2)0.0046 (3)0.0004 (2)
O1w0.0078 (3)0.0150 (4)0.0114 (4)0.0011 (3)0.0010 (3)0.0026 (3)
O2w0.0091 (3)0.0103 (3)0.0120 (4)0.0011 (3)0.0026 (3)0.0033 (3)
O3w0.0127 (3)0.0109 (3)0.0123 (4)0.0032 (3)0.0056 (3)0.0032 (3)
O4w0.0182 (4)0.0112 (3)0.0102 (4)0.0007 (3)0.0059 (3)0.0003 (3)
O5w0.0084 (3)0.0168 (4)0.0122 (4)0.0016 (3)0.0030 (3)0.0033 (3)
O6w0.0111 (3)0.0099 (3)0.0122 (4)0.0020 (3)0.0003 (3)0.0024 (3)
O7w0.0126 (3)0.0098 (3)0.0091 (4)0.0010 (3)0.0041 (3)0.0008 (3)
Geometric parameters (Å, º) top
K1—O5w2.7153 (10)K3—O5w2.9246 (10)
K1—O1w2.7183 (11)P1—O11.5414 (8)
K1—O7w2.7381 (10)P1—O21.5440 (8)
K1—O6w2.7532 (9)P1—O41.5472 (10)
K1—O3w2.8479 (9)P1—O31.5523 (8)
K1—O2w2.8486 (9)O1w—D110.86 (2)
K1—O12.9757 (9)O1w—D120.778 (18)
K2—O12.7317 (10)O2w—D210.87 (2)
K2—O4w2.7391 (10)O2w—D220.73 (2)
K2—O7w2.7659 (9)O3w—D310.796 (19)
K2—O1wi2.7836 (9)O3w—D320.98 (3)
K2—O2wii2.8269 (9)O4w—D410.80 (2)
K2—O3wiii3.0144 (9)O4w—D420.79 (2)
K2—O6wi3.0151 (10)O5w—D510.80 (2)
K3—O2w2.6665 (9)O5w—D520.795 (17)
K3—O4iv2.7867 (9)O6w—D610.748 (19)
K3—O4wv2.7983 (10)O6w—D620.85 (2)
K3—O5wvi2.8344 (10)O7w—D710.783 (19)
K3—O1wiv2.8394 (10)O7w—D720.823 (19)
K3—O7wvi2.9094 (9)
O1—K1—O1w70.45 (2)O1wiv—K3—O5wvi79.89 (3)
O1—K1—O2w55.25 (2)O1wiv—K3—O7wvi114.35 (2)
O1—K1—O3w55.73 (2)O2w—K3—O4wv107.76 (3)
O1—K1—O5w132.58 (3)O2w—K3—O5w84.57 (2)
O1—K1—O6w139.24 (2)O2w—K3—O5wvi112.79 (3)
O1—K1—O7w78.74 (2)O2w—K3—O7wvi159.36 (3)
O1w—K1—O2w76.14 (3)O4wv—K3—O5w67.74 (3)
O1w—K1—O3w88.09 (3)O4wv—K3—O5wvi139.02 (2)
O1w—K1—O5w128.98 (3)O4wv—K3—O7wvi70.82 (3)
O1w—K1—O6w96.04 (3)O5w—K3—O5wvi109.99 (3)
O1w—K1—O7w149.19 (2)O5w—K3—O7wvi75.81 (2)
O2w—K1—O3w110.59 (2)O5wvi—K3—O7wvi69.21 (2)
O2w—K1—O5w85.18 (3)O1—P1—O2109.32 (4)
O2w—K1—O6w160.60 (2)O1—P1—O3109.69 (5)
O2w—K1—O7w86.75 (3)O1—P1—O4109.83 (4)
O3w—K1—O5w142.78 (3)O2—P1—O3109.96 (4)
O3w—K1—O6w86.52 (2)O2—P1—O4109.46 (5)
O3w—K1—O7w74.04 (3)O3—P1—O4108.56 (4)
O5w—K1—O6w86.26 (3)K2—O1—P1123.21 (4)
O5w—K1—O7w73.48 (3)K3vii—O4—P1131.03 (4)
O6w—K1—O7w107.41 (3)K1—O1w—K2v86.80 (2)
O1—K2—O1wi113.18 (3)K1—O1w—K3vii124.16 (3)
O1—K2—O2wii74.56 (3)K2v—O1w—K3vii92.60 (3)
O1—K2—O3wiii71.77 (3)K1—O2w—K2iii146.43 (4)
O1—K2—O4w121.27 (3)K1—O2w—K381.32 (2)
O1—K2—O6wi153.61 (2)K2iii—O2w—K395.43 (3)
O1—K2—O7w82.62 (3)D21—O2w—D22113 (3)
O1wi—K2—O2wii83.93 (2)K1—O3w—D3178.3 (13)
O1wi—K2—O3wiii55.91 (2)K1—O3w—D32101.6 (14)
O1wi—K2—O4w79.41 (3)D31—O3w—D32114 (2)
O1wi—K2—O6wi88.99 (3)K2—O4w—K3i131.87 (3)
O1wi—K2—O7w159.32 (3)K2—O4w—D41120.6 (14)
O2wii—K2—O3wiii107.43 (3)K2—O4w—D42102.2 (19)
O2wii—K2—O4w160.62 (3)K3i—O4w—D4199.7 (15)
O2wii—K2—O6wi94.81 (3)K3i—O4w—D4298.8 (17)
O2wii—K2—O7w114.15 (3)D41—O4w—D4295 (2)
O3wiii—K2—O4w70.97 (3)K1—O5w—K3viii89.03 (2)
O3wiii—K2—O6wi134.55 (3)K1—O5w—D51126.3 (11)
O3wiii—K2—O7w122.36 (2)K1—O5w—D52126.4 (16)
O4w—K2—O6wi75.19 (3)K3viii—O5w—D51104.9 (14)
O4w—K2—O7w80.90 (3)K3viii—O5w—D5299.4 (13)
O6wi—K2—O7w79.91 (3)D51—O5w—D52102.5 (18)
O4iv—K3—O1wiv58.26 (2)K1—O6w—D61115.4 (16)
O4iv—K3—O2w142.03 (3)K1—O6w—D62140.5 (11)
O4iv—K3—O4wv76.51 (3)D61—O6w—D62104 (2)
O4iv—K3—O5w129.11 (2)K1—O7w—K2101.53 (3)
O4iv—K3—O5wvi75.37 (3)K1—O7w—D71120.0 (16)
O4iv—K3—O7wvi58.52 (2)K1—O7w—D72127.9 (12)
O1wiv—K3—O2w85.85 (3)K2—O7w—D7180.0 (11)
O1wiv—K3—O4wv109.19 (3)K2—O7w—D72112.2 (11)
O1wiv—K3—O5w168.35 (2)D71—O7w—D72105 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x+1, y, z; (vi) x+1, y+1/2, z+2; (vii) x+1, y1/2, z+1; (viii) x+1, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—D11···O3wiv0.86 (2)1.91 (2)2.7255 (13)158 (2)
O1w—D12···O40.78 (2)1.98 (2)2.7391 (11)164 (2)
O2w—D21···O2iii0.87 (2)1.85 (2)2.7149 (13)177 (2)
O2w—D22···O10.73 (2)1.99 (2)2.7029 (11)167 (3)
O3w—D31···O10.80 (2)1.97 (2)2.7242 (11)159 (2)
O3w—D32···O3ii0.98 (3)1.77 (3)2.7395 (14)171 (2)
O4w—D41···O3ix0.80 (2)2.10 (2)2.8870 (14)169 (2)
O4w—D42···O2iii0.79 (2)1.97 (2)2.7679 (13)177 (2)
O5w—D51···O6wvi0.80 (2)2.11 (2)2.9025 (13)168 (2)
O5w—D52···O3x0.80 (2)1.92 (2)2.6944 (12)166 (2)
O6w—D61···O2x0.75 (2)1.96 (2)2.7087 (12)176 (2)
O6w—D62···O4vii0.85 (2)1.86 (2)2.6931 (12)165 (2)
O7w—D71···O3ii0.78 (2)2.02 (2)2.7498 (12)155 (2)
O7w—D72···O4ix0.82 (2)1.97 (2)2.7859 (13)171 (2)
Symmetry codes: (ii) x, y1/2, z+1; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+1; (vi) x+1, y+1/2, z+2; (vii) x+1, y1/2, z+1; (ix) x, y, z+1; (x) x+1, y, z+1.
 

References

First citationAverbuch-Pouchot, M. T. & Durif, A. (1983). J. Solid State Chem. 46, 193–196.  CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2016). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGmelin (1938). Gmelins Handbuch der Anorganischen Chemie, 8th ed., Kalium 22, pp. 984–992. Berlin: Verlag Chemie.  Google Scholar
First citationLarbot, A. & Durand, J. (1983). Acta Cryst. C39, 12–15.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationMootz, D. & Wunderlich, H. (1970). Acta Cryst. B26, 1826–1835.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRing, J., Lindenthal, L., Weil, M. & Stöger, B. (2017). Acta Cryst. E73, 1520–1522.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationSchroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. & Kolitsch, U. (2019). J. Alloys Compd, 820, 153369. https://doi.org/10.1016/j.jallcom.2019.153369.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStöger, B. (2020). Unpublished results.  Google Scholar
First citationStöger, B. & Weil, M. (2014). Acta Cryst. C70, 7–11.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationStöger, B., Weil, M. & Zobetz, E. (2012). Z. Kristallogr. 227, 859–868.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds