research communications
μ-trihydro(pentafluorophenyl)borato-tetrakis(tetrahydrofuran)disodium
of di-aDepartment of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
*Correspondence e-mail: rytanaka@hiroshima-u.ac.jp
The title compound, [Na(μ-C6F5BH3)(C4H8O)2]2, represents a dimeric structure of sodium and organoborohydride, located about a centre of inversion. The Na⋯B distances of 2.7845 (19) and 2.7494 (18) Å were apparently longer than the Li⋯B distances (2.403–2.537 Å) of the lithium organotrihydroborates in the previous reports. Moreover, an interaction between the sodium atom and one fluorine atom on the 2-position of the benzene ring is observed [Na—F = 2.6373 (12) Å]. In the crystal, the dimeric molecules are stacked along the b-axis via a π–π interaction between the benzene rings.
Keywords: organotrihydroborate; borohydride; sodium salt; crystal structure.
CCDC reference: 1973896
1. Chemical context
A series of alkali-metal borohydride salts are known as the most important, reliable and commercially available reducing agents, especially for ). The reducing ability of borohydrides can easily be tuned by introducing functional groups on boron or by changing their counter-cation. To understand the relationship between reactivity and composition of borohydride species, structural understandings based on crystallographic analysis would be important. The structures of these borohydride compounds are largely affected by the number of hydrides, bulkiness of substituents on boron, and metal. For example, sodium triethylmonohydroborate forms a cubic tetramer (Bell et al., 1980) and lithium trihydroborate with a bulky alkyl group on boron gives a monomeric structure (Eaborn et al., 1984). Reports of the structures of sodium alkyl/aryltrihydroborates are very scarce, although some dimeric lithium organotrihydroborates (Knizek et al., 2000; Franz et al., 2011; Pospiech et al., 2015; Murosaki et al., 2016), monomeric lithium organotrihydroborate (Molitor & Gessner, 2013) and potassium aryltrihydrobotate (Kaese et al., 2016) have previously been characterized by X-ray crystal analyses. The only example of structurally characterized sodium alkyltrihydroborate is a compound bearing three methoxyethoxy groups, and no interaction between the hydrides and the sodium atom was observed in this case, because the sodium cation is trapped into the cage structure of the methoxyethoxy groups and no longer forms contacts with the borohydride anion (Thalangamaarachchige et al., 2019).
(Magano & Dunetz, 2012Herein, we report the first
analysis of sodium aryltrihydroborate, which bears a pentafluorophenyl substituent on the boron centre.2. Structural commentary
The title compound (Fig. 1) represents a dimeric structure bridged via three Na—H—B bonds, being located about a centre of inversion. The Na⋯B distances of 2.7845 (19) and 2.7494 (18) Å are apparently longer than the sum of radii of sodium and boron (2.50 Å; Cordero et al., 2008) and the previously reported lithium–boron distances (2.403–2.537 Å) in the lithium organotrihydroborates (Knizek et al., 2000; Franz et al., 2011; Pospiech et al., 2015; Murosaki et al., 2016). The Na⋯H distances show that one hydride (H3) binds to both sodium atoms of the dimer [Na1⋯H3 = 2.47 (2) Å and Na1i⋯H3 = 2.40 (2) Å; symmetry code: (i) −x + 1, −y, −z] while the other two hydrides (H1 and H2) bind only to one sodium atom [Na1i⋯1 = 2.34 (2) Å and Na1⋯H2 = 2.34 (3) Å]. Such a mode was also observed in the previously reported dimeric structure of lithium trihydroborates.
The distance between the sodium atom and fluorine atom F5 at the 2-position on the benzene ring [Na1i—F5 = 2.6373 (12) Å] is much shorter than the sum of van der Waals radii (3.74 Å), indicating the presence of a sodium–halogen interaction. Such a halogen–metal interaction is also observed in bromoaryl-substituted lithium trihydroborate (Seven et al., 2014). The environment around the sodium atom can therefore be seen as having a distorted trigonal–bypiramidal geometry with one fluorine atom, two boron atoms and two THF molecules. The C—B bond [C1—B1 = 1.614 (2) Å] is significantly longer than the previously reported C—B bond lengths of lithium organotrihydroborates (1.597–1.613 Å), probably because of the electron-withdrawing property of the C6F5 group.
3. Supramolecular features
In the crystal, the dimeric molecules are stacked along the b axis via a π–π interaction between the neighbouring C6F5 rings as shown in Fig. 2. The plane-to-plane distance, the centroid-to-centroid distance and the slippage are 3.388 (4), 3.582 (2) and 1.160 Å, respectively. The C6F5 rings are stacked in an anti-parallel manner, so that the boron atom on one C6F5 ring is close to the fluorine atom at 4-position on the other ring. However, the B⋯F distance [B1⋯F3ii = 3.589 (2) Å; symmetry code: (ii) −x + 1, −y − 1, −z] is slightly longer than the sum of van der Waals radii (3.39 Å), suggesting that the B⋯F interaction is weak. The distance between the closest hydrogen atom (H4) and centroid of the C6F5 ring is 3.343 Å, indicating the absence of C—H⋯π interactions.
4. Database survey
As described above, there is only one example of structural analysis on a sodium alkyltrisboronate complex (Thalangamaarachchige et al., 2019). This complex exhibits a monomeric twitterionic structure without any interaction between the borohydride and the sodium atom. Other examples of sodium trihydroborates bearing a carbon-based substituent on boron, the sodium salt of boranocarbamates (Pitchumony et al., 2010), cyanoborohydride (Custelcean et al., 1998, 2002) and (isothiocyanato)trihydroborate (Nöth & Warchhold, 2004) have been structurally characterized by X-ray crystallographic analyses. In these salts, the sodium cation exists as an adduct of polyethers or polyamine and is located distant from the borohydride anion.
5. Synthesis and crystallization
The title compound was prepared by the reaction of NaH (60% oil dispersion, 1.21 g, 30 mmol, washed twice with hexane prior to use) and (C6F5)BH2·S(CH3)2 (2.10 g, 8.7 mmol) in THF (20 mL) at 333 K for 5 h. The supernatant solution of the reaction mixture was separated and dried under vacuum. The obtained colourless solid was redissolved into 1 mL of THF, and 10 mL of hexane was layered on it. This solution was stored at 243 K overnight and 1.55 g (51%) of colourless crystals were obtained. 19F NMR (C6D6, 470 MHz): δ −134.72 (br, 2F), −162.85 (t, J = 20 Hz, 1F), −165.17 (m, 2F); 11B NMR (C6D6, 160 MHz): δ −36.71 (q, J = 86 Hz).
6. Refinement
Crystal data, data collection and structure . All H atoms were located in a difference-Fourier map. The tetrahydrofuran H atoms were refined using a riding model (C—H = 0.99 Å) with Uiso(H) = 1.2Ueq(C), while the H atoms on boron were refined isotropically [refined B—H = 1.08 (3)–1.13 (2) Å].
details are summarized in Table 1Supporting information
CCDC reference: 1973896
https://doi.org/10.1107/S2056989019017201/is5529sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019017201/is5529Isup3.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2015).[Na2(C6F5BH3)2(C4H8O)4] | Z = 1 |
Mr = 696.18 | F(000) = 360 |
Triclinic, P1 | Dx = 1.428 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 7.9698 (5) Å | Cell parameters from 4126 reflections |
b = 10.1104 (6) Å | θ = 2.7–27.4° |
c = 11.5208 (7) Å | µ = 0.15 mm−1 |
α = 113.461 (2)° | T = 123 K |
β = 105.685 (3)° | Block, colourless |
γ = 91.805 (2)° | 0.60 × 0.20 × 0.20 mm |
V = 809.63 (9) Å3 |
Bruker APEXII CCD diffractometer | 3068 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.032 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 27.4°, θmin = 2.0° |
Tmin = 0.512, Tmax = 0.746 | h = −10→8 |
4506 measured reflections | k = −13→12 |
3471 independent reflections | l = −14→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.0819P)2 + 0.2169P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3471 reflections | Δρmax = 0.31 e Å−3 |
220 parameters | Δρmin = −0.45 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
NA1 | 0.55346 (7) | −0.03356 (7) | −0.15797 (5) | 0.02597 (18) | |
B1 | 0.5516 (2) | −0.20185 (19) | −0.02053 (16) | 0.0272 (3) | |
H1 | 0.412 (3) | −0.193 (2) | −0.022 (2) | 0.043 (6)* | |
H2 | 0.560 (3) | −0.244 (3) | −0.120 (2) | 0.053 (6)* | |
H3 | 0.638 (3) | −0.092 (2) | 0.037 (2) | 0.037 (5)* | |
C1 | 0.63209 (18) | −0.30571 (15) | 0.04965 (13) | 0.0217 (3) | |
C2 | 0.71559 (19) | −0.42272 (17) | −0.00498 (14) | 0.0256 (3) | |
C3 | 0.78844 (19) | −0.50723 (17) | 0.05860 (16) | 0.0296 (3) | |
C4 | 0.7778 (2) | −0.47796 (18) | 0.18383 (16) | 0.0310 (3) | |
C5 | 0.6944 (2) | −0.36360 (18) | 0.24263 (14) | 0.0296 (3) | |
C6 | 0.62500 (19) | −0.28259 (16) | 0.17530 (13) | 0.0238 (3) | |
F1 | 0.72989 (14) | −0.45982 (12) | −0.12796 (10) | 0.0395 (3) | |
F2 | 0.86728 (14) | −0.61935 (12) | −0.00036 (13) | 0.0453 (3) | |
F3 | 0.84800 (15) | −0.55697 (12) | 0.24888 (12) | 0.0469 (3) | |
F4 | 0.68262 (17) | −0.33360 (13) | 0.36492 (10) | 0.0475 (3) | |
F5 | 0.54502 (14) | −0.17008 (11) | 0.23880 (9) | 0.0343 (2) | |
O1 | 0.83333 (15) | −0.03501 (13) | −0.16984 (12) | 0.0327 (3) | |
C7 | 0.9190 (3) | 0.0619 (2) | −0.2058 (2) | 0.0436 (4) | |
H4 | 1.016334 | 0.130984 | −0.128474 | 0.052* | |
H5 | 0.834348 | 0.118300 | −0.238397 | 0.052* | |
C8 | 0.9905 (3) | −0.0347 (2) | −0.31551 (19) | 0.0430 (4) | |
H6 | 0.911623 | −0.050243 | −0.404062 | 0.052* | |
H7 | 1.109827 | 0.009804 | −0.303714 | 0.052* | |
C9 | 0.9967 (3) | −0.1771 (2) | −0.30160 (18) | 0.0391 (4) | |
H8 | 1.118106 | −0.200710 | −0.286654 | 0.047* | |
H9 | 0.917077 | −0.258235 | −0.382236 | 0.047* | |
C10 | 0.9356 (2) | −0.1511 (2) | −0.18186 (17) | 0.0348 (4) | |
H10 | 0.862781 | −0.240318 | −0.195466 | 0.042* | |
H11 | 1.037924 | −0.122799 | −0.100803 | 0.042* | |
O2 | 0.40793 (15) | −0.18090 (12) | −0.37962 (10) | 0.0319 (3) | |
C11 | 0.3406 (2) | −0.15236 (19) | −0.49440 (15) | 0.0328 (4) | |
H12 | 0.434473 | −0.146717 | −0.534402 | 0.039* | |
H13 | 0.292566 | −0.059350 | −0.470737 | 0.039* | |
C12 | 0.1955 (3) | −0.2805 (2) | −0.59003 (16) | 0.0392 (4) | |
H14 | 0.192110 | −0.307211 | −0.683241 | 0.047* | |
H15 | 0.078771 | −0.257016 | −0.580757 | 0.047* | |
C13 | 0.2449 (3) | −0.4036 (2) | −0.54953 (17) | 0.0411 (4) | |
H16 | 0.149650 | −0.439183 | −0.524004 | 0.049* | |
H17 | 0.267784 | −0.486333 | −0.623172 | 0.049* | |
C14 | 0.4109 (2) | −0.33571 (19) | −0.43176 (16) | 0.0362 (4) | |
H18 | 0.410810 | −0.372273 | −0.363810 | 0.043* | |
H19 | 0.517132 | −0.358754 | −0.460167 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
NA1 | 0.0285 (3) | 0.0299 (3) | 0.0210 (3) | 0.0070 (2) | 0.0097 (2) | 0.0107 (2) |
B1 | 0.0357 (8) | 0.0252 (8) | 0.0217 (7) | 0.0061 (7) | 0.0080 (6) | 0.0114 (6) |
C1 | 0.0235 (6) | 0.0215 (7) | 0.0192 (6) | 0.0010 (5) | 0.0062 (5) | 0.0080 (5) |
C2 | 0.0297 (7) | 0.0240 (7) | 0.0229 (7) | 0.0024 (6) | 0.0130 (5) | 0.0066 (6) |
C3 | 0.0259 (7) | 0.0224 (8) | 0.0382 (8) | 0.0058 (6) | 0.0113 (6) | 0.0093 (6) |
C4 | 0.0293 (7) | 0.0274 (8) | 0.0332 (8) | 0.0004 (6) | −0.0014 (6) | 0.0171 (7) |
C5 | 0.0366 (8) | 0.0312 (8) | 0.0177 (6) | −0.0010 (6) | 0.0037 (6) | 0.0106 (6) |
C6 | 0.0284 (7) | 0.0218 (7) | 0.0184 (6) | 0.0041 (5) | 0.0084 (5) | 0.0050 (5) |
F1 | 0.0575 (6) | 0.0367 (6) | 0.0321 (5) | 0.0129 (5) | 0.0304 (5) | 0.0110 (4) |
F2 | 0.0441 (6) | 0.0295 (6) | 0.0667 (7) | 0.0184 (4) | 0.0277 (5) | 0.0168 (5) |
F3 | 0.0480 (6) | 0.0391 (6) | 0.0509 (6) | 0.0056 (5) | −0.0054 (5) | 0.0298 (5) |
F4 | 0.0726 (8) | 0.0513 (7) | 0.0204 (5) | 0.0076 (6) | 0.0123 (5) | 0.0184 (5) |
F5 | 0.0497 (6) | 0.0299 (5) | 0.0264 (4) | 0.0135 (4) | 0.0208 (4) | 0.0085 (4) |
O1 | 0.0319 (6) | 0.0343 (6) | 0.0402 (6) | 0.0103 (5) | 0.0189 (5) | 0.0187 (5) |
C7 | 0.0532 (11) | 0.0327 (9) | 0.0599 (12) | 0.0128 (8) | 0.0352 (9) | 0.0226 (9) |
C8 | 0.0622 (11) | 0.0384 (10) | 0.0445 (10) | 0.0171 (9) | 0.0315 (9) | 0.0232 (8) |
C9 | 0.0544 (10) | 0.0337 (9) | 0.0390 (9) | 0.0150 (8) | 0.0266 (8) | 0.0166 (7) |
C10 | 0.0419 (9) | 0.0367 (9) | 0.0344 (8) | 0.0142 (7) | 0.0170 (7) | 0.0195 (7) |
O2 | 0.0415 (6) | 0.0265 (6) | 0.0211 (5) | 0.0046 (5) | 0.0035 (4) | 0.0078 (4) |
C11 | 0.0446 (9) | 0.0298 (8) | 0.0251 (7) | 0.0061 (7) | 0.0098 (6) | 0.0134 (6) |
C12 | 0.0491 (10) | 0.0314 (9) | 0.0259 (7) | 0.0065 (7) | 0.0001 (7) | 0.0083 (7) |
C13 | 0.0553 (11) | 0.0288 (9) | 0.0288 (8) | 0.0015 (8) | 0.0046 (7) | 0.0076 (7) |
C14 | 0.0506 (10) | 0.0272 (8) | 0.0280 (7) | 0.0116 (7) | 0.0077 (7) | 0.0113 (6) |
NA1—O1 | 2.2714 (12) | O1—C10 | 1.433 (2) |
NA1—O2 | 2.3122 (12) | C7—C8 | 1.522 (3) |
NA1—F5i | 2.6373 (12) | C7—H4 | 0.9900 |
NA1—B1 | 2.7494 (18) | C7—H5 | 0.9900 |
NA1—B1i | 2.7845 (19) | C8—C9 | 1.511 (3) |
NA1—NA1i | 3.7658 (11) | C8—H6 | 0.9900 |
NA1—H2 | 2.33 (2) | C8—H7 | 0.9900 |
NA1—H3 | 2.47 (2) | C9—C10 | 1.514 (2) |
B1—C1 | 1.614 (2) | C9—H8 | 0.9900 |
B1—NA1i | 2.7844 (19) | C9—H9 | 0.9900 |
B1—H1 | 1.11 (2) | C10—H10 | 0.9900 |
B1—H2 | 1.08 (3) | C10—H11 | 0.9900 |
B1—H3 | 1.13 (2) | O2—C11 | 1.4317 (18) |
C1—C2 | 1.386 (2) | O2—C14 | 1.440 (2) |
C1—C6 | 1.3889 (18) | C11—C12 | 1.520 (2) |
C2—F1 | 1.3520 (16) | C11—H12 | 0.9900 |
C2—C3 | 1.380 (2) | C11—H13 | 0.9900 |
C3—F2 | 1.3431 (18) | C12—C13 | 1.522 (3) |
C3—C4 | 1.380 (2) | C12—H14 | 0.9900 |
C4—F3 | 1.3384 (18) | C12—H15 | 0.9900 |
C4—C5 | 1.380 (2) | C13—C14 | 1.514 (2) |
C5—F4 | 1.3486 (17) | C13—H16 | 0.9900 |
C5—C6 | 1.371 (2) | C13—H17 | 0.9900 |
C6—F5 | 1.3677 (17) | C14—H18 | 0.9900 |
F5—NA1i | 2.6373 (12) | C14—H19 | 0.9900 |
O1—C7 | 1.425 (2) | ||
O1—NA1—O2 | 97.78 (5) | F5—C6—C5 | 116.66 (13) |
O1—NA1—F5i | 101.16 (4) | F5—C6—C1 | 118.44 (13) |
O2—NA1—F5i | 80.88 (4) | C5—C6—C1 | 124.90 (14) |
O1—NA1—B1 | 100.56 (5) | C6—F5—NA1i | 124.58 (8) |
O2—NA1—B1 | 107.00 (5) | C7—O1—C10 | 105.86 (12) |
F5i—NA1—B1 | 155.60 (5) | C7—O1—NA1 | 124.28 (11) |
O1—NA1—B1i | 123.38 (5) | C10—O1—NA1 | 127.60 (10) |
O2—NA1—B1i | 129.23 (5) | O1—C7—C8 | 105.75 (15) |
F5i—NA1—B1i | 64.36 (4) | O1—C7—H4 | 110.6 |
B1—NA1—B1i | 94.23 (5) | C8—C7—H4 | 110.6 |
O1—NA1—NA1i | 122.73 (4) | O1—C7—H5 | 110.6 |
O2—NA1—NA1i | 132.93 (4) | C8—C7—H5 | 110.6 |
F5i—NA1—NA1i | 110.18 (3) | H4—C7—H5 | 108.7 |
B1—NA1—NA1i | 47.51 (4) | C9—C8—C7 | 104.83 (14) |
B1i—NA1—NA1i | 46.73 (4) | C9—C8—H6 | 110.8 |
O1—NA1—H2 | 91.5 (6) | C7—C8—H6 | 110.8 |
O2—NA1—H2 | 87.9 (6) | C9—C8—H7 | 110.8 |
F5i—NA1—H2 | 164.1 (6) | C7—C8—H7 | 110.8 |
B1—NA1—H2 | 22.6 (6) | H6—C8—H7 | 108.9 |
B1i—NA1—H2 | 116.2 (6) | C8—C9—C10 | 104.49 (14) |
NA1i—NA1—H2 | 69.7 (6) | C8—C9—H8 | 110.9 |
O1—NA1—H3 | 91.0 (5) | C10—C9—H8 | 110.9 |
O2—NA1—H3 | 130.7 (5) | C8—C9—H9 | 110.9 |
F5i—NA1—H3 | 144.5 (5) | C10—C9—H9 | 110.9 |
B1—NA1—H3 | 24.2 (5) | H8—C9—H9 | 108.9 |
B1i—NA1—H3 | 81.0 (5) | O1—C10—C9 | 105.64 (13) |
NA1i—NA1—H3 | 38.6 (5) | O1—C10—H10 | 110.6 |
H2—NA1—H3 | 43.3 (8) | C9—C10—H10 | 110.6 |
C1—B1—NA1 | 155.20 (11) | O1—C10—H11 | 110.6 |
C1—B1—NA1i | 109.90 (9) | C9—C10—H11 | 110.6 |
NA1—B1—NA1i | 85.77 (5) | H10—C10—H11 | 108.7 |
C1—B1—H1 | 111.0 (11) | C11—O2—C14 | 104.91 (11) |
NA1—B1—H1 | 93.7 (11) | C11—O2—NA1 | 133.50 (10) |
NA1i—B1—H1 | 55.7 (12) | C14—O2—NA1 | 119.96 (9) |
C1—B1—H2 | 109.9 (13) | O2—C11—C12 | 105.00 (13) |
NA1—B1—H2 | 56.3 (13) | O2—C11—H12 | 110.7 |
NA1i—B1—H2 | 140.1 (13) | C12—C11—H12 | 110.7 |
H1—B1—H2 | 110.2 (17) | O2—C11—H13 | 110.7 |
C1—B1—H3 | 107.0 (11) | C12—C11—H13 | 110.7 |
NA1—B1—H3 | 64.1 (11) | H12—C11—H13 | 108.8 |
NA1i—B1—H3 | 58.4 (11) | C11—C12—C13 | 104.30 (14) |
H1—B1—H3 | 111.4 (16) | C11—C12—H14 | 110.9 |
H2—B1—H3 | 107.2 (16) | C13—C12—H14 | 110.9 |
C2—C1—C6 | 113.31 (13) | C11—C12—H15 | 110.9 |
C2—C1—B1 | 125.13 (12) | C13—C12—H15 | 110.9 |
C6—C1—B1 | 121.55 (13) | H14—C12—H15 | 108.9 |
F1—C2—C3 | 115.87 (14) | C14—C13—C12 | 104.48 (14) |
F1—C2—C1 | 119.98 (13) | C14—C13—H16 | 110.9 |
C3—C2—C1 | 124.15 (14) | C12—C13—H16 | 110.9 |
F2—C3—C2 | 121.03 (15) | C14—C13—H17 | 110.9 |
F2—C3—C4 | 119.32 (15) | C12—C13—H17 | 110.9 |
C2—C3—C4 | 119.64 (15) | H16—C13—H17 | 108.9 |
F3—C4—C5 | 119.96 (15) | O2—C14—C13 | 105.39 (14) |
F3—C4—C3 | 121.29 (16) | O2—C14—H18 | 110.7 |
C5—C4—C3 | 118.75 (15) | C13—C14—H18 | 110.7 |
F4—C5—C6 | 121.25 (15) | O2—C14—H19 | 110.7 |
F4—C5—C4 | 119.52 (15) | C13—C14—H19 | 110.7 |
C6—C5—C4 | 119.23 (14) | H18—C14—H19 | 108.8 |
NA1—B1—C1—C2 | −45.4 (3) | F4—C5—C6—C1 | 179.69 (13) |
NA1i—B1—C1—C2 | −172.01 (11) | C4—C5—C6—C1 | −0.3 (2) |
NA1—B1—C1—C6 | 133.6 (2) | C2—C1—C6—F5 | −179.83 (12) |
NA1i—B1—C1—C6 | 7.05 (16) | B1—C1—C6—F5 | 1.0 (2) |
C6—C1—C2—F1 | 178.94 (12) | C2—C1—C6—C5 | 0.9 (2) |
B1—C1—C2—F1 | −1.9 (2) | B1—C1—C6—C5 | −178.22 (14) |
C6—C1—C2—C3 | −1.3 (2) | C5—C6—F5—NA1i | 169.12 (10) |
B1—C1—C2—C3 | 177.85 (14) | C1—C6—F5—NA1i | −10.18 (17) |
F1—C2—C3—F2 | −0.3 (2) | C10—O1—C7—C8 | 35.26 (19) |
C1—C2—C3—F2 | 179.89 (13) | NA1—O1—C7—C8 | −128.73 (14) |
F1—C2—C3—C4 | −179.20 (13) | O1—C7—C8—C9 | −19.7 (2) |
C1—C2—C3—C4 | 1.0 (2) | C7—C8—C9—C10 | −2.2 (2) |
F2—C3—C4—F3 | 1.6 (2) | C7—O1—C10—C9 | −36.82 (18) |
C2—C3—C4—F3 | −179.52 (13) | NA1—O1—C10—C9 | 126.48 (13) |
F2—C3—C4—C5 | −179.17 (13) | C8—C9—C10—O1 | 23.29 (19) |
C2—C3—C4—C5 | −0.3 (2) | C14—O2—C11—C12 | 39.54 (17) |
F3—C4—C5—F4 | −0.8 (2) | NA1—O2—C11—C12 | −155.60 (12) |
C3—C4—C5—F4 | 179.93 (13) | O2—C11—C12—C13 | −24.77 (18) |
F3—C4—C5—C6 | 179.21 (13) | C11—C12—C13—C14 | 1.6 (2) |
C3—C4—C5—C6 | −0.1 (2) | C11—O2—C14—C13 | −38.57 (18) |
F4—C5—C6—F5 | 0.4 (2) | NA1—O2—C14—C13 | 154.06 (11) |
C4—C5—C6—F5 | −179.57 (13) | C12—C13—C14—O2 | 21.94 (19) |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
The X-ray diffraction measurements were performed at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.
Funding information
Funding for this research was provided by: Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (JSPS) (grant No. 18K14276).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bell, N. A., Shearer, H. M. M. & Spencer, C. B. (1980). J. Chem. Soc. Chem. Commun. pp. 711–712. CSD CrossRef Web of Science Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838. Web of Science CrossRef Google Scholar
Custelcean, R. & Jackson, J. E. (1998). J. Am. Chem. Soc. 120, 12935–12941. Web of Science CSD CrossRef CAS Google Scholar
Custelcean, R., Vlassa, M. & Jackson, J. E. (2002). Chem. Eur. J. 8, 302–308. Web of Science CSD CrossRef PubMed CAS Google Scholar
Eaborn, C., El-Kheli, M. N. A., Hitchcock, P. B. & Smith, J. D. (1984). J. Chem. Soc. Chem. Commun. pp. 1673–1674. CrossRef Web of Science Google Scholar
Franz, D., Ilkhechi, A. H., Bolte, M., Lerner, H.-W. & Wagner, M. (2011). Eur. J. Inorg. Chem. pp. 5414–5421. Web of Science CSD CrossRef Google Scholar
Kaese, T., Hübner, A., Bolte, M., Lerner, H. W. & Wagner, M. (2016). J. Am. Chem. Soc. 138, 6224–6233. Web of Science CSD CrossRef CAS PubMed Google Scholar
Knizek, J. & Nöth, H. (2000). J. Organomet. Chem. 614–615, 168–187. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Magano, J. & Dunetz, J. R. (2012). Org. Process Res. Dev. 16, 1156–1184. Web of Science CrossRef CAS Google Scholar
Molitor, S. & Gessner, V. H. (2013). Chem. Eur. J. 19, 11858–11862. Web of Science CSD CrossRef CAS PubMed Google Scholar
Murosaki, T., Kaneda, S., Maruhashi, R., Sadamori, K., Shoji, Y., Tamao, K., Hashizume, D., Hayakawa, N. & Matsuo, T. (2016). Organometallics, 35, 3397–3405. Web of Science CSD CrossRef CAS Google Scholar
Nöth, H. & Warchhold, M. (2004). Eur. J. Inorg. Chem. pp. 1115–1124. Google Scholar
Pitchumony, T. S., Spingler, B., Motterlini, R. & Alberto, R. (2010). Org. Biomol. Chem. 8, 4849–4854. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pospiech, S., Bolte, M., Lerner, H.-W. & Wagner, M. (2015). Chem. Eur. J. 21, 8229–8236. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seven, Ö., Bolte, M., Lerner, H.-W. & Wanger, M. (2014). Organometallics, 33, 1291–1299. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thalangamaarachchige, V. D., Silva, N. J., Unruh, D. K., Aquino, A. J. A. & Krempner, C. (2019). Tetrahedron, 75, 1861–1864. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.