research communications
(N,N-Diallyldithiocarbamato-κ2S,S′)triphenyltin(IV) and bis(N,N-diallyldithiocarbamato-κ2S,S′)diphenyltin(IV): Hirshfeld surface analysis and computational study
aEnvironmental Health and Industrial Safety Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The crystal and molecular structures of the title organotin dithiocarbamate compounds, [Sn(C6H5)3(C7H10NS2)] (I) and [Sn(C6H5)2(C7H10NS2)2] (II), present very distinct tin atom coordination geometries. In (I), the dithiocarbamate ligand is asymmetrically coordinating with the resulting C3S2 donor set defining a coordination geometry intermediate between square-pyramidal and trigonal–bipyramidal. In (II), two independent molecules comprise the which differ in the conformations of the allyl substituents and in the relative orientations of the tin-bound phenyl rings. The dithiocarbamate ligands in (II) coordinate in an asymmetric mode but the Sn—S bonds are more symmetric than observed in (I). The resulting C2S4 donor set approximates an octahedral coordination geometry with a cis-disposition of the ipso-carbon atoms and with the more tightly bound sulfur atoms approximately trans. The only directional intermolecular contacts in the crystals of (I) and (II) are of the type phenyl-C—H⋯π(phenyl) and vinylidene-C—H⋯π(phenyl), respectively, with each leading to a supramolecular chain propagating along the a-axis direction. The calculated Hirshfeld surfaces emphasize the importance of H⋯H contacts in the crystal of (I), i.e. contributing 62.2% to the overall surface. The only other two significant contacts also involve hydrogen, i.e. C⋯H/H⋯C (28.4%) and S⋯H/H⋯S (8.6%). Similar observations pertain to the individual molecules of (II), which are clearly distinguishable in their surface contacts, with H⋯H being clearly dominant (59.9 and 64.9%, respectively) along with C⋯H/H⋯C (24.3 and 20.1%) and S⋯H/H⋯S (14.4 and 13.6%) contacts. The calculations of energies of interaction suggest dispersive forces make a significant contribution to the stabilization of the crystals. The exception is for the C—H⋯π contacts in (II) where, in addition to the dispersive contribution, significant contributions are made by the electrostatic forces.
1. Chemical context
Dithiocarbamate anions of general formula −S2CNRR′, R/R′ = H, alkyl and aryl, are readily prepared from the facile reaction of an amine with CS2 in the presence of base. Thus, the number of derivatives which can be prepared is largely dictated by the availability of and hence, an enormous range of dithiocarbamate anions are available for complexation to metals/heavy elements. A key interest in developing metal/heavy element compounds of dithiocarbamates relates to their biological potential (Hogarth, 2012). In the context of anti-cancer properties, a number of recent reports have described the efficacy of phosphanegold (Jamaludin et al., 2013), zinc (Tan et al., 2015) and bismuth (Ishak et al., 2014) dithiocarbamates, buoyed by the observation that many of these species promote cancer cell death by apoptosis; bismuth derivatives exhibit in vivo anti-tumour activity (Li et al., 2007). Organotin compounds are well known for their anti-cancer potential (Gielen & Tiekink, 2005) and there is a strong body of literature on organotin dithiocarbamates in this context (Tiekink, 2008).
In the past few years, there has been a resurgence of interest in the anti-cancer activity of organotin dithiocarbamates (Khan et al., 2015; Mohamad, Awang, Kamaludin et al., 2016) and very recently, a report on the in vitro cytotoxicity trial of several tin diallyldithiocarbamate compounds was described as well as a preliminary assessment of anti-microbial activity (Adeyemi et al., 2019); some phosphane-gold(I) and phosphane-silver(I) dithiocarbamates are known to be bactericidal based on pharmacokinetic studies (Sim et al., 2014; Tan, Tan et al., 2019). The aforementioned report on tin diallyldithiocarbamate compounds (Adeyemi et al., 2019) also presented the first crystal-structure determinations for tin compounds of diallyldithiocarbamate. In a continuation of recent structural studies in this area (Mohamad et al., 2017, 2018a,b; Haezam et al., 2019), herein, two organotin compounds of diallyldithiocarbamate, (C6H5)3Sn[S2CN(CH2C(H)=CH2)2], (I), and (C6H5)2Sn[S2CN(CH2C(H)=CH2)2]2, (II), have been synthesized and studied by X-ray crystallography. In addition, the supramolecular associations in their crystals have been evaluated by Hirshfeld surface analyses and computational chemistry.
2. Structural commentary
The tin atom in (I), Fig. 1, is coordinated by three ipso-carbon atoms of the phenyl groups as well as by an asymmetrically bound dithiocarbamate anion, Table 1. There is a relatively large disparity in the Sn—S separations, i.e. Δ(Sn—S) = [(Sn—Slong) - (Sn—Sshort)] = 0.47 Å, indicating that the Sn—S2 interaction is weak. Evidence in support of this conclusion is seen in the pattern of C—S bond lengths. Thus, the C1—S2 bond involving the less tightly bound S2 atom is about 0.07 Å shorter than the analogous bond with the tightly bound S1 atom. Nevertheless, there is a clear influence exerted by the S2 atom upon the Sn—C bond lengths with the Sn—C31 bond being appreciably longer than the other Sn—C bonds. This is traced to the trans effect exerted by the S2 atom as this forms a S2—Sn—C31 angle 156.01 (5)°. It is noted that there is no other (approximate) trans angle subtended at the tin atom in (I). Assuming a five-coordinate, C3S2, geometry, the range of angles subtended at the tin atom is 65.470 (14)°, for the S1—Sn—S2 chelate angle, to the aforementioned trans angle. The value of τ is a convenient descriptor for the assignment of a five-coordinate geometry, which ranges in value from 0.0 for an ideal square pyramid to 1.0 for an ideal trigonal bipyramid (Addison et al., 1984). The value of τ the case of (I) is 0.45, which is indicative of an intermediate geometry with a slight tendency towards square pyramidal. On the other hand, should the coordination geometry be considered C3S tetrahedral, i.e. the weak Sn—S2 bond was ignored, the range of tetrahedral angles would be 91.01 (5)°, for S1—Sn—C31, to 128.76 (5)°, for S1—Sn—C11. Finally, it is noted the C1—N1 bond length of 1.330 (3) Å is consistent with significant double-bond character in this bond, which arises from a major contribution of the 2−S2C=N+(CH2C(H)=CH2)2 to the electronic structure of the dithiocarbamate ligand.
|
A distinct coordination geometry for the tin atoms is noted for (II), Fig. 2, for which two independent molecules comprise the crystallographic The tin atom in each molecule is coordinated by two ipso-carbon atoms of the phenyl groups as well as by two asymmetrically bound dithiocarbamate anions, Table 2. There is a disparity in the Sn—S separations, i.e. Δ(Sn—S) = 0.19 and 0.11 Å, for the S1- and S3-dithiocarbamate anions of the first independent molecule; the comparable values for the second molecule are similar at 0.21 and 0.11 Å. The disparities in Δ(Sn—S) are reflected in the associated C—S bond distances, Table 2. Gratifyingly, the greater differences in C—S bonds, i.e. 0.03 and 0.04 Å for the S1-dithiocarbamate anions of each independent molecule, are correlated with the greater values in Δ(Sn—S). The C1—N1 and C8—N2 bond lengths in both molecules are short for the reasons mentioned for (I) above. The C2S4 coordination geometry is based on an octahedron and has a cis-disposition of the ipso-carbon atoms with the more tightly bound sulfur atoms close to being trans. A partial explanation of the lengthening of the Sn—S2 and Sn—S4 bonds relates to the trans-influence exerted by the phenyl substituents approximately opposite the S2 and S4 atoms.
A view of the superimposition of the two molecules comprising the is shown in Fig. 3 whereby the Sn1- and inverted-Sn2-molecules are overlapped so that two chelate rings, i.e. (Sn1,S1,S2,C1) and (Sn2,S3,S4,C8), are coincident. This shows there are non-trivial conformational differences between the molecules. While the dihedral angles between the two phenyl substituents are equal within experimental error in the two molecules, i.e. 81.28 (13) and 81.63 (14)°, more telling are the angles they form with the respective, cis-disposed chelate rings, i.e. 81.06 (10) and 35.93 (10)° for the Sn1-molecule and 15.35 (11) and 74.71 (6)° for the Sn2-molecule. Differences are also noted in the relative orientations of the allyl substituents. Thus, for the overlapped dithiocarbamate ligands, the N1—C5—C6—C7 torsion angle of −122.3 (3)° is an outlier with respect to the other torsion angles with the direct equivalent angle for the inverted Sn2-molecule being 13.3 (4)°. While the N—C—C—C torsion angles for the second pair of dithiocarbamate ligands are similar, Table 2, there is a misalignment of these ligands as seen in the dihedral angle formed between the chelate rings of 80.98 (5) and 76.55 (6)° for the Sn1- and Sn2-molecules, respectively.
in (II)The difference in coordination modes of the dithiocarbamate ligands and coordination geometries are related, at least in part, to the different
strength of the tin atoms, with the in the triphenyltin species being significantly less than that in the diphenyltin species.3. Supramolecular features
The only directional point of contact between molecules based on the distance criteria in PLATON (Spek, 2020) are phenyl-C—H⋯π(phenyl) interactions, Table 3. Here, the (C21–C26) ring is pivotal by donating a C—H atom to a symmetry-related (C31–C36) ring and the same time accepting a phenyl-C—H⋯π(phenyl) interaction from a (C11–C16) ring to construct a linear, supramolecular chain aligned along the a-axis direction, Fig. 4(a). The chains assemble in the crystal without directional interactions between them, Fig. 4(b).
|
The molecular packing in (II) is also largely devoid of directional interactions. Indeed, the only connections evident are vinylidene-C—H⋯π(phenyl) interactions, Table 4, which serve to link the independent molecules comprising the into a supramolecular chain aligned along the a-axis direction. In essence, the vinylidene-hydrogen atoms of the Sn1-molecule bridge translationally related Sn2-molecules into a linear chain, Fig. 5(a). The chains pack without directional interactions between them, Fig. 5(b).
4. Hirshfeld surface analysis
In order to gain further insight into the molecular packing of each of (I) and (II), Hirshfeld surface calculations were performed with Crystal Explorer 17 (Turner et al., 2017) following literature protocols (Tan, Jotani et al., 2019). The calculations highlight the influence of the discussed C—H⋯π interactions (Tables 3 and 4) as well the short interatomic contacts collated in Table 5. The short interatomic contacts are indicated as diminutive or faint-red spots near the participating atoms on the Hirshfeld surfaces mapped over dnorm for (I) and (II) in Figs. 6 and 7, respectively. Further, the donors and acceptors of the intermolecular C—H⋯π contacts for both (I) and (II) are evident as the blue bumps and red concave regions, respectively, on the Hirshfeld surfaces mapped with shape-index property shown in Fig. 8. In the absence of potential hydrogen bonds in (I) and (II), both the blue and red regions corresponding to positive and negative electrostatic potential, respectively, on Hirshfeld surfaces mapped over electrostatic potential in Fig. 9 and arise owing to the polarization of charges towards the participating residues.
|
The overall two-dimensional fingerprint plots for (I) and the individual molecules of (II) are illustrated in Fig. 10(a), and those delineated into H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts are illustrated in Fig. 10(b)–(d), respectively. The percentage contributions from different atom–atom contacts to the Hirshfeld surfaces of (I), Sn1- and Sn2-molecules of (II) are quantitatively summarized in Table 6. In the fingerprint plot delineated into H⋯H contacts for (I), Fig. 10(b), a pair of small and proximate peaks at de + di ∼2.2 Å results from the presence of a short interatomic contact between the phenyl-H15 and H24 atoms, Table 5. The presence of a single peak at de + di ∼2.2 Å in the analogous plot for the Sn1-molecule of (II) is due to the short H⋯H contact between the phenyl-H17 and H26 atoms. Another short interatomic H⋯H contact involving the H17 and H18A atoms of the Sn1-molecule and the H9A2 and H13A atoms of the Sn2-molecule, Table 5, are evident as the pair of peaks at de + di ∼2.2 Å and at de + di ∼2.3 Å in the corresponding delineated plot for the Sn2-molecule.
|
The presence of short interatomic C⋯H/H⋯C contacts in each of (I) and (II), summarized in Table 5, are evident as the forceps-like tips at de + di ∼2.8 Å in Fig. 10(a). Also, the intermolecular C—H⋯π contacts are characterized as a pair of wings in their respective delineated plots shown in Fig. 10(c). The short interatomic C⋯H/H⋯C contacts in the crystal of (II) appear as a pair of forceps-like tips at de + di ∼2.7 Å for the Sn1-molecule and as two pairs of similar adjoining tips at the same distances de + di ∼2.8 Å for the Sn2-molecule in the plots of Fig. 10(c). For (I), in the fingerprint plot delineated into S⋯H/H⋯S contacts of Fig. 10(d), the short interatomic contacts involving thiocarbamate-S1 and the H2A and H7B atoms are evident as the pair of conical tips at de + di ∼2.9 Å. Similar contacts in the crystal of (II) are also evident as the conical tips at de + di ∼2.9 Å in Fig. 10(d) in the upper and lower regions of the plots for the Sn1- and Sn2-molecules, respectively.
5. Computational chemistry
The pairwise interaction energies between the molecules within the crystals of (I) and (II) were calculated by summing up four energy components, namely the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies, in accord with literature protocols (Turner et al., 2017). In the present analysis, these energies were obtained by using the wave function calculated at the HF/3-21G level of theory. The specific contacts and associated energies are quantitatively summarized in Table 7. An analysis of these energies for (I) and (II) reveals that the dispersive component makes the major contribution to all the specified intermolecular interactions in the crystals of (I) and (II). However, as clearly evident from the relevant interaction energies listed in Table 7 and in the Hirshfeld surfaces mapped over the electrostatic potential of Fig. 9, where intense blue and red regions are apparent around the donors and acceptors, the C—H⋯π contacts in (II) have more significant contributions from the Eele component, in contrast to mainly dispersive contributions in the case of (I).
|
A further noticeable observation about the strength of the intermolecular interactions from Table 7 is that those intermolecular contacts arising from the same pair of symmetry-related molecules have the greater interaction energies. The magnitudes of intermolecular energies were also represented graphically by energy frameworks to view the supramolecular architecture of both the crystals through cylinders joining the centroids of molecular pairs using red, green and blue colour codes for the Eele, Edisp and Etot terms, respectively. In summary, the images of Fig. 11 highlight the importance of dispersion forces in the crystals of (I) and (II).
6. Database survey
As a result of having several important applications, such as biological activity as alluded to in the Chemical Context, a relatively large number of organotin dithiocarbamates have been synthesized and investigated by X-ray crystallography (Tiekink, 2008). The coordination geometry described for (I) conforms with literature expectations in that all R3Sn(S2CNR′R′′) molecules conform to this structural motif (Tiekink, 2008; Mohamad et al., 2018a). The Sn—S1 bond length in (I) of 2.4749 (4) Å is slightly longer that the average Sn—Sshort bond of 2.47 Å in all Ph3Sn(S2CNR′R′′) structures, while the Sn—S2 bond of 2.9456 (5) Å in (I) is about 0.10 Å shorter than the average Sn—Slong of 3.04 Å in these structures. Consistent with these trends, Δ(Sn—S) in (I) of 0.47 Å is less than the average Δ(Sn—S) value of 0.57 Å calculated from all Ph3Sn(S2CNR′R′′) structures.
Greater structural diversity is noted for R2Sn(S2CNR′R′′)2 (Tiekink, 2008), including differences in coordination numbers and geometries (Mohamad, Awang, Jotani et al., 2016). Of the now, 17 structures of the general formula Ph2Sn(S2CNR′R′′)2, nine adopt the cis-C2S4 structural motif exemplified by (II), including the two polymorphs of Ph2Sn(S2CNEt2)2 (Lindley & Carr, 1974; Hook et al., 1994). The remaining structures adopt the usual motif for R2Sn(S2CNR′R′′)2, namely a geometry based on a bipyramidal skewed-bipyramid. Here, the dithiocarbamate ligands coordinate in an asymmetric fashion with the tin-bound phenyl substituents disposed to lie over the weaker Sn—S bonds, exemplified by the two independent molecules comprising the of Ph2Sn[S2CN(Me)Hex]2 (Hex = n-hexyl, –C7H15) (Ramasamy et al., 2013). Clearly there is a subtle interplay between the electronic and steric characteristics of the dithiocarbamate ligands and molecular packing effects in determining the structural motif adopted by Ph2Sn(S2CNR′R′′)2 in their respective crystals.
7. Synthesis and crystallization
All chemicals and solvents were used as purchased without purification. The melting point was determined using an automated melting point apparatus (MPA 120 EZ-Melt). Carbon, hydrogen and nitrogen analyses were performed on a Leco CHNS-932 Elemental Analyzer.
The synthesis of (I) and (II) followed established literature procedures (Awang et al., 2011; Ajibade et al., 2011). For each synthesis, initially, diallylamine (Aldrich; 1.27 ml, 10 mmol) dissolved in ethanol (30 ml) was stirred under ice-bath conditions for 20 mins. A 25% ammonia solution (1 to 2 ml) was added followed by stirring for 30 mins to establish basic conditions. Then, a cold ethanolic solution of carbon disulfide (0.60 ml, 10 mmol) was added dropwise into the solution and stirred for about 2 h.
For (I), triphenyltin(IV) dichloride (Merck; 3.85 g, 10 mmol) dissolved in ethanol (20–30 ml) was added dropwise into the diallyldithiocarbamate solution and further stirred for 2 to 3 h. Next, the precipitate that formed was filtered off and washed with cold ethanol a few times to remove any impurities. Finally, the filtered precipitate was dried in a desiccator overnight. Recrystallization was carried out by dissolving the compound in a chloroform and ethanol solvent mixture (5 ml; 1:1 v/v), which was allowed to slowly evaporate at room temperature yielding colourless crystals. Yield: 44%. M.p. 454.8–456.2 K. Elemental analysis: calculated (%): C 57.51, H 4.79, N 2.68. Found (%): C 56.92, H 4.93, N 2.93.
Compound (II) was prepared and recrystallized as for (I) but, using diphenyltin(IV) dichloride (Merck; 1.72 g, 5 mmol) dissolved in ethanol (20-30 ml). Yield: 52%. M.p. 332.5–334.4 K. Elemental analysis: calculated (%): C 50.59, H 4.86, N 4.54. Found (%): C 50.20, H 4.80, N 4.20.
8. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). In (II), the maximum and minimum residual electron density peaks of 1.23 and 0.73 e Å−3, respectively, were located 0.80 and 0.74 Å from the S2 and Sn1 atoms, respectively.
details are summarized in Table 8
|
Supporting information
https://doi.org/10.1107/S2056989020000122/hb7884sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020000122/hb7884Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020000122/hb7884IIsup3.hkl
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Sn(C6H5)3(C7H10NS2)] | F(000) = 1056 |
Mr = 522.27 | Dx = 1.467 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 8.0650 (1) Å | Cell parameters from 34049 reflections |
b = 11.4490 (1) Å | θ = 3.4–76.3° |
c = 25.8775 (2) Å | µ = 10.32 mm−1 |
β = 98.282 (1)° | T = 100 K |
V = 2364.51 (4) Å3 | Prism, colourless |
Z = 4 | 0.13 × 0.10 × 0.04 mm |
XtaLAB Synergy, Dualflex, AtlasS2 diffractometer | 4226 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 4083 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.044 |
Detector resolution: 5.2558 pixels mm-1 | θmax = 67.1°, θmin = 3.5° |
ω scans | h = −9→9 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2018) | k = −13→13 |
Tmin = 0.807, Tmax = 1.000 | l = −26→30 |
55086 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.034P)2 + 1.0941P] where P = (Fo2 + 2Fc2)/3 |
4226 reflections | (Δ/σ)max = 0.001 |
262 parameters | Δρmax = 0.82 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.25851 (2) | 0.27508 (2) | 0.37027 (2) | 0.01943 (6) | |
S1 | 0.40753 (6) | 0.34500 (4) | 0.45492 (2) | 0.02546 (11) | |
S2 | 0.50865 (6) | 0.11062 (4) | 0.42287 (2) | 0.02585 (11) | |
N1 | 0.6650 (2) | 0.22704 (13) | 0.50510 (7) | 0.0221 (3) | |
C1 | 0.5424 (2) | 0.22413 (16) | 0.46477 (8) | 0.0211 (4) | |
C2 | 0.6883 (2) | 0.32426 (18) | 0.54246 (8) | 0.0267 (4) | |
H2A | 0.646687 | 0.397215 | 0.524565 | 0.032* | |
H2B | 0.809419 | 0.334224 | 0.554922 | 0.032* | |
C3 | 0.5978 (3) | 0.3042 (2) | 0.58847 (8) | 0.0309 (5) | |
H3 | 0.612847 | 0.360684 | 0.615638 | 0.037* | |
C4 | 0.4992 (3) | 0.2149 (2) | 0.59435 (9) | 0.0319 (5) | |
H4A | 0.480682 | 0.156449 | 0.568121 | 0.038* | |
H4B | 0.446654 | 0.209057 | 0.624828 | 0.038* | |
C5 | 0.7846 (2) | 0.12945 (18) | 0.51605 (8) | 0.0249 (4) | |
H5A | 0.732148 | 0.056406 | 0.501157 | 0.030* | |
H5B | 0.812801 | 0.118925 | 0.554284 | 0.030* | |
C6 | 0.9410 (3) | 0.1527 (2) | 0.49311 (9) | 0.0315 (4) | |
H6 | 0.931935 | 0.161093 | 0.456289 | 0.038* | |
C7 | 1.0904 (3) | 0.1621 (2) | 0.52078 (11) | 0.0427 (6) | |
H7A | 1.103510 | 0.154114 | 0.557684 | 0.051* | |
H7B | 1.185305 | 0.176968 | 0.503870 | 0.051* | |
C11 | 0.0883 (2) | 0.13134 (16) | 0.35523 (7) | 0.0204 (4) | |
C12 | −0.0823 (2) | 0.15586 (18) | 0.34399 (7) | 0.0257 (4) | |
H12 | −0.120299 | 0.233677 | 0.347295 | 0.031* | |
C13 | −0.1979 (2) | 0.06837 (19) | 0.32802 (8) | 0.0278 (4) | |
H13 | −0.313765 | 0.086573 | 0.320597 | 0.033* | |
C14 | −0.1442 (3) | −0.04484 (19) | 0.32295 (8) | 0.0279 (4) | |
H14 | −0.222732 | −0.104752 | 0.311737 | 0.033* | |
C15 | 0.0259 (3) | −0.07077 (18) | 0.33438 (9) | 0.0308 (4) | |
H15 | 0.063245 | −0.148801 | 0.331218 | 0.037* | |
C16 | 0.1410 (2) | 0.01651 (17) | 0.35033 (8) | 0.0254 (4) | |
H16 | 0.256747 | −0.002093 | 0.357990 | 0.030* | |
C21 | 0.4161 (2) | 0.28918 (16) | 0.31120 (7) | 0.0213 (4) | |
C22 | 0.5403 (2) | 0.37446 (18) | 0.31258 (8) | 0.0269 (4) | |
H22 | 0.554696 | 0.429581 | 0.340305 | 0.032* | |
C23 | 0.6428 (3) | 0.37983 (19) | 0.27407 (9) | 0.0312 (5) | |
H23 | 0.726432 | 0.438594 | 0.275407 | 0.037* | |
C24 | 0.6234 (3) | 0.2996 (2) | 0.23361 (9) | 0.0313 (5) | |
H24 | 0.693634 | 0.303209 | 0.207178 | 0.038* | |
C25 | 0.5010 (3) | 0.21372 (18) | 0.23174 (8) | 0.0280 (4) | |
H25 | 0.487954 | 0.158250 | 0.204148 | 0.034* | |
C26 | 0.3979 (2) | 0.20907 (17) | 0.27018 (8) | 0.0223 (4) | |
H26 | 0.313726 | 0.150577 | 0.268562 | 0.027* | |
C31 | 0.0978 (2) | 0.42764 (17) | 0.36369 (8) | 0.0242 (4) | |
C32 | −0.0065 (3) | 0.45310 (18) | 0.40077 (8) | 0.0293 (4) | |
H32 | −0.007314 | 0.402694 | 0.429894 | 0.035* | |
C33 | −0.1095 (3) | 0.5512 (2) | 0.39575 (10) | 0.0357 (5) | |
H33 | −0.180213 | 0.567475 | 0.421210 | 0.043* | |
C34 | −0.1081 (3) | 0.62513 (19) | 0.35328 (10) | 0.0374 (5) | |
H34 | −0.177793 | 0.692406 | 0.349818 | 0.045* | |
C35 | −0.0067 (3) | 0.60157 (19) | 0.31626 (9) | 0.0350 (5) | |
H35 | −0.006485 | 0.652566 | 0.287313 | 0.042* | |
C36 | 0.0959 (2) | 0.50318 (18) | 0.32102 (8) | 0.0273 (4) | |
H36 | 0.165193 | 0.487164 | 0.295126 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.02063 (8) | 0.01640 (8) | 0.02001 (8) | 0.00251 (4) | −0.00135 (5) | −0.00007 (4) |
S1 | 0.0271 (2) | 0.0215 (2) | 0.0253 (2) | 0.00683 (18) | −0.00475 (18) | −0.00472 (17) |
S2 | 0.0301 (2) | 0.0205 (2) | 0.0254 (2) | 0.00408 (18) | −0.00133 (18) | −0.00396 (18) |
N1 | 0.0206 (8) | 0.0200 (9) | 0.0246 (8) | 0.0016 (6) | −0.0007 (7) | 0.0000 (6) |
C1 | 0.0186 (9) | 0.0212 (10) | 0.0232 (9) | 0.0002 (7) | 0.0025 (7) | 0.0024 (7) |
C2 | 0.0249 (10) | 0.0223 (10) | 0.0303 (10) | −0.0022 (8) | −0.0051 (8) | −0.0028 (8) |
C3 | 0.0314 (11) | 0.0333 (11) | 0.0255 (10) | 0.0014 (9) | −0.0043 (8) | −0.0109 (9) |
C4 | 0.0289 (11) | 0.0404 (13) | 0.0257 (10) | 0.0021 (9) | 0.0015 (8) | −0.0050 (8) |
C5 | 0.0215 (9) | 0.0240 (10) | 0.0282 (10) | 0.0029 (8) | 0.0005 (7) | 0.0037 (8) |
C6 | 0.0285 (10) | 0.0312 (11) | 0.0356 (11) | 0.0057 (9) | 0.0074 (9) | 0.0036 (9) |
C7 | 0.0255 (11) | 0.0398 (14) | 0.0632 (16) | 0.0002 (10) | 0.0083 (10) | 0.0010 (12) |
C11 | 0.0245 (9) | 0.0192 (9) | 0.0173 (8) | 0.0018 (7) | 0.0029 (7) | 0.0011 (7) |
C12 | 0.0245 (9) | 0.0241 (10) | 0.0270 (9) | 0.0061 (8) | −0.0013 (8) | −0.0026 (8) |
C13 | 0.0212 (9) | 0.0328 (11) | 0.0279 (10) | 0.0015 (8) | −0.0011 (7) | 0.0008 (8) |
C14 | 0.0278 (10) | 0.0268 (11) | 0.0296 (10) | −0.0080 (8) | 0.0059 (8) | −0.0019 (8) |
C15 | 0.0298 (10) | 0.0187 (10) | 0.0453 (12) | −0.0004 (8) | 0.0107 (9) | −0.0025 (9) |
C16 | 0.0233 (9) | 0.0190 (10) | 0.0347 (10) | 0.0017 (8) | 0.0069 (8) | −0.0005 (8) |
C21 | 0.0203 (9) | 0.0204 (9) | 0.0215 (9) | 0.0019 (7) | −0.0024 (7) | 0.0036 (7) |
C22 | 0.0260 (10) | 0.0203 (10) | 0.0320 (10) | −0.0032 (8) | −0.0037 (8) | 0.0013 (8) |
C23 | 0.0235 (10) | 0.0288 (11) | 0.0396 (11) | −0.0078 (8) | −0.0012 (8) | 0.0090 (9) |
C24 | 0.0230 (10) | 0.0387 (12) | 0.0325 (11) | −0.0006 (9) | 0.0051 (8) | 0.0097 (9) |
C25 | 0.0276 (10) | 0.0297 (11) | 0.0258 (10) | −0.0019 (8) | 0.0006 (8) | 0.0010 (8) |
C26 | 0.0206 (9) | 0.0224 (9) | 0.0227 (9) | −0.0032 (7) | −0.0004 (7) | 0.0022 (7) |
C31 | 0.0226 (9) | 0.0154 (9) | 0.0318 (10) | 0.0013 (7) | −0.0053 (8) | −0.0033 (7) |
C32 | 0.0284 (10) | 0.0207 (10) | 0.0366 (11) | 0.0016 (8) | −0.0022 (8) | −0.0044 (8) |
C33 | 0.0245 (10) | 0.0270 (11) | 0.0534 (13) | 0.0010 (9) | −0.0018 (9) | −0.0144 (10) |
C34 | 0.0263 (10) | 0.0179 (10) | 0.0621 (15) | 0.0029 (8) | −0.0139 (10) | −0.0059 (10) |
C35 | 0.0306 (11) | 0.0205 (10) | 0.0481 (13) | −0.0019 (9) | −0.0140 (10) | 0.0033 (9) |
C36 | 0.0247 (9) | 0.0201 (10) | 0.0331 (10) | −0.0016 (8) | −0.0099 (8) | −0.0001 (8) |
Sn—C21 | 2.130 (2) | C13—H13 | 0.9500 |
Sn—C11 | 2.1427 (19) | C14—C15 | 1.393 (3) |
Sn—C31 | 2.1673 (19) | C14—H14 | 0.9500 |
Sn—S1 | 2.4749 (4) | C15—C16 | 1.386 (3) |
Sn—S2 | 2.9456 (5) | C15—H15 | 0.9500 |
S1—C1 | 1.7559 (19) | C16—H16 | 0.9500 |
S2—C1 | 1.6894 (19) | C21—C26 | 1.394 (3) |
N1—C1 | 1.330 (3) | C21—C22 | 1.395 (3) |
N1—C2 | 1.468 (3) | C22—C23 | 1.384 (3) |
N1—C5 | 1.477 (2) | C22—H22 | 0.9500 |
C2—C3 | 1.502 (3) | C23—C24 | 1.385 (3) |
C2—H2A | 0.9900 | C23—H23 | 0.9500 |
C2—H2B | 0.9900 | C24—C25 | 1.388 (3) |
C3—C4 | 1.317 (3) | C24—H24 | 0.9500 |
C3—H3 | 0.9500 | C25—C26 | 1.387 (3) |
C4—H4A | 0.9500 | C25—H25 | 0.9500 |
C4—H4B | 0.9500 | C26—H26 | 0.9500 |
C5—C6 | 1.493 (3) | C31—C32 | 1.395 (3) |
C5—H5A | 0.9900 | C31—C36 | 1.401 (3) |
C5—H5B | 0.9900 | C32—C33 | 1.392 (3) |
C6—C7 | 1.315 (3) | C32—H32 | 0.9500 |
C6—H6 | 0.9500 | C33—C34 | 1.388 (4) |
C7—H7A | 0.9500 | C33—H33 | 0.9500 |
C7—H7B | 0.9500 | C34—C35 | 1.373 (4) |
C11—C12 | 1.393 (3) | C34—H34 | 0.9500 |
C11—C16 | 1.393 (3) | C35—C36 | 1.393 (3) |
C12—C13 | 1.390 (3) | C35—H35 | 0.9500 |
C12—H12 | 0.9500 | C36—H36 | 0.9500 |
C13—C14 | 1.379 (3) | ||
C21—Sn—C11 | 111.15 (7) | C14—C13—C12 | 119.99 (18) |
C21—Sn—C31 | 107.13 (7) | C14—C13—H13 | 120.0 |
C11—Sn—C31 | 104.14 (7) | C12—C13—H13 | 120.0 |
C21—Sn—S1 | 110.28 (5) | C13—C14—C15 | 119.53 (19) |
C11—Sn—S1 | 128.76 (5) | C13—C14—H14 | 120.2 |
C31—Sn—S1 | 91.01 (5) | C15—C14—H14 | 120.2 |
C21—Sn—S2 | 86.57 (5) | C16—C15—C14 | 120.43 (19) |
C11—Sn—S2 | 88.36 (5) | C16—C15—H15 | 119.8 |
C31—Sn—S2 | 156.01 (5) | C14—C15—H15 | 119.8 |
S1—Sn—S2 | 65.470 (14) | C15—C16—C11 | 120.48 (18) |
C1—S1—Sn | 94.89 (7) | C15—C16—H16 | 119.8 |
C1—S2—Sn | 80.86 (6) | C11—C16—H16 | 119.8 |
C1—N1—C2 | 123.08 (16) | C26—C21—C22 | 118.46 (19) |
C1—N1—C5 | 121.51 (16) | C26—C21—Sn | 119.19 (14) |
C2—N1—C5 | 115.39 (15) | C22—C21—Sn | 122.33 (15) |
N1—C1—S2 | 123.75 (14) | C23—C22—C21 | 120.87 (19) |
N1—C1—S1 | 117.96 (14) | C23—C22—H22 | 119.6 |
S2—C1—S1 | 118.29 (11) | C21—C22—H22 | 119.6 |
N1—C2—C3 | 112.04 (17) | C22—C23—C24 | 120.03 (19) |
N1—C2—H2A | 109.2 | C22—C23—H23 | 120.0 |
C3—C2—H2A | 109.2 | C24—C23—H23 | 120.0 |
N1—C2—H2B | 109.2 | C23—C24—C25 | 119.9 (2) |
C3—C2—H2B | 109.2 | C23—C24—H24 | 120.1 |
H2A—C2—H2B | 107.9 | C25—C24—H24 | 120.1 |
C4—C3—C2 | 125.52 (19) | C26—C25—C24 | 119.9 (2) |
C4—C3—H3 | 117.2 | C26—C25—H25 | 120.0 |
C2—C3—H3 | 117.2 | C24—C25—H25 | 120.0 |
C3—C4—H4A | 120.0 | C25—C26—C21 | 120.81 (18) |
C3—C4—H4B | 120.0 | C25—C26—H26 | 119.6 |
H4A—C4—H4B | 120.0 | C21—C26—H26 | 119.6 |
N1—C5—C6 | 110.80 (17) | C32—C31—C36 | 118.31 (19) |
N1—C5—H5A | 109.5 | C32—C31—Sn | 121.84 (15) |
C6—C5—H5A | 109.5 | C36—C31—Sn | 119.85 (15) |
N1—C5—H5B | 109.5 | C31—C32—C33 | 121.0 (2) |
C6—C5—H5B | 109.5 | C31—C32—H32 | 119.5 |
H5A—C5—H5B | 108.1 | C33—C32—H32 | 119.5 |
C7—C6—C5 | 124.0 (2) | C34—C33—C32 | 119.6 (2) |
C7—C6—H6 | 118.0 | C34—C33—H33 | 120.2 |
C5—C6—H6 | 118.0 | C32—C33—H33 | 120.2 |
C6—C7—H7A | 120.0 | C35—C34—C33 | 120.4 (2) |
C6—C7—H7B | 120.0 | C35—C34—H34 | 119.8 |
H7A—C7—H7B | 120.0 | C33—C34—H34 | 119.8 |
C12—C11—C16 | 118.46 (18) | C34—C35—C36 | 120.2 (2) |
C12—C11—Sn | 118.09 (14) | C34—C35—H35 | 119.9 |
C16—C11—Sn | 123.03 (14) | C36—C35—H35 | 119.9 |
C13—C12—C11 | 121.09 (19) | C35—C36—C31 | 120.5 (2) |
C13—C12—H12 | 119.5 | C35—C36—H36 | 119.7 |
C11—C12—H12 | 119.5 | C31—C36—H36 | 119.7 |
C2—N1—C1—S2 | −177.36 (15) | C14—C15—C16—C11 | 0.1 (3) |
C5—N1—C1—S2 | 0.8 (3) | C12—C11—C16—C15 | 0.3 (3) |
C2—N1—C1—S1 | 2.3 (3) | Sn—C11—C16—C15 | −172.13 (15) |
C5—N1—C1—S1 | −179.62 (14) | C26—C21—C22—C23 | 0.2 (3) |
Sn—S2—C1—N1 | −174.18 (18) | Sn—C21—C22—C23 | 178.75 (15) |
Sn—S2—C1—S1 | 6.21 (10) | C21—C22—C23—C24 | −0.3 (3) |
Sn—S1—C1—N1 | 173.04 (15) | C22—C23—C24—C25 | 0.0 (3) |
Sn—S1—C1—S2 | −7.33 (12) | C23—C24—C25—C26 | 0.4 (3) |
C1—N1—C2—C3 | 91.6 (2) | C24—C25—C26—C21 | −0.5 (3) |
C5—N1—C2—C3 | −86.6 (2) | C22—C21—C26—C25 | 0.2 (3) |
N1—C2—C3—C4 | −4.2 (3) | Sn—C21—C26—C25 | −178.38 (15) |
C1—N1—C5—C6 | 95.9 (2) | C36—C31—C32—C33 | −0.3 (3) |
C2—N1—C5—C6 | −85.9 (2) | Sn—C31—C32—C33 | −179.70 (14) |
N1—C5—C6—C7 | 118.2 (2) | C31—C32—C33—C34 | −0.2 (3) |
C16—C11—C12—C13 | −0.3 (3) | C32—C33—C34—C35 | 0.3 (3) |
Sn—C11—C12—C13 | 172.55 (15) | C33—C34—C35—C36 | 0.0 (3) |
C11—C12—C13—C14 | −0.2 (3) | C34—C35—C36—C31 | −0.4 (3) |
C12—C13—C14—C15 | 0.6 (3) | C32—C31—C36—C35 | 0.6 (3) |
C13—C14—C15—C16 | −0.5 (3) | Sn—C31—C36—C35 | −179.98 (14) |
Cg1 and Cg2 are the centroids of the (C21–C26) and (C31–C36) rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1i | 0.95 | 2.92 | 3.605 (2) | 130 |
C23—H23···Cg2ii | 0.95 | 2.99 | 3.720 (3) | 134 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
[Sn(C6H5)2(C7H10NS2)2] | F(000) = 2512 |
Mr = 617.45 | Dx = 1.484 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 9.6160 (1) Å | Cell parameters from 40535 reflections |
b = 30.4216 (2) Å | θ = 2.9–76.3° |
c = 19.1928 (1) Å | µ = 10.30 mm−1 |
β = 100.019 (1)° | T = 100 K |
V = 5528.93 (8) Å3 | Prism, colourless |
Z = 8 | 0.19 × 0.14 × 0.07 mm |
XtaLAB Synergy, Dualflex, AtlasS2 diffractometer | 9876 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 9370 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 5.2558 pixels mm-1 | θmax = 67.1°, θmin = 3.7° |
ω scans | h = −11→11 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2018) | k = −36→25 |
Tmin = 0.633, Tmax = 1.000 | l = −22→22 |
67735 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0362P)2 + 7.0312P] where P = (Fo2 + 2Fc2)/3 |
9876 reflections | (Δ/σ)max = 0.003 |
595 parameters | Δρmax = 1.23 e Å−3 |
0 restraints | Δρmin = −0.73 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.96840 (2) | 0.26758 (2) | 0.60783 (2) | 0.01863 (5) | |
S1 | 1.05093 (7) | 0.34237 (2) | 0.65910 (3) | 0.02202 (13) | |
S2 | 1.05034 (7) | 0.32188 (2) | 0.50854 (3) | 0.02481 (13) | |
S3 | 0.82312 (7) | 0.21606 (2) | 0.51668 (4) | 0.02761 (14) | |
S4 | 0.71629 (7) | 0.30174 (2) | 0.55382 (3) | 0.02345 (13) | |
N1 | 1.1264 (2) | 0.39971 (7) | 0.56894 (11) | 0.0203 (4) | |
N2 | 0.5656 (2) | 0.24617 (7) | 0.46333 (12) | 0.0253 (5) | |
C1 | 1.0824 (2) | 0.35895 (8) | 0.57638 (13) | 0.0189 (5) | |
C2 | 1.1517 (3) | 0.41701 (9) | 0.50102 (14) | 0.0251 (6) | |
H2A | 1.121986 | 0.448186 | 0.496767 | 0.030* | |
H2B | 1.093159 | 0.400473 | 0.462164 | 0.030* | |
C3 | 1.3039 (3) | 0.41377 (9) | 0.49308 (14) | 0.0286 (6) | |
H3 | 1.331520 | 0.429629 | 0.455081 | 0.034* | |
C4 | 1.4027 (3) | 0.39104 (10) | 0.53379 (16) | 0.0309 (6) | |
H4A | 1.380189 | 0.374657 | 0.572463 | 0.037* | |
H4B | 1.496585 | 0.391033 | 0.524485 | 0.037* | |
C5 | 1.1518 (3) | 0.43140 (8) | 0.62834 (14) | 0.0225 (5) | |
H5A | 1.229774 | 0.451427 | 0.621918 | 0.027* | |
H5B | 1.180874 | 0.415255 | 0.673303 | 0.027* | |
C6 | 1.0221 (3) | 0.45784 (9) | 0.63244 (13) | 0.0246 (5) | |
H6 | 0.938442 | 0.442486 | 0.637625 | 0.030* | |
C7 | 1.0169 (3) | 0.50095 (10) | 0.62931 (15) | 0.0312 (6) | |
H7A | 1.098766 | 0.517238 | 0.624141 | 0.037* | |
H7B | 0.931250 | 0.515847 | 0.632218 | 0.037* | |
C8 | 0.6860 (3) | 0.25402 (8) | 0.50603 (13) | 0.0211 (5) | |
C9 | 0.4473 (3) | 0.27826 (9) | 0.45194 (15) | 0.0270 (6) | |
H9A | 0.459611 | 0.299926 | 0.491021 | 0.032* | |
H9B | 0.356671 | 0.262729 | 0.451561 | 0.032* | |
C10 | 0.4444 (3) | 0.30145 (11) | 0.38295 (16) | 0.0357 (7) | |
H10 | 0.513805 | 0.323315 | 0.380204 | 0.043* | |
C11 | 0.3516 (4) | 0.29318 (13) | 0.32636 (18) | 0.0485 (9) | |
H11A | 0.281054 | 0.271475 | 0.327679 | 0.058* | |
H11B | 0.354463 | 0.308876 | 0.283842 | 0.058* | |
C12 | 0.5396 (3) | 0.20533 (10) | 0.42143 (16) | 0.0341 (7) | |
H12A | 0.630727 | 0.190610 | 0.419544 | 0.041* | |
H12B | 0.494638 | 0.212628 | 0.372403 | 0.041* | |
C13 | 0.4460 (4) | 0.17484 (10) | 0.45334 (18) | 0.0415 (8) | |
H13 | 0.483016 | 0.161495 | 0.497427 | 0.050* | |
C14 | 0.3162 (4) | 0.16547 (13) | 0.4240 (3) | 0.0601 (11) | |
H14A | 0.276367 | 0.178312 | 0.379956 | 0.072* | |
H14B | 0.261771 | 0.145828 | 0.446853 | 0.072* | |
C15 | 1.1604 (3) | 0.22965 (8) | 0.61670 (13) | 0.0210 (5) | |
C16 | 1.2902 (3) | 0.24774 (9) | 0.60881 (14) | 0.0247 (5) | |
H16 | 1.295812 | 0.277867 | 0.596567 | 0.030* | |
C17 | 1.4111 (3) | 0.22188 (9) | 0.61878 (16) | 0.0289 (6) | |
H17 | 1.499314 | 0.234539 | 0.614001 | 0.035* | |
C18 | 1.4039 (3) | 0.17786 (9) | 0.63562 (14) | 0.0273 (6) | |
H18 | 1.486760 | 0.160247 | 0.641839 | 0.033* | |
C19 | 1.2754 (3) | 0.15942 (9) | 0.64342 (14) | 0.0256 (6) | |
H19 | 1.270001 | 0.129177 | 0.654966 | 0.031* | |
C20 | 1.1552 (3) | 0.18534 (9) | 0.63427 (13) | 0.0230 (5) | |
H20 | 1.067687 | 0.172668 | 0.640090 | 0.028* | |
C21 | 0.8975 (3) | 0.24718 (8) | 0.70441 (13) | 0.0203 (5) | |
C22 | 0.9742 (3) | 0.26067 (9) | 0.76923 (14) | 0.0265 (6) | |
H22 | 1.055704 | 0.278445 | 0.770037 | 0.032* | |
C23 | 0.9342 (3) | 0.24871 (10) | 0.83264 (15) | 0.0323 (6) | |
H23 | 0.988359 | 0.258258 | 0.876175 | 0.039* | |
C24 | 0.8158 (3) | 0.22295 (10) | 0.83270 (16) | 0.0317 (6) | |
H24 | 0.787943 | 0.214921 | 0.876082 | 0.038* | |
C25 | 0.7383 (3) | 0.20897 (10) | 0.76898 (16) | 0.0327 (6) | |
H25 | 0.656701 | 0.191282 | 0.768520 | 0.039* | |
C26 | 0.7797 (3) | 0.22080 (9) | 0.70546 (15) | 0.0266 (6) | |
H26 | 0.726533 | 0.210653 | 0.662062 | 0.032* | |
Sn2 | 0.42934 (2) | 0.47935 (2) | 0.26224 (2) | 0.01967 (5) | |
S1A | 0.50653 (7) | 0.43729 (2) | 0.15999 (3) | 0.02630 (14) | |
S2A | 0.65505 (7) | 0.51843 (2) | 0.21454 (3) | 0.02630 (14) | |
S3A | 0.39019 (7) | 0.55322 (2) | 0.32085 (3) | 0.02589 (14) | |
S4A | 0.29651 (7) | 0.53675 (2) | 0.16787 (3) | 0.02586 (14) | |
N1A | 0.6984 (2) | 0.47703 (7) | 0.09775 (12) | 0.0264 (5) | |
N2A | 0.2774 (2) | 0.61450 (7) | 0.22935 (11) | 0.0229 (4) | |
C1A | 0.6292 (3) | 0.47819 (8) | 0.15187 (14) | 0.0234 (5) | |
C2A | 0.6696 (3) | 0.44435 (10) | 0.03990 (15) | 0.0328 (6) | |
H2A1 | 0.675651 | 0.458786 | −0.005706 | 0.039* | |
H2A2 | 0.572710 | 0.432678 | 0.037076 | 0.039* | |
C3A | 0.7733 (4) | 0.40729 (10) | 0.05215 (16) | 0.0375 (7) | |
H3A | 0.763123 | 0.386079 | 0.087245 | 0.045* | |
C4A | 0.8781 (4) | 0.40263 (11) | 0.01660 (17) | 0.0400 (7) | |
H4A1 | 0.890527 | 0.423401 | −0.018758 | 0.048* | |
H4A2 | 0.941186 | 0.378490 | 0.026373 | 0.048* | |
C5A | 0.8112 (3) | 0.50881 (10) | 0.09071 (15) | 0.0280 (6) | |
H5A1 | 0.888230 | 0.493556 | 0.072253 | 0.034* | |
H5A2 | 0.850815 | 0.520988 | 0.137826 | 0.034* | |
C6A | 0.7561 (4) | 0.54519 (12) | 0.04217 (19) | 0.0446 (8) | |
H6A | 0.688042 | 0.564544 | 0.055802 | 0.053* | |
C7A | 0.7971 (5) | 0.55184 (17) | −0.0189 (2) | 0.0720 (15) | |
H7A1 | 0.865062 | 0.532902 | −0.033670 | 0.086* | |
H7A2 | 0.758874 | 0.575581 | −0.048313 | 0.086* | |
C8A | 0.3158 (3) | 0.57268 (8) | 0.23782 (13) | 0.0221 (5) | |
C9A | 0.2113 (3) | 0.63244 (9) | 0.16070 (14) | 0.0254 (6) | |
H9A1 | 0.250124 | 0.617093 | 0.122830 | 0.030* | |
H9A2 | 0.236138 | 0.663945 | 0.158775 | 0.030* | |
C10A | 0.0529 (3) | 0.62794 (9) | 0.14665 (14) | 0.0270 (6) | |
H10A | 0.003035 | 0.643092 | 0.106705 | 0.032* | |
C11A | −0.0226 (3) | 0.60500 (9) | 0.18449 (15) | 0.0296 (6) | |
H11C | 0.022624 | 0.589294 | 0.224927 | 0.036* | |
H11D | −0.122521 | 0.604126 | 0.171420 | 0.036* | |
C12A | 0.3060 (3) | 0.64644 (9) | 0.28729 (15) | 0.0262 (6) | |
H12C | 0.306030 | 0.631114 | 0.332786 | 0.031* | |
H12D | 0.229511 | 0.668611 | 0.281445 | 0.031* | |
C13A | 0.4451 (3) | 0.66935 (9) | 0.28974 (15) | 0.0304 (6) | |
H13A | 0.461271 | 0.694727 | 0.318873 | 0.036* | |
C14A | 0.5464 (3) | 0.65786 (11) | 0.25573 (16) | 0.0345 (7) | |
H14C | 0.535363 | 0.632722 | 0.225908 | 0.041* | |
H14D | 0.630812 | 0.674669 | 0.260903 | 0.041* | |
C15A | 0.5755 (3) | 0.45369 (8) | 0.35224 (13) | 0.0199 (5) | |
C16A | 0.6517 (3) | 0.41536 (9) | 0.34627 (15) | 0.0262 (6) | |
H16A | 0.641902 | 0.400827 | 0.301871 | 0.031* | |
C17A | 0.7420 (3) | 0.39798 (9) | 0.40436 (16) | 0.0281 (6) | |
H17A | 0.792462 | 0.371612 | 0.399584 | 0.034* | |
C18A | 0.7580 (3) | 0.41916 (9) | 0.46894 (15) | 0.0267 (6) | |
H18A | 0.819483 | 0.407280 | 0.508595 | 0.032* | |
C19A | 0.6849 (3) | 0.45768 (9) | 0.47610 (14) | 0.0263 (6) | |
H19A | 0.696848 | 0.472399 | 0.520395 | 0.032* | |
C20A | 0.5935 (3) | 0.47474 (9) | 0.41787 (14) | 0.0222 (5) | |
H20A | 0.542863 | 0.501025 | 0.422959 | 0.027* | |
C21A | 0.2380 (3) | 0.44192 (9) | 0.26420 (13) | 0.0219 (5) | |
C22A | 0.2467 (3) | 0.40539 (9) | 0.30792 (14) | 0.0263 (6) | |
H22A | 0.335183 | 0.397555 | 0.335339 | 0.032* | |
C23A | 0.1275 (3) | 0.37983 (10) | 0.31248 (16) | 0.0322 (6) | |
H23A | 0.135091 | 0.355207 | 0.343351 | 0.039* | |
C24A | −0.0010 (3) | 0.39055 (10) | 0.27192 (16) | 0.0330 (6) | |
H24A | −0.082123 | 0.373216 | 0.274518 | 0.040* | |
C25A | −0.0111 (3) | 0.42636 (11) | 0.22781 (17) | 0.0387 (7) | |
H25A | −0.099646 | 0.433692 | 0.199882 | 0.046* | |
C26A | 0.1072 (3) | 0.45212 (10) | 0.22356 (16) | 0.0333 (6) | |
H26A | 0.098571 | 0.476793 | 0.192762 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01673 (9) | 0.01771 (9) | 0.02066 (9) | 0.00008 (6) | 0.00108 (6) | 0.00380 (6) |
S1 | 0.0246 (3) | 0.0185 (3) | 0.0228 (3) | −0.0030 (2) | 0.0037 (2) | 0.0032 (2) |
S2 | 0.0267 (3) | 0.0227 (3) | 0.0238 (3) | 0.0006 (2) | 0.0011 (2) | −0.0032 (2) |
S3 | 0.0280 (3) | 0.0230 (3) | 0.0299 (3) | 0.0049 (3) | −0.0003 (3) | −0.0037 (3) |
S4 | 0.0229 (3) | 0.0177 (3) | 0.0279 (3) | −0.0001 (2) | −0.0008 (2) | 0.0003 (2) |
N1 | 0.0208 (10) | 0.0202 (10) | 0.0198 (10) | −0.0006 (8) | 0.0031 (8) | 0.0034 (8) |
N2 | 0.0270 (12) | 0.0218 (11) | 0.0267 (11) | 0.0017 (9) | 0.0031 (9) | −0.0053 (9) |
C1 | 0.0168 (11) | 0.0178 (12) | 0.0212 (12) | 0.0021 (9) | 0.0004 (9) | 0.0021 (10) |
C2 | 0.0292 (14) | 0.0255 (13) | 0.0203 (13) | −0.0022 (11) | 0.0035 (11) | 0.0061 (10) |
C3 | 0.0339 (15) | 0.0307 (15) | 0.0231 (13) | −0.0093 (12) | 0.0099 (11) | −0.0019 (11) |
C4 | 0.0255 (14) | 0.0323 (15) | 0.0362 (15) | −0.0045 (12) | 0.0093 (12) | −0.0052 (12) |
C5 | 0.0251 (13) | 0.0183 (12) | 0.0236 (13) | −0.0054 (10) | 0.0026 (10) | −0.0003 (10) |
C6 | 0.0282 (14) | 0.0231 (13) | 0.0218 (13) | −0.0027 (11) | 0.0026 (10) | −0.0005 (10) |
C7 | 0.0343 (15) | 0.0277 (15) | 0.0315 (15) | 0.0037 (12) | 0.0056 (12) | 0.0024 (12) |
C8 | 0.0230 (13) | 0.0207 (12) | 0.0198 (12) | 0.0003 (10) | 0.0046 (10) | 0.0007 (10) |
C9 | 0.0195 (13) | 0.0303 (14) | 0.0299 (14) | 0.0020 (11) | 0.0010 (11) | −0.0008 (12) |
C10 | 0.0301 (15) | 0.0400 (17) | 0.0379 (17) | 0.0053 (13) | 0.0085 (13) | 0.0092 (13) |
C11 | 0.052 (2) | 0.057 (2) | 0.0348 (17) | 0.0146 (18) | 0.0035 (15) | 0.0080 (16) |
C12 | 0.0331 (15) | 0.0317 (15) | 0.0350 (16) | −0.0014 (13) | −0.0007 (12) | −0.0153 (13) |
C13 | 0.057 (2) | 0.0245 (15) | 0.0402 (17) | −0.0038 (14) | 0.0013 (15) | −0.0074 (13) |
C14 | 0.055 (2) | 0.042 (2) | 0.080 (3) | −0.0198 (18) | 0.004 (2) | −0.0071 (19) |
C15 | 0.0203 (12) | 0.0222 (13) | 0.0199 (12) | 0.0026 (10) | 0.0023 (10) | −0.0008 (10) |
C16 | 0.0245 (13) | 0.0198 (13) | 0.0304 (14) | 0.0001 (11) | 0.0061 (11) | 0.0016 (11) |
C17 | 0.0225 (13) | 0.0259 (14) | 0.0398 (16) | 0.0013 (11) | 0.0091 (12) | −0.0009 (12) |
C18 | 0.0282 (14) | 0.0237 (13) | 0.0299 (14) | 0.0080 (11) | 0.0047 (11) | −0.0004 (11) |
C19 | 0.0348 (15) | 0.0172 (12) | 0.0244 (13) | 0.0003 (11) | 0.0035 (11) | 0.0013 (10) |
C20 | 0.0223 (12) | 0.0228 (13) | 0.0231 (13) | −0.0025 (10) | 0.0018 (10) | 0.0013 (10) |
C21 | 0.0212 (12) | 0.0168 (12) | 0.0234 (12) | 0.0043 (10) | 0.0057 (10) | 0.0053 (10) |
C22 | 0.0278 (14) | 0.0239 (13) | 0.0269 (14) | −0.0019 (11) | 0.0024 (11) | 0.0047 (11) |
C23 | 0.0414 (17) | 0.0289 (15) | 0.0261 (14) | 0.0008 (13) | 0.0043 (12) | 0.0041 (12) |
C24 | 0.0372 (16) | 0.0282 (14) | 0.0332 (15) | 0.0069 (12) | 0.0155 (13) | 0.0084 (12) |
C25 | 0.0284 (14) | 0.0314 (15) | 0.0400 (17) | −0.0041 (12) | 0.0107 (12) | 0.0059 (13) |
C26 | 0.0227 (13) | 0.0284 (14) | 0.0288 (14) | −0.0011 (11) | 0.0049 (11) | 0.0037 (11) |
Sn2 | 0.02228 (9) | 0.01617 (9) | 0.01949 (9) | 0.00243 (6) | 0.00069 (6) | −0.00094 (6) |
S1A | 0.0294 (3) | 0.0214 (3) | 0.0284 (3) | −0.0055 (3) | 0.0061 (3) | −0.0041 (2) |
S2A | 0.0315 (3) | 0.0225 (3) | 0.0245 (3) | −0.0041 (3) | 0.0036 (3) | −0.0031 (2) |
S3A | 0.0329 (3) | 0.0218 (3) | 0.0211 (3) | 0.0039 (3) | −0.0005 (3) | −0.0011 (2) |
S4A | 0.0346 (3) | 0.0196 (3) | 0.0214 (3) | 0.0040 (3) | −0.0007 (3) | −0.0014 (2) |
N1A | 0.0283 (12) | 0.0245 (12) | 0.0254 (12) | −0.0052 (9) | 0.0021 (9) | −0.0036 (9) |
N2A | 0.0248 (11) | 0.0191 (11) | 0.0240 (11) | 0.0014 (9) | 0.0024 (9) | −0.0015 (9) |
C1A | 0.0246 (13) | 0.0213 (13) | 0.0233 (13) | −0.0004 (10) | 0.0012 (10) | 0.0016 (10) |
C2A | 0.0380 (16) | 0.0343 (16) | 0.0260 (14) | −0.0104 (13) | 0.0057 (12) | −0.0071 (12) |
C3A | 0.055 (2) | 0.0259 (15) | 0.0326 (16) | −0.0069 (14) | 0.0099 (14) | −0.0063 (12) |
C4A | 0.051 (2) | 0.0301 (16) | 0.0383 (17) | −0.0024 (14) | 0.0071 (15) | −0.0092 (13) |
C5A | 0.0270 (14) | 0.0298 (14) | 0.0267 (14) | −0.0035 (12) | 0.0035 (11) | −0.0005 (11) |
C6A | 0.0364 (17) | 0.0426 (19) | 0.050 (2) | −0.0105 (15) | −0.0057 (15) | 0.0169 (16) |
C7A | 0.070 (3) | 0.093 (3) | 0.043 (2) | −0.045 (3) | −0.0174 (19) | 0.031 (2) |
C8A | 0.0227 (12) | 0.0203 (13) | 0.0228 (12) | 0.0001 (10) | 0.0028 (10) | −0.0008 (10) |
C9A | 0.0285 (14) | 0.0210 (13) | 0.0267 (13) | 0.0034 (11) | 0.0049 (11) | 0.0049 (11) |
C10A | 0.0296 (14) | 0.0238 (13) | 0.0260 (13) | 0.0057 (11) | 0.0004 (11) | −0.0008 (11) |
C11A | 0.0273 (14) | 0.0299 (15) | 0.0303 (14) | −0.0005 (12) | 0.0014 (11) | −0.0052 (12) |
C12A | 0.0277 (14) | 0.0214 (13) | 0.0294 (14) | 0.0026 (11) | 0.0045 (11) | −0.0054 (11) |
C13A | 0.0337 (15) | 0.0235 (14) | 0.0315 (15) | −0.0045 (12) | −0.0012 (12) | −0.0026 (11) |
C14A | 0.0269 (14) | 0.0380 (17) | 0.0367 (16) | −0.0042 (13) | −0.0002 (12) | 0.0035 (13) |
C15A | 0.0177 (12) | 0.0192 (12) | 0.0217 (12) | −0.0005 (10) | 0.0004 (9) | 0.0022 (10) |
C16A | 0.0266 (13) | 0.0212 (13) | 0.0292 (14) | 0.0026 (11) | 0.0007 (11) | −0.0024 (11) |
C17A | 0.0232 (13) | 0.0206 (13) | 0.0388 (16) | 0.0042 (11) | 0.0010 (11) | 0.0038 (11) |
C18A | 0.0203 (13) | 0.0281 (14) | 0.0297 (14) | −0.0021 (11) | −0.0012 (11) | 0.0095 (11) |
C19A | 0.0257 (13) | 0.0297 (14) | 0.0235 (13) | −0.0017 (11) | 0.0039 (11) | 0.0033 (11) |
C20A | 0.0204 (12) | 0.0216 (13) | 0.0253 (13) | 0.0019 (10) | 0.0059 (10) | 0.0009 (10) |
C21A | 0.0221 (12) | 0.0227 (13) | 0.0205 (12) | 0.0006 (10) | 0.0026 (10) | −0.0055 (10) |
C22A | 0.0244 (13) | 0.0266 (14) | 0.0275 (14) | 0.0021 (11) | 0.0035 (11) | −0.0011 (11) |
C23A | 0.0318 (15) | 0.0294 (15) | 0.0369 (16) | −0.0001 (12) | 0.0105 (12) | 0.0019 (12) |
C24A | 0.0273 (14) | 0.0362 (16) | 0.0364 (16) | −0.0063 (12) | 0.0078 (12) | −0.0089 (13) |
C25A | 0.0226 (14) | 0.0458 (19) | 0.0436 (18) | 0.0012 (13) | −0.0062 (13) | −0.0012 (15) |
C26A | 0.0282 (15) | 0.0342 (16) | 0.0349 (16) | 0.0012 (12) | −0.0022 (12) | 0.0031 (13) |
Sn1—C15 | 2.159 (3) | Sn2—C21A | 2.170 (3) |
Sn1—C21 | 2.174 (2) | Sn2—C15A | 2.173 (2) |
Sn1—S1 | 2.5501 (6) | Sn2—S1A | 2.5585 (7) |
Sn1—S3 | 2.5726 (7) | Sn2—S3A | 2.5700 (6) |
Sn1—S4 | 2.6754 (6) | Sn2—S4A | 2.6750 (6) |
Sn1—S2 | 2.7393 (7) | Sn2—S2A | 2.7664 (7) |
S1—C1 | 1.742 (3) | S1A—C1A | 1.740 (3) |
S2—C1 | 1.710 (3) | S2A—C1A | 1.704 (3) |
S3—C8 | 1.738 (3) | S3A—C8A | 1.733 (3) |
S4—C8 | 1.715 (3) | S4A—C8A | 1.716 (3) |
N1—C1 | 1.326 (3) | N1A—C1A | 1.328 (4) |
N1—C2 | 1.465 (3) | N1A—C5A | 1.477 (4) |
N1—C5 | 1.481 (3) | N1A—C2A | 1.480 (3) |
N2—C8 | 1.318 (3) | N2A—C8A | 1.327 (3) |
N2—C12 | 1.477 (3) | N2A—C9A | 1.465 (3) |
N2—C9 | 1.486 (3) | N2A—C12A | 1.466 (3) |
C2—C3 | 1.500 (4) | C2A—C3A | 1.496 (5) |
C2—H2A | 0.9900 | C2A—H2A1 | 0.9900 |
C2—H2B | 0.9900 | C2A—H2A2 | 0.9900 |
C3—C4 | 1.317 (4) | C3A—C4A | 1.320 (5) |
C3—H3 | 0.9500 | C3A—H3A | 0.9500 |
C4—H4A | 0.9500 | C4A—H4A1 | 0.9500 |
C4—H4B | 0.9500 | C4A—H4A2 | 0.9500 |
C5—C6 | 1.498 (4) | C5A—C6A | 1.484 (4) |
C5—H5A | 0.9900 | C5A—H5A1 | 0.9900 |
C5—H5B | 0.9900 | C5A—H5A2 | 0.9900 |
C6—C7 | 1.314 (4) | C6A—C7A | 1.317 (6) |
C6—H6 | 0.9500 | C6A—H6A | 0.9500 |
C7—H7A | 0.9500 | C7A—H7A1 | 0.9500 |
C7—H7B | 0.9500 | C7A—H7A2 | 0.9500 |
C9—C10 | 1.496 (4) | C9A—C10A | 1.506 (4) |
C9—H9A | 0.9900 | C9A—H9A1 | 0.9900 |
C9—H9B | 0.9900 | C9A—H9A2 | 0.9900 |
C10—C11 | 1.305 (5) | C10A—C11A | 1.314 (4) |
C10—H10 | 0.9500 | C10A—H10A | 0.9500 |
C11—H11A | 0.9500 | C11A—H11C | 0.9500 |
C11—H11B | 0.9500 | C11A—H11D | 0.9500 |
C12—C13 | 1.496 (5) | C12A—C13A | 1.501 (4) |
C12—H12A | 0.9900 | C12A—H12C | 0.9900 |
C12—H12B | 0.9900 | C12A—H12D | 0.9900 |
C13—C14 | 1.308 (5) | C13A—C14A | 1.311 (4) |
C13—H13 | 0.9500 | C13A—H13A | 0.9500 |
C14—H14A | 0.9500 | C14A—H14C | 0.9500 |
C14—H14B | 0.9500 | C14A—H14D | 0.9500 |
C15—C20 | 1.392 (4) | C15A—C16A | 1.393 (4) |
C15—C16 | 1.396 (4) | C15A—C20A | 1.397 (4) |
C16—C17 | 1.390 (4) | C16A—C17A | 1.393 (4) |
C16—H16 | 0.9500 | C16A—H16A | 0.9500 |
C17—C18 | 1.382 (4) | C17A—C18A | 1.382 (4) |
C17—H17 | 0.9500 | C17A—H17A | 0.9500 |
C18—C19 | 1.389 (4) | C18A—C19A | 1.386 (4) |
C18—H18 | 0.9500 | C18A—H18A | 0.9500 |
C19—C20 | 1.385 (4) | C19A—C20A | 1.396 (4) |
C19—H19 | 0.9500 | C19A—H19A | 0.9500 |
C20—H20 | 0.9500 | C20A—H20A | 0.9500 |
C21—C26 | 1.391 (4) | C21A—C22A | 1.386 (4) |
C21—C22 | 1.393 (4) | C21A—C26A | 1.395 (4) |
C22—C23 | 1.387 (4) | C22A—C23A | 1.400 (4) |
C22—H22 | 0.9500 | C22A—H22A | 0.9500 |
C23—C24 | 1.382 (4) | C23A—C24A | 1.380 (4) |
C23—H23 | 0.9500 | C23A—H23A | 0.9500 |
C24—C25 | 1.384 (4) | C24A—C25A | 1.373 (5) |
C24—H24 | 0.9500 | C24A—H24A | 0.9500 |
C25—C26 | 1.394 (4) | C25A—C26A | 1.396 (4) |
C25—H25 | 0.9500 | C25A—H25A | 0.9500 |
C26—H26 | 0.9500 | C26A—H26A | 0.9500 |
C15—Sn1—C21 | 99.84 (9) | C21A—Sn2—C15A | 103.34 (9) |
C15—Sn1—S1 | 104.01 (7) | C21A—Sn2—S1A | 96.36 (7) |
C21—Sn1—S1 | 92.77 (7) | C15A—Sn2—S1A | 101.31 (7) |
C15—Sn1—S3 | 94.80 (7) | C21A—Sn2—S3A | 105.20 (7) |
C21—Sn1—S3 | 101.09 (7) | C15A—Sn2—S3A | 95.16 (7) |
S1—Sn1—S3 | 154.38 (2) | S1A—Sn2—S3A | 149.00 (2) |
C15—Sn1—S4 | 160.59 (7) | C21A—Sn2—S4A | 92.74 (7) |
C21—Sn1—S4 | 92.52 (7) | C15A—Sn2—S4A | 159.91 (7) |
S1—Sn1—S4 | 90.18 (2) | S1A—Sn2—S4A | 88.58 (2) |
S3—Sn1—S4 | 67.97 (2) | S3A—Sn2—S4A | 68.69 (2) |
C15—Sn1—S2 | 91.81 (7) | C21A—Sn2—S2A | 161.40 (7) |
C21—Sn1—S2 | 159.42 (7) | C15A—Sn2—S2A | 88.92 (7) |
S1—Sn1—S2 | 67.824 (19) | S1A—Sn2—S2A | 67.18 (2) |
S3—Sn1—S2 | 94.71 (2) | S3A—Sn2—S2A | 87.26 (2) |
S4—Sn1—S2 | 81.21 (2) | S4A—Sn2—S2A | 78.76 (2) |
C1—S1—Sn1 | 89.92 (8) | C1A—S1A—Sn2 | 90.15 (9) |
C1—S2—Sn1 | 84.47 (9) | C1A—S2A—Sn2 | 84.16 (9) |
C8—S3—Sn1 | 89.22 (9) | C8A—S3A—Sn2 | 87.98 (9) |
C8—S4—Sn1 | 86.37 (9) | C8A—S4A—Sn2 | 84.96 (9) |
C1—N1—C2 | 122.5 (2) | C1A—N1A—C5A | 122.0 (2) |
C1—N1—C5 | 122.6 (2) | C1A—N1A—C2A | 123.4 (2) |
C2—N1—C5 | 114.9 (2) | C5A—N1A—C2A | 114.5 (2) |
C8—N2—C12 | 122.5 (2) | C8A—N2A—C9A | 122.4 (2) |
C8—N2—C9 | 122.6 (2) | C8A—N2A—C12A | 122.1 (2) |
C12—N2—C9 | 114.8 (2) | C9A—N2A—C12A | 115.5 (2) |
N1—C1—S2 | 123.62 (19) | N1A—C1A—S2A | 122.7 (2) |
N1—C1—S1 | 118.58 (19) | N1A—C1A—S1A | 119.4 (2) |
S2—C1—S1 | 117.77 (14) | S2A—C1A—S1A | 117.94 (16) |
N1—C2—C3 | 112.5 (2) | N1A—C2A—C3A | 110.9 (2) |
N1—C2—H2A | 109.1 | N1A—C2A—H2A1 | 109.5 |
C3—C2—H2A | 109.1 | C3A—C2A—H2A1 | 109.5 |
N1—C2—H2B | 109.1 | N1A—C2A—H2A2 | 109.5 |
C3—C2—H2B | 109.1 | C3A—C2A—H2A2 | 109.5 |
H2A—C2—H2B | 107.8 | H2A1—C2A—H2A2 | 108.1 |
C4—C3—C2 | 126.2 (3) | C4A—C3A—C2A | 123.2 (3) |
C4—C3—H3 | 116.9 | C4A—C3A—H3A | 118.4 |
C2—C3—H3 | 116.9 | C2A—C3A—H3A | 118.4 |
C3—C4—H4A | 120.0 | C3A—C4A—H4A1 | 120.0 |
C3—C4—H4B | 120.0 | C3A—C4A—H4A2 | 120.0 |
H4A—C4—H4B | 120.0 | H4A1—C4A—H4A2 | 120.0 |
N1—C5—C6 | 111.3 (2) | N1A—C5A—C6A | 110.9 (2) |
N1—C5—H5A | 109.4 | N1A—C5A—H5A1 | 109.5 |
C6—C5—H5A | 109.4 | C6A—C5A—H5A1 | 109.5 |
N1—C5—H5B | 109.4 | N1A—C5A—H5A2 | 109.5 |
C6—C5—H5B | 109.4 | C6A—C5A—H5A2 | 109.5 |
H5A—C5—H5B | 108.0 | H5A1—C5A—H5A2 | 108.0 |
C7—C6—C5 | 124.0 (3) | C7A—C6A—C5A | 122.9 (4) |
C7—C6—H6 | 118.0 | C7A—C6A—H6A | 118.5 |
C5—C6—H6 | 118.0 | C5A—C6A—H6A | 118.5 |
C6—C7—H7A | 120.0 | C6A—C7A—H7A1 | 120.0 |
C6—C7—H7B | 120.0 | C6A—C7A—H7A2 | 120.0 |
H7A—C7—H7B | 120.0 | H7A1—C7A—H7A2 | 120.0 |
N2—C8—S4 | 122.3 (2) | N2A—C8A—S4A | 121.67 (19) |
N2—C8—S3 | 121.3 (2) | N2A—C8A—S3A | 120.11 (19) |
S4—C8—S3 | 116.40 (15) | S4A—C8A—S3A | 118.21 (15) |
N2—C9—C10 | 109.6 (2) | N2A—C9A—C10A | 113.2 (2) |
N2—C9—H9A | 109.8 | N2A—C9A—H9A1 | 108.9 |
C10—C9—H9A | 109.8 | C10A—C9A—H9A1 | 108.9 |
N2—C9—H9B | 109.8 | N2A—C9A—H9A2 | 108.9 |
C10—C9—H9B | 109.8 | C10A—C9A—H9A2 | 108.9 |
H9A—C9—H9B | 108.2 | H9A1—C9A—H9A2 | 107.7 |
C11—C10—C9 | 123.4 (3) | C11A—C10A—C9A | 126.1 (3) |
C11—C10—H10 | 118.3 | C11A—C10A—H10A | 117.0 |
C9—C10—H10 | 118.3 | C9A—C10A—H10A | 117.0 |
C10—C11—H11A | 120.0 | C10A—C11A—H11C | 120.0 |
C10—C11—H11B | 120.0 | C10A—C11A—H11D | 120.0 |
H11A—C11—H11B | 120.0 | H11C—C11A—H11D | 120.0 |
N2—C12—C13 | 110.8 (2) | N2A—C12A—C13A | 112.3 (2) |
N2—C12—H12A | 109.5 | N2A—C12A—H12C | 109.1 |
C13—C12—H12A | 109.5 | C13A—C12A—H12C | 109.1 |
N2—C12—H12B | 109.5 | N2A—C12A—H12D | 109.1 |
C13—C12—H12B | 109.5 | C13A—C12A—H12D | 109.1 |
H12A—C12—H12B | 108.1 | H12C—C12A—H12D | 107.9 |
C14—C13—C12 | 123.8 (3) | C14A—C13A—C12A | 126.5 (3) |
C14—C13—H13 | 118.1 | C14A—C13A—H13A | 116.7 |
C12—C13—H13 | 118.1 | C12A—C13A—H13A | 116.7 |
C13—C14—H14A | 120.0 | C13A—C14A—H14C | 120.0 |
C13—C14—H14B | 120.0 | C13A—C14A—H14D | 120.0 |
H14A—C14—H14B | 120.0 | H14C—C14A—H14D | 120.0 |
C20—C15—C16 | 118.6 (2) | C16A—C15A—C20A | 118.3 (2) |
C20—C15—Sn1 | 118.07 (19) | C16A—C15A—Sn2 | 120.81 (19) |
C16—C15—Sn1 | 123.31 (19) | C20A—C15A—Sn2 | 120.91 (18) |
C17—C16—C15 | 120.3 (2) | C17A—C16A—C15A | 121.1 (3) |
C17—C16—H16 | 119.8 | C17A—C16A—H16A | 119.5 |
C15—C16—H16 | 119.8 | C15A—C16A—H16A | 119.5 |
C18—C17—C16 | 120.4 (3) | C18A—C17A—C16A | 119.8 (3) |
C18—C17—H17 | 119.8 | C18A—C17A—H17A | 120.1 |
C16—C17—H17 | 119.8 | C16A—C17A—H17A | 120.1 |
C19—C18—C17 | 119.9 (3) | C17A—C18A—C19A | 120.3 (2) |
C19—C18—H18 | 120.1 | C17A—C18A—H18A | 119.9 |
C17—C18—H18 | 120.1 | C19A—C18A—H18A | 119.9 |
C18—C19—C20 | 119.7 (2) | C18A—C19A—C20A | 119.7 (3) |
C18—C19—H19 | 120.2 | C18A—C19A—H19A | 120.2 |
C20—C19—H19 | 120.2 | C20A—C19A—H19A | 120.2 |
C19—C20—C15 | 121.2 (2) | C15A—C20A—C19A | 120.9 (2) |
C19—C20—H20 | 119.4 | C15A—C20A—H20A | 119.6 |
C15—C20—H20 | 119.4 | C19A—C20A—H20A | 119.6 |
C26—C21—C22 | 117.6 (2) | C22A—C21A—C26A | 118.0 (3) |
C26—C21—Sn1 | 123.63 (19) | C22A—C21A—Sn2 | 118.00 (19) |
C22—C21—Sn1 | 118.80 (19) | C26A—C21A—Sn2 | 124.0 (2) |
C23—C22—C21 | 121.4 (3) | C21A—C22A—C23A | 121.3 (3) |
C23—C22—H22 | 119.3 | C21A—C22A—H22A | 119.4 |
C21—C22—H22 | 119.3 | C23A—C22A—H22A | 119.4 |
C24—C23—C22 | 120.2 (3) | C24A—C23A—C22A | 119.7 (3) |
C24—C23—H23 | 119.9 | C24A—C23A—H23A | 120.1 |
C22—C23—H23 | 119.9 | C22A—C23A—H23A | 120.1 |
C23—C24—C25 | 119.4 (3) | C25A—C24A—C23A | 119.7 (3) |
C23—C24—H24 | 120.3 | C25A—C24A—H24A | 120.1 |
C25—C24—H24 | 120.3 | C23A—C24A—H24A | 120.1 |
C24—C25—C26 | 120.1 (3) | C24A—C25A—C26A | 120.7 (3) |
C24—C25—H25 | 120.0 | C24A—C25A—H25A | 119.7 |
C26—C25—H25 | 120.0 | C26A—C25A—H25A | 119.7 |
C21—C26—C25 | 121.3 (3) | C21A—C26A—C25A | 120.5 (3) |
C21—C26—H26 | 119.4 | C21A—C26A—H26A | 119.8 |
C25—C26—H26 | 119.4 | C25A—C26A—H26A | 119.8 |
C2—N1—C1—S2 | 0.1 (3) | C5A—N1A—C1A—S2A | 4.7 (4) |
C5—N1—C1—S2 | 179.23 (18) | C2A—N1A—C1A—S2A | −175.2 (2) |
C2—N1—C1—S1 | −178.18 (18) | C5A—N1A—C1A—S1A | −175.4 (2) |
C5—N1—C1—S1 | 1.0 (3) | C2A—N1A—C1A—S1A | 4.8 (4) |
Sn1—S2—C1—N1 | −177.4 (2) | Sn2—S2A—C1A—N1A | 172.9 (2) |
Sn1—S2—C1—S1 | 0.89 (13) | Sn2—S2A—C1A—S1A | −7.00 (14) |
Sn1—S1—C1—N1 | 177.43 (19) | Sn2—S1A—C1A—N1A | −172.4 (2) |
Sn1—S1—C1—S2 | −0.95 (13) | Sn2—S1A—C1A—S2A | 7.53 (15) |
C1—N1—C2—C3 | −95.8 (3) | C1A—N1A—C2A—C3A | −98.2 (3) |
C5—N1—C2—C3 | 85.0 (3) | C5A—N1A—C2A—C3A | 81.9 (3) |
N1—C2—C3—C4 | 12.5 (4) | N1A—C2A—C3A—C4A | −105.2 (3) |
C1—N1—C5—C6 | −91.2 (3) | C1A—N1A—C5A—C6A | −97.9 (3) |
C2—N1—C5—C6 | 88.0 (3) | C2A—N1A—C5A—C6A | 82.0 (3) |
N1—C5—C6—C7 | −122.3 (3) | N1A—C5A—C6A—C7A | −114.6 (4) |
C12—N2—C8—S4 | 179.3 (2) | C9A—N2A—C8A—S4A | 2.4 (4) |
C9—N2—C8—S4 | 1.2 (4) | C12A—N2A—C8A—S4A | −173.87 (19) |
C12—N2—C8—S3 | −0.7 (4) | C9A—N2A—C8A—S3A | −178.66 (19) |
C9—N2—C8—S3 | −178.79 (19) | C12A—N2A—C8A—S3A | 5.1 (3) |
Sn1—S4—C8—N2 | 178.1 (2) | Sn2—S4A—C8A—N2A | 175.2 (2) |
Sn1—S4—C8—S3 | −1.92 (13) | Sn2—S4A—C8A—S3A | −3.74 (14) |
Sn1—S3—C8—N2 | −178.1 (2) | Sn2—S3A—C8A—N2A | −175.1 (2) |
Sn1—S3—C8—S4 | 1.99 (14) | Sn2—S3A—C8A—S4A | 3.88 (15) |
C8—N2—C9—C10 | 101.8 (3) | C8A—N2A—C9A—C10A | 88.1 (3) |
C12—N2—C9—C10 | −76.4 (3) | C12A—N2A—C9A—C10A | −95.3 (3) |
N2—C9—C10—C11 | 105.3 (3) | N2A—C9A—C10A—C11A | −9.9 (4) |
C8—N2—C12—C13 | 104.1 (3) | C8A—N2A—C12A—C13A | 90.9 (3) |
C9—N2—C12—C13 | −77.6 (3) | C9A—N2A—C12A—C13A | −85.6 (3) |
N2—C12—C13—C14 | 110.9 (4) | N2A—C12A—C13A—C14A | −13.3 (4) |
C20—C15—C16—C17 | −0.4 (4) | C20A—C15A—C16A—C17A | 0.9 (4) |
Sn1—C15—C16—C17 | 176.7 (2) | Sn2—C15A—C16A—C17A | −177.9 (2) |
C15—C16—C17—C18 | 0.9 (4) | C15A—C16A—C17A—C18A | −0.7 (4) |
C16—C17—C18—C19 | −0.7 (4) | C16A—C17A—C18A—C19A | −0.1 (4) |
C17—C18—C19—C20 | 0.0 (4) | C17A—C18A—C19A—C20A | 0.7 (4) |
C18—C19—C20—C15 | 0.6 (4) | C16A—C15A—C20A—C19A | −0.3 (4) |
C16—C15—C20—C19 | −0.4 (4) | Sn2—C15A—C20A—C19A | 178.47 (19) |
Sn1—C15—C20—C19 | −177.60 (19) | C18A—C19A—C20A—C15A | −0.5 (4) |
C26—C21—C22—C23 | −0.7 (4) | C26A—C21A—C22A—C23A | −1.2 (4) |
Sn1—C21—C22—C23 | 180.0 (2) | Sn2—C21A—C22A—C23A | 179.5 (2) |
C21—C22—C23—C24 | −0.2 (4) | C21A—C22A—C23A—C24A | 1.1 (4) |
C22—C23—C24—C25 | 0.5 (4) | C22A—C23A—C24A—C25A | −0.4 (4) |
C23—C24—C25—C26 | 0.1 (4) | C23A—C24A—C25A—C26A | −0.1 (5) |
C22—C21—C26—C25 | 1.2 (4) | C22A—C21A—C26A—C25A | 0.7 (4) |
Sn1—C21—C26—C25 | −179.5 (2) | Sn2—C21A—C26A—C25A | 180.0 (2) |
C24—C25—C26—C21 | −0.9 (4) | C24A—C25A—C26A—C21A | −0.1 (5) |
Cg1 and Cg2 are the centroids of the (C15A–C20A) and (C21A–C26A) rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···Cg1i | 0.95 | 2.83 | 3.774 (3) | 172 |
C7—H7B···Cg2ii | 0.95 | 2.92 | 3.582 (3) | 128 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Parameter | (I) | Parameter | (I) |
Sn—S1 | 2.4749 (4) | Sn—S2 | 2.9456 (5) |
Sn—C11 | 2.1427 (19) | Sn—C21 | 2.130 (2) |
Sn—C31 | 2.1673 (19) | C1—S1 | 1.7559 (19) |
C1—S2 | 1.6894 (19) | C1—N1 | 1.330 (3) |
S1—Sn—S2 | 65.470 (14) | C11—Sn—C21 | 111.15 (7) |
C11—Sn—C31 | 104.14 (7) | C21—Sn—C31 | 107.13 (7) |
S1—Sn—C11 | 128.76 (5) | S2—Sn—C31 | 156.01 (5) |
Parameter | Sn1-molecule | Sn2-molecule |
Sn—S1 | 2.5501 (6) | 2.5585 (7) |
Sn—S2 | 2.7393 (7) | 2.7664 (7) |
Sn—S3 | 2.5726 (7) | 2.5700 (6) |
Sn—S4 | 2.6754 (6) | 2.6750 (6) |
C1—S1 | 1.742 (3) | 1.740 (3) |
C1—S2 | 1.710 (3) | 1.704 (3) |
C8—S3 | 1.738 (3) | 1.733 (3) |
C8—S4 | 1.715 (3) | 1.716 (3) |
C1—N1 | 1.326 (3) | 1.328 (4) |
C8—N2 | 1.318 (3) | 1.327 (3) |
S1—Sn—S2 | 67.824 (19) | 67.18 (2) |
S3—Sn—S4 | 67.97 (2) | 68.69 (2) |
S1—Sn—S3 | 154.38 (2) | 149.00 (2) |
S2—Sn—C21 | 159.42 (7) | 161.40 (7) |
S4—Sn—C15 | 160.59 (7) | 159.91 (7) |
C15—Sn—C21 | 99.84 (9) | 103.34 (9) |
N1—C2—C3—C4 | 12.5 (4) | 9.9 (4)a |
N1—C5—C6—C7 | -122.3 (3) | 13.3 (4)a |
N2—C9—C10—C11 | 105.3 (3) | 105.2 (3)a |
N2—C12—C13—C14 | 110.9 (4) | 114.6 (4)a |
Note: (a) torsion angles are the for inverted form of the Sn2-molecule. |
Contact | Distance | Symmetry operation |
(I) | ||
C12···H6 | 2.76 | -1 + x, y, z |
C16···H5B | 2.80 | 1 - x, - y, 1 - z |
C25···H4B | 2.78 | x, 1/2 - y, -1/2 + z |
C26···H13 | 2.74 | 1 + x, y, z |
C33···H2B | 2.79 | 1 - x, 1 - y, 1 - z |
H15···H24 | 2.19 | 1 - x, -1/2 + y, 1/2 - z |
S1···H7B | 2.91 | -1 + x, y, z |
S1···H2A | 2.96 | 1 - x, 1 - y, 1 - z |
(II) | ||
S1···C11A | 3.455 (3) | 1 - x, 1 - y, 1 - z |
S4···C12A | 3.473 (3) | 1 - x, 1 - y, 1 - z |
C11···C23A | 3.386 (5) | x, y, z |
C11···H23A | 2.81 | x, y, z |
C19···H11B | 2.71 | 1 + x, 1/2 - y, 1/2 + z |
C21···H12D | 2.78 | 1 - x, 1 - y, 1 - z |
H12A···H9A2 | 2.16 | 1 - x, -1/2 + y, 1/2 - z |
H17···H26 | 2.18 | 1 + x, y, z |
C4A···H9A1 | 2.75 | 1 - x, 1 - y, -z |
S1A···H18 | 2.91 | 1 - x, 1/2 - y, -1/2 + z |
H17···H13A | 2.33 | 2 - x, 1 - y, 1 - z |
Note: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values. |
Contact | Percentage contribution | ||
(I) | Sn1-molecule in (II) | Sn2-molecule in (II) | |
H···H | 62.2 | 59.9 | 64.9 |
C···H/H···C | 28.4 | 24.3 | 20.1 |
S···H/H···S | 8.6 | 14.4 | 13.6 |
N···H/H··· N | 0.1 | 0.8 | 0.7 |
C···C | 0.4 | 0.3 | 0.1 |
S···C/C···S | 0.2 | 0.4 | 0.6 |
Sn···H/H···Sn | 0.1 | 0.0 | 0.0 |
Contact | R (Å) | Eele | Epol | Edis | Erep | Etot |
(I)a | ||||||
H13···C26i + | 8.06 | -13.8 | -5.6 | -68.5 | 42.5 | -45.0 |
C13—H13···Cg(C21–C26)i + | ||||||
C23—H23···Cg(C31–C36)i + | ||||||
H6···C12i + | ||||||
H7B···S1i | ||||||
C16 ···H5Bii | 8.42 | -21.8 | -5.6 | -52.2 | 29.1 | -49.3 |
C33 ···H2Biii + | 8.00 | -21.2 | -7.0 | -59.2 | 29.5 | -55.6 |
S1···H2Aiii | ||||||
C25···H4Biv | 9.91 | -0.6 | -0.8 | -23.3 | 8.4 | -15.2 |
H15···H24v | 12.94 | -2.6 | -0.5 | -12.5 | 9.1 | -6.9 |
(II)b | ||||||
S1···C11Ai + | 8.68 | -25.4 | -8.6 | -67.8 | 44.0 | -57.0 |
S4···C12Ai + | ||||||
C7—H7B···Cg(C21A–C26A)i + | ||||||
C21···H12Di | ||||||
C4A···H9A1ii | 9.0 | -28.8 | -7.3 | -69.0 | 49.0 | -56.5 |
C7—H7A···Cg(C15A–C20A)iii + | 9.21 | -19.6 | -7.4 | -61.3 | 33.7 | -52.6 |
H17···H13Aiii | ||||||
H17···H26iv | 9.62 | -12.0 | -5.0 | -51.2 | 25.9 | -40.6 |
C11···C23Av | 9.93 | -10.2 | -2.9 | -44.1 | 23.5 | -33.0 |
C11···H23Av | ||||||
H12A···H9A2vi | 10.81 | -5.9 | -2.4 | -30.6 | 14.5 | -23.4 |
S1A···H18vii | 10.11 | -5.2 | -3.6 | -34.3 | 18.9 | -23. |
C19···H11Bviii | 12.51 | -7.4 | -2.6 | -20.5 | 9.8 | -19.8 |
Notes: (a) Symmetry operations for (I): (i) -1 + x, y, z; (ii) 1 - x, - y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) x 1/2 - y, -1/2 + z; (v) 1 - x ,-1/2 + y, 1/2 - z. (b) Symmetry operations for (II): (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, - z; (iii) 2 - x, 1 - y, 1 - z; (iv) 1 + x, y, z; (v) x, y, z; (vi) 1 - x, -1/2 + y, 1/2 - z; (vii) 1 - x, 1/2 - y, -1/2 + z; (viii) 1 + x, 1/2 - y, 1/2 + z. |
Footnotes
‡Additional correspondence author, email: awang_normah@yahoo.com.
Acknowledgements
The authors gratefully acknowledge the Faculty of Health Sciences and the Faculty of Science and Technology of the Universiti Kebangsaan Malaysia for providing essential laboratory facilities and for technical support from the laboratory assistants. The Universiti Teknologi MARA Puncak Alam is thanked for the elemental analysis.
Funding information
This work was supported by the Fundamental Research Grant Scheme (FRGS/1/2018/STG01/UKM/02/20) awarded by the Ministry of Education (MOE). Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (Grant no. STR-RCTR-RCCM-001-2019).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Adeyemi, J. O., Onwudiwe, D. C., Ekennia, A. C., Anokwuru, C. P., Nundkumar, N., Singh, M. & Hosten, E. C. (2019). Inorg. Chim. Acta, 485, 64–72. Web of Science CSD CrossRef CAS Google Scholar
Ajibade, P. A., Onwudiwe, D. C. & Moloto, M. J. (2011). Polyhedron, 30, 246–252. Web of Science CrossRef CAS Google Scholar
Awang, N., Baba, I., Yamin, B. M., Othman, M. S. & Kamaludin, N. F. (2011). Am. J. Appl. Sci. 8, 310–317. CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421–439. Chichester: John Wiley & Sons Ltd. Google Scholar
Haezam, F. N., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 1479–1485. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202–1215. Web of Science CrossRef CAS PubMed Google Scholar
Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293–311. CrossRef CAS Google Scholar
Ishak, D. H. A., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y. K., Nordin, N., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). J. Inorg. Biochem. 130, 38–51. Web of Science CrossRef CAS PubMed Google Scholar
Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127–141. Web of Science CSD CrossRef CAS PubMed Google Scholar
Khan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754–760. Web of Science CSD CrossRef CAS Google Scholar
Li, H., Lai, C. S., Wu, J., Ho, P. C., de Vos, D. & Tiekink, E. R. T. (2007). J. Inorg. Biochem. 101, 809–816. Web of Science CrossRef PubMed CAS Google Scholar
Lindley, P. F. & Carr, P. (1974). J. Cryst. Mol. Struct. 4, 173–185. CSD CrossRef CAS Google Scholar
Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130–1137. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269–1274. CAS Google Scholar
Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260–265. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018a). Acta Cryst. E74, 302–308. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018b). Acta Cryst. E74, 630–637. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266–276. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tan, Y. J., Tan, Y. S., Yeo, C. I., Chew, J. & Tiekink, E. R. T. (2019). J. Inorg. Biochem. 192, 107–118. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48–62. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.