research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, DFT and Hirshfeld surface analysis of (E)-N′-[(1-chloro-3,4-di­hydro­naph­thal­en-2-yl)methyl­­idene]benzohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aDrug Discovery Lab, Department of Chemistry, Annamalai University, Chidambaram 608002, Tamil Nadu, India, and bDepartment of Physics, Ramaiah Institute of Technology, Bengaluru 560054, India
*Correspondence e-mail: anilgn@msrit.edu, profdrskabilanau@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 13 December 2019; accepted 23 December 2019; online 3 January 2020)

In the title compound, C18H15ClN2O·H2O, a benzohydrazide derivative, the dihedral angle between the mean plane of the di­hydro­naphthalene ring system and the phenyl ring is 17.1 (2)°. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the benzohydrazide and water mol­ecules, forming a layer parallel to the bc plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (45.7%) and H⋯C/C⋯H (20.2%) contacts.

1. Chemical context

Benzohydrazides are versatile compounds in medicinal chemistry that are used for the development of new drugs (Veeramanikandan et al., 2015[Veeramanikandan, S. & Benita Sherine, H. (2015). Pharma Chemica, 7, 70-84.]). Benzohydrazide derivatives are potent inhibitors of prostate cancer (Arjun et al., 2019[Arjun, H. A., Elancheran, R., Manikandan, N., Lakshmithendral, K., Ramanathan, M., Bhattacharjee, A., Lokanath, N. K. & Kabilan, S. (2019). Front. Chem. 7, https://doi.org/10.3389/fchem.2019.00474.]) and show anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]), anti-malarial (Melnyk et al., 2006[Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]), entamoeba histolyica (Inam et al., 2016[Inam, A., Mittal, S., Rajala, M. S., Avecilla, F. & Azam, A. (2016). Eur. J. Med. Chem. 124, 445-455.]) and anti-tuberculosis (Bedia et al., 2006[Bedia, K. K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]) activities. Herein we describe the mol­ecular and crystal structures of the title compound, which can act as a potential multidrug ligand for various biological activities. The mol­ecular packing was further studied with Hirshfeld surface analysis and PIXEL methods (Sowmya et al., 2018[Sowmya, A., Kumar, G. N. A., Sujeet, K. & Karki, S. S. (2018). Chemical Data Collections, 17-18, 431-441.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The benzohydrazide mol­ecule adopts an E configuration with respect to the C8=N2 bond. The cyclo­hexene ring (C9–C12/C17/C18) adopts nearly a half-chair conformation, as indicated by the total puckering amplitude QT of 0.431 (3) Å and spherical polar angle θ = 115.6 (3)° with φ = 264.4 (4)°; atom C10 shows a maximum deviation of 0.282 (4) Å from the mean plane. The phenyl ring (C1–C6) and the mean plane of the di­hydro­naphthalene ring system (C9–C18) are inclined to each other by 17.1 (2)°. The central hydrazine fragment (C8/N2/N6/C7/O1) is almost planar, making dihedral angles of 11.0 (2) and 8.49 (18)°, respectively, with the phenyl ring and the mean plane of the di­hydro­naphthalene ring system.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The O—H⋯O hydrogen bond is indicated by a dashed line.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the water mol­ecule forms five hydrogen bonds with three benzohydrazide mol­ecules. The benzohydrazide mol­ecules are stacked in a column along the b-axis direction through O—H⋯O hydrogen bonds (O2—H2A⋯O1i and O2—H2B⋯O1; symmetry code as in Table 1[link]) between the H atoms of the water mol­ecule and the carbonyl O atoms of two adjacent benzohydrazide mol­ecules (Fig. 2[link]). The water mol­ecule also acts as a hydrogen-bond acceptor from other benzohydrazide mol­ecules: N—H⋯O and C—H⋯O hydrogen bonds (N6—H6⋯O2ii, C1—H1⋯O2ii and C8—H8⋯O2ii; Table 1[link]) link the mol­ecules, forming a layer parallel to the bc plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.78 (5) 2.06 (5) 2.829 (4) 166 (5)
O2—H2B⋯O1 0.96 (6) 1.90 (6) 2.858 (4) 171 (5)
N6—H6⋯O2ii 0.93 (5) 1.98 (5) 2.869 (4) 159 (4)
C1—H1⋯O2ii 0.93 2.47 3.350 (5) 158
C8—H8⋯O2ii 0.93 2.48 3.261 (5) 142
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound, showing the O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in these inter­actions have been omitted.

Hirshfeld surface analysis was performed using CrystalExplorer17.5 (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) to qu­antify and visualize the various inter­molecular contacts in the crystal. The Hirshfeld surface for the title compound mapped over dnorm is shown in Fig. 3[link], where the dark-red spot represents a close contact of the water mol­ecule, corresponding to the O—H⋯O inter­actions. Two-dimensional fingerprint plots are shown in Fig. 4[link]. The most important contributions to the crystal packing are from H⋯H/H⋯H (45.7%), C⋯H/H⋯C (20.2%), O⋯H/H⋯O (9.4%), Cl⋯H/H⋯Cl (11.3%), C⋯C(6.4%) and C⋯N/N⋯C(3.4%) inter­actions.

[Figure 3]
Figure 3
Hirshfeld surface mapped over dnorm (range −0.575 to 1.326 a.u.) for the title compound showing the O—H⋯O hydrogen bond.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound with the percentage contribution of the inter­molecular contacts. The di and de values are the closest inter­nal and external distances (Å) from given points on the Hirshfeld surface.

4. Inter­action energies and theoretical calculations

The various inter­molecular inter­action energies of the title crystal were calculated using the PIXEL-CLP module (Gavezzotti, 2003[Gavezzotti, A. (2003). CrystEngComm, 5, 439-446.]). The lattice energy of the crystal structure is found to be −67.2 kJ mol−1 with the energy partitioned into Coulombic, polarization, dispersion and repulsion energy components of −68.4, −30.7, −95.3 and 128.1 kJ mol−1, respectively. The important mol­ecular pairs (motifs AF) and their inter­action energies are shown in Fig. 5[link], and the partitioned inter­molecular energies along with the above inter­actions are given in Table 2[link]. The N—H⋯O inter­action energy in motif F (−32.8 kJ mol−1) is strongest followed by the O—H⋯O inter­actions in motifs A and E (−27.1 and −23.9 kJ mol−1, respectively), and the C—H⋯O inter­action in motif B (−16 kJ mol−1).

Table 2
List of inter­molecular inter­action energies (kJ mol−1) in the crystal of the title compound

Code Symmetry Centroid distance Ecol Epol Eenergy-dispersive Erep Etotal Inter­action
A x, y + 1, z 4.812 −37.4 −14.2 −64.3 88.7 −27.1 O—H⋯O
B -x + 1, −y + 1, z − [{1\over 2}] 7.513 −6.7 −4.3 −20.9 15.9 −16.0 C—H⋯O
C -x + 1, −y + [{1\over 2}], z 9.210 −2.2 −4.2 −16.1 6.6 −15.9 Cl⋯H
D -x + [{1\over 2}], y − [{1\over 2}], z + [{1\over 2}] 11.475 −1.9 −0.9 −8.9 3.8 −7.9 H⋯H
E x, y, z 5.924 −33.1 −11.6 −12.3 33.1 −23.9 O—H⋯O
F x, y − 1, z 4.077 −38.5 −12.0 −13.0 30.7 −32.8 N—H⋯O
[Figure 5]
Figure 5
Important mol­ecular pairs in the crystal of the title compound and their inter­action energies.

Density functional theory (DFT) calculations using the B3LYP (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) method at the 6-31++G(d,p) level were performed using GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, ., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The DFT-optimized structure of the title compound is found to be in good agreement with the experimental geometry. Frontier mol­ecular orbitals are plotted to specify the distribution of electronic densities (Fig. 6[link]); the HOMO–LUMO gap of 3.6349 eV indicates that the nature of mol­ecule is soft. The quantum-chemical parameters, such as hardness (η), softness (ζ), chemical potential (μ), electrophilicity (ω) and electronegativity (χ), were also calculated (Table 3[link]), using the HOMO and LUMO energies. The electrophilicity index (ω) of 4.3148 eV, which measures the energy lowering due to the electron flow between the donor and acceptor, also supports the soft nature of the title compound. The lower chemical potential (μ) of −3.9602 eV signifies the lesser resistance towards the deformation or polarization of the electron cloud of the atoms or mol­ecule under a small perturbation of chemical reaction.

Table 3
HUMO–LUMO energies and quantum-chemical parameters (eV) for the title compound

HOMO energy: EH −5.7777
LUMO energy: EL −2.1428
Energy gap: Eg = EHEL 3.6349
Chemical hardness: η = |EHEL|/2 1.8174
Softness: ζ = 1/2η 0.2751
Electrophilicity index: ω = μ2/2η 4.3148
Chemical Potential: μ = −(EH + EL/2) −3.9602
Electronegativity: χ = -μ 3.9602
[Figure 6]
Figure 6
The frontier mol­ecular orbitals, highest-occupied mol­ecular orbital (HOMO) and the lowest-unoccupied mol­ecular orbital (LUMO), calculated for the title compound.

5. Database Survey

A search of the Cambridge Structural Database (Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 1579 hits for the benzohydrazides with different substituents and 260 hits for their hydrate compounds. The water mol­ecules mediate strong hydrogen bonds in hydrate compounds such as (E)-3,4,5-trimeth­oxy-N-[(6-meth­oxy-4-oxo-4H-chromen-3-yl)methyl­idene]benzo­hydrazide monohydrate (Ishikawa & Watanabe, 2014a[Ishikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o784.]), (E)-4-meth­oxy-N-[(6-methyl-4-oxo-4H-chromen-3-yl)methyl­idene]benzohydrazide monohydrate (Ishikawa & Watanabe, 2014b[Ishikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o832.]), N-[(E)-(3-fluoro­pyridin-2-yl)methyl­idene]benzohydrazide monohydrate (Nair et al., 2012[Nair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709.]), (E)-4-meth­oxy-N-(2,3,4-tri­meth­oxy­benzyl­idene)benzohydrazide monohydrate (Veer­am­anikandan et al., 2016[Veeramanikandan, S., Sherine, H. B., Gunasekaran, B. & Chakkaravarthi, G. (2016). IUCrData, 1, x161526.]), 4-chloro-N-[(E)-2-chloro­benzyl­idene]benzohydrazide monohydrate (Mague et al., 2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Potgieter, H. & Albayati, M. R. (2014). Acta Cryst. E70, o612.]), 4-chloro-N-[(Z)-4-(di­methyl­amino)­benzyl­idene]benzo­hydra­zide monohydrate (Fun et al., 2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]), (E)-N-(4-but­oxy-3-meth­oxy­benzyl­idene)benzohydrazide (Zhen & Han, 2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4282-o4284.]) and (E)-4-hy­droxy-N-(3-hy­droxy­benzyl­idene)benzo­hydrazide monohydrate (Harrison et al., 2014[Harrison, W. T. A., Low, J. N. & Wardell, J. L. (2014). Acta Cryst. E70, o891-o892.]). The presence of O—H⋯N hydrogen bonds in addition to water-mediated O—H⋯O inter­actions is a common feature in many of the reported structures, but such an O—H⋯N inter­action is not observed in the title compound.

6. Synthesis and crystallization

Phosphoryl chloride (POCl3) (0.171mol) was slowly added to dry dimethyl formamide at 273 K, and then 3,4-di­hydro­naphthalen-1(2H)-one (0.174 mol) was added. The mixture was stirred at 353 K for 1.5 h. The reaction mixture was then poured into aqueous sodium acetate (3 mol l−1) and the product was extracted with ethyl acetate. Evaporating the ethyl acetate gave an oil, which on cooling solidified to yield 1-chloro-3,4-di­hydro­naphthalene-2-carbaldehyde. The title compound was prepared by refluxing 1-chloro-3,4-di­hydro­naphthalene-2-carbaldehyde (0.01 mol) with benzohydrazide (0.01 mol) in ethanol (5 ml) and few drops of acetic acid for 8 h. The reaction mixture was then cooled to room temperature, excess ethanol was removed under vacuum and the residue was quenched with ice. The precipitate was filtered, dried and crystallized from ethanol. The completion of the reaction was monitored by thin layer chromatography. Single crystals suitable for X-ray diffraction study were grown from an N,N-di­methyl­formamide solution by slow evaporation. Yield: 86%; m.p.: 438–440 K, colourless solid. 1H NMR (DMSO-d6, 400 MHz, ppm): δ 12.10 (s, 1H, NH), 8.77 (s, 1H), 7.87 (d, J = 7.2, 2H), 7.64–7.25 (m, 7H), 2.808–2.764 (m, 4H). 13C NMR: δ 163.34, 143.77, 144.5, 136.97, 132.72, 132.63, 131.65, 130.73, 129.80, 129.49, 128.16, 128.00, 127.41, 124.94, 29.50, 26.54, 23.65, 21.51. Mass calculated for C18H15ClN2O [M+H]+: 310.08; found: 310.9758.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The N-bound H atom (H6) and water H atoms (H2A and H2B) were located in a difference-Fourier map and refined isotropically. All C-bound H atoms were placed in idealized positions (C—H = 0.93 or 0.97 Å) and treated as riding with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C18H15ClN2O·H2O
Mr 328.78
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 301
a, b, c (Å) 26.2059 (18), 4.8119 (3), 12.8084 (9)
V3) 1615.14 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.28 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker APEXII microsource
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.890, 0.915
No. of measured, independent and observed [I > 2σ(I)] reflections 51179, 4917, 3162
Rint 0.069
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.151, 1.03
No. of reflections 4917
No. of parameters 220
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.30
Absolute structure Flack x determined using 1242 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.04 (2)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-N'-[(1-Chloro-3,4-dihydronaphthalen-2-yl)methylidene]\ benzohydrazide monohydrate top
Crystal data top
C18H15ClN2O·H2OF(000) = 688
Mr = 328.78Dx = 1.352 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 689 reflections
a = 26.2059 (18) Åθ = 2.2–30.1°
b = 4.8119 (3) ŵ = 0.25 mm1
c = 12.8084 (9) ÅT = 301 K
V = 1615.14 (19) Å3Block, white
Z = 40.28 × 0.22 × 0.21 mm
Data collection top
Bruker APEXII microsource
diffractometer
4917 independent reflections
Radiation source: microfocus sealed X-ray tube3162 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.069
Detector resolution: 7.9 pixels mm-1θmax = 30.6°, θmin = 2.2°
ω and φ scansh = 3736
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 66
Tmin = 0.890, Tmax = 0.915l = 1818
51179 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.2866P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4917 reflectionsΔρmax = 0.18 e Å3
220 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl010.64431 (5)0.3485 (3)0.24491 (8)0.0815 (4)
O10.48097 (11)0.3470 (5)0.58021 (18)0.0577 (6)
O20.48890 (14)0.1565 (7)0.6974 (2)0.0676 (8)
N60.50596 (11)0.2027 (6)0.4205 (2)0.0463 (6)
N20.54124 (11)0.0257 (5)0.4646 (2)0.0469 (6)
C10.44073 (17)0.6214 (7)0.3284 (3)0.0589 (9)
H10.4642420.5372110.2842020.071*
C20.40586 (19)0.8116 (8)0.2890 (3)0.0699 (11)
H20.4058100.8526990.2180850.084*
C30.37164 (16)0.9389 (9)0.3536 (4)0.0677 (11)
H30.3487101.0678830.3267560.081*
C40.37102 (15)0.8766 (9)0.4583 (4)0.0661 (10)
H40.3473890.9617950.5019960.079*
C50.40541 (13)0.6878 (8)0.4987 (3)0.0543 (8)
H50.4050230.6482100.5697950.065*
C60.44038 (12)0.5569 (6)0.4347 (2)0.0440 (7)
C70.47695 (12)0.3606 (6)0.4845 (2)0.0429 (6)
C80.57029 (13)0.1000 (8)0.3996 (3)0.0514 (8)
H80.5665520.0732990.3281420.062*
C90.60942 (13)0.2864 (7)0.4405 (3)0.0500 (7)
C100.61014 (14)0.3515 (8)0.5571 (3)0.0546 (8)
H10A0.5931930.2038070.5952820.066*
H10B0.5918530.5233340.5701380.066*
C110.66436 (15)0.3790 (9)0.5944 (3)0.0603 (9)
H11A0.6642040.4504560.6652420.072*
H11B0.6799390.1962120.5959340.072*
C120.69626 (13)0.5672 (8)0.5273 (3)0.0548 (8)
C130.73640 (15)0.7232 (10)0.5674 (4)0.0703 (11)
H130.7437170.7141460.6383230.084*
C140.76533 (16)0.8898 (10)0.5042 (5)0.0796 (14)
H140.7918940.9932960.5326150.096*
C150.75553 (16)0.9049 (10)0.4007 (5)0.0771 (13)
H150.7752021.0204960.3586640.093*
C160.71653 (16)0.7501 (10)0.3565 (4)0.0692 (11)
H160.7104300.7591360.2850890.083*
C170.68627 (13)0.5795 (8)0.4204 (3)0.0549 (8)
C180.64461 (13)0.4061 (8)0.3791 (3)0.0536 (8)
H2A0.4899 (19)0.281 (11)0.658 (4)0.068 (14)*
H2B0.4887 (19)0.005 (13)0.653 (4)0.082 (15)*
H60.4993 (18)0.204 (10)0.349 (4)0.071 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl010.0854 (7)0.1131 (10)0.0460 (5)0.0167 (6)0.0052 (5)0.0096 (6)
O10.0824 (17)0.0516 (13)0.0391 (11)0.0173 (12)0.0005 (11)0.0002 (10)
O20.107 (2)0.0580 (17)0.0377 (12)0.0104 (15)0.0058 (13)0.0033 (13)
N60.0548 (15)0.0444 (14)0.0396 (13)0.0079 (12)0.0029 (12)0.0010 (11)
N20.0532 (15)0.0418 (13)0.0456 (13)0.0061 (11)0.0046 (11)0.0014 (11)
C10.082 (2)0.0491 (19)0.0460 (18)0.0105 (17)0.0023 (17)0.0016 (15)
C20.099 (3)0.056 (2)0.054 (2)0.009 (2)0.017 (2)0.0074 (18)
C30.063 (2)0.052 (2)0.088 (3)0.0062 (18)0.016 (2)0.009 (2)
C40.051 (2)0.063 (2)0.085 (3)0.0085 (17)0.0055 (19)0.004 (2)
C50.0508 (18)0.0550 (19)0.057 (2)0.0037 (15)0.0072 (15)0.0048 (16)
C60.0511 (17)0.0363 (13)0.0445 (15)0.0031 (12)0.0035 (13)0.0007 (12)
C70.0513 (16)0.0380 (14)0.0393 (15)0.0017 (12)0.0007 (12)0.0007 (12)
C80.0556 (18)0.0532 (18)0.0454 (17)0.0059 (15)0.0009 (14)0.0022 (14)
C90.0533 (18)0.0493 (17)0.0475 (18)0.0011 (14)0.0012 (14)0.0040 (14)
C100.0507 (17)0.064 (2)0.0495 (18)0.0105 (16)0.0004 (14)0.0084 (15)
C110.063 (2)0.064 (2)0.054 (2)0.0048 (18)0.0070 (17)0.0023 (17)
C120.0467 (17)0.0496 (17)0.068 (2)0.0052 (14)0.0017 (16)0.0001 (17)
C130.055 (2)0.073 (3)0.083 (3)0.0009 (19)0.008 (2)0.008 (2)
C140.050 (2)0.072 (3)0.117 (5)0.0076 (19)0.003 (2)0.001 (3)
C150.056 (2)0.069 (3)0.107 (4)0.009 (2)0.010 (2)0.015 (2)
C160.062 (2)0.069 (2)0.077 (3)0.0004 (19)0.009 (2)0.016 (2)
C170.0453 (17)0.0497 (18)0.070 (2)0.0026 (14)0.0001 (15)0.0058 (17)
C180.0548 (18)0.0603 (19)0.0457 (17)0.0032 (15)0.0027 (15)0.0074 (16)
Geometric parameters (Å, º) top
Cl01—C181.741 (4)C8—H80.9300
O1—C71.233 (4)C9—C181.342 (5)
O2—H2A0.79 (6)C9—C101.527 (5)
O2—H2B0.96 (6)C10—C111.505 (5)
N6—C71.352 (4)C10—H10A0.9700
N6—N21.378 (4)C10—H10B0.9700
N6—H60.93 (5)C11—C121.502 (6)
N2—C81.280 (4)C11—H11A0.9700
C1—C21.389 (6)C11—H11B0.9700
C1—C61.396 (5)C12—C131.390 (6)
C1—H10.9300C12—C171.396 (5)
C2—C31.365 (7)C13—C141.368 (7)
C2—H20.9300C13—H130.9300
C3—C41.374 (7)C14—C151.352 (7)
C3—H30.9300C14—H140.9300
C4—C51.381 (5)C15—C161.385 (7)
C4—H40.9300C15—H150.9300
C5—C61.381 (5)C16—C171.404 (6)
C5—H50.9300C16—H160.9300
C6—C71.489 (4)C17—C181.472 (5)
C8—C91.459 (5)
H2A—O2—H2B104 (5)C9—C10—H10A109.7
C7—N6—N2118.4 (3)C11—C10—H10A109.7
C7—N6—H6119 (3)C9—C10—H10B109.7
N2—N6—H6122 (3)C11—C10—H10B109.7
C8—N2—N6115.1 (3)H10A—C10—H10B108.2
C2—C1—C6119.8 (4)C12—C11—C10113.4 (3)
C2—C1—H1120.1C12—C11—H11A108.9
C6—C1—H1120.1C10—C11—H11A108.9
C3—C2—C1120.5 (4)C12—C11—H11B108.9
C3—C2—H2119.7C10—C11—H11B108.9
C1—C2—H2119.7H11A—C11—H11B107.7
C4—C3—C2120.1 (4)C13—C12—C17118.7 (4)
C4—C3—H3120.0C13—C12—C11122.4 (4)
C2—C3—H3120.0C17—C12—C11118.9 (3)
C3—C4—C5120.1 (4)C14—C13—C12121.2 (5)
C3—C4—H4119.9C14—C13—H13119.4
C5—C4—H4119.9C12—C13—H13119.4
C6—C5—C4120.7 (4)C13—C14—C15120.4 (4)
C6—C5—H5119.7C13—C14—H14119.8
C4—C5—H5119.7C15—C14—H14119.8
C5—C6—C1118.8 (3)C14—C15—C16120.8 (4)
C5—C6—C7117.5 (3)C14—C15—H15119.6
C1—C6—C7123.6 (3)C16—C15—H15119.6
O1—C7—N6121.7 (3)C15—C16—C17119.6 (4)
O1—C7—C6121.0 (3)C15—C16—H16120.2
N6—C7—C6117.3 (3)C17—C16—H16120.2
N2—C8—C9118.4 (3)C16—C17—C12119.4 (4)
N2—C8—H8120.8C16—C17—C18122.8 (4)
C9—C8—H8120.8C12—C17—C18117.9 (3)
C18—C9—C8122.4 (3)C9—C18—C17122.8 (3)
C18—C9—C10118.5 (3)C9—C18—Cl01120.5 (3)
C8—C9—C10119.1 (3)C17—C18—Cl01116.6 (3)
C9—C10—C11109.9 (3)
C7—N6—N2—C8174.4 (3)C10—C11—C12—C13149.3 (4)
C6—C1—C2—C30.8 (6)C10—C11—C12—C1732.7 (5)
C1—C2—C3—C40.9 (7)C17—C12—C13—C141.0 (6)
C2—C3—C4—C50.8 (6)C11—C12—C13—C14179.0 (4)
C3—C4—C5—C60.7 (6)C12—C13—C14—C150.4 (7)
C4—C5—C6—C10.7 (5)C13—C14—C15—C160.7 (8)
C4—C5—C6—C7178.7 (3)C14—C15—C16—C171.1 (7)
C2—C1—C6—C50.8 (5)C15—C16—C17—C120.5 (6)
C2—C1—C6—C7178.6 (3)C15—C16—C17—C18179.1 (4)
N2—N6—C7—O10.9 (5)C13—C12—C17—C160.6 (5)
N2—N6—C7—C6178.0 (3)C11—C12—C17—C16178.7 (4)
C5—C6—C7—O110.7 (5)C13—C12—C17—C18178.2 (4)
C1—C6—C7—O1167.2 (3)C11—C12—C17—C180.1 (5)
C5—C6—C7—N6170.5 (3)C8—C9—C18—C17175.8 (3)
C1—C6—C7—N611.6 (5)C10—C9—C18—C175.0 (5)
N6—N2—C8—C9178.7 (3)C8—C9—C18—Cl011.3 (5)
N2—C8—C9—C18173.5 (3)C10—C9—C18—Cl01177.9 (3)
N2—C8—C9—C107.3 (5)C16—C17—C18—C9166.5 (4)
C18—C9—C10—C1136.7 (5)C12—C17—C18—C914.8 (5)
C8—C9—C10—C11144.1 (3)C16—C17—C18—Cl0116.3 (5)
C9—C10—C11—C1249.2 (5)C12—C17—C18—Cl01162.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.78 (5)2.06 (5)2.829 (4)166 (5)
O2—H2B···O10.96 (6)1.90 (6)2.858 (4)171 (5)
N6—H6···O2ii0.93 (5)1.98 (5)2.869 (4)159 (4)
C1—H1···O2ii0.932.473.350 (5)158
C8—H8···O2ii0.932.483.261 (5)142
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z1/2.
List of intermolecular interaction energies (kJ mol-1) in the crystal of the title compound top
CodeSymmetryCentroid distanceEcolEpolEdispErepEtotalInteraction
Ax, y + 1, z4.812-37.4-14.2-64.388.7-27.1O—H···O
B-x + 1, -y + 1, z - 1/27.513-6.7-4.3-20.915.9-16.0C—H···O
C-x + 1, -y + 1/2, z9.210-2.2-4.2-16.16.6-15.9Cl···H
D-x + 1/2, y - 1/2, z + 1/211.475-1.9-0.9-8.93.8-7.9H···H
Ex, y, z5.924-33.1-11.6-12.333.1-23.9O—H···O
Fx, y - 1, z4.077-38.5-12.0-13.030.7-32.8N—H···O
HUMO–LUMO energies and quantum-chemical parameters (eV) for the title compound top
HOMO energy: EH-5.7777
LUMO energy: EL-2.1428
Energy gap: Eg = EH - EL3.6349
Chemical hardness: η = |EH - EL|/21.8174
Softness: ζ = 1/2η0.2751
Electrophilicity index: ω = µ2/2η4.3148
Chemical Potential: µ = -(EH + EL/2)-3.9602
Electronegativity: χ = -µ3.9602
 

Acknowledgements

HAA thanks the DBT for support as a Senior Research Fellow and RE thanks DST–PURSE phase II for support as a Research Associate.

Funding information

Funding for this research was provided by: Government of India, the Ministry of Science & Technology, Department of Biotechnology (DBT) (grant No. BT/PR16268/NER/95/183/2015).

References

First citationInam, A., Mittal, S., Rajala, M. S., Avecilla, F. & Azam, A. (2016). Eur. J. Med. Chem. 124, 445–455.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationArjun, H. A., Elancheran, R., Manikandan, N., Lakshmithendral, K., Ramanathan, M., Bhattacharjee, A., Lokanath, N. K. & Kabilan, S. (2019). Front. Chem. 7, https://doi.org/10.3389/fchem.2019.00474.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBedia, K. K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, ., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGavezzotti, A. (2003). CrystEngComm, 5, 439–446.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Low, J. N. & Wardell, J. L. (2014). Acta Cryst. E70, o891–o892.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o784.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o832.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Potgieter, H. & Albayati, M. R. (2014). Acta Cryst. E70, o612.  CSD CrossRef IUCr Journals Google Scholar
First citationMelnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSowmya, A., Kumar, G. N. A., Sujeet, K. & Karki, S. S. (2018). Chemical Data Collections, 17-18, 431–441.  CrossRef Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationVeeramanikandan, S. & Benita Sherine, H. (2015). Pharma Chemica, 7, 70–84.  CAS Google Scholar
First citationVeeramanikandan, S., Sherine, H. B., Gunasekaran, B. & Chakkaravarthi, G. (2016). IUCrData, 1, x161526.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4282–o4284.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds