research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT studies of (2Z)-2-(2,4-di­chloro­benzyl­­idene)-4-nonyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: brahimhni2018@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 9 January 2020; accepted 25 January 2020; online 31 January 2020)

The title compound, C24H27Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units in which the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form chains of mol­ecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphyπ (ring) inter­actions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.

1. Chemical context

A number of sulfur- and nitro­gen-containing heterocyclic compounds have been well studied. These mol­ecules exhibit a wide range of biological applications, indicating that the 1,4-benzo­thia­zine moiety is a potentially useful template in medicinal chemistry research with therapeutic applications in the anti­microbial (Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. Mol. Pharmacol, 50, 1178-1188.], Sabatini et al., 2008[Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321-4330.]), anti-viral (Malagu et al., 1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]), anti-oxidant (Zia-ur-Rehman et al. 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]), anti-inflammatory (Trapani et al., 1985[Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farm. Ed. Sci. 40, 369-376.]; Gowda et al., 2011[Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100.]) anti­pyretic (Warren et al., 1987[Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411-415.]), and anti-cancer (Gupta et al., 1991[Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153-156.]; Gupta et al., 1985[Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381-385.]) areas as well as being precursors for the synthesis of new compounds (Sebbar et al., 2015a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999.]; Vidal et al., 2006[Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591-593.]) possessing anti-diabetic (Tawada et al., 1990[Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238-1245.]) and anti-corrosion activities (Ellouz et al., 2016a[Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806-2819.],b[Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482-2497.]; Sebbar et al., 2016a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data.1, x161012.]) and biological properties (Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]; Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data, 2, x170646.],b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCr Data, 2, x170097.], 2018[Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.]; Sebbar et al., 2019a[Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721-727.],b[Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650-1656.]). As a continuation of our research into the development of new 1,4-benzo­thia­zine derivatives with potential pharmacological applications, we have studied the reaction of 1-bromo­nonane with (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base (Hni et al., 2019b[Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593-599.]; Sebbar et al., 2019) to give the title compound, (I)[link], in good yield. We report here its crystalline and mol­ecular structures as well as the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations.

[Scheme 1]

2. Structural commentary

The title compound contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units (Fig. 1[link]), in which the di­hydro­thia­zine ring, B (S1/N1/C1/C6–C8), adopts a screw-boat conformation with puckering parameters QT = 0.5581 (16) Å, θ = 69.76 (18)° and φ = 334.3 (2)°. The planar rings, A (C1–C6) and C (C10–C15) are oriented at a dihedral angle of 88.45 (7)°. Atoms Cl1, Cl2 and C9 are almost co-planar with ring C being displaced by 0.0247 (6), −0.0732 (9) and −0.0274 (2) Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds link the mol­ecules, forming chains extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphyπ (ring) inter­actions (Table 1[link] and Fig. 2[link]). These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds to form stepped layers approximately parallel to (012) (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the ring A (C1–C6).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1ix 0.96 (3) 2.51 (3) 3.268 (2) 136 (2)
C5—H5⋯Cl1i 0.96 (2) 2.86 (2) 3.634 (2) 138.8 (17)
C15—H15⋯O1vi 0.96 (3) 2.36 (3) 3.270 (2) 159 (2)
C17—H17ACg1i 0.98 (2) 2.90 (2) 3.619 (2) 131.2 (17)
Symmetry codes: (i) -x+1, -y+1, -z+1; (vi) -x+1, -y, -z+1; (ix) x+1, y, z.
[Figure 2]
Figure 2
A perspective view of one double chain. The inter­molecular C—HBnz⋯OThz and C—HBnz⋯ClDchlphy (Bnz = benzene,Thz = thia­zine and Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds are shown, respectively, as black and light purple dashed lines while the C—HDchlphyπ (ring) inter­actions are shown as green dashed lines.
[Figure 3]
Figure 3
Perspective view of one double chain and half of a second showing the C—HDchlphy⋯OThz (Dchlphy = 2,4-di­chloro­phenyl and Thz = thia­zine) hydrogen bond connecting them. Inter­molecular inter­actions depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1 and hydrogen atom H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 5[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggests that there are no ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H ⋯ Cl, O⋯H/H⋯O and S⋯H/H⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link]bf, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 2[link]), contributing 44.7% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.09 Å. The presence of C—H⋯π inter­actions is indicated by the fringed pairs of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 7[link]c, 23.7% contribution to the HS). The two pairs of wings in the fingerprint plot delineated into Cl⋯Hl/H⋯Cl contacts (Fig. 7[link]d, 18.9% contribution) have an unsymmetrical distribution of points due to a third wing, with the edges at de + di = 2.74 Å (for the long wing), de + di = 2.92 Å (for the short wing) and de + di = 3.53 Å (for the unsymmetrical third wing). The pair of wings in the fingerprint plot delineated into O⋯H/H⋯O contacts (Fig. 7[link]e, 5.0% contribution) has a pair of spikes with the tips at de + di = 2.22 Å. Finally, the wings in the fingerprint plot delineated into S⋯H/H⋯S contacts (Fig. 7[link]f, 4.8% contribution) have the tips at de + di = 2.99 Å.

Table 2
Selected interatomic distances (Å)

Cl1⋯C5i 3.634 (2) C21⋯H24B 2.86
Cl1⋯C12ii 3.548 (2) C24⋯H21B 2.91
Cl1⋯H9 2.82 (3) C24A⋯H24Eviii 2.44
Cl1⋯H5i 2.86 (2) C24A⋯H24Fviii 2.70
Cl1⋯H12ii 2.92 (3) C24A⋯H24Dviii 1.94
Cl2⋯H20Aiii 3.13 (2) H3⋯H17Aix 2.42 (4)
Cl2⋯H24Ci 3.01 H5⋯H17B 2.21 (4)
S1⋯N1 3.0439 (16) H5⋯H16B 2.33 (3)
S1⋯C15 3.236 (2) H12⋯H22Aiii 2.37
S1⋯H15 2.84 (3) H16A⋯H18A 2.47 (3)
S1⋯H2iv 3.15 (3) H16B⋯H24Dvii 2.54
O1⋯C3v 3.268 (2) H16B⋯H18B 2.46 (3)
O1⋯C17 3.238 (2) H16B⋯H24Avii 2.49
O1⋯C15vi 3.270 (2) H17A⋯H19A 2.59 (3)
O1⋯H3v 2.51 (3) H17B⋯H19B 2.55 (4)
O1⋯H16A 2.43 (2) H18B⋯H20B 2.55 (3)
O1⋯H17A 2.75 (2) H19A⋯H21A 2.58 (4)
O1⋯H9 2.49 (3) H19B⋯H21B 2.51 (4)
O1⋯H15vi 2.36 (3) H20A⋯H22A 2.49
C5⋯C17 3.430 (3) H20B⋯H22B 2.54
C5⋯C24vii 3.58 H21A⋯H23B 2.55
C6⋯C24vii 3.58 H21A⋯H23C 2.60
C24A⋯C24Aviii 2.48 H21B⋯H24B 2.32
C2⋯H19Ai 2.98 (2) H21B⋯H23D 2.34
C5⋯H24Avii 2.99 H22B⋯H24C 2.27
C5⋯H16B 2.64 (2) H22B⋯H24E 2.43
C5⋯H17B 2.93 (3) H24D⋯C24Aviii 1.94
C7⋯H15vi 2.95 (3) H24D⋯H24Dviii 1.82
C7⋯H17A 2.99 (2) H24D⋯H24Eviii 1.70
C16⋯H5 2.62 (3) H24D⋯H24Fviii 2.07
C17⋯H3v 2.98 (3) H24E⋯H24Fviii 2.54
C17⋯H5 2.82 (3)    
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+2; (iii) x+1, y-1, z+1; (iv) -x+2, -y, -z+1; (v) x-1, y, z; (vi) -x+1, -y, -z+1; (vii) x+1, y-1, z; (viii) -x-1, -y+3, -z; (ix) x+1, y, z.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.6343 to 1.4076 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl, (e) O⋯H/H ⋯ O and (f) S⋯H/H⋯S contacts. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and S⋯H/H⋯S inter­actions in Fig. 8[link]ae, respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) C⋯H/H⋯C, (c) Cl ⋯ H/H⋯Cl, (d) O⋯H/H⋯O and (f) S⋯H/H⋯S inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the default radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −53.7 (Eele), −13.6 (Epol), −161.9 (Edis), 119.0 (Erep) and −134.3 (Etot) for C—HDchlphy⋯OThz, 25.6 (Eele), −5.7 (Epol), −62.1 (Edis), 23.1 (Erep) and −71.2 (Etot) [or C—HBnz⋯OThz and −16.0 (Eele), −8.3 (Epol), −43.0 (Edis), 42.2 (Erep) and −34.4 (Etot) for C—HBnz⋯ClDchlphy (Bnz = benzene, Thz = thia­zine and Dchlphy = 2,4-di­chloro­phen­yl).

6. DFT calculations

The optimized structure of the title compound, (I)[link], in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311G(d,p) basis-set calculations as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 3[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, and together with the electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4[link]. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9[link]. The HOMO and LUMO are localized in the plane extending from the whole (2Z)-2-[(2,4-di­chloro­phen­yl)methyl­idene]-4-nonyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one ring.

Table 3
Comparison of the selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
Cl1—C11 1.744 (2) 1.826
Cl2—C13 1.733 (2) 1.821
S1—C8 1.7578 (18) 1.831
S1—C1 1.7589 (18) 1.830
O1—C7 1.228 (2) 1.256
N1—C7 1.368 (2) 1.392
N1—C6 1.420 (2) 1.423
N1—C16 1.479 (2) 1.489
     
C8—S1—C1 97.27 (8) 99.15
C7—N1—C6 123.67 (14) 124.78
C7—N1—C16 117.19 (14) 114.70
C6—N1—C16 119.07 (15) 119.29
C2—C1—C6 120.22 (17) 121.21
C2—C1—S1 119.25 (13) 117.28
C6—C1—S1 120.52 (13) 121.48
C3—C2—S1 120.53 (17) 120.47

Table 4
Calculated energies

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy, TE (eV) −64734
EHOMO (eV) −6.9440
ELUMO (eV) −0.6941
Energy gap, ΔE (eV) 6.2499
Dipole moment, μ (Debye) 4.4939
Ionization potential, I (eV) 6.9440
Electron affinity, A 0.6941
Electro negativity, χ 3.8191
Hardness, η 3.1249
Electrophilicity index, ω 2.3337
Softness, σ 0.3200
Fraction of electron transferred, ΔN 0.5090
[Figure 9]
Figure 9
The energy band gap of the title compound.

7. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to October 2019), for compounds containing the fragment II gave 14 hits.

[Scheme 2]

The largest set contains IIa (COGRUN; Sebbar et al., 2014a[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.]), IIb (APAJUY; Sebbar et al., 2016c[Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.]), IIc (EVIYIT; Sebbar et al., 2016b[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845-6862.]) and IId (WUFGIP; Sebbar et al., 2015b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423-o424.]). Additional examples are III: R1 = 4-FC6H4 and R2 = CH2C≡CH (WOCFUS; Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]), R1 = 4-ClC6H4 and R2 = CH2Ph (OMEGEU; Ellouz et al., 2016c[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.]) and R1 = 2-ClC6H4, R2 = CH2C≡CH (SAVTUH; Sebbar et al., 2017[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.]). In all these compounds, the configuration about the benzyl­idene group: C=CHC6H5 bond is Z, and in the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitro­gen and sulfur atoms and that defined by nitro­gen and sulfur and the other two carbon atoms separating them having approximate values of 36° (WUFGIP), 29° (APAJUY), 28° (SAVTUH), 26° (WOCFUS) and 25° (COGRUN). By contrast, in both EVIYIT and OMEGEU, the benzo­thia­zine unit is nearly planar with the corresponding dihedral angle being about 4°.

8. Synthesis and crystallization

To a solution of (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (1.5 mmol), potassium carbonate (2.7 mmol) and tetra-n-butyl ammonium bromide (0.14 mmol) in DMF (20 mL) was added 1-bromo­nonane (2.6 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue obtained was washed with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (9/1) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield = 79%).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The two carbon atoms at the end of the nonyl chain, C23 and C24, are disordered in a 0.562 (4)/0.438 (4) ratio. These were refined with restraints that the two components have comparable geometries. The H atoms on these carbons as well as those on C22 were included as riding contributions in idealized positions (C—H = 0.99 Å with Uiso(H) = 1.5Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula C24H27Cl2NOS
Mr 448.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.9961 (3), 10.3755 (3), 13.2565 (4)
α, β, γ (°) 73.857 (1), 88.119 (1), 74.182 (1)
V3) 1142.32 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.52
Crystal size (mm) 0.20 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.54, 0.76
No. of measured, independent and observed [I > 2σ(I)] reflections 8788, 4246, 3772
Rint 0.025
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.02
No. of reflections 4246
No. of parameters 349
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.50
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(2Z)-2-(2,4-Dichlorobenzylidene)-4-nonyl-3,4-dihydro-2H-1,4-benzothiazin-3-one top
Crystal data top
C24H27Cl2NOSZ = 2
Mr = 448.42F(000) = 472
Triclinic, P1Dx = 1.304 Mg m3
a = 8.9961 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.3755 (3) ÅCell parameters from 7317 reflections
c = 13.2565 (4) Åθ = 3.5–72.4°
α = 73.857 (1)°µ = 3.52 mm1
β = 88.119 (1)°T = 150 K
γ = 74.182 (1)°Column, colourless
V = 1142.32 (6) Å30.20 × 0.14 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4246 independent reflections
Radiation source: INCOATEC IµS micro-focus source3772 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.5°
ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.54, Tmax = 0.76l = 1315
8788 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual space
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.6585P]
where P = (Fo2 + 2Fc2)/3
4246 reflections(Δ/σ)max < 0.001
349 parametersΔρmax = 0.32 e Å3
14 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The two carbons at the end of the nonyl chain, C23 and C24, are disordered in a 0.562 (4)/0.438 (4) ratio. These were refined with restraints that the two components have comparable geometries. The H-atoms on these carbons as well as those on C22 were included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.49354 (7)0.17182 (5)0.85050 (4)0.04871 (16)
Cl20.90576 (10)0.32166 (6)1.00981 (5)0.0707 (2)
S10.74621 (5)0.09525 (4)0.49738 (4)0.03192 (13)
O10.30841 (14)0.26156 (14)0.47052 (11)0.0350 (3)
N10.49478 (16)0.35999 (15)0.39383 (12)0.0290 (3)
C10.77339 (19)0.26057 (18)0.43712 (14)0.0278 (4)
C20.9224 (2)0.2768 (2)0.43323 (15)0.0330 (4)
H21.005 (3)0.196 (3)0.4656 (18)0.042 (6)*
C30.9469 (2)0.4057 (2)0.38810 (17)0.0380 (4)
H31.051 (3)0.414 (3)0.387 (2)0.052 (7)*
C40.8221 (2)0.5199 (2)0.34844 (18)0.0410 (5)
H40.837 (3)0.613 (3)0.316 (2)0.056 (7)*
C50.6730 (2)0.5053 (2)0.35211 (17)0.0366 (4)
H50.589 (3)0.587 (2)0.3270 (18)0.039 (6)*
C60.64689 (19)0.37512 (19)0.39486 (14)0.0287 (4)
C70.4449 (2)0.26179 (18)0.46805 (14)0.0286 (4)
C80.5633 (2)0.15326 (18)0.54591 (15)0.0291 (4)
C90.5205 (2)0.1027 (2)0.64295 (16)0.0344 (4)
H90.408 (3)0.145 (3)0.656 (2)0.057 (7)*
C100.6193 (2)0.0020 (2)0.73085 (15)0.0331 (4)
C110.6141 (2)0.0188 (2)0.83067 (16)0.0361 (4)
C120.7034 (3)0.0761 (2)0.91616 (17)0.0418 (5)
H120.700 (3)0.059 (3)0.986 (2)0.056 (7)*
C130.8000 (3)0.1984 (2)0.90162 (17)0.0429 (5)
C140.8106 (3)0.2233 (2)0.80462 (17)0.0407 (5)
H140.880 (3)0.309 (3)0.797 (2)0.050 (7)*
C150.7214 (2)0.1252 (2)0.72000 (16)0.0363 (4)
H150.729 (3)0.149 (3)0.655 (2)0.046 (6)*
C160.3799 (2)0.4592 (2)0.31152 (15)0.0309 (4)
H16A0.315 (3)0.405 (2)0.2923 (17)0.036 (6)*
H16B0.434 (2)0.491 (2)0.2491 (17)0.028 (5)*
C170.2769 (2)0.5837 (2)0.34303 (15)0.0313 (4)
H17A0.225 (3)0.548 (2)0.4065 (18)0.036 (6)*
H17B0.342 (3)0.636 (2)0.3630 (17)0.032 (5)*
C180.1618 (2)0.6778 (2)0.25291 (16)0.0325 (4)
H18A0.104 (3)0.623 (2)0.2318 (17)0.036 (6)*
H18B0.217 (3)0.703 (2)0.1916 (19)0.040 (6)*
C190.0581 (2)0.8062 (2)0.27852 (17)0.0348 (4)
H19A0.004 (3)0.776 (2)0.3390 (18)0.035 (6)*
H19B0.123 (3)0.859 (3)0.2959 (19)0.045 (6)*
C200.0531 (2)0.9040 (2)0.18839 (17)0.0372 (4)
H20A0.125 (3)0.853 (2)0.1714 (18)0.039 (6)*
H20B0.010 (3)0.934 (2)0.1228 (19)0.043 (6)*
C210.1479 (2)1.0373 (2)0.21183 (18)0.0383 (4)
H21A0.205 (3)1.011 (3)0.274 (2)0.059 (8)*
H21B0.080 (3)1.087 (2)0.2266 (18)0.042 (6)*
C220.2613 (3)1.1333 (2)0.12285 (19)0.0493 (6)
H22A0.3259941.0789020.1046830.059*
H22B0.2014181.1618580.0606250.059*
C230.3697 (8)1.2661 (4)0.1422 (6)0.0440 (18)0.562 (4)
H23A0.4586861.3051170.0904670.053*0.562 (4)
H23B0.4093061.2455470.2138380.053*0.562 (4)
C240.2717 (6)1.3686 (5)0.1297 (4)0.0630 (10)0.562 (4)
H24A0.3350431.4559920.1412310.094*0.562 (4)
H24B0.1840221.3280990.1812440.094*0.562 (4)
H24C0.2331251.3873360.0585650.094*0.562 (4)
C23A0.3282 (12)1.2751 (6)0.1453 (7)0.0440 (18)0.438 (4)
H23C0.3880481.2623160.2096420.053*0.438 (4)
H23D0.2424301.3122600.1581210.053*0.438 (4)
C24A0.4333 (8)1.3801 (6)0.0534 (5)0.0630 (10)0.438 (4)
H24D0.4741341.4691640.0699380.094*0.438 (4)
H24E0.3738091.3940600.0101010.094*0.438 (4)
H24F0.5192981.3441610.0413740.094*0.438 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0592 (3)0.0364 (3)0.0409 (3)0.0014 (2)0.0109 (2)0.0080 (2)
Cl20.1011 (6)0.0441 (3)0.0459 (3)0.0100 (3)0.0229 (3)0.0052 (2)
S10.0281 (2)0.0251 (2)0.0361 (3)0.00014 (16)0.00197 (17)0.00517 (17)
O10.0233 (6)0.0393 (7)0.0427 (8)0.0097 (5)0.0023 (5)0.0104 (6)
N10.0200 (7)0.0281 (7)0.0351 (8)0.0032 (6)0.0043 (6)0.0054 (6)
C10.0231 (8)0.0284 (8)0.0289 (9)0.0028 (7)0.0005 (6)0.0074 (7)
C20.0207 (8)0.0363 (10)0.0357 (10)0.0002 (7)0.0005 (7)0.0076 (8)
C30.0217 (9)0.0421 (11)0.0473 (12)0.0077 (8)0.0014 (8)0.0088 (9)
C40.0275 (9)0.0339 (10)0.0569 (13)0.0089 (8)0.0019 (8)0.0049 (9)
C50.0244 (9)0.0276 (9)0.0502 (12)0.0032 (7)0.0027 (8)0.0020 (8)
C60.0198 (8)0.0299 (9)0.0338 (9)0.0038 (7)0.0009 (7)0.0076 (7)
C70.0248 (8)0.0282 (8)0.0336 (9)0.0058 (7)0.0016 (7)0.0111 (7)
C80.0248 (8)0.0264 (8)0.0359 (10)0.0063 (7)0.0018 (7)0.0087 (7)
C90.0295 (9)0.0343 (10)0.0384 (10)0.0093 (8)0.0010 (8)0.0081 (8)
C100.0312 (9)0.0335 (9)0.0345 (10)0.0129 (8)0.0021 (7)0.0055 (8)
C110.0403 (10)0.0294 (9)0.0358 (10)0.0091 (8)0.0067 (8)0.0057 (8)
C120.0550 (13)0.0372 (11)0.0312 (11)0.0117 (9)0.0019 (9)0.0077 (8)
C130.0527 (12)0.0326 (10)0.0382 (11)0.0078 (9)0.0058 (9)0.0045 (8)
C140.0463 (12)0.0320 (10)0.0434 (12)0.0083 (9)0.0026 (9)0.0117 (8)
C150.0402 (11)0.0361 (10)0.0361 (10)0.0141 (8)0.0009 (8)0.0122 (8)
C160.0240 (8)0.0312 (9)0.0326 (10)0.0018 (7)0.0053 (7)0.0058 (7)
C170.0230 (8)0.0306 (9)0.0374 (10)0.0033 (7)0.0048 (7)0.0080 (8)
C180.0253 (9)0.0322 (9)0.0359 (10)0.0033 (7)0.0033 (8)0.0067 (8)
C190.0295 (9)0.0320 (10)0.0396 (11)0.0032 (8)0.0058 (8)0.0089 (8)
C200.0332 (10)0.0318 (10)0.0406 (11)0.0006 (8)0.0052 (8)0.0088 (8)
C210.0350 (10)0.0321 (10)0.0440 (12)0.0017 (8)0.0041 (9)0.0113 (8)
C220.0505 (13)0.0366 (11)0.0476 (13)0.0079 (10)0.0053 (10)0.0095 (9)
C230.033 (4)0.0350 (13)0.0547 (15)0.0018 (17)0.001 (2)0.0088 (11)
C240.064 (2)0.0489 (19)0.061 (2)0.0064 (17)0.0022 (17)0.0126 (16)
C23A0.033 (4)0.0350 (13)0.0547 (15)0.0018 (17)0.001 (2)0.0088 (11)
C24A0.064 (2)0.0489 (19)0.061 (2)0.0064 (17)0.0022 (17)0.0126 (16)
Geometric parameters (Å, º) top
Cl1—C111.744 (2)C16—H16B0.97 (2)
Cl2—C131.733 (2)C17—C181.528 (2)
S1—C81.7578 (18)C17—H17A0.98 (2)
S1—C11.7589 (18)C17—H17B0.98 (2)
O1—C71.228 (2)C18—C191.521 (3)
N1—C71.368 (2)C18—H18A0.96 (2)
N1—C61.420 (2)C18—H18B0.95 (2)
N1—C161.479 (2)C19—C201.519 (3)
C1—C21.393 (3)C19—H19A0.95 (2)
C1—C61.398 (2)C19—H19B0.97 (3)
C2—C31.379 (3)C20—C211.522 (3)
C2—H20.96 (2)C20—H20A1.00 (2)
C3—C41.382 (3)C20—H20B1.04 (2)
C3—H30.96 (3)C21—C221.515 (3)
C4—C51.388 (3)C21—H21A0.97 (3)
C4—H40.99 (3)C21—H21B0.96 (3)
C5—C61.392 (3)C22—C231.537 (4)
C5—H50.96 (2)C22—C23A1.537 (4)
C7—C81.497 (2)C22—H22A0.9900
C8—C91.334 (3)C22—H22B0.9900
C9—C101.471 (3)C23—C241.530 (7)
C9—H91.02 (3)C23—H23A0.9900
C10—C111.396 (3)C23—H23B0.9900
C10—C151.397 (3)C24—H24A0.9800
C11—C121.381 (3)C24—H24B0.9800
C12—C131.388 (3)C24—H24C0.9800
C12—H120.99 (3)C23A—C24A1.530 (8)
C13—C141.376 (3)C23A—H23C0.9900
C14—C151.385 (3)C23A—H23D0.9900
C14—H140.97 (3)C24A—H24D0.9800
C15—H150.96 (3)C24A—H24E0.9800
C16—C171.525 (3)C24A—H24F0.9800
C16—H16A0.99 (2)
Cl1···C5i3.634 (2)C21···H24B2.86
Cl1···C12ii3.548 (2)C24···H21B2.91
Cl1···H92.82 (3)C24A···H24Eviii2.44
Cl1···H5i2.86 (2)C24A···H24Fviii2.70
Cl1···H12ii2.92 (3)C24A···H24Dviii1.94
Cl2···H20Aiii3.13 (2)H3···H17Aix2.42 (4)
Cl2···H24Ci3.01H5···H17B2.21 (4)
S1···N13.0439 (16)H5···H16B2.33 (3)
S1···C153.236 (2)H12···H22Aiii2.37
S1···H152.84 (3)H16A···H18A2.47 (3)
S1···H2iv3.15 (3)H16B···H24Dvii2.54
O1···C3v3.268 (2)H16B···H18B2.46 (3)
O1···C173.238 (2)H16B···H24Avii2.49
O1···C15vi3.270 (2)H17A···H19A2.59 (3)
O1···H3v2.51 (3)H17B···H19B2.55 (4)
O1···H16A2.43 (2)H18B···H20B2.55 (3)
O1···H17A2.75 (2)H19A···H21A2.58 (4)
O1···H92.49 (3)H19B···H21B2.51 (4)
O1···H15vi2.36 (3)H20A···H22A2.49
C5···C173.430 (3)H20B···H22B2.54
C5···C24vii3.58H21A···H23B2.55
C6···C24vii3.58H21A···H23C2.60
C24A···C24Aviii2.48H21B···H24B2.32
C2···H19Ai2.98 (2)H21B···H23D2.34
C5···H24Avii2.99H22B···H24C2.27
C5···H16B2.64 (2)H22B···H24E2.43
C5···H17B2.93 (3)H24D···C24Aviii1.94
C7···H15vi2.95 (3)H24D···H24Dviii1.82
C7···H17A2.99 (2)H24D···H24Eviii1.70
C16···H52.62 (3)H24D···H24Fviii2.07
C17···H3v2.98 (3)H24E···H24Fviii2.54
C17···H52.82 (3)
C8—S1—C197.27 (8)C16—C17—H17B109.2 (13)
C7—N1—C6123.67 (14)C18—C17—H17B110.8 (12)
C7—N1—C16117.19 (14)H17A—C17—H17B106.0 (18)
C6—N1—C16119.07 (15)C19—C18—C17113.07 (16)
C2—C1—C6120.22 (17)C19—C18—H18A112.5 (13)
C2—C1—S1119.25 (13)C17—C18—H18A109.3 (13)
C6—C1—S1120.52 (13)C19—C18—H18B111.2 (14)
C3—C2—C1120.53 (17)C17—C18—H18B108.8 (14)
C3—C2—H2122.3 (14)H18A—C18—H18B101.4 (19)
C1—C2—H2117.1 (14)C20—C19—C18113.91 (17)
C2—C3—C4119.53 (18)C20—C19—H19A110.8 (14)
C2—C3—H3118.7 (16)C18—C19—H19A108.3 (14)
C4—C3—H3121.7 (16)C20—C19—H19B107.2 (14)
C3—C4—C5120.51 (19)C18—C19—H19B108.7 (15)
C3—C4—H4120.8 (16)H19A—C19—H19B107.7 (19)
C5—C4—H4118.7 (16)C19—C20—C21113.55 (18)
C4—C5—C6120.58 (17)C19—C20—H20A108.8 (13)
C4—C5—H5118.4 (14)C21—C20—H20A109.2 (13)
C6—C5—H5121.0 (14)C19—C20—H20B109.1 (13)
C5—C6—C1118.59 (16)C21—C20—H20B107.1 (13)
C5—C6—N1120.19 (15)H20A—C20—H20B109.1 (19)
C1—C6—N1121.22 (16)C22—C21—C20113.53 (18)
O1—C7—N1121.48 (16)C22—C21—H21A108.6 (17)
O1—C7—C8121.01 (16)C20—C21—H21A107.9 (17)
N1—C7—C8117.51 (15)C22—C21—H21B108.5 (14)
C9—C8—C7118.51 (17)C20—C21—H21B109.6 (14)
C9—C8—S1125.47 (14)H21A—C21—H21B109 (2)
C7—C8—S1115.89 (13)C21—C22—C23117.2 (4)
C8—C9—C10126.86 (18)C21—C22—C23A109.3 (4)
C8—C9—H9114.5 (15)C21—C22—H22A108.0
C10—C9—H9118.6 (15)C23—C22—H22A108.0
C11—C10—C15116.75 (18)C21—C22—H22B108.0
C11—C10—C9120.39 (18)C23—C22—H22B108.0
C15—C10—C9122.85 (18)H22A—C22—H22B107.2
C12—C11—C10122.93 (19)C24—C23—C22105.7 (4)
C12—C11—Cl1117.26 (16)C24—C23—H23A110.6
C10—C11—Cl1119.80 (15)C22—C23—H23A110.6
C11—C12—C13117.9 (2)C24—C23—H23B110.6
C11—C12—H12121.9 (16)C22—C23—H23B110.6
C13—C12—H12120.1 (16)H23A—C23—H23B108.7
C14—C13—C12121.42 (19)C23—C24—H24A109.5
C14—C13—Cl2120.33 (17)C23—C24—H24B109.5
C12—C13—Cl2118.25 (17)H24A—C24—H24B109.5
C13—C14—C15119.3 (2)C23—C24—H24C109.5
C13—C14—H14119.4 (15)H24A—C24—H24C109.5
C15—C14—H14121.3 (15)H24B—C24—H24C109.5
C14—C15—C10121.63 (19)C24A—C23A—C22111.3 (6)
C14—C15—H15116.3 (15)C24A—C23A—H23C109.4
C10—C15—H15121.9 (15)C22—C23A—H23C109.4
N1—C16—C17115.05 (15)C24A—C23A—H23D109.4
N1—C16—H16A106.7 (13)C22—C23A—H23D109.4
C17—C16—H16A109.8 (13)H23C—C23A—H23D108.0
N1—C16—H16B108.8 (12)C23A—C24A—H24D109.5
C17—C16—H16B110.0 (12)C23A—C24A—H24E109.5
H16A—C16—H16B106.0 (18)H24D—C24A—H24E109.5
C16—C17—C18110.52 (16)C23A—C24A—H24F109.5
C16—C17—H17A107.9 (13)H24D—C24A—H24F109.5
C18—C17—H17A112.2 (13)H24E—C24A—H24F109.5
C8—S1—C1—C2147.58 (16)S1—C8—C9—C105.5 (3)
C8—S1—C1—C631.51 (17)C8—C9—C10—C11133.9 (2)
C6—C1—C2—C30.2 (3)C8—C9—C10—C1546.2 (3)
S1—C1—C2—C3178.87 (16)C15—C10—C11—C120.3 (3)
C1—C2—C3—C41.3 (3)C9—C10—C11—C12179.60 (19)
C2—C3—C4—C51.1 (3)C15—C10—C11—Cl1178.39 (14)
C3—C4—C5—C60.6 (4)C9—C10—C11—Cl11.7 (3)
C4—C5—C6—C12.1 (3)C10—C11—C12—C131.3 (3)
C4—C5—C6—N1177.04 (19)Cl1—C11—C12—C13179.99 (17)
C2—C1—C6—C51.9 (3)C11—C12—C13—C141.9 (3)
S1—C1—C6—C5177.16 (15)C11—C12—C13—Cl2177.07 (17)
C2—C1—C6—N1177.25 (17)C12—C13—C14—C151.0 (3)
S1—C1—C6—N13.7 (2)Cl2—C13—C14—C15178.02 (17)
C7—N1—C6—C5150.53 (19)C13—C14—C15—C100.7 (3)
C16—N1—C6—C526.4 (3)C11—C10—C15—C141.3 (3)
C7—N1—C6—C130.3 (3)C9—C10—C15—C14178.57 (19)
C16—N1—C6—C1152.76 (17)C7—N1—C16—C1782.7 (2)
C6—N1—C7—O1172.26 (17)C6—N1—C16—C1794.4 (2)
C16—N1—C7—O14.7 (3)N1—C16—C17—C18179.23 (15)
C6—N1—C7—C88.3 (3)C16—C17—C18—C19178.51 (17)
C16—N1—C7—C8174.73 (16)C17—C18—C19—C20177.77 (17)
O1—C7—C8—C932.8 (3)C18—C19—C20—C21175.70 (18)
N1—C7—C8—C9147.71 (18)C19—C20—C21—C22178.7 (2)
O1—C7—C8—S1143.15 (15)C20—C21—C22—C23176.0 (3)
N1—C7—C8—S136.3 (2)C20—C21—C22—C23A169.4 (5)
C1—S1—C8—C9133.86 (18)C21—C22—C23—C2478.1 (5)
C1—S1—C8—C750.47 (14)C21—C22—C23A—C24A175.2 (6)
C7—C8—C9—C10178.89 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2; (iii) x+1, y1, z+1; (iv) x+2, y, z+1; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x+1, y1, z; (viii) x1, y+3, z; (ix) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the ring A (C1–C6).
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ix0.96 (3)2.51 (3)3.268 (2)136 (2)
C5—H5···Cl1i0.96 (2)2.86 (2)3.634 (2)138.8 (17)
C15—H15···O1vi0.96 (3)2.36 (3)3.270 (2)159 (2)
C17—H17A···Cg1i0.98 (2)2.90 (2)3.619 (2)131.2 (17)
Symmetry codes: (i) x+1, y+1, z+1; (vi) x+1, y, z+1; (ix) x+1, y, z.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
Cl1—C111.744 (2)1.826
Cl2—C131.733 (2)1.821
S1—C81.7578 (18)1.831
S1—C11.7589 (18)1.830
O1—C71.228 (2)1.256
N1—C71.368 (2)1.392
N1—C61.420 (2)1.423
N1—C161.479 (2)1.489
C8—S1—C197.27 (8)99.15
C7—N1—C6123.67 (14)124.78
C7—N1—C16117.19 (14)114.70
C6—N1—C16119.07 (15)119.29
C2—C1—C6120.22 (17)121.21
C2—C1—S1119.25 (13)117.28
C6—C1—S1120.52 (13)121.48
C3—C2—S1120.53 (17)120.47
Calculated energies top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy, TE (eV)-64734
EHOMO (eV)-6.9440
ELUMO (eV)-0.6941
Energy gap, ΔE (eV)6.2499
Dipole moment, µ (Debye)4.4939
Ionization potential, I (eV)6.9440
Electron affinity, A0.6941
Electro negativity, χ3.8191
Hardness, η3.1249
Electrophilicity index, ω2.3337
Softness, σ0.3200
Fraction of electron transferred, ΔN0.5090
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationArmenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. Mol. Pharmacol, 50, 1178–1188.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA  Google Scholar
First citationEllouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data, 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.  Web of Science CrossRef PubMed Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCr Data, 2, x170097.  Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385.  CrossRef CAS Web of Science Google Scholar
First citationGupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156.  CrossRef CAS Web of Science Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data.1, x161012.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.  Google Scholar
First citationSebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727.  CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656.  CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377–388.  CAS Google Scholar
First citationTawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245.  CrossRef CAS PubMed Google Scholar
First citationTrapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farm. Ed. Sci. 40, 369–376.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationVidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593.  Web of Science CrossRef Google Scholar
First citationWarren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.  CrossRef CAS Web of Science Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds