research communications
E)-N′-[(1-chloro-3,4-dihydronaphthalen-2-yl)methylidene]benzohydrazide monohydrate
DFT and Hirshfeld surface analysis of (aDrug Discovery Lab, Department of Chemistry, Annamalai University, Chidambaram 608002, Tamil Nadu, India, and bDepartment of Physics, Ramaiah Institute of Technology, Bengaluru 560054, India
*Correspondence e-mail: anilgn@msrit.edu, profdrskabilanau@gmail.com
In the title compound, C18H15ClN2O·H2O, a benzohydrazide derivative, the dihedral angle between the mean plane of the dihydronaphthalene ring system and the phenyl ring is 17.1 (2)°. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the benzohydrazide and water molecules, forming a layer parallel to the bc plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (45.7%) and H⋯C/C⋯H (20.2%) contacts.
CCDC reference: 1973816
1. Chemical context
Benzohydrazides are versatile compounds in medicinal chemistry that are used for the development of new drugs (Veeramanikandan et al., 2015). Benzohydrazide derivatives are potent inhibitors of prostate cancer (Arjun et al., 2019) and show anti-inflammatory (Todeschini et al., 1998), anti-malarial (Melnyk et al., 2006), entamoeba histolyica (Inam et al., 2016) and anti-tuberculosis (Bedia et al., 2006) activities. Herein we describe the molecular and crystal structures of the title compound, which can act as a potential multidrug ligand for various biological activities. The molecular packing was further studied with Hirshfeld surface analysis and PIXEL methods (Sowmya et al., 2018).
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The benzohydrazide molecule adopts an E configuration with respect to the C8=N2 bond. The cyclohexene ring (C9–C12/C17/C18) adopts nearly a half-chair conformation, as indicated by the total puckering amplitude QT of 0.431 (3) Å and spherical polar angle θ = 115.6 (3)° with φ = 264.4 (4)°; atom C10 shows a maximum deviation of 0.282 (4) Å from the mean plane. The phenyl ring (C1–C6) and the mean plane of the dihydronaphthalene ring system (C9–C18) are inclined to each other by 17.1 (2)°. The central hydrazine fragment (C8/N2/N6/C7/O1) is almost planar, making dihedral angles of 11.0 (2) and 8.49 (18)°, respectively, with the phenyl ring and the mean plane of the dihydronaphthalene ring system.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the water molecule forms five hydrogen bonds with three benzohydrazide molecules. The benzohydrazide molecules are stacked in a column along the b-axis direction through O—H⋯O hydrogen bonds (O2—H2A⋯O1i and O2—H2B⋯O1; symmetry code as in Table 1) between the H atoms of the water molecule and the carbonyl O atoms of two adjacent benzohydrazide molecules (Fig. 2). The water molecule also acts as a hydrogen-bond acceptor from other benzohydrazide molecules: N—H⋯O and C—H⋯O hydrogen bonds (N6—H6⋯O2ii, C1—H1⋯O2ii and C8—H8⋯O2ii; Table 1) link the molecules, forming a layer parallel to the bc plane.
Hirshfeld surface analysis was performed using CrystalExplorer17.5 (Spackman & Jayatilaka, 2009) to quantify and visualize the various intermolecular contacts in the crystal. The Hirshfeld surface for the title compound mapped over dnorm is shown in Fig. 3, where the dark-red spot represents a close contact of the water molecule, corresponding to the O—H⋯O interactions. Two-dimensional fingerprint plots are shown in Fig. 4. The most important contributions to the crystal packing are from H⋯H/H⋯H (45.7%), C⋯H/H⋯C (20.2%), O⋯H/H⋯O (9.4%), Cl⋯H/H⋯Cl (11.3%), C⋯C(6.4%) and C⋯N/N⋯C(3.4%) interactions.
4. Interaction energies and theoretical calculations
The various intermolecular interaction energies of the title crystal were calculated using the PIXEL-CLP module (Gavezzotti, 2003). The lattice energy of the is found to be −67.2 kJ mol−1 with the energy partitioned into Coulombic, polarization, dispersion and repulsion energy components of −68.4, −30.7, −95.3 and 128.1 kJ mol−1, respectively. The important molecular pairs (motifs A–F) and their interaction energies are shown in Fig. 5, and the partitioned intermolecular energies along with the above interactions are given in Table 2. The N—H⋯O interaction energy in motif F (−32.8 kJ mol−1) is strongest followed by the O—H⋯O interactions in motifs A and E (−27.1 and −23.9 kJ mol−1, respectively), and the C—H⋯O interaction in motif B (−16 kJ mol−1).
|
Density functional theory (DFT) calculations using the B3LYP (Becke, 1993) method at the 6-31++G(d,p) level were performed using GAUSSIAN09 (Frisch et al., 2009). The DFT-optimized structure of the title compound is found to be in good agreement with the experimental geometry. Frontier molecular orbitals are plotted to specify the distribution of electronic densities (Fig. 6); the HOMO–LUMO gap of 3.6349 eV indicates that the nature of molecule is soft. The quantum-chemical parameters, such as hardness (η), softness (ζ), (μ), (ω) and (χ), were also calculated (Table 3), using the HOMO and LUMO energies. The index (ω) of 4.3148 eV, which measures the energy lowering due to the electron flow between the donor and acceptor, also supports the soft nature of the title compound. The lower (μ) of −3.9602 eV signifies the lesser resistance towards the deformation or polarization of the electron cloud of the atoms or molecule under a small perturbation of chemical reaction.
|
5. Database Survey
A search of the Cambridge Structural Database (Version 5.39; Groom et al., 2016) gave 1579 hits for the benzohydrazides with different substituents and 260 hits for their hydrate compounds. The water molecules mediate strong hydrogen bonds in hydrate compounds such as (E)-3,4,5-trimethoxy-N-[(6-methoxy-4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide monohydrate (Ishikawa & Watanabe, 2014a), (E)-4-methoxy-N-[(6-methyl-4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide monohydrate (Ishikawa & Watanabe, 2014b), N-[(E)-(3-fluoropyridin-2-yl)methylidene]benzohydrazide monohydrate (Nair et al., 2012), (E)-4-methoxy-N-(2,3,4-trimethoxybenzylidene)benzohydrazide monohydrate (Veeramanikandan et al., 2016), 4-chloro-N-[(E)-2-chlorobenzylidene]benzohydrazide monohydrate (Mague et al., 2014), 4-chloro-N-[(Z)-4-(dimethylamino)benzylidene]benzohydrazide monohydrate (Fun et al., 2008), (E)-N-(4-butoxy-3-methoxybenzylidene)benzohydrazide (Zhen & Han, 2005) and (E)-4-hydroxy-N-(3-hydroxybenzylidene)benzohydrazide monohydrate (Harrison et al., 2014). The presence of O—H⋯N hydrogen bonds in addition to water-mediated O—H⋯O interactions is a common feature in many of the reported structures, but such an O—H⋯N interaction is not observed in the title compound.
6. Synthesis and crystallization
Phosphoryl chloride (POCl3) (0.171mol) was slowly added to dry dimethyl formamide at 273 K, and then 3,4-dihydronaphthalen-1(2H)-one (0.174 mol) was added. The mixture was stirred at 353 K for 1.5 h. The reaction mixture was then poured into aqueous sodium acetate (3 mol l−1) and the product was extracted with ethyl acetate. Evaporating the ethyl acetate gave an oil, which on cooling solidified to yield 1-chloro-3,4-dihydronaphthalene-2-carbaldehyde. The title compound was prepared by refluxing 1-chloro-3,4-dihydronaphthalene-2-carbaldehyde (0.01 mol) with benzohydrazide (0.01 mol) in ethanol (5 ml) and few drops of acetic acid for 8 h. The reaction mixture was then cooled to room temperature, excess ethanol was removed under vacuum and the residue was quenched with ice. The precipitate was filtered, dried and crystallized from ethanol. The completion of the reaction was monitored by thin layer Single crystals suitable for X-ray diffraction study were grown from an N,N-dimethylformamide solution by slow evaporation. Yield: 86%; m.p.: 438–440 K, colourless solid. 1H NMR (DMSO-d6, 400 MHz, ppm): δ 12.10 (s, 1H, NH), 8.77 (s, 1H), 7.87 (d, J = 7.2, 2H), 7.64–7.25 (m, 7H), 2.808–2.764 (m, 4H). 13C NMR: δ 163.34, 143.77, 144.5, 136.97, 132.72, 132.63, 131.65, 130.73, 129.80, 129.49, 128.16, 128.00, 127.41, 124.94, 29.50, 26.54, 23.65, 21.51. Mass calculated for C18H15ClN2O [M+H]+: 310.08; found: 310.9758.
7. Refinement
Crystal data, data collection and structure . The N-bound H atom (H6) and water H atoms (H2A and H2B) were located in a difference-Fourier map and refined isotropically. All C-bound H atoms were placed in idealized positions (C—H = 0.93 or 0.97 Å) and treated as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1973816
https://doi.org/10.1107/S2056989019017183/is5528sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019017183/is5528Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C18H15ClN2O·H2O | F(000) = 688 |
Mr = 328.78 | Dx = 1.352 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 689 reflections |
a = 26.2059 (18) Å | θ = 2.2–30.1° |
b = 4.8119 (3) Å | µ = 0.25 mm−1 |
c = 12.8084 (9) Å | T = 301 K |
V = 1615.14 (19) Å3 | Block, white |
Z = 4 | 0.28 × 0.22 × 0.21 mm |
Bruker APEXII microsource diffractometer | 4917 independent reflections |
Radiation source: microfocus sealed X-ray tube | 3162 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.069 |
Detector resolution: 7.9 pixels mm-1 | θmax = 30.6°, θmin = 2.2° |
ω and φ scans | h = −37→36 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −6→6 |
Tmin = 0.890, Tmax = 0.915 | l = −18→18 |
51179 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.151 | w = 1/[σ2(Fo2) + (0.0735P)2 + 0.2866P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4917 reflections | Δρmax = 0.18 e Å−3 |
220 parameters | Δρmin = −0.30 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.04 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl01 | 0.64431 (5) | 0.3485 (3) | 0.24491 (8) | 0.0815 (4) | |
O1 | 0.48097 (11) | −0.3470 (5) | 0.58021 (18) | 0.0577 (6) | |
O2 | 0.48890 (14) | 0.1565 (7) | 0.6974 (2) | 0.0676 (8) | |
N6 | 0.50596 (11) | −0.2027 (6) | 0.4205 (2) | 0.0463 (6) | |
N2 | 0.54124 (11) | −0.0257 (5) | 0.4646 (2) | 0.0469 (6) | |
C1 | 0.44073 (17) | −0.6214 (7) | 0.3284 (3) | 0.0589 (9) | |
H1 | 0.464242 | −0.537211 | 0.284202 | 0.071* | |
C2 | 0.40586 (19) | −0.8116 (8) | 0.2890 (3) | 0.0699 (11) | |
H2 | 0.405810 | −0.852699 | 0.218085 | 0.084* | |
C3 | 0.37164 (16) | −0.9389 (9) | 0.3536 (4) | 0.0677 (11) | |
H3 | 0.348710 | −1.067883 | 0.326756 | 0.081* | |
C4 | 0.37102 (15) | −0.8766 (9) | 0.4583 (4) | 0.0661 (10) | |
H4 | 0.347389 | −0.961795 | 0.501996 | 0.079* | |
C5 | 0.40541 (13) | −0.6878 (8) | 0.4987 (3) | 0.0543 (8) | |
H5 | 0.405023 | −0.648210 | 0.569795 | 0.065* | |
C6 | 0.44038 (12) | −0.5569 (6) | 0.4347 (2) | 0.0440 (7) | |
C7 | 0.47695 (12) | −0.3606 (6) | 0.4845 (2) | 0.0429 (6) | |
C8 | 0.57029 (13) | 0.1000 (8) | 0.3996 (3) | 0.0514 (8) | |
H8 | 0.566552 | 0.073299 | 0.328142 | 0.062* | |
C9 | 0.60942 (13) | 0.2864 (7) | 0.4405 (3) | 0.0500 (7) | |
C10 | 0.61014 (14) | 0.3515 (8) | 0.5571 (3) | 0.0546 (8) | |
H10A | 0.593193 | 0.203807 | 0.595282 | 0.066* | |
H10B | 0.591853 | 0.523334 | 0.570138 | 0.066* | |
C11 | 0.66436 (15) | 0.3790 (9) | 0.5944 (3) | 0.0603 (9) | |
H11A | 0.664204 | 0.450456 | 0.665242 | 0.072* | |
H11B | 0.679939 | 0.196212 | 0.595934 | 0.072* | |
C12 | 0.69626 (13) | 0.5672 (8) | 0.5273 (3) | 0.0548 (8) | |
C13 | 0.73640 (15) | 0.7232 (10) | 0.5674 (4) | 0.0703 (11) | |
H13 | 0.743717 | 0.714146 | 0.638323 | 0.084* | |
C14 | 0.76533 (16) | 0.8898 (10) | 0.5042 (5) | 0.0796 (14) | |
H14 | 0.791894 | 0.993296 | 0.532615 | 0.096* | |
C15 | 0.75553 (16) | 0.9049 (10) | 0.4007 (5) | 0.0771 (13) | |
H15 | 0.775202 | 1.020496 | 0.358664 | 0.093* | |
C16 | 0.71653 (16) | 0.7501 (10) | 0.3565 (4) | 0.0692 (11) | |
H16 | 0.710430 | 0.759136 | 0.285089 | 0.083* | |
C17 | 0.68627 (13) | 0.5795 (8) | 0.4204 (3) | 0.0549 (8) | |
C18 | 0.64461 (13) | 0.4061 (8) | 0.3791 (3) | 0.0536 (8) | |
H2A | 0.4899 (19) | 0.281 (11) | 0.658 (4) | 0.068 (14)* | |
H2B | 0.4887 (19) | −0.005 (13) | 0.653 (4) | 0.082 (15)* | |
H6 | 0.4993 (18) | −0.204 (10) | 0.349 (4) | 0.071 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl01 | 0.0854 (7) | 0.1131 (10) | 0.0460 (5) | −0.0167 (6) | 0.0052 (5) | 0.0096 (6) |
O1 | 0.0824 (17) | 0.0516 (13) | 0.0391 (11) | −0.0173 (12) | −0.0005 (11) | 0.0002 (10) |
O2 | 0.107 (2) | 0.0580 (17) | 0.0377 (12) | −0.0104 (15) | −0.0058 (13) | 0.0033 (13) |
N6 | 0.0548 (15) | 0.0444 (14) | 0.0396 (13) | −0.0079 (12) | −0.0029 (12) | 0.0010 (11) |
N2 | 0.0532 (15) | 0.0418 (13) | 0.0456 (13) | −0.0061 (11) | −0.0046 (11) | 0.0014 (11) |
C1 | 0.082 (2) | 0.0491 (19) | 0.0460 (18) | −0.0105 (17) | −0.0023 (17) | −0.0016 (15) |
C2 | 0.099 (3) | 0.056 (2) | 0.054 (2) | −0.009 (2) | −0.017 (2) | −0.0074 (18) |
C3 | 0.063 (2) | 0.052 (2) | 0.088 (3) | −0.0062 (18) | −0.016 (2) | −0.009 (2) |
C4 | 0.051 (2) | 0.063 (2) | 0.085 (3) | −0.0085 (17) | 0.0055 (19) | −0.004 (2) |
C5 | 0.0508 (18) | 0.0550 (19) | 0.057 (2) | −0.0037 (15) | 0.0072 (15) | −0.0048 (16) |
C6 | 0.0511 (17) | 0.0363 (13) | 0.0445 (15) | 0.0031 (12) | −0.0035 (13) | −0.0007 (12) |
C7 | 0.0513 (16) | 0.0380 (14) | 0.0393 (15) | 0.0017 (12) | −0.0007 (12) | 0.0007 (12) |
C8 | 0.0556 (18) | 0.0532 (18) | 0.0454 (17) | −0.0059 (15) | 0.0009 (14) | 0.0022 (14) |
C9 | 0.0533 (18) | 0.0493 (17) | 0.0475 (18) | 0.0011 (14) | 0.0012 (14) | 0.0040 (14) |
C10 | 0.0507 (17) | 0.064 (2) | 0.0495 (18) | −0.0105 (16) | 0.0004 (14) | −0.0084 (15) |
C11 | 0.063 (2) | 0.064 (2) | 0.054 (2) | 0.0048 (18) | −0.0070 (17) | 0.0023 (17) |
C12 | 0.0467 (17) | 0.0496 (17) | 0.068 (2) | 0.0052 (14) | −0.0017 (16) | −0.0001 (17) |
C13 | 0.055 (2) | 0.073 (3) | 0.083 (3) | −0.0009 (19) | −0.008 (2) | −0.008 (2) |
C14 | 0.050 (2) | 0.072 (3) | 0.117 (5) | −0.0076 (19) | −0.003 (2) | −0.001 (3) |
C15 | 0.056 (2) | 0.069 (3) | 0.107 (4) | −0.009 (2) | 0.010 (2) | 0.015 (2) |
C16 | 0.062 (2) | 0.069 (2) | 0.077 (3) | 0.0004 (19) | 0.009 (2) | 0.016 (2) |
C17 | 0.0453 (17) | 0.0497 (18) | 0.070 (2) | 0.0026 (14) | −0.0001 (15) | 0.0058 (17) |
C18 | 0.0548 (18) | 0.0603 (19) | 0.0457 (17) | −0.0032 (15) | 0.0027 (15) | 0.0074 (16) |
Cl01—C18 | 1.741 (4) | C8—H8 | 0.9300 |
O1—C7 | 1.233 (4) | C9—C18 | 1.342 (5) |
O2—H2A | 0.79 (6) | C9—C10 | 1.527 (5) |
O2—H2B | 0.96 (6) | C10—C11 | 1.505 (5) |
N6—C7 | 1.352 (4) | C10—H10A | 0.9700 |
N6—N2 | 1.378 (4) | C10—H10B | 0.9700 |
N6—H6 | 0.93 (5) | C11—C12 | 1.502 (6) |
N2—C8 | 1.280 (4) | C11—H11A | 0.9700 |
C1—C2 | 1.389 (6) | C11—H11B | 0.9700 |
C1—C6 | 1.396 (5) | C12—C13 | 1.390 (6) |
C1—H1 | 0.9300 | C12—C17 | 1.396 (5) |
C2—C3 | 1.365 (7) | C13—C14 | 1.368 (7) |
C2—H2 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.374 (7) | C14—C15 | 1.352 (7) |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.381 (5) | C15—C16 | 1.385 (7) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.381 (5) | C16—C17 | 1.404 (6) |
C5—H5 | 0.9300 | C16—H16 | 0.9300 |
C6—C7 | 1.489 (4) | C17—C18 | 1.472 (5) |
C8—C9 | 1.459 (5) | ||
H2A—O2—H2B | 104 (5) | C9—C10—H10A | 109.7 |
C7—N6—N2 | 118.4 (3) | C11—C10—H10A | 109.7 |
C7—N6—H6 | 119 (3) | C9—C10—H10B | 109.7 |
N2—N6—H6 | 122 (3) | C11—C10—H10B | 109.7 |
C8—N2—N6 | 115.1 (3) | H10A—C10—H10B | 108.2 |
C2—C1—C6 | 119.8 (4) | C12—C11—C10 | 113.4 (3) |
C2—C1—H1 | 120.1 | C12—C11—H11A | 108.9 |
C6—C1—H1 | 120.1 | C10—C11—H11A | 108.9 |
C3—C2—C1 | 120.5 (4) | C12—C11—H11B | 108.9 |
C3—C2—H2 | 119.7 | C10—C11—H11B | 108.9 |
C1—C2—H2 | 119.7 | H11A—C11—H11B | 107.7 |
C4—C3—C2 | 120.1 (4) | C13—C12—C17 | 118.7 (4) |
C4—C3—H3 | 120.0 | C13—C12—C11 | 122.4 (4) |
C2—C3—H3 | 120.0 | C17—C12—C11 | 118.9 (3) |
C3—C4—C5 | 120.1 (4) | C14—C13—C12 | 121.2 (5) |
C3—C4—H4 | 119.9 | C14—C13—H13 | 119.4 |
C5—C4—H4 | 119.9 | C12—C13—H13 | 119.4 |
C6—C5—C4 | 120.7 (4) | C13—C14—C15 | 120.4 (4) |
C6—C5—H5 | 119.7 | C13—C14—H14 | 119.8 |
C4—C5—H5 | 119.7 | C15—C14—H14 | 119.8 |
C5—C6—C1 | 118.8 (3) | C14—C15—C16 | 120.8 (4) |
C5—C6—C7 | 117.5 (3) | C14—C15—H15 | 119.6 |
C1—C6—C7 | 123.6 (3) | C16—C15—H15 | 119.6 |
O1—C7—N6 | 121.7 (3) | C15—C16—C17 | 119.6 (4) |
O1—C7—C6 | 121.0 (3) | C15—C16—H16 | 120.2 |
N6—C7—C6 | 117.3 (3) | C17—C16—H16 | 120.2 |
N2—C8—C9 | 118.4 (3) | C16—C17—C12 | 119.4 (4) |
N2—C8—H8 | 120.8 | C16—C17—C18 | 122.8 (4) |
C9—C8—H8 | 120.8 | C12—C17—C18 | 117.9 (3) |
C18—C9—C8 | 122.4 (3) | C9—C18—C17 | 122.8 (3) |
C18—C9—C10 | 118.5 (3) | C9—C18—Cl01 | 120.5 (3) |
C8—C9—C10 | 119.1 (3) | C17—C18—Cl01 | 116.6 (3) |
C9—C10—C11 | 109.9 (3) | ||
C7—N6—N2—C8 | 174.4 (3) | C10—C11—C12—C13 | 149.3 (4) |
C6—C1—C2—C3 | −0.8 (6) | C10—C11—C12—C17 | −32.7 (5) |
C1—C2—C3—C4 | 0.9 (7) | C17—C12—C13—C14 | 1.0 (6) |
C2—C3—C4—C5 | −0.8 (6) | C11—C12—C13—C14 | 179.0 (4) |
C3—C4—C5—C6 | 0.7 (6) | C12—C13—C14—C15 | −0.4 (7) |
C4—C5—C6—C1 | −0.7 (5) | C13—C14—C15—C16 | −0.7 (8) |
C4—C5—C6—C7 | −178.7 (3) | C14—C15—C16—C17 | 1.1 (7) |
C2—C1—C6—C5 | 0.8 (5) | C15—C16—C17—C12 | −0.5 (6) |
C2—C1—C6—C7 | 178.6 (3) | C15—C16—C17—C18 | −179.1 (4) |
N2—N6—C7—O1 | 0.9 (5) | C13—C12—C17—C16 | −0.6 (5) |
N2—N6—C7—C6 | −178.0 (3) | C11—C12—C17—C16 | −178.7 (4) |
C5—C6—C7—O1 | 10.7 (5) | C13—C12—C17—C18 | 178.2 (4) |
C1—C6—C7—O1 | −167.2 (3) | C11—C12—C17—C18 | 0.1 (5) |
C5—C6—C7—N6 | −170.5 (3) | C8—C9—C18—C17 | −175.8 (3) |
C1—C6—C7—N6 | 11.6 (5) | C10—C9—C18—C17 | 5.0 (5) |
N6—N2—C8—C9 | −178.7 (3) | C8—C9—C18—Cl01 | 1.3 (5) |
N2—C8—C9—C18 | 173.5 (3) | C10—C9—C18—Cl01 | −177.9 (3) |
N2—C8—C9—C10 | −7.3 (5) | C16—C17—C18—C9 | −166.5 (4) |
C18—C9—C10—C11 | −36.7 (5) | C12—C17—C18—C9 | 14.8 (5) |
C8—C9—C10—C11 | 144.1 (3) | C16—C17—C18—Cl01 | 16.3 (5) |
C9—C10—C11—C12 | 49.2 (5) | C12—C17—C18—Cl01 | −162.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.78 (5) | 2.06 (5) | 2.829 (4) | 166 (5) |
O2—H2B···O1 | 0.96 (6) | 1.90 (6) | 2.858 (4) | 171 (5) |
N6—H6···O2ii | 0.93 (5) | 1.98 (5) | 2.869 (4) | 159 (4) |
C1—H1···O2ii | 0.93 | 2.47 | 3.350 (5) | 158 |
C8—H8···O2ii | 0.93 | 2.48 | 3.261 (5) | 142 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, z−1/2. |
Code | Symmetry | Centroid distance | Ecol | Epol | Edisp | Erep | Etotal | Interaction |
A | x, y + 1, z | 4.812 | -37.4 | -14.2 | -64.3 | 88.7 | -27.1 | O—H···O |
B | -x + 1, -y + 1, z - 1/2 | 7.513 | -6.7 | -4.3 | -20.9 | 15.9 | -16.0 | C—H···O |
C | -x + 1, -y + 1/2, z | 9.210 | -2.2 | -4.2 | -16.1 | 6.6 | -15.9 | Cl···H |
D | -x + 1/2, y - 1/2, z + 1/2 | 11.475 | -1.9 | -0.9 | -8.9 | 3.8 | -7.9 | H···H |
E | x, y, z | 5.924 | -33.1 | -11.6 | -12.3 | 33.1 | -23.9 | O—H···O |
F | x, y - 1, z | 4.077 | -38.5 | -12.0 | -13.0 | 30.7 | -32.8 | N—H···O |
HOMO energy: EH | -5.7777 |
LUMO energy: EL | -2.1428 |
Energy gap: Eg = EH - EL | 3.6349 |
Chemical hardness: η = |EH - EL|/2 | 1.8174 |
Softness: ζ = 1/2η | 0.2751 |
Electrophilicity index: ω = µ2/2η | 4.3148 |
Chemical Potential: µ = -(EH + EL/2) | -3.9602 |
Electronegativity: χ = -µ | 3.9602 |
Acknowledgements
HAA thanks the DBT for support as a Senior Research Fellow and RE thanks DST–PURSE phase II for support as a Research Associate.
Funding information
Funding for this research was provided by: Government of India, the Ministry of Science & Technology, Department of Biotechnology (DBT) (grant No. BT/PR16268/NER/95/183/2015).
References
Inam, A., Mittal, S., Rajala, M. S., Avecilla, F. & Azam, A. (2016). Eur. J. Med. Chem. 124, 445–455. Web of Science CSD CrossRef CAS PubMed Google Scholar
Arjun, H. A., Elancheran, R., Manikandan, N., Lakshmithendral, K., Ramanathan, M., Bhattacharjee, A., Lokanath, N. K. & Kabilan, S. (2019). Front. Chem. 7, https://doi.org/10.3389/fchem.2019.00474. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bedia, K. K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, ., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gavezzotti, A. (2003). CrystEngComm, 5, 439–446. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Low, J. N. & Wardell, J. L. (2014). Acta Cryst. E70, o891–o892. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o784. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o832. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., Potgieter, H. & Albayati, M. R. (2014). Acta Cryst. E70, o612. CSD CrossRef IUCr Journals Google Scholar
Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35. Web of Science CrossRef PubMed CAS Google Scholar
Nair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sowmya, A., Kumar, G. N. A., Sujeet, K. & Karki, S. S. (2018). Chemical Data Collections, 17-18, 431–441. CrossRef Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199. Web of Science CrossRef CAS Google Scholar
Veeramanikandan, S. & Benita Sherine, H. (2015). Pharma Chemica, 7, 70–84. CAS Google Scholar
Veeramanikandan, S., Sherine, H. B., Gunasekaran, B. & Chakkaravarthi, G. (2016). IUCrData, 1, x161526. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4282–o4284. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.