research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N,N-Di­allyl­di­thio­carbamato-κ2S,S′)tri­phenyltin(IV) and bis­­(N,N-di­allyl­di­thio­carbamato-κ2S,S′)di­phenyl­tin(IV): crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aEnvironmental Health and Industrial Safety Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 January 2020; accepted 6 January 2020; online 10 January 2020)

The crystal and mol­ecular structures of the title organotin di­thio­carbamate compounds, [Sn(C6H5)3(C7H10NS2)] (I) and [Sn(C6H5)2(C7H10NS2)2] (II), present very distinct tin atom coordination geometries. In (I), the di­thio­carbamate ligand is asymmetrically coordinating with the resulting C3S2 donor set defining a coordination geometry inter­mediate between square-pyramidal and trigonal–bipyramidal. In (II), two independent mol­ecules comprise the asymmetric unit, which differ in the conformations of the allyl substituents and in the relative orientations of the tin-bound phenyl rings. The di­thio­carbamate ligands in (II) coordinate in an asymmetric mode but the Sn—S bonds are more symmetric than observed in (I). The resulting C2S4 donor set approximates an octa­hedral coordination geometry with a cis-disposition of the ipso-carbon atoms and with the more tightly bound sulfur atoms approximately trans. The only directional inter­molecular contacts in the crystals of (I) and (II) are of the type phenyl-C—H⋯π(phen­yl) and vinyl­idene-C—H⋯π(phen­yl), respectively, with each leading to a supra­molecular chain propagating along the a-axis direction. The calculated Hirshfeld surfaces emphasize the importance of H⋯H contacts in the crystal of (I), i.e. contributing 62.2% to the overall surface. The only other two significant contacts also involve hydrogen, i.e. C⋯H/H⋯C (28.4%) and S⋯H/H⋯S (8.6%). Similar observations pertain to the individual mol­ecules of (II), which are clearly distinguishable in their surface contacts, with H⋯H being clearly dominant (59.9 and 64.9%, respectively) along with C⋯H/H⋯C (24.3 and 20.1%) and S⋯H/H⋯S (14.4 and 13.6%) contacts. The calculations of energies of inter­action suggest dispersive forces make a significant contribution to the stabilization of the crystals. The exception is for the C—H⋯π contacts in (II) where, in addition to the dispersive contribution, significant contributions are made by the electrostatic forces.

1. Chemical context

Di­thio­carbamate anions of general formula S2CNRR′, R/R′ = H, alkyl and aryl, are readily prepared from the facile reaction of an amine with CS2 in the presence of base. Thus, the number of derivatives which can be prepared is largely dictated by the availability of amines and hence, an enormous range of di­thio­carbamate anions are available for complexation to metals/heavy elements. A key inter­est in developing metal/heavy element compounds of di­thio­carbamates relates to their biological potential (Hogarth, 2012[Hogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202-1215.]). In the context of anti-cancer properties, a number of recent reports have described the efficacy of phosphanegold (Jamaludin et al., 2013[Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127-141.]), zinc (Tan et al., 2015[Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48-62.]) and bis­muth (Ishak et al., 2014[Ishak, D. H. A., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y. K., Nordin, N., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). J. Inorg. Biochem. 130, 38-51.]) di­thio­carbamates, buoyed by the observation that many of these species promote cancer cell death by apoptosis; bis­muth derivatives exhibit in vivo anti-tumour activity (Li et al., 2007[Li, H., Lai, C. S., Wu, J., Ho, P. C., de Vos, D. & Tiekink, E. R. T. (2007). J. Inorg. Biochem. 101, 809-816.]). Organotin compounds are well known for their anti-cancer potential (Gielen & Tiekink, 2005[Gielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421-439. Chichester: John Wiley & Sons Ltd.]) and there is a strong body of literature on organotin di­thio­carbamates in this context (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]).

[Scheme 1]

In the past few years, there has been a resurgence of inter­est in the anti-cancer activity of organotin di­thio­carbamates (Khan et al., 2015[Khan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754-760.]; Mohamad, Awang, Kamaludin et al., 2016[Mohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269-1274.]) and very recently, a report on the in vitro cytotoxicity trial of several tin di­allyl­dithio­carbamate compounds was described as well as a preliminary assessment of anti-microbial activity (Adeyemi et al., 2019[Adeyemi, J. O., Onwudiwe, D. C., Ekennia, A. C., Anokwuru, C. P., Nundkumar, N., Singh, M. & Hosten, E. C. (2019). Inorg. Chim. Acta, 485, 64-72.]); some phosphane-gold(I) and phosphane-silver(I) di­thio­carbamates are known to be bactericidal based on pharmacokinetic studies (Sim et al., 2014[Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225-236.]; Tan, Tan et al., 2019[Tan, Y. J., Tan, Y. S., Yeo, C. I., Chew, J. & Tiekink, E. R. T. (2019). J. Inorg. Biochem. 192, 107-118.]). The aforementioned report on tin di­allyl­dithio­carbamate compounds (Adeyemi et al., 2019[Adeyemi, J. O., Onwudiwe, D. C., Ekennia, A. C., Anokwuru, C. P., Nundkumar, N., Singh, M. & Hosten, E. C. (2019). Inorg. Chim. Acta, 485, 64-72.]) also presented the first crystal-structure determinations for tin compounds of di­allyl­dithio­carbamate. In a continuation of recent structural studies in this area (Mohamad et al., 2017[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260-265.], 2018a[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018a). Acta Cryst. E74, 302-308.],b[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018b). Acta Cryst. E74, 630-637.]; Haezam et al., 2019[Haezam, F. N., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 1479-1485.]), herein, two organotin compounds of di­allyl­dithio­carbamate, (C6H5)3Sn[S2CN(CH2C(H)=CH2)2], (I)[link], and (C6H5)2Sn[S2CN(CH2C(H)=CH2)2]2, (II)[link], have been synth­esized and studied by X-ray crystallography. In addition, the supra­molecular associations in their crystals have been evaluated by Hirshfeld surface analyses and computational chemistry.

2. Structural commentary

The tin atom in (I)[link], Fig. 1[link], is coordinated by three ipso-carbon atoms of the phenyl groups as well as by an asymmetrically bound di­thio­carbamate anion, Table 1[link]. There is a relatively large disparity in the Sn—S separations, i.e. Δ(Sn—S) = [(Sn—Slong) - (Sn—Sshort)] = 0.47 Å, indicating that the Sn—S2 inter­action is weak. Evidence in support of this conclusion is seen in the pattern of C—S bond lengths. Thus, the C1—S2 bond involving the less tightly bound S2 atom is about 0.07 Å shorter than the analogous bond with the tightly bound S1 atom. Nevertheless, there is a clear influence exerted by the S2 atom upon the Sn—C bond lengths with the Sn—C31 bond being appreciably longer than the other Sn—C bonds. This is traced to the trans effect exerted by the S2 atom as this forms a S2—Sn—C31 angle 156.01 (5)°. It is noted that there is no other (approximate) trans angle subtended at the tin atom in (I)[link]. Assuming a five-coordinate, C3S2, geometry, the range of angles subtended at the tin atom is 65.470 (14)°, for the S1—Sn—S2 chelate angle, to the aforementioned trans angle. The value of τ is a convenient descriptor for the assignment of a five-coordinate geometry, which ranges in value from 0.0 for an ideal square pyramid to 1.0 for an ideal trigonal bipyramid (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The value of τ the case of (I)[link] is 0.45, which is indicative of an inter­mediate geometry with a slight tendency towards square pyramidal. On the other hand, should the coordination geometry be considered C3S tetra­hedral, i.e. the weak Sn—S2 bond was ignored, the range of tetra­hedral angles would be 91.01 (5)°, for S1—Sn—C31, to 128.76 (5)°, for S1—Sn—C11. Finally, it is noted the C1—N1 bond length of 1.330 (3) Å is consistent with significant double-bond character in this bond, which arises from a major contribution of the 2−S2C=N+(CH2C(H)=CH2)2 canonical form to the electronic structure of the di­thio­carbamate ligand.

Table 1
Selected geometric parameters (Å, °) for (I)

Parameter (I) Parameter (I)
Sn—S1 2.4749 (4) Sn—S2 2.9456 (5)
Sn—C11 2.1427 (19) Sn—C21 2.130 (2)
Sn—C31 2.1673 (19) C1—S1 1.7559 (19)
C1—S2 1.6894 (19) C1—N1 1.330 (3)
       
S1—Sn—S2 65.470 (14) C11—Sn—C21 111.15 (7)
C11—Sn—C31 104.14 (7) C21—Sn—C31 107.13 (7)
S1—Sn—C11 128.76 (5) S2—Sn—C31 156.01 (5)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

A distinct coordination geometry for the tin atoms is noted for (II)[link], Fig. 2[link], for which two independent mol­ecules comprise the crystallographic asymmetric unit. The tin atom in each mol­ecule is coordinated by two ipso-carbon atoms of the phenyl groups as well as by two asymmetrically bound di­thio­carbamate anions, Table 2[link]. There is a disparity in the Sn—S separations, i.e. Δ(Sn—S) = 0.19 and 0.11 Å, for the S1- and S3-di­thio­carbamate anions of the first independent mol­ecule; the comparable values for the second mol­ecule are similar at 0.21 and 0.11 Å. The disparities in Δ(Sn—S) are reflected in the associated C—S bond distances, Table 2[link]. Gratifyingly, the greater differences in C—S bonds, i.e. 0.03 and 0.04 Å for the S1-di­thio­carbamate anions of each independent mol­ecule, are correlated with the greater values in Δ(Sn—S). The C1—N1 and C8—N2 bond lengths in both mol­ecules are short for the reasons mentioned for (I)[link] above. The C2S4 coordination geometry is based on an octa­hedron and has a cis-disposition of the ipso-carbon atoms with the more tightly bound sulfur atoms close to being trans. A partial explanation of the lengthening of the Sn—S2 and Sn—S4 bonds relates to the trans-influence exerted by the phenyl substituents approximately opposite the S2 and S4 atoms.

Table 2
Selected geometric parameters (Å, °) for the two independent mol­ecules in (II)

Parameter Sn1-mol­ecule Sn2-mol­ecule
Sn—S1 2.5501 (6) 2.5585 (7)
Sn—S2 2.7393 (7) 2.7664 (7)
Sn—S3 2.5726 (7) 2.5700 (6)
Sn—S4 2.6754 (6) 2.6750 (6)
C1—S1 1.742 (3) 1.740 (3)
C1—S2 1.710 (3) 1.704 (3)
C8—S3 1.738 (3) 1.733 (3)
C8—S4 1.715 (3) 1.716 (3)
C1—N1 1.326 (3) 1.328 (4)
C8—N2 1.318 (3) 1.327 (3)
     
S1—Sn—S2 67.824 (19) 67.18 (2)
S3—Sn—S4 67.97 (2) 68.69 (2)
S1—Sn—S3 154.38 (2) 149.00 (2)
S2—Sn—C21 159.42 (7) 161.40 (7)
S4—Sn—C15 160.59 (7) 159.91 (7)
C15—Sn—C21 99.84 (9) 103.34 (9)
     
N1—C2—C3—C4 12.5 (4) 9.9 (4)a
N1—C5—C6—C7 −122.3 (3) 13.3 (4)a
N2—C9—C10—C11 105.3 (3) 105.2 (3)a
N2—C12—C13—C14 110.9 (4) 114.6 (4)a
Note: (a) for ease of comparison, the torsion angles are for the inverted Sn2-mol­ecule.
[Figure 2]
Figure 2
The mol­ecular structures of the two independent mol­ecules comprising the asymmetric unit of (II)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

A view of the superimposition of the two mol­ecules comprising the asymmetric unit in (II)[link] is shown in Fig. 3[link] whereby the Sn1- and inverted-Sn2-mol­ecules are overlapped so that two chelate rings, i.e. (Sn1,S1,S2,C1) and (Sn2,S3,S4,C8), are coincident. This shows there are non-trivial conformational differences between the mol­ecules. While the dihedral angles between the two phenyl substituents are equal within experimental error in the two mol­ecules, i.e. 81.28 (13) and 81.63 (14)°, more telling are the angles they form with the respective, cis-disposed chelate rings, i.e. 81.06 (10) and 35.93 (10)° for the Sn1-mol­ecule and 15.35 (11) and 74.71 (6)° for the Sn2-mol­ecule. Differences are also noted in the relative orientations of the allyl substituents. Thus, for the overlapped di­thio­carbamate ligands, the N1—C5—C6—C7 torsion angle of −122.3 (3)° is an outlier with respect to the other torsion angles with the direct equivalent angle for the inverted Sn2-mol­ecule being 13.3 (4)°. While the N—C—C—C torsion angles for the second pair of di­thio­carbamate ligands are similar, Table 2[link], there is a misalignment of these ligands as seen in the dihedral angle formed between the chelate rings of 80.98 (5) and 76.55 (6)° for the Sn1- and Sn2-mol­ecules, respectively.

[Figure 3]
Figure 3
Overlay diagram of the independent mol­ecules comprising the asymmetric unit of (II)[link]: (a) Sn1-containing mol­ecule (red image) and (b) inverted-Sn2-mol­ecule (blue). The mol­ecules are overlapped so that the (Sn1,S1,S2,C1) and (Sn2,S3,S4,C8) residues are coincident.

The difference in coordination modes of the di­thio­carbamate ligands and coordination geometries are related, at least in part, to the different Lewis acid strength of the tin atoms, with the Lewis acidity in the tri­phenyl­tin species being significantly less than that in the di­phenyl­tin species.

3. Supra­molecular features

The only directional point of contact between mol­ecules based on the distance criteria in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) are phenyl-C—H⋯π(phen­yl) inter­actions, Table 3[link]. Here, the (C21–C26) ring is pivotal by donating a C—H atom to a symmetry-related (C31–C36) ring and the same time accepting a phenyl-C—H⋯π(phen­yl) inter­action from a (C11–C16) ring to construct a linear, supra­molecular chain aligned along the a-axis direction, Fig. 4[link](a). The chains assemble in the crystal without directional inter­actions between them, Fig. 4[link](b).

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the (C21–C26) and (C31–C36) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.95 2.92 3.605 (2) 130
C23—H23⋯Cg2ii 0.95 2.99 3.720 (3) 134
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 4]
Figure 4
Mol­ecular packing in the crystal of (I)[link]: (a) supra­molecular chain along the a-axis direction sustained by phenyl-C—H⋯π(phen­yl) inter­actions shown as purple dashed lines (non-participating hydrogen atoms have been removed) and (b) a view of the unit-cell contents in projection down the a axis with one chain highlighted in space-filling mode.

The mol­ecular packing in (II)[link] is also largely devoid of directional inter­actions. Indeed, the only connections evident are vinyl­idene-C—H⋯π(phen­yl) inter­actions, Table 4[link], which serve to link the independent mol­ecules comprising the asymmetric unit into a supra­molecular chain aligned along the a-axis direction. In essence, the vinyl­idene-hydrogen atoms of the Sn1-mol­ecule bridge translationally related Sn2-mol­ecules into a linear chain, Fig. 5[link](a). The chains pack without directional inter­actions between them, Fig. 5[link](b).

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of the (C15A–C20A) and (C21A–C26A) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 0.95 2.83 3.774 (3) 172
C7—H7BCg2ii 0.95 2.92 3.582 (3) 128
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
Mol­ecular packing in the crystal of (II)[link]: (a) supra­molecular chain along the a-axis direction sustained by methyl­ene-C—H⋯π(phen­yl) inter­actions shown as purple dashed lines (non-participating hydrogen atoms have been removed) and (b) a view of the unit-cell contents in projection down the a axis with one chain highlighted in space-filling mode.

4. Hirshfeld surface analysis

In order to gain further insight into the mol­ecular packing of each of (I)[link] and (II)[link], Hirshfeld surface calculations were performed with Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.]) following literature protocols (Tan, Jotani et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The calculations highlight the influence of the discussed C—H⋯π inter­actions (Tables 3[link] and 4[link]) as well the short inter­atomic contacts collated in Table 5[link]. The short inter­atomic contacts are indicated as diminutive or faint-red spots near the participating atoms on the Hirshfeld surfaces mapped over dnorm for (I)[link] and (II)[link] in Figs. 6[link] and 7[link], respectively. Further, the donors and acceptors of the inter­molecular C—H⋯π contacts for both (I)[link] and (II)[link] are evident as the blue bumps and red concave regions, respectively, on the Hirshfeld surfaces mapped with shape-index property shown in Fig. 8[link]. In the absence of potential hydrogen bonds in (I)[link] and (II)[link], both the blue and red regions corresponding to positive and negative electrostatic potential, respectively, on Hirshfeld surfaces mapped over electrostatic potential in Fig. 9[link] and arise owing to the polarization of charges towards the participating residues.

Table 5
Summary of short inter­atomic contacts (Å) in (I)[link] and (II)a

Contact Distance Symmetry operation
(I)    
C12⋯H6 2.76 −1 + x, y, z
C16⋯H5B 2.80 1 − x, − y, 1 − z
C25⋯H4B 2.78 x, [{1\over 2}] − y, −[{1\over 2}] + z
C26⋯H13 2.74 1 + x, y, z
C33⋯H2B 2.79 1 − x, 1 − y, 1 − z
H15⋯H24 2.19 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
S1⋯H7B 2.91 −1 + x, y, z
S1⋯H2A 2.96 1 − x, 1 − y, 1 − z
(II)    
S1⋯C11A 3.455 (3) 1 − x, 1 − y, 1 − z
S4⋯C12A 3.473 (3) 1 − x, 1 − y, 1 − z
C11⋯C23A 3.386 (5) x, y, z
C11⋯H23A 2.81 x, y, z
C19⋯H11B 2.71 1 + x, [{1\over 2}] − y, [{1\over 2}] + z
C21⋯H12D 2.78 1 − x, 1 − y, 1 − z
H12A⋯H9A2 2.16 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
H17⋯H26 2.18 1 + x, y, z
C4A⋯H9A1 2.75 1 − x, 1 − y, −z
S1A⋯H18 2.91 1 − x, [{1\over 2}] − y, −[{1\over 2}] + z
H17⋯H13A 2.33 2 − x, 1 − y, 1 − z
Note: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values.
[Figure 6]
Figure 6
Two views of Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.028 to +1.257 arbitrary units.
[Figure 7]
Figure 7
Views of the Hirshfeld surfaces for (II)[link] mapped over dnorm for the (a) and (b) Sn1-mol­ecule in the range −0.026 to +1.372 arbitrary units, and (c) and (d) Sn2-mol­ecule in the range −0.027 to +1.383 arbitrary units.
[Figure 8]
Figure 8
Views of Hirshfeld surfaces mapped with the shape-index property highlighting donors and acceptors of the inter­molecular C—H⋯π contacts for (a) and (b) (I)[link], and (c) and (d) (II)[link].
[Figure 9]
Figure 9
Views of Hirshfeld surfaces mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively) for (a) (I)[link] in the range −0.032 to +0.043 atomic units (a.u.), (b) the Sn1-mol­ecule in (II)[link] in the range −0.039 to +0.040 a.u. and (c) the Sn2-mol­ecule in (II)[link] in the range −0.038 to +0.047 a.u.

The overall two-dimensional fingerprint plots for (I)[link] and the individual mol­ecules of (II)[link] are illustrated in Fig. 10[link](a), and those delineated into H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts are illustrated in Fig. 10[link](b)–(d), respectively. The percentage contributions from different atom–atom contacts to the Hirshfeld surfaces of (I)[link], Sn1- and Sn2-mol­ecules of (II)[link] are qu­anti­tatively summarized in Table 6[link]. In the fingerprint plot delineated into H⋯H contacts for (I)[link], Fig. 10[link](b), a pair of small and proximate peaks at de + di ∼2.2 Å results from the presence of a short inter­atomic contact between the phenyl-H15 and H24 atoms, Table 5[link]. The presence of a single peak at de + di ∼2.2 Å in the analogous plot for the Sn1-mol­ecule of (II)[link] is due to the short H⋯H contact between the phenyl-H17 and H26 atoms. Another short inter­atomic H⋯H contact involving the H17 and H18A atoms of the Sn1-mol­ecule and the H9A2 and H13A atoms of the Sn2-mol­ecule, Table 5[link], are evident as the pair of peaks at de + di ∼2.2 Å and at de + di ∼2.3 Å in the corresponding delineated plot for the Sn2-mol­ecule.

Table 6
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link], the Sn1-mol­ecule in (II)[link] and the Sn2-mol­ecule in (II)

Contact Percentage contribution
  (I) Sn1-mol­ecule in (II) Sn2-mol­ecule in (II)
H⋯H 62.2 59.9 64.9
C⋯H/H⋯C 28.4 24.3 20.1
S⋯H/H⋯S 8.6 14.4 13.6
N⋯H/H⋯ N 0.1 0.8 0.7
C⋯C 0.4 0.3 0.1
S⋯C/C⋯S 0.2 0.4 0.6
Sn⋯H/H⋯Sn 0.1 0.0 0.0
[Figure 10]
Figure 10
(a) A comparison of the full two-dimensional fingerprint plot for (I)[link] and for the Sn1- and Sn2-mol­ecules of (II)[link], and those delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) S⋯H/H⋯S contacts.

The presence of short inter­atomic C⋯H/H⋯C contacts in each of (I)[link] and (II)[link], summarized in Table 5[link], are evident as the forceps-like tips at de + di ∼2.8 Å in Fig. 10[link](a). Also, the inter­molecular C—H⋯π contacts are characterized as a pair of wings in their respective delineated plots shown in Fig. 10[link](c). The short inter­atomic C⋯H/H⋯C contacts in the crystal of (II)[link] appear as a pair of forceps-like tips at de + di ∼2.7 Å for the Sn1-mol­ecule and as two pairs of similar adjoining tips at the same distances de + di ∼2.8 Å for the Sn2-mol­ecule in the plots of Fig. 10[link](c). For (I)[link], in the fingerprint plot delineated into S⋯H/H⋯S contacts of Fig. 10[link](d), the short inter­atomic contacts involving thio­carbamate-S1 and the H2A and H7B atoms are evident as the pair of conical tips at de + di ∼2.9 Å. Similar contacts in the crystal of (II)[link] are also evident as the conical tips at de + di ∼2.9 Å in Fig. 10[link](d) in the upper and lower regions of the plots for the Sn1- and Sn2-mol­ecules, respectively.

5. Computational chemistry

The pairwise inter­action energies between the mol­ecules within the crystals of (I)[link] and (II)[link] were calculated by summing up four energy components, namely the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies, in accord with literature protocols (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.]). In the present analysis, these energies were obtained by using the wave function calculated at the HF/3-21G level of theory. The specific contacts and associated energies are qu­anti­tatively summarized in Table 7[link]. An analysis of these energies for (I)[link] and (II)[link] reveals that the dispersive component makes the major contribution to all the specified inter­molecular inter­actions in the crystals of (I)[link] and (II)[link]. However, as clearly evident from the relevant inter­action energies listed in Table 7[link] and in the Hirshfeld surfaces mapped over the electrostatic potential of Fig. 9[link], where intense blue and red regions are apparent around the donors and acceptors, the C—H⋯π contacts in (II)[link] have more significant contributions from the Eele component, in contrast to mainly dispersive contributions in the case of (I)[link].

Table 7
Summary of inter­action energies (kJ mol−1) calculated for (I)[link] and (II)

Contact R (Å) Eele Epol Edis Erep Etot
(I)a            
H13⋯C26i + 8.06 −13.8 −5.6 −68.5 42.5 −45.0
C13—H13⋯Cg(C21–C26)i +            
C23—H23⋯Cg(C31–C36)i +            
H6⋯C12i +            
H7B⋯S1i            
C16 ⋯H5Bii 8.42 −21.8 −5.6 −52.2 29.1 −49.3
C33 ⋯H2Biii + 8.00 −21.2 −7.0 −59.2 29.5 −55.6
S1⋯H2Aiii            
C25⋯H4Biv 9.91 −0.6 −0.8 −23.3 8.4 −15.2
H15⋯H24v 12.94 −2.6 −0.5 −12.5 9.1 −6.9
(II)b            
S1⋯C11Ai + 8.68 −25.4 −8.6 −67.8 44.0 −57.0
S4⋯C12Ai +            
C7—H7BCg(C21A–C26A)i +            
C21⋯H12Di            
C4A⋯H9A1ii 9.0 −28.8 −7.3 −69.0 49.0 −56.5
C7—H7ACg(C15A–C20A)iii + 9.21 −19.6 −7.4 −61.3 33.7 −52.6
H17⋯H13Aiii            
H17⋯H26iv 9.62 −12.0 −5.0 −51.2 25.9 −40.6
C11⋯C23Av 9.93 −10.2 −2.9 −44.1 23.5 −33.0
C11⋯H23Av            
H12A⋯H9A2vi 10.81 −5.9 −2.4 −30.6 14.5 −23.4
S1A⋯H18vii 10.11 −5.2 −3.6 −34.3 18.9 −23.
C19⋯H11Bviii 12.51 −7.4 −2.6 −20.5 9.8 −19.8
Notes: (a) Symmetry operations for (I)[link]: (i) −1 + x, y, z; (ii) 1 − x, − y, 1 − z; (iii) 1 − x, 1 − y, 1 − z; (iv) x [{1\over 2}] − y, −[{1\over 2}] + z; (v) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z. (b) Symmetry operations for (II)[link]: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, − z; (iii) 2 − x, 1 − y, 1 − z; (iv) 1 + x, y, z; (v) x, y, z; (vi) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (vii) 1 − x, [{1\over 2}] − y, −[{1\over 2}] + z; (viii) 1 + x, [{1\over 2}] − y, [{1\over 2}] + z.

A further noticeable observation about the strength of the inter­molecular inter­actions from Table 7[link] is that those inter­molecular contacts arising from the same pair of symmetry-related mol­ecules have the greater inter­action energies. The magnitudes of inter­molecular energies were also represented graphically by energy frameworks to view the supra­molecular architecture of both the crystals through cylinders joining the centroids of mol­ecular pairs using red, green and blue colour codes for the Eele, Edisp and Etot terms, respectively. In summary, the images of Fig. 11[link] highlight the importance of dispersion forces in the crystals of (I)[link] and (II)[link].

[Figure 11]
Figure 11
The energy frameworks calculated for (I)[link] viewed down the a-axis direction showing the (a) electrostatic potential force, (b) dispersion force and (c) total energy. The corresponding plots for (II)[link], viewed down the a-axis direction are shown in (d)–(f), respectively. The energy frameworks were adjusted to the same scale factor of 50 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

6. Database survey

As a result of having several important applications, such as biological activity as alluded to in the Chemical Context, a relatively large number of organotin di­thio­carbamates have been synthesized and investigated by X-ray crystallography (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). The coordination geometry described for (I)[link] conforms with literature expectations in that all R3Sn(S2CNRR′′) mol­ecules conform to this structural motif (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]; Mohamad et al., 2018a[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018a). Acta Cryst. E74, 302-308.]). The Sn—S1 bond length in (I)[link] of 2.4749 (4) Å is slightly longer that the average Sn—Sshort bond of 2.47 Å in all Ph3Sn(S2CNRR′′) structures, while the Sn—S2 bond of 2.9456 (5) Å in (I)[link] is about 0.10 Å shorter than the average Sn—Slong of 3.04 Å in these structures. Consistent with these trends, Δ(Sn—S) in (I)[link] of 0.47 Å is less than the average Δ(Sn—S) value of 0.57 Å calculated from all Ph3Sn(S2CNRR′′) structures.

Greater structural diversity is noted for R2Sn(S2CNRR′′)2 (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]), including differences in coordination numbers and geometries (Mohamad, Awang, Jotani et al., 2016[Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130-1137.]). Of the now, 17 structures of the general formula Ph2Sn(S2CNRR′′)2, nine adopt the cis-C2S4 structural motif exemplified by (II)[link], including the two polymorphs of Ph2Sn(S2CNEt2)2 (Lindley & Carr, 1974[Lindley, P. F. & Carr, P. (1974). J. Cryst. Mol. Struct. 4, 173-185.]; Hook et al., 1994[Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293-311.]). The remaining structures adopt the usual motif for R2Sn(S2CNRR′′)2, namely a geometry based on a bipyramidal skewed-bipyramid. Here, the di­thio­carbamate ligands coordinate in an asymmetric fashion with the tin-bound phenyl substituents disposed to lie over the weaker Sn—S bonds, exemplified by the two independent mol­ecules comprising the asymmetric unit of Ph2Sn[S2CN(Me)Hex]2 (Hex = n-hexyl, –C7H15) (Ramasamy et al., 2013[Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266-276.]). Clearly there is a subtle inter­play between the electronic and steric characteristics of the di­thio­carbamate ligands and mol­ecular packing effects in determining the structural motif adopted by Ph2Sn(S2CNRR′′)2 in their respective crystals.

7. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification. The melting point was determined using an automated melting point apparatus (MPA 120 EZ-Melt). Carbon, hydrogen and nitro­gen analyses were performed on a Leco CHNS-932 Elemental Analyzer.

The synthesis of (I)[link] and (II)[link] followed established literature procedures (Awang et al., 2011[Awang, N., Baba, I., Yamin, B. M., Othman, M. S. & Kamaludin, N. F. (2011). Am. J. Appl. Sci. 8, 310-317.]; Ajibade et al., 2011[Ajibade, P. A., Onwudiwe, D. C. & Moloto, M. J. (2011). Polyhedron, 30, 246-252.]). For each synthesis, initially, di­allyl­amine (Aldrich; 1.27 ml, 10 mmol) dissolved in ethanol (30 ml) was stirred under ice-bath conditions for 20 mins. A 25% ammonia solution (1 to 2 ml) was added followed by stirring for 30 mins to establish basic conditions. Then, a cold ethano­lic solution of carbon di­sulfide (0.60 ml, 10 mmol) was added dropwise into the solution and stirred for about 2 h.

For (I)[link], tri­phenyl­tin(IV) dichloride (Merck; 3.85 g, 10 mmol) dissolved in ethanol (20–30 ml) was added dropwise into the di­allyl­dithio­carbamate solution and further stirred for 2 to 3 h. Next, the precipitate that formed was filtered off and washed with cold ethanol a few times to remove any impurities. Finally, the filtered precipitate was dried in a desiccator overnight. Recrystallization was carried out by dissolving the compound in a chloro­form and ethanol solvent mixture (5 ml; 1:1 v/v), which was allowed to slowly evaporate at room temperature yielding colourless crystals. Yield: 44%. M.p. 454.8–456.2 K. Elemental analysis: calculated (%): C 57.51, H 4.79, N 2.68. Found (%): C 56.92, H 4.93, N 2.93.

Compound (II)[link] was prepared and recrystallized as for (I)[link] but, using di­phenyl­tin(IV) dichloride (Merck; 1.72 g, 5 mmol) dissolved in ethanol (20-30 ml). Yield: 52%. M.p. 332.5–334.4 K. Elemental analysis: calculated (%): C 50.59, H 4.86, N 4.54. Found (%): C 50.20, H 4.80, N 4.20.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). In (II)[link], the maximum and minimum residual electron density peaks of 1.23 and 0.73 e Å−3, respectively, were located 0.80 and 0.74 Å from the S2 and Sn1 atoms, respectively.

Table 8
Experimental details

  (I) (II)
Crystal data
Chemical formula [Sn(C6H5)3(C7H10NS2)] [Sn(C6H5)2(C7H10NS2)2]
Mr 522.27 617.45
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 8.0650 (1), 11.4490 (1), 25.8775 (2) 9.6160 (1), 30.4216 (2), 19.1928 (1)
β (°) 98.282 (1) 100.019 (1)
V3) 2364.51 (4) 5528.93 (8)
Z 4 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 10.32 10.30
Crystal size (mm) 0.13 × 0.10 × 0.04 0.19 × 0.14 × 0.07
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, AtlasS2 XtaLAB Synergy, Dualflex, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.]) Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.])
Tmin, Tmax 0.807, 1.000 0.633, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 55086, 4226, 4083 67735, 9876, 9370
Rint 0.044 0.037
(sin θ/λ)max−1) 0.597 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.01 0.027, 0.068, 1.02
No. of reflections 4226 9876
No. of parameters 262 595
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.50 1.23, −0.73
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(N,N-Diallyldithiocarbamato-κ2S,S')\ triphenyltin(IV) (I) top
Crystal data top
[Sn(C6H5)3(C7H10NS2)]F(000) = 1056
Mr = 522.27Dx = 1.467 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.0650 (1) ÅCell parameters from 34049 reflections
b = 11.4490 (1) Åθ = 3.4–76.3°
c = 25.8775 (2) ŵ = 10.32 mm1
β = 98.282 (1)°T = 100 K
V = 2364.51 (4) Å3Prism, colourless
Z = 40.13 × 0.10 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, AtlasS2
diffractometer
4226 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4083 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 5.2558 pixels mm-1θmax = 67.1°, θmin = 3.5°
ω scansh = 99
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
k = 1313
Tmin = 0.807, Tmax = 1.000l = 2630
55086 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.034P)2 + 1.0941P]
where P = (Fo2 + 2Fc2)/3
4226 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.25851 (2)0.27508 (2)0.37027 (2)0.01943 (6)
S10.40753 (6)0.34500 (4)0.45492 (2)0.02546 (11)
S20.50865 (6)0.11062 (4)0.42287 (2)0.02585 (11)
N10.6650 (2)0.22704 (13)0.50510 (7)0.0221 (3)
C10.5424 (2)0.22413 (16)0.46477 (8)0.0211 (4)
C20.6883 (2)0.32426 (18)0.54246 (8)0.0267 (4)
H2A0.6466870.3972150.5245650.032*
H2B0.8094190.3342240.5549220.032*
C30.5978 (3)0.3042 (2)0.58847 (8)0.0309 (5)
H30.6128470.3606840.6156380.037*
C40.4992 (3)0.2149 (2)0.59435 (9)0.0319 (5)
H4A0.4806820.1564490.5681210.038*
H4B0.4466540.2090570.6248280.038*
C50.7846 (2)0.12945 (18)0.51605 (8)0.0249 (4)
H5A0.7321480.0564060.5011570.030*
H5B0.8128010.1189250.5542840.030*
C60.9410 (3)0.1527 (2)0.49311 (9)0.0315 (4)
H60.9319350.1610930.4562890.038*
C71.0904 (3)0.1621 (2)0.52078 (11)0.0427 (6)
H7A1.1035100.1541140.5576840.051*
H7B1.1853050.1769680.5038700.051*
C110.0883 (2)0.13134 (16)0.35523 (7)0.0204 (4)
C120.0823 (2)0.15586 (18)0.34399 (7)0.0257 (4)
H120.1202990.2336770.3472950.031*
C130.1979 (2)0.06837 (19)0.32802 (8)0.0278 (4)
H130.3137650.0865730.3205970.033*
C140.1442 (3)0.04484 (19)0.32295 (8)0.0279 (4)
H140.2227320.1047520.3117370.033*
C150.0259 (3)0.07077 (18)0.33438 (9)0.0308 (4)
H150.0632450.1488010.3312180.037*
C160.1410 (2)0.01651 (17)0.35033 (8)0.0254 (4)
H160.2567470.0020930.3579900.030*
C210.4161 (2)0.28918 (16)0.31120 (7)0.0213 (4)
C220.5403 (2)0.37446 (18)0.31258 (8)0.0269 (4)
H220.5546960.4295810.3403050.032*
C230.6428 (3)0.37983 (19)0.27407 (9)0.0312 (5)
H230.7264320.4385940.2754070.037*
C240.6234 (3)0.2996 (2)0.23361 (9)0.0313 (5)
H240.6936340.3032090.2071780.038*
C250.5010 (3)0.21372 (18)0.23174 (8)0.0280 (4)
H250.4879540.1582500.2041480.034*
C260.3979 (2)0.20907 (17)0.27018 (8)0.0223 (4)
H260.3137260.1505770.2685620.027*
C310.0978 (2)0.42764 (17)0.36369 (8)0.0242 (4)
C320.0065 (3)0.45310 (18)0.40077 (8)0.0293 (4)
H320.0073140.4026940.4298940.035*
C330.1095 (3)0.5512 (2)0.39575 (10)0.0357 (5)
H330.1802130.5674750.4212100.043*
C340.1081 (3)0.62513 (19)0.35328 (10)0.0374 (5)
H340.1777930.6924060.3498180.045*
C350.0067 (3)0.60157 (19)0.31626 (9)0.0350 (5)
H350.0064850.6525660.2873130.042*
C360.0959 (2)0.50318 (18)0.32102 (8)0.0273 (4)
H360.1651930.4871640.2951260.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02063 (8)0.01640 (8)0.02001 (8)0.00251 (4)0.00135 (5)0.00007 (4)
S10.0271 (2)0.0215 (2)0.0253 (2)0.00683 (18)0.00475 (18)0.00472 (17)
S20.0301 (2)0.0205 (2)0.0254 (2)0.00408 (18)0.00133 (18)0.00396 (18)
N10.0206 (8)0.0200 (9)0.0246 (8)0.0016 (6)0.0007 (7)0.0000 (6)
C10.0186 (9)0.0212 (10)0.0232 (9)0.0002 (7)0.0025 (7)0.0024 (7)
C20.0249 (10)0.0223 (10)0.0303 (10)0.0022 (8)0.0051 (8)0.0028 (8)
C30.0314 (11)0.0333 (11)0.0255 (10)0.0014 (9)0.0043 (8)0.0109 (9)
C40.0289 (11)0.0404 (13)0.0257 (10)0.0021 (9)0.0015 (8)0.0050 (8)
C50.0215 (9)0.0240 (10)0.0282 (10)0.0029 (8)0.0005 (7)0.0037 (8)
C60.0285 (10)0.0312 (11)0.0356 (11)0.0057 (9)0.0074 (9)0.0036 (9)
C70.0255 (11)0.0398 (14)0.0632 (16)0.0002 (10)0.0083 (10)0.0010 (12)
C110.0245 (9)0.0192 (9)0.0173 (8)0.0018 (7)0.0029 (7)0.0011 (7)
C120.0245 (9)0.0241 (10)0.0270 (9)0.0061 (8)0.0013 (8)0.0026 (8)
C130.0212 (9)0.0328 (11)0.0279 (10)0.0015 (8)0.0011 (7)0.0008 (8)
C140.0278 (10)0.0268 (11)0.0296 (10)0.0080 (8)0.0059 (8)0.0019 (8)
C150.0298 (10)0.0187 (10)0.0453 (12)0.0004 (8)0.0107 (9)0.0025 (9)
C160.0233 (9)0.0190 (10)0.0347 (10)0.0017 (8)0.0069 (8)0.0005 (8)
C210.0203 (9)0.0204 (9)0.0215 (9)0.0019 (7)0.0024 (7)0.0036 (7)
C220.0260 (10)0.0203 (10)0.0320 (10)0.0032 (8)0.0037 (8)0.0013 (8)
C230.0235 (10)0.0288 (11)0.0396 (11)0.0078 (8)0.0012 (8)0.0090 (9)
C240.0230 (10)0.0387 (12)0.0325 (11)0.0006 (9)0.0051 (8)0.0097 (9)
C250.0276 (10)0.0297 (11)0.0258 (10)0.0019 (8)0.0006 (8)0.0010 (8)
C260.0206 (9)0.0224 (9)0.0227 (9)0.0032 (7)0.0004 (7)0.0022 (7)
C310.0226 (9)0.0154 (9)0.0318 (10)0.0013 (7)0.0053 (8)0.0033 (7)
C320.0284 (10)0.0207 (10)0.0366 (11)0.0016 (8)0.0022 (8)0.0044 (8)
C330.0245 (10)0.0270 (11)0.0534 (13)0.0010 (9)0.0018 (9)0.0144 (10)
C340.0263 (10)0.0179 (10)0.0621 (15)0.0029 (8)0.0139 (10)0.0059 (10)
C350.0306 (11)0.0205 (10)0.0481 (13)0.0019 (9)0.0140 (10)0.0033 (9)
C360.0247 (9)0.0201 (10)0.0331 (10)0.0016 (8)0.0099 (8)0.0001 (8)
Geometric parameters (Å, º) top
Sn—C212.130 (2)C13—H130.9500
Sn—C112.1427 (19)C14—C151.393 (3)
Sn—C312.1673 (19)C14—H140.9500
Sn—S12.4749 (4)C15—C161.386 (3)
Sn—S22.9456 (5)C15—H150.9500
S1—C11.7559 (19)C16—H160.9500
S2—C11.6894 (19)C21—C261.394 (3)
N1—C11.330 (3)C21—C221.395 (3)
N1—C21.468 (3)C22—C231.384 (3)
N1—C51.477 (2)C22—H220.9500
C2—C31.502 (3)C23—C241.385 (3)
C2—H2A0.9900C23—H230.9500
C2—H2B0.9900C24—C251.388 (3)
C3—C41.317 (3)C24—H240.9500
C3—H30.9500C25—C261.387 (3)
C4—H4A0.9500C25—H250.9500
C4—H4B0.9500C26—H260.9500
C5—C61.493 (3)C31—C321.395 (3)
C5—H5A0.9900C31—C361.401 (3)
C5—H5B0.9900C32—C331.392 (3)
C6—C71.315 (3)C32—H320.9500
C6—H60.9500C33—C341.388 (4)
C7—H7A0.9500C33—H330.9500
C7—H7B0.9500C34—C351.373 (4)
C11—C121.393 (3)C34—H340.9500
C11—C161.393 (3)C35—C361.393 (3)
C12—C131.390 (3)C35—H350.9500
C12—H120.9500C36—H360.9500
C13—C141.379 (3)
C21—Sn—C11111.15 (7)C14—C13—C12119.99 (18)
C21—Sn—C31107.13 (7)C14—C13—H13120.0
C11—Sn—C31104.14 (7)C12—C13—H13120.0
C21—Sn—S1110.28 (5)C13—C14—C15119.53 (19)
C11—Sn—S1128.76 (5)C13—C14—H14120.2
C31—Sn—S191.01 (5)C15—C14—H14120.2
C21—Sn—S286.57 (5)C16—C15—C14120.43 (19)
C11—Sn—S288.36 (5)C16—C15—H15119.8
C31—Sn—S2156.01 (5)C14—C15—H15119.8
S1—Sn—S265.470 (14)C15—C16—C11120.48 (18)
C1—S1—Sn94.89 (7)C15—C16—H16119.8
C1—S2—Sn80.86 (6)C11—C16—H16119.8
C1—N1—C2123.08 (16)C26—C21—C22118.46 (19)
C1—N1—C5121.51 (16)C26—C21—Sn119.19 (14)
C2—N1—C5115.39 (15)C22—C21—Sn122.33 (15)
N1—C1—S2123.75 (14)C23—C22—C21120.87 (19)
N1—C1—S1117.96 (14)C23—C22—H22119.6
S2—C1—S1118.29 (11)C21—C22—H22119.6
N1—C2—C3112.04 (17)C22—C23—C24120.03 (19)
N1—C2—H2A109.2C22—C23—H23120.0
C3—C2—H2A109.2C24—C23—H23120.0
N1—C2—H2B109.2C23—C24—C25119.9 (2)
C3—C2—H2B109.2C23—C24—H24120.1
H2A—C2—H2B107.9C25—C24—H24120.1
C4—C3—C2125.52 (19)C26—C25—C24119.9 (2)
C4—C3—H3117.2C26—C25—H25120.0
C2—C3—H3117.2C24—C25—H25120.0
C3—C4—H4A120.0C25—C26—C21120.81 (18)
C3—C4—H4B120.0C25—C26—H26119.6
H4A—C4—H4B120.0C21—C26—H26119.6
N1—C5—C6110.80 (17)C32—C31—C36118.31 (19)
N1—C5—H5A109.5C32—C31—Sn121.84 (15)
C6—C5—H5A109.5C36—C31—Sn119.85 (15)
N1—C5—H5B109.5C31—C32—C33121.0 (2)
C6—C5—H5B109.5C31—C32—H32119.5
H5A—C5—H5B108.1C33—C32—H32119.5
C7—C6—C5124.0 (2)C34—C33—C32119.6 (2)
C7—C6—H6118.0C34—C33—H33120.2
C5—C6—H6118.0C32—C33—H33120.2
C6—C7—H7A120.0C35—C34—C33120.4 (2)
C6—C7—H7B120.0C35—C34—H34119.8
H7A—C7—H7B120.0C33—C34—H34119.8
C12—C11—C16118.46 (18)C34—C35—C36120.2 (2)
C12—C11—Sn118.09 (14)C34—C35—H35119.9
C16—C11—Sn123.03 (14)C36—C35—H35119.9
C13—C12—C11121.09 (19)C35—C36—C31120.5 (2)
C13—C12—H12119.5C35—C36—H36119.7
C11—C12—H12119.5C31—C36—H36119.7
C2—N1—C1—S2177.36 (15)C14—C15—C16—C110.1 (3)
C5—N1—C1—S20.8 (3)C12—C11—C16—C150.3 (3)
C2—N1—C1—S12.3 (3)Sn—C11—C16—C15172.13 (15)
C5—N1—C1—S1179.62 (14)C26—C21—C22—C230.2 (3)
Sn—S2—C1—N1174.18 (18)Sn—C21—C22—C23178.75 (15)
Sn—S2—C1—S16.21 (10)C21—C22—C23—C240.3 (3)
Sn—S1—C1—N1173.04 (15)C22—C23—C24—C250.0 (3)
Sn—S1—C1—S27.33 (12)C23—C24—C25—C260.4 (3)
C1—N1—C2—C391.6 (2)C24—C25—C26—C210.5 (3)
C5—N1—C2—C386.6 (2)C22—C21—C26—C250.2 (3)
N1—C2—C3—C44.2 (3)Sn—C21—C26—C25178.38 (15)
C1—N1—C5—C695.9 (2)C36—C31—C32—C330.3 (3)
C2—N1—C5—C685.9 (2)Sn—C31—C32—C33179.70 (14)
N1—C5—C6—C7118.2 (2)C31—C32—C33—C340.2 (3)
C16—C11—C12—C130.3 (3)C32—C33—C34—C350.3 (3)
Sn—C11—C12—C13172.55 (15)C33—C34—C35—C360.0 (3)
C11—C12—C13—C140.2 (3)C34—C35—C36—C310.4 (3)
C12—C13—C14—C150.6 (3)C32—C31—C36—C350.6 (3)
C13—C14—C15—C160.5 (3)Sn—C31—C36—C35179.98 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C21–C26) and (C31–C36) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.923.605 (2)130
C23—H23···Cg2ii0.952.993.720 (3)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Bis(N,N-diallyldithiocarbamato-κ2S,S')diphenyltin(IV) (II) top
Crystal data top
[Sn(C6H5)2(C7H10NS2)2]F(000) = 2512
Mr = 617.45Dx = 1.484 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.6160 (1) ÅCell parameters from 40535 reflections
b = 30.4216 (2) Åθ = 2.9–76.3°
c = 19.1928 (1) ŵ = 10.30 mm1
β = 100.019 (1)°T = 100 K
V = 5528.93 (8) Å3Prism, colourless
Z = 80.19 × 0.14 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, AtlasS2
diffractometer
9876 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source9370 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 5.2558 pixels mm-1θmax = 67.1°, θmin = 3.7°
ω scansh = 1111
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2018)
k = 3625
Tmin = 0.633, Tmax = 1.000l = 2222
67735 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0362P)2 + 7.0312P]
where P = (Fo2 + 2Fc2)/3
9876 reflections(Δ/σ)max = 0.003
595 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.96840 (2)0.26758 (2)0.60783 (2)0.01863 (5)
S11.05093 (7)0.34237 (2)0.65910 (3)0.02202 (13)
S21.05034 (7)0.32188 (2)0.50854 (3)0.02481 (13)
S30.82312 (7)0.21606 (2)0.51668 (4)0.02761 (14)
S40.71629 (7)0.30174 (2)0.55382 (3)0.02345 (13)
N11.1264 (2)0.39971 (7)0.56894 (11)0.0203 (4)
N20.5656 (2)0.24617 (7)0.46333 (12)0.0253 (5)
C11.0824 (2)0.35895 (8)0.57638 (13)0.0189 (5)
C21.1517 (3)0.41701 (9)0.50102 (14)0.0251 (6)
H2A1.1219860.4481860.4967670.030*
H2B1.0931590.4004730.4621640.030*
C31.3039 (3)0.41377 (9)0.49308 (14)0.0286 (6)
H31.3315200.4296290.4550810.034*
C41.4027 (3)0.39104 (10)0.53379 (16)0.0309 (6)
H4A1.3801890.3746570.5724630.037*
H4B1.4965850.3910330.5244850.037*
C51.1518 (3)0.43140 (8)0.62834 (14)0.0225 (5)
H5A1.2297740.4514270.6219180.027*
H5B1.1808740.4152550.6733030.027*
C61.0221 (3)0.45784 (9)0.63244 (13)0.0246 (5)
H60.9384420.4424860.6376250.030*
C71.0169 (3)0.50095 (10)0.62931 (15)0.0312 (6)
H7A1.0987660.5172380.6241410.037*
H7B0.9312500.5158470.6322180.037*
C80.6860 (3)0.25402 (8)0.50603 (13)0.0211 (5)
C90.4473 (3)0.27826 (9)0.45194 (15)0.0270 (6)
H9A0.4596110.2999260.4910210.032*
H9B0.3566710.2627290.4515610.032*
C100.4444 (3)0.30145 (11)0.38295 (16)0.0357 (7)
H100.5138050.3233150.3802040.043*
C110.3516 (4)0.29318 (13)0.32636 (18)0.0485 (9)
H11A0.2810540.2714750.3276790.058*
H11B0.3544630.3088760.2838420.058*
C120.5396 (3)0.20533 (10)0.42143 (16)0.0341 (7)
H12A0.6307270.1906100.4195440.041*
H12B0.4946380.2126280.3724030.041*
C130.4460 (4)0.17484 (10)0.45334 (18)0.0415 (8)
H130.4830160.1614950.4974270.050*
C140.3162 (4)0.16547 (13)0.4240 (3)0.0601 (11)
H14A0.2763670.1783120.3799560.072*
H14B0.2617710.1458280.4468530.072*
C151.1604 (3)0.22965 (8)0.61670 (13)0.0210 (5)
C161.2902 (3)0.24774 (9)0.60881 (14)0.0247 (5)
H161.2958120.2778670.5965670.030*
C171.4111 (3)0.22188 (9)0.61878 (16)0.0289 (6)
H171.4993140.2345390.6140010.035*
C181.4039 (3)0.17786 (9)0.63562 (14)0.0273 (6)
H181.4867600.1602470.6418390.033*
C191.2754 (3)0.15942 (9)0.64342 (14)0.0256 (6)
H191.2700010.1291770.6549660.031*
C201.1552 (3)0.18534 (9)0.63427 (13)0.0230 (5)
H201.0676870.1726680.6400900.028*
C210.8975 (3)0.24718 (8)0.70441 (13)0.0203 (5)
C220.9742 (3)0.26067 (9)0.76923 (14)0.0265 (6)
H221.0557040.2784450.7700370.032*
C230.9342 (3)0.24871 (10)0.83264 (15)0.0323 (6)
H230.9883590.2582580.8761750.039*
C240.8158 (3)0.22295 (10)0.83270 (16)0.0317 (6)
H240.7879430.2149210.8760820.038*
C250.7383 (3)0.20897 (10)0.76898 (16)0.0327 (6)
H250.6567010.1912820.7685200.039*
C260.7797 (3)0.22080 (9)0.70546 (15)0.0266 (6)
H260.7265330.2106530.6620620.032*
Sn20.42934 (2)0.47935 (2)0.26224 (2)0.01967 (5)
S1A0.50653 (7)0.43729 (2)0.15999 (3)0.02630 (14)
S2A0.65505 (7)0.51843 (2)0.21454 (3)0.02630 (14)
S3A0.39019 (7)0.55322 (2)0.32085 (3)0.02589 (14)
S4A0.29651 (7)0.53675 (2)0.16787 (3)0.02586 (14)
N1A0.6984 (2)0.47703 (7)0.09775 (12)0.0264 (5)
N2A0.2774 (2)0.61450 (7)0.22935 (11)0.0229 (4)
C1A0.6292 (3)0.47819 (8)0.15187 (14)0.0234 (5)
C2A0.6696 (3)0.44435 (10)0.03990 (15)0.0328 (6)
H2A10.6756510.4587860.0057060.039*
H2A20.5727100.4326780.0370760.039*
C3A0.7733 (4)0.40729 (10)0.05215 (16)0.0375 (7)
H3A0.7631230.3860790.0872450.045*
C4A0.8781 (4)0.40263 (11)0.01660 (17)0.0400 (7)
H4A10.8905270.4234010.0187580.048*
H4A20.9411860.3784900.0263730.048*
C5A0.8112 (3)0.50881 (10)0.09071 (15)0.0280 (6)
H5A10.8882300.4935560.0722530.034*
H5A20.8508150.5209880.1378260.034*
C6A0.7561 (4)0.54519 (12)0.04217 (19)0.0446 (8)
H6A0.6880420.5645440.0558020.053*
C7A0.7971 (5)0.55184 (17)0.0189 (2)0.0720 (15)
H7A10.8650620.5329020.0336700.086*
H7A20.7588740.5755810.0483130.086*
C8A0.3158 (3)0.57268 (8)0.23782 (13)0.0221 (5)
C9A0.2113 (3)0.63244 (9)0.16070 (14)0.0254 (6)
H9A10.2501240.6170930.1228300.030*
H9A20.2361380.6639450.1587750.030*
C10A0.0529 (3)0.62794 (9)0.14665 (14)0.0270 (6)
H10A0.0030350.6430920.1067050.032*
C11A0.0226 (3)0.60500 (9)0.18449 (15)0.0296 (6)
H11C0.0226240.5892940.2249270.036*
H11D0.1225210.6041260.1714200.036*
C12A0.3060 (3)0.64644 (9)0.28729 (15)0.0262 (6)
H12C0.3060300.6311140.3327860.031*
H12D0.2295110.6686110.2814450.031*
C13A0.4451 (3)0.66935 (9)0.28974 (15)0.0304 (6)
H13A0.4612710.6947270.3188730.036*
C14A0.5464 (3)0.65786 (11)0.25573 (16)0.0345 (7)
H14C0.5353630.6327220.2259080.041*
H14D0.6308120.6746690.2609030.041*
C15A0.5755 (3)0.45369 (8)0.35224 (13)0.0199 (5)
C16A0.6517 (3)0.41536 (9)0.34627 (15)0.0262 (6)
H16A0.6419020.4008270.3018710.031*
C17A0.7420 (3)0.39798 (9)0.40436 (16)0.0281 (6)
H17A0.7924620.3716120.3995840.034*
C18A0.7580 (3)0.41916 (9)0.46894 (15)0.0267 (6)
H18A0.8194830.4072800.5085950.032*
C19A0.6849 (3)0.45768 (9)0.47610 (14)0.0263 (6)
H19A0.6968480.4723990.5203950.032*
C20A0.5935 (3)0.47474 (9)0.41787 (14)0.0222 (5)
H20A0.5428630.5010250.4229590.027*
C21A0.2380 (3)0.44192 (9)0.26420 (13)0.0219 (5)
C22A0.2467 (3)0.40539 (9)0.30792 (14)0.0263 (6)
H22A0.3351830.3975550.3353390.032*
C23A0.1275 (3)0.37983 (10)0.31248 (16)0.0322 (6)
H23A0.1350910.3552070.3433510.039*
C24A0.0010 (3)0.39055 (10)0.27192 (16)0.0330 (6)
H24A0.0821230.3732160.2745180.040*
C25A0.0111 (3)0.42636 (11)0.22781 (17)0.0387 (7)
H25A0.0996460.4336920.1998820.046*
C26A0.1072 (3)0.45212 (10)0.22356 (16)0.0333 (6)
H26A0.0985710.4767930.1927620.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01673 (9)0.01771 (9)0.02066 (9)0.00008 (6)0.00108 (6)0.00380 (6)
S10.0246 (3)0.0185 (3)0.0228 (3)0.0030 (2)0.0037 (2)0.0032 (2)
S20.0267 (3)0.0227 (3)0.0238 (3)0.0006 (2)0.0011 (2)0.0032 (2)
S30.0280 (3)0.0230 (3)0.0299 (3)0.0049 (3)0.0003 (3)0.0037 (3)
S40.0229 (3)0.0177 (3)0.0279 (3)0.0001 (2)0.0008 (2)0.0003 (2)
N10.0208 (10)0.0202 (10)0.0198 (10)0.0006 (8)0.0031 (8)0.0034 (8)
N20.0270 (12)0.0218 (11)0.0267 (11)0.0017 (9)0.0031 (9)0.0053 (9)
C10.0168 (11)0.0178 (12)0.0212 (12)0.0021 (9)0.0004 (9)0.0021 (10)
C20.0292 (14)0.0255 (13)0.0203 (13)0.0022 (11)0.0035 (11)0.0061 (10)
C30.0339 (15)0.0307 (15)0.0231 (13)0.0093 (12)0.0099 (11)0.0019 (11)
C40.0255 (14)0.0323 (15)0.0362 (15)0.0045 (12)0.0093 (12)0.0052 (12)
C50.0251 (13)0.0183 (12)0.0236 (13)0.0054 (10)0.0026 (10)0.0003 (10)
C60.0282 (14)0.0231 (13)0.0218 (13)0.0027 (11)0.0026 (10)0.0005 (10)
C70.0343 (15)0.0277 (15)0.0315 (15)0.0037 (12)0.0056 (12)0.0024 (12)
C80.0230 (13)0.0207 (12)0.0198 (12)0.0003 (10)0.0046 (10)0.0007 (10)
C90.0195 (13)0.0303 (14)0.0299 (14)0.0020 (11)0.0010 (11)0.0008 (12)
C100.0301 (15)0.0400 (17)0.0379 (17)0.0053 (13)0.0085 (13)0.0092 (13)
C110.052 (2)0.057 (2)0.0348 (17)0.0146 (18)0.0035 (15)0.0080 (16)
C120.0331 (15)0.0317 (15)0.0350 (16)0.0014 (13)0.0007 (12)0.0153 (13)
C130.057 (2)0.0245 (15)0.0402 (17)0.0038 (14)0.0013 (15)0.0074 (13)
C140.055 (2)0.042 (2)0.080 (3)0.0198 (18)0.004 (2)0.0071 (19)
C150.0203 (12)0.0222 (13)0.0199 (12)0.0026 (10)0.0023 (10)0.0008 (10)
C160.0245 (13)0.0198 (13)0.0304 (14)0.0001 (11)0.0061 (11)0.0016 (11)
C170.0225 (13)0.0259 (14)0.0398 (16)0.0013 (11)0.0091 (12)0.0009 (12)
C180.0282 (14)0.0237 (13)0.0299 (14)0.0080 (11)0.0047 (11)0.0004 (11)
C190.0348 (15)0.0172 (12)0.0244 (13)0.0003 (11)0.0035 (11)0.0013 (10)
C200.0223 (12)0.0228 (13)0.0231 (13)0.0025 (10)0.0018 (10)0.0013 (10)
C210.0212 (12)0.0168 (12)0.0234 (12)0.0043 (10)0.0057 (10)0.0053 (10)
C220.0278 (14)0.0239 (13)0.0269 (14)0.0019 (11)0.0024 (11)0.0047 (11)
C230.0414 (17)0.0289 (15)0.0261 (14)0.0008 (13)0.0043 (12)0.0041 (12)
C240.0372 (16)0.0282 (14)0.0332 (15)0.0069 (12)0.0155 (13)0.0084 (12)
C250.0284 (14)0.0314 (15)0.0400 (17)0.0041 (12)0.0107 (12)0.0059 (13)
C260.0227 (13)0.0284 (14)0.0288 (14)0.0011 (11)0.0049 (11)0.0037 (11)
Sn20.02228 (9)0.01617 (9)0.01949 (9)0.00243 (6)0.00069 (6)0.00094 (6)
S1A0.0294 (3)0.0214 (3)0.0284 (3)0.0055 (3)0.0061 (3)0.0041 (2)
S2A0.0315 (3)0.0225 (3)0.0245 (3)0.0041 (3)0.0036 (3)0.0031 (2)
S3A0.0329 (3)0.0218 (3)0.0211 (3)0.0039 (3)0.0005 (3)0.0011 (2)
S4A0.0346 (3)0.0196 (3)0.0214 (3)0.0040 (3)0.0007 (3)0.0014 (2)
N1A0.0283 (12)0.0245 (12)0.0254 (12)0.0052 (9)0.0021 (9)0.0036 (9)
N2A0.0248 (11)0.0191 (11)0.0240 (11)0.0014 (9)0.0024 (9)0.0015 (9)
C1A0.0246 (13)0.0213 (13)0.0233 (13)0.0004 (10)0.0012 (10)0.0016 (10)
C2A0.0380 (16)0.0343 (16)0.0260 (14)0.0104 (13)0.0057 (12)0.0071 (12)
C3A0.055 (2)0.0259 (15)0.0326 (16)0.0069 (14)0.0099 (14)0.0063 (12)
C4A0.051 (2)0.0301 (16)0.0383 (17)0.0024 (14)0.0071 (15)0.0092 (13)
C5A0.0270 (14)0.0298 (14)0.0267 (14)0.0035 (12)0.0035 (11)0.0005 (11)
C6A0.0364 (17)0.0426 (19)0.050 (2)0.0105 (15)0.0057 (15)0.0169 (16)
C7A0.070 (3)0.093 (3)0.043 (2)0.045 (3)0.0174 (19)0.031 (2)
C8A0.0227 (12)0.0203 (13)0.0228 (12)0.0001 (10)0.0028 (10)0.0008 (10)
C9A0.0285 (14)0.0210 (13)0.0267 (13)0.0034 (11)0.0049 (11)0.0049 (11)
C10A0.0296 (14)0.0238 (13)0.0260 (13)0.0057 (11)0.0004 (11)0.0008 (11)
C11A0.0273 (14)0.0299 (15)0.0303 (14)0.0005 (12)0.0014 (11)0.0052 (12)
C12A0.0277 (14)0.0214 (13)0.0294 (14)0.0026 (11)0.0045 (11)0.0054 (11)
C13A0.0337 (15)0.0235 (14)0.0315 (15)0.0045 (12)0.0012 (12)0.0026 (11)
C14A0.0269 (14)0.0380 (17)0.0367 (16)0.0042 (13)0.0002 (12)0.0035 (13)
C15A0.0177 (12)0.0192 (12)0.0217 (12)0.0005 (10)0.0004 (9)0.0022 (10)
C16A0.0266 (13)0.0212 (13)0.0292 (14)0.0026 (11)0.0007 (11)0.0024 (11)
C17A0.0232 (13)0.0206 (13)0.0388 (16)0.0042 (11)0.0010 (11)0.0038 (11)
C18A0.0203 (13)0.0281 (14)0.0297 (14)0.0021 (11)0.0012 (11)0.0095 (11)
C19A0.0257 (13)0.0297 (14)0.0235 (13)0.0017 (11)0.0039 (11)0.0033 (11)
C20A0.0204 (12)0.0216 (13)0.0253 (13)0.0019 (10)0.0059 (10)0.0009 (10)
C21A0.0221 (12)0.0227 (13)0.0205 (12)0.0006 (10)0.0026 (10)0.0055 (10)
C22A0.0244 (13)0.0266 (14)0.0275 (14)0.0021 (11)0.0035 (11)0.0011 (11)
C23A0.0318 (15)0.0294 (15)0.0369 (16)0.0001 (12)0.0105 (12)0.0019 (12)
C24A0.0273 (14)0.0362 (16)0.0364 (16)0.0063 (12)0.0078 (12)0.0089 (13)
C25A0.0226 (14)0.0458 (19)0.0436 (18)0.0012 (13)0.0062 (13)0.0012 (15)
C26A0.0282 (15)0.0342 (16)0.0349 (16)0.0012 (12)0.0022 (12)0.0031 (13)
Geometric parameters (Å, º) top
Sn1—C152.159 (3)Sn2—C21A2.170 (3)
Sn1—C212.174 (2)Sn2—C15A2.173 (2)
Sn1—S12.5501 (6)Sn2—S1A2.5585 (7)
Sn1—S32.5726 (7)Sn2—S3A2.5700 (6)
Sn1—S42.6754 (6)Sn2—S4A2.6750 (6)
Sn1—S22.7393 (7)Sn2—S2A2.7664 (7)
S1—C11.742 (3)S1A—C1A1.740 (3)
S2—C11.710 (3)S2A—C1A1.704 (3)
S3—C81.738 (3)S3A—C8A1.733 (3)
S4—C81.715 (3)S4A—C8A1.716 (3)
N1—C11.326 (3)N1A—C1A1.328 (4)
N1—C21.465 (3)N1A—C5A1.477 (4)
N1—C51.481 (3)N1A—C2A1.480 (3)
N2—C81.318 (3)N2A—C8A1.327 (3)
N2—C121.477 (3)N2A—C9A1.465 (3)
N2—C91.486 (3)N2A—C12A1.466 (3)
C2—C31.500 (4)C2A—C3A1.496 (5)
C2—H2A0.9900C2A—H2A10.9900
C2—H2B0.9900C2A—H2A20.9900
C3—C41.317 (4)C3A—C4A1.320 (5)
C3—H30.9500C3A—H3A0.9500
C4—H4A0.9500C4A—H4A10.9500
C4—H4B0.9500C4A—H4A20.9500
C5—C61.498 (4)C5A—C6A1.484 (4)
C5—H5A0.9900C5A—H5A10.9900
C5—H5B0.9900C5A—H5A20.9900
C6—C71.314 (4)C6A—C7A1.317 (6)
C6—H60.9500C6A—H6A0.9500
C7—H7A0.9500C7A—H7A10.9500
C7—H7B0.9500C7A—H7A20.9500
C9—C101.496 (4)C9A—C10A1.506 (4)
C9—H9A0.9900C9A—H9A10.9900
C9—H9B0.9900C9A—H9A20.9900
C10—C111.305 (5)C10A—C11A1.314 (4)
C10—H100.9500C10A—H10A0.9500
C11—H11A0.9500C11A—H11C0.9500
C11—H11B0.9500C11A—H11D0.9500
C12—C131.496 (5)C12A—C13A1.501 (4)
C12—H12A0.9900C12A—H12C0.9900
C12—H12B0.9900C12A—H12D0.9900
C13—C141.308 (5)C13A—C14A1.311 (4)
C13—H130.9500C13A—H13A0.9500
C14—H14A0.9500C14A—H14C0.9500
C14—H14B0.9500C14A—H14D0.9500
C15—C201.392 (4)C15A—C16A1.393 (4)
C15—C161.396 (4)C15A—C20A1.397 (4)
C16—C171.390 (4)C16A—C17A1.393 (4)
C16—H160.9500C16A—H16A0.9500
C17—C181.382 (4)C17A—C18A1.382 (4)
C17—H170.9500C17A—H17A0.9500
C18—C191.389 (4)C18A—C19A1.386 (4)
C18—H180.9500C18A—H18A0.9500
C19—C201.385 (4)C19A—C20A1.396 (4)
C19—H190.9500C19A—H19A0.9500
C20—H200.9500C20A—H20A0.9500
C21—C261.391 (4)C21A—C22A1.386 (4)
C21—C221.393 (4)C21A—C26A1.395 (4)
C22—C231.387 (4)C22A—C23A1.400 (4)
C22—H220.9500C22A—H22A0.9500
C23—C241.382 (4)C23A—C24A1.380 (4)
C23—H230.9500C23A—H23A0.9500
C24—C251.384 (4)C24A—C25A1.373 (5)
C24—H240.9500C24A—H24A0.9500
C25—C261.394 (4)C25A—C26A1.396 (4)
C25—H250.9500C25A—H25A0.9500
C26—H260.9500C26A—H26A0.9500
C15—Sn1—C2199.84 (9)C21A—Sn2—C15A103.34 (9)
C15—Sn1—S1104.01 (7)C21A—Sn2—S1A96.36 (7)
C21—Sn1—S192.77 (7)C15A—Sn2—S1A101.31 (7)
C15—Sn1—S394.80 (7)C21A—Sn2—S3A105.20 (7)
C21—Sn1—S3101.09 (7)C15A—Sn2—S3A95.16 (7)
S1—Sn1—S3154.38 (2)S1A—Sn2—S3A149.00 (2)
C15—Sn1—S4160.59 (7)C21A—Sn2—S4A92.74 (7)
C21—Sn1—S492.52 (7)C15A—Sn2—S4A159.91 (7)
S1—Sn1—S490.18 (2)S1A—Sn2—S4A88.58 (2)
S3—Sn1—S467.97 (2)S3A—Sn2—S4A68.69 (2)
C15—Sn1—S291.81 (7)C21A—Sn2—S2A161.40 (7)
C21—Sn1—S2159.42 (7)C15A—Sn2—S2A88.92 (7)
S1—Sn1—S267.824 (19)S1A—Sn2—S2A67.18 (2)
S3—Sn1—S294.71 (2)S3A—Sn2—S2A87.26 (2)
S4—Sn1—S281.21 (2)S4A—Sn2—S2A78.76 (2)
C1—S1—Sn189.92 (8)C1A—S1A—Sn290.15 (9)
C1—S2—Sn184.47 (9)C1A—S2A—Sn284.16 (9)
C8—S3—Sn189.22 (9)C8A—S3A—Sn287.98 (9)
C8—S4—Sn186.37 (9)C8A—S4A—Sn284.96 (9)
C1—N1—C2122.5 (2)C1A—N1A—C5A122.0 (2)
C1—N1—C5122.6 (2)C1A—N1A—C2A123.4 (2)
C2—N1—C5114.9 (2)C5A—N1A—C2A114.5 (2)
C8—N2—C12122.5 (2)C8A—N2A—C9A122.4 (2)
C8—N2—C9122.6 (2)C8A—N2A—C12A122.1 (2)
C12—N2—C9114.8 (2)C9A—N2A—C12A115.5 (2)
N1—C1—S2123.62 (19)N1A—C1A—S2A122.7 (2)
N1—C1—S1118.58 (19)N1A—C1A—S1A119.4 (2)
S2—C1—S1117.77 (14)S2A—C1A—S1A117.94 (16)
N1—C2—C3112.5 (2)N1A—C2A—C3A110.9 (2)
N1—C2—H2A109.1N1A—C2A—H2A1109.5
C3—C2—H2A109.1C3A—C2A—H2A1109.5
N1—C2—H2B109.1N1A—C2A—H2A2109.5
C3—C2—H2B109.1C3A—C2A—H2A2109.5
H2A—C2—H2B107.8H2A1—C2A—H2A2108.1
C4—C3—C2126.2 (3)C4A—C3A—C2A123.2 (3)
C4—C3—H3116.9C4A—C3A—H3A118.4
C2—C3—H3116.9C2A—C3A—H3A118.4
C3—C4—H4A120.0C3A—C4A—H4A1120.0
C3—C4—H4B120.0C3A—C4A—H4A2120.0
H4A—C4—H4B120.0H4A1—C4A—H4A2120.0
N1—C5—C6111.3 (2)N1A—C5A—C6A110.9 (2)
N1—C5—H5A109.4N1A—C5A—H5A1109.5
C6—C5—H5A109.4C6A—C5A—H5A1109.5
N1—C5—H5B109.4N1A—C5A—H5A2109.5
C6—C5—H5B109.4C6A—C5A—H5A2109.5
H5A—C5—H5B108.0H5A1—C5A—H5A2108.0
C7—C6—C5124.0 (3)C7A—C6A—C5A122.9 (4)
C7—C6—H6118.0C7A—C6A—H6A118.5
C5—C6—H6118.0C5A—C6A—H6A118.5
C6—C7—H7A120.0C6A—C7A—H7A1120.0
C6—C7—H7B120.0C6A—C7A—H7A2120.0
H7A—C7—H7B120.0H7A1—C7A—H7A2120.0
N2—C8—S4122.3 (2)N2A—C8A—S4A121.67 (19)
N2—C8—S3121.3 (2)N2A—C8A—S3A120.11 (19)
S4—C8—S3116.40 (15)S4A—C8A—S3A118.21 (15)
N2—C9—C10109.6 (2)N2A—C9A—C10A113.2 (2)
N2—C9—H9A109.8N2A—C9A—H9A1108.9
C10—C9—H9A109.8C10A—C9A—H9A1108.9
N2—C9—H9B109.8N2A—C9A—H9A2108.9
C10—C9—H9B109.8C10A—C9A—H9A2108.9
H9A—C9—H9B108.2H9A1—C9A—H9A2107.7
C11—C10—C9123.4 (3)C11A—C10A—C9A126.1 (3)
C11—C10—H10118.3C11A—C10A—H10A117.0
C9—C10—H10118.3C9A—C10A—H10A117.0
C10—C11—H11A120.0C10A—C11A—H11C120.0
C10—C11—H11B120.0C10A—C11A—H11D120.0
H11A—C11—H11B120.0H11C—C11A—H11D120.0
N2—C12—C13110.8 (2)N2A—C12A—C13A112.3 (2)
N2—C12—H12A109.5N2A—C12A—H12C109.1
C13—C12—H12A109.5C13A—C12A—H12C109.1
N2—C12—H12B109.5N2A—C12A—H12D109.1
C13—C12—H12B109.5C13A—C12A—H12D109.1
H12A—C12—H12B108.1H12C—C12A—H12D107.9
C14—C13—C12123.8 (3)C14A—C13A—C12A126.5 (3)
C14—C13—H13118.1C14A—C13A—H13A116.7
C12—C13—H13118.1C12A—C13A—H13A116.7
C13—C14—H14A120.0C13A—C14A—H14C120.0
C13—C14—H14B120.0C13A—C14A—H14D120.0
H14A—C14—H14B120.0H14C—C14A—H14D120.0
C20—C15—C16118.6 (2)C16A—C15A—C20A118.3 (2)
C20—C15—Sn1118.07 (19)C16A—C15A—Sn2120.81 (19)
C16—C15—Sn1123.31 (19)C20A—C15A—Sn2120.91 (18)
C17—C16—C15120.3 (2)C17A—C16A—C15A121.1 (3)
C17—C16—H16119.8C17A—C16A—H16A119.5
C15—C16—H16119.8C15A—C16A—H16A119.5
C18—C17—C16120.4 (3)C18A—C17A—C16A119.8 (3)
C18—C17—H17119.8C18A—C17A—H17A120.1
C16—C17—H17119.8C16A—C17A—H17A120.1
C19—C18—C17119.9 (3)C17A—C18A—C19A120.3 (2)
C19—C18—H18120.1C17A—C18A—H18A119.9
C17—C18—H18120.1C19A—C18A—H18A119.9
C18—C19—C20119.7 (2)C18A—C19A—C20A119.7 (3)
C18—C19—H19120.2C18A—C19A—H19A120.2
C20—C19—H19120.2C20A—C19A—H19A120.2
C19—C20—C15121.2 (2)C15A—C20A—C19A120.9 (2)
C19—C20—H20119.4C15A—C20A—H20A119.6
C15—C20—H20119.4C19A—C20A—H20A119.6
C26—C21—C22117.6 (2)C22A—C21A—C26A118.0 (3)
C26—C21—Sn1123.63 (19)C22A—C21A—Sn2118.00 (19)
C22—C21—Sn1118.80 (19)C26A—C21A—Sn2124.0 (2)
C23—C22—C21121.4 (3)C21A—C22A—C23A121.3 (3)
C23—C22—H22119.3C21A—C22A—H22A119.4
C21—C22—H22119.3C23A—C22A—H22A119.4
C24—C23—C22120.2 (3)C24A—C23A—C22A119.7 (3)
C24—C23—H23119.9C24A—C23A—H23A120.1
C22—C23—H23119.9C22A—C23A—H23A120.1
C23—C24—C25119.4 (3)C25A—C24A—C23A119.7 (3)
C23—C24—H24120.3C25A—C24A—H24A120.1
C25—C24—H24120.3C23A—C24A—H24A120.1
C24—C25—C26120.1 (3)C24A—C25A—C26A120.7 (3)
C24—C25—H25120.0C24A—C25A—H25A119.7
C26—C25—H25120.0C26A—C25A—H25A119.7
C21—C26—C25121.3 (3)C21A—C26A—C25A120.5 (3)
C21—C26—H26119.4C21A—C26A—H26A119.8
C25—C26—H26119.4C25A—C26A—H26A119.8
C2—N1—C1—S20.1 (3)C5A—N1A—C1A—S2A4.7 (4)
C5—N1—C1—S2179.23 (18)C2A—N1A—C1A—S2A175.2 (2)
C2—N1—C1—S1178.18 (18)C5A—N1A—C1A—S1A175.4 (2)
C5—N1—C1—S11.0 (3)C2A—N1A—C1A—S1A4.8 (4)
Sn1—S2—C1—N1177.4 (2)Sn2—S2A—C1A—N1A172.9 (2)
Sn1—S2—C1—S10.89 (13)Sn2—S2A—C1A—S1A7.00 (14)
Sn1—S1—C1—N1177.43 (19)Sn2—S1A—C1A—N1A172.4 (2)
Sn1—S1—C1—S20.95 (13)Sn2—S1A—C1A—S2A7.53 (15)
C1—N1—C2—C395.8 (3)C1A—N1A—C2A—C3A98.2 (3)
C5—N1—C2—C385.0 (3)C5A—N1A—C2A—C3A81.9 (3)
N1—C2—C3—C412.5 (4)N1A—C2A—C3A—C4A105.2 (3)
C1—N1—C5—C691.2 (3)C1A—N1A—C5A—C6A97.9 (3)
C2—N1—C5—C688.0 (3)C2A—N1A—C5A—C6A82.0 (3)
N1—C5—C6—C7122.3 (3)N1A—C5A—C6A—C7A114.6 (4)
C12—N2—C8—S4179.3 (2)C9A—N2A—C8A—S4A2.4 (4)
C9—N2—C8—S41.2 (4)C12A—N2A—C8A—S4A173.87 (19)
C12—N2—C8—S30.7 (4)C9A—N2A—C8A—S3A178.66 (19)
C9—N2—C8—S3178.79 (19)C12A—N2A—C8A—S3A5.1 (3)
Sn1—S4—C8—N2178.1 (2)Sn2—S4A—C8A—N2A175.2 (2)
Sn1—S4—C8—S31.92 (13)Sn2—S4A—C8A—S3A3.74 (14)
Sn1—S3—C8—N2178.1 (2)Sn2—S3A—C8A—N2A175.1 (2)
Sn1—S3—C8—S41.99 (14)Sn2—S3A—C8A—S4A3.88 (15)
C8—N2—C9—C10101.8 (3)C8A—N2A—C9A—C10A88.1 (3)
C12—N2—C9—C1076.4 (3)C12A—N2A—C9A—C10A95.3 (3)
N2—C9—C10—C11105.3 (3)N2A—C9A—C10A—C11A9.9 (4)
C8—N2—C12—C13104.1 (3)C8A—N2A—C12A—C13A90.9 (3)
C9—N2—C12—C1377.6 (3)C9A—N2A—C12A—C13A85.6 (3)
N2—C12—C13—C14110.9 (4)N2A—C12A—C13A—C14A13.3 (4)
C20—C15—C16—C170.4 (4)C20A—C15A—C16A—C17A0.9 (4)
Sn1—C15—C16—C17176.7 (2)Sn2—C15A—C16A—C17A177.9 (2)
C15—C16—C17—C180.9 (4)C15A—C16A—C17A—C18A0.7 (4)
C16—C17—C18—C190.7 (4)C16A—C17A—C18A—C19A0.1 (4)
C17—C18—C19—C200.0 (4)C17A—C18A—C19A—C20A0.7 (4)
C18—C19—C20—C150.6 (4)C16A—C15A—C20A—C19A0.3 (4)
C16—C15—C20—C190.4 (4)Sn2—C15A—C20A—C19A178.47 (19)
Sn1—C15—C20—C19177.60 (19)C18A—C19A—C20A—C15A0.5 (4)
C26—C21—C22—C230.7 (4)C26A—C21A—C22A—C23A1.2 (4)
Sn1—C21—C22—C23180.0 (2)Sn2—C21A—C22A—C23A179.5 (2)
C21—C22—C23—C240.2 (4)C21A—C22A—C23A—C24A1.1 (4)
C22—C23—C24—C250.5 (4)C22A—C23A—C24A—C25A0.4 (4)
C23—C24—C25—C260.1 (4)C23A—C24A—C25A—C26A0.1 (5)
C22—C21—C26—C251.2 (4)C22A—C21A—C26A—C25A0.7 (4)
Sn1—C21—C26—C25179.5 (2)Sn2—C21A—C26A—C25A180.0 (2)
C24—C25—C26—C210.9 (4)C24A—C25A—C26A—C21A0.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C15A–C20A) and (C21A–C26A) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.952.833.774 (3)172
C7—H7B···Cg2ii0.952.923.582 (3)128
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Selected geometric parameters (Å, °) for (I) top
Parameter(I)Parameter(I)
Sn—S12.4749 (4)Sn—S22.9456 (5)
Sn—C112.1427 (19)Sn—C212.130 (2)
Sn—C312.1673 (19)C1—S11.7559 (19)
C1—S21.6894 (19)C1—N11.330 (3)
S1—Sn—S265.470 (14)C11—Sn—C21111.15 (7)
C11—Sn—C31104.14 (7)C21—Sn—C31107.13 (7)
S1—Sn—C11128.76 (5)S2—Sn—C31156.01 (5)
Selected geometric parameters (Å, °) for the two independent molecules in (II) top
ParameterSn1-moleculeSn2-molecule
Sn—S12.5501 (6)2.5585 (7)
Sn—S22.7393 (7)2.7664 (7)
Sn—S32.5726 (7)2.5700 (6)
Sn—S42.6754 (6)2.6750 (6)
C1—S11.742 (3)1.740 (3)
C1—S21.710 (3)1.704 (3)
C8—S31.738 (3)1.733 (3)
C8—S41.715 (3)1.716 (3)
C1—N11.326 (3)1.328 (4)
C8—N21.318 (3)1.327 (3)
S1—Sn—S267.824 (19)67.18 (2)
S3—Sn—S467.97 (2)68.69 (2)
S1—Sn—S3154.38 (2)149.00 (2)
S2—Sn—C21159.42 (7)161.40 (7)
S4—Sn—C15160.59 (7)159.91 (7)
C15—Sn—C2199.84 (9)103.34 (9)
N1—C2—C3—C412.5 (4)9.9 (4)a
N1—C5—C6—C7-122.3 (3)13.3 (4)a
N2—C9—C10—C11105.3 (3)105.2 (3)a
N2—C12—C13—C14110.9 (4)114.6 (4)a
Note: (a) torsion angles are the for inverted form of the Sn2-molecule.
Summary of short interatomic contacts (Å) in (I) and (II)a top
ContactDistanceSymmetry operation
(I)
C12···H62.76-1 + x, y, z
C16···H5B2.801 - x, - y, 1 - z
C25···H4B2.78x, 1/2 - y, -1/2 + z
C26···H132.741 + x, y, z
C33···H2B2.791 - x, 1 - y, 1 - z
H15···H242.191 - x, -1/2 + y, 1/2 - z
S1···H7B2.91-1 + x, y, z
S1···H2A2.961 - x, 1 - y, 1 - z
(II)
S1···C11A3.455 (3)1 - x, 1 - y, 1 - z
S4···C12A3.473 (3)1 - x, 1 - y, 1 - z
C11···C23A3.386 (5)x, y, z
C11···H23A2.81x, y, z
C19···H11B2.711 + x, 1/2 - y, 1/2 + z
C21···H12D2.781 - x, 1 - y, 1 - z
H12A···H9A22.161 - x, -1/2 + y, 1/2 - z
H17···H262.181 + x, y, z
C4A···H9A12.751 - x, 1 - y, -z
S1A···H182.911 - x, 1/2 - y, -1/2 + z
H17···H13A2.332 - x, 1 - y, 1 - z
Note: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I), the Sn1-molecule in (II) and the Sn2-molecule in (II) top
ContactPercentage contribution
(I)Sn1-molecule in (II)Sn2-molecule in (II)
H···H62.259.964.9
C···H/H···C28.424.320.1
S···H/H···S8.614.413.6
N···H/H··· N0.10.80.7
C···C0.40.30.1
S···C/C···S0.20.40.6
Sn···H/H···Sn0.10.00.0
Summary of interaction energies (kJ mol-1) calculated for (I) and (II) top
ContactR (Å)EeleEpolEdisErepEtot
(I)a
H13···C26i +8.06-13.8-5.6-68.542.5-45.0
C13—H13···Cg(C21–C26)i +
C23—H23···Cg(C31–C36)i +
H6···C12i +
H7B···S1i
C16 ···H5Bii8.42-21.8-5.6-52.229.1-49.3
C33 ···H2Biii +8.00-21.2-7.0-59.229.5-55.6
S1···H2Aiii
C25···H4Biv9.91-0.6-0.8-23.38.4-15.2
H15···H24v12.94-2.6-0.5-12.59.1-6.9
(II)b
S1···C11Ai +8.68-25.4-8.6-67.844.0-57.0
S4···C12Ai +
C7—H7B···Cg(C21A–C26A)i +
C21···H12Di
C4A···H9A1ii9.0-28.8-7.3-69.049.0-56.5
C7—H7A···Cg(C15A–C20A)iii +9.21-19.6-7.4-61.333.7-52.6
H17···H13Aiii
H17···H26iv9.62-12.0-5.0-51.225.9-40.6
C11···C23Av9.93-10.2-2.9-44.123.5-33.0
C11···H23Av
H12A···H9A2vi10.81-5.9-2.4-30.614.5-23.4
S1A···H18vii10.11-5.2-3.6-34.318.9-23.
C19···H11Bviii12.51-7.4-2.6-20.59.8-19.8
Notes: (a) Symmetry operations for (I): (i) -1 + x, y, z; (ii) 1 - x, - y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) x 1/2 - y, -1/2 + z; (v) 1 - x ,-1/2 + y, 1/2 - z. (b) Symmetry operations for (II): (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, - z; (iii) 2 - x, 1 - y, 1 - z; (iv) 1 + x, y, z; (v) x, y, z; (vi) 1 - x, -1/2 + y, 1/2 - z; (vii) 1 - x, 1/2 - y, -1/2 + z; (viii) 1 + x, 1/2 - y, 1/2 + z.
 

Footnotes

Additional correspondence author, email: awang_normah@yahoo.com.

Acknowledgements

The authors gratefully acknowledge the Faculty of Health Sciences and the Faculty of Science and Technology of the Universiti Kebangsaan Malaysia for providing essential laboratory facilities and for technical support from the laboratory assistants. The Universiti Teknologi MARA Puncak Alam is thanked for the elemental analysis.

Funding information

This work was supported by the Fundamental Research Grant Scheme (FRGS/1/2018/STG01/UKM/02/20) awarded by the Ministry of Education (MOE). Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (Grant no. STR-RCTR-RCCM-001-2019).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAdeyemi, J. O., Onwudiwe, D. C., Ekennia, A. C., Anokwuru, C. P., Nundkumar, N., Singh, M. & Hosten, E. C. (2019). Inorg. Chim. Acta, 485, 64–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationAjibade, P. A., Onwudiwe, D. C. & Moloto, M. J. (2011). Polyhedron, 30, 246–252.  Web of Science CrossRef CAS Google Scholar
First citationAwang, N., Baba, I., Yamin, B. M., Othman, M. S. & Kamaludin, N. F. (2011). Am. J. Appl. Sci. 8, 310–317.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421–439. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationHaezam, F. N., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 1479–1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202–1215.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293–311.  CrossRef CAS Google Scholar
First citationIshak, D. H. A., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y. K., Nordin, N., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). J. Inorg. Biochem. 130, 38–51.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127–141.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754–760.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Lai, C. S., Wu, J., Ho, P. C., de Vos, D. & Tiekink, E. R. T. (2007). J. Inorg. Biochem. 101, 809–816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLindley, P. F. & Carr, P. (1974). J. Cryst. Mol. Struct. 4, 173–185.  CSD CrossRef CAS Google Scholar
First citationMohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130–1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269–1274.  CAS Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260–265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018a). Acta Cryst. E74, 302–308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018b). Acta Cryst. E74, 630–637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Y. J., Tan, Y. S., Yeo, C. I., Chew, J. & Tiekink, E. R. T. (2019). J. Inorg. Biochem. 192, 107–118.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48–62.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds