research communications
Z)-2-(2,4-dichlorobenzylidene)-4-nonyl-3,4-dihydro-2H-1,4-benzothiazin-3-one
Hirshfeld surface analysis, interaction energy and DFT studies of (2aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: brahimhni2018@gmail.com
The title compound, C24H27Cl2NOS, contains 1,4-benzothiazine and 2,4-dichlorophenylmethylidene units in which the dihydrothiazine ring adopts a screw-boat conformation. In the crystal, intermolecular C—HBnz⋯OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds form chains of molecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-dichlorophenyl) hydrogen bonds and C—HDchlphy⋯π (ring) interactions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.
Keywords: crystal structure; 1,4-benzothiazin-3-one; dihydrothiazine; hydrogen bond; π-stacking; Hirshfeld surface.
CCDC reference: 1980073
1. Chemical context
A number of sulfur- and nitrogen-containing et al., 2012, Sabatini et al., 2008), anti-viral (Malagu et al., 1998), anti-oxidant (Zia-ur-Rehman et al. 2009), anti-inflammatory (Trapani et al., 1985; Gowda et al., 2011) antipyretic (Warren et al., 1987), and anti-cancer (Gupta et al., 1991; Gupta et al., 1985) areas as well as being precursors for the synthesis of new compounds (Sebbar et al., 2015a; Vidal et al., 2006) possessing anti-diabetic (Tawada et al., 1990) and anti-corrosion activities (Ellouz et al., 2016a,b; Sebbar et al., 2016a) and biological properties (Hni et al., 2019a; Ellouz et al., 2017a,b, 2018; Sebbar et al., 2019a,b). As a continuation of our research into the development of new 1,4-benzothiazine derivatives with potential pharmacological applications, we have studied the reaction of 1-bromononane with (Z)-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one under conditions using tetra-n-butylammonium bromide (TBAB) as catalyst and potassium carbonate as base (Hni et al., 2019b; Sebbar et al., 2019) to give the title compound, (I), in good yield. We report here its crystalline and molecular structures as well as the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations.
have been well studied. These molecules exhibit a wide range of biological applications, indicating that the 1,4-benzothiazine moiety is a potentially useful template in medicinal chemistry research with therapeutic applications in the antimicrobial (Armenise2. Structural commentary
The title compound contains 1,4-benzothiazine and 2,4-dichlorophenylmethylidene units (Fig. 1), in which the dihydrothiazine ring, B (S1/N1/C1/C6–C8), adopts a screw-boat conformation with puckering parameters QT = 0.5581 (16) Å, θ = 69.76 (18)° and φ = 334.3 (2)°. The planar rings, A (C1–C6) and C (C10–C15) are oriented at a dihedral angle of 88.45 (7)°. Atoms Cl1, Cl2 and C9 are almost co-planar with ring C being displaced by 0.0247 (6), −0.0732 (9) and −0.0274 (2) Å, respectively.
3. Supramolecular features
In the crystal, C—HBnz⋯OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds link the molecules, forming chains extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-dichlorophenyl) hydrogen bonds and C—HDchlphy⋯π (ring) interactions (Table 1 and Fig. 2). These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds to form stepped layers approximately parallel to (012) (Table 1 and Figs. 2 and 3).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots appearing near O1 and hydrogen atom H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggests that there are no π–π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H ⋯ Cl, O⋯H/H⋯O and S⋯H/H⋯S contacts (McKinnon et al., 2007) are illustrated in Fig. 7b–f, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 2), contributing 44.7% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.09 Å. The presence of C—H⋯π interactions is indicated by the fringed pairs of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 7c, 23.7% contribution to the HS). The two pairs of wings in the fingerprint plot delineated into Cl⋯Hl/H⋯Cl contacts (Fig. 7d, 18.9% contribution) have an unsymmetrical distribution of points due to a third wing, with the edges at de + di = 2.74 Å (for the long wing), de + di = 2.92 Å (for the short wing) and de + di = 3.53 Å (for the unsymmetrical third wing). The pair of wings in the fingerprint plot delineated into O⋯H/H⋯O contacts (Fig. 7e, 5.0% contribution) has a pair of spikes with the tips at de + di = 2.22 Å. Finally, the wings in the fingerprint plot delineated into S⋯H/H⋯S contacts (Fig. 7f, 4.8% contribution) have the tips at de + di = 2.99 Å.
|
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and S⋯H/H⋯S interactions in Fig. 8a–e, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl and O⋯H/H⋯O interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −53.7 (Eele), −13.6 (Epol), −161.9 (Edis), 119.0 (Erep) and −134.3 (Etot) for C—HDchlphy⋯OThz, 25.6 (Eele), −5.7 (Epol), −62.1 (Edis), 23.1 (Erep) and −71.2 (Etot) [or C—HBnz⋯OThz and −16.0 (Eele), −8.3 (Epol), −43.0 (Edis), 42.2 (Erep) and −34.4 (Etot) for C—HBnz⋯ClDchlphy (Bnz = benzene, Thz = thiazine and Dchlphy = 2,4-dichlorophenyl).
6. DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311G(d,p) basis-set calculations as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, and together with the (χ), hardness (η), potential (μ), (ω) and softness (σ) are recorded in Table 4. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole (2Z)-2-[(2,4-dichlorophenyl)methylidene]-4-nonyl-3,4-dihydro-2H-1,4-benzothiazin-3-one ring.
|
|
7. Database survey
A search in the Cambridge Structural Database (Groom et al., 2016; updated to October 2019), for compounds containing the fragment II gave 14 hits.
The largest set contains IIa (COGRUN; Sebbar et al., 2014a), IIb (APAJUY; Sebbar et al., 2016c), IIc (EVIYIT; Sebbar et al., 2016b) and IId (WUFGIP; Sebbar et al., 2015b). Additional examples are III: R1 = 4-FC6H4 and R2 = CH2C≡CH (WOCFUS; Hni et al., 2019a), R1 = 4-ClC6H4 and R2 = CH2Ph (OMEGEU; Ellouz et al., 2016c) and R1 = 2-ClC6H4, R2 = CH2C≡CH (SAVTUH; Sebbar et al., 2017). In all these compounds, the configuration about the benzylidene group: C=CHC6H5 bond is Z, and in the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitrogen and sulfur atoms and that defined by nitrogen and sulfur and the other two carbon atoms separating them having approximate values of 36° (WUFGIP), 29° (APAJUY), 28° (SAVTUH), 26° (WOCFUS) and 25° (COGRUN). By contrast, in both EVIYIT and OMEGEU, the benzothiazine unit is nearly planar with the corresponding dihedral angle being about 4°.
8. Synthesis and crystallization
To a solution of (Z)-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one (1.5 mmol), potassium carbonate (2.7 mmol) and tetra-n-butyl ammonium bromide (0.14 mmol) in DMF (20 mL) was added 1-bromononane (2.6 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue obtained was washed with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (9/1) as Colourless crystals were isolated when the solvent was allowed to evaporate (yield = 79%).
9. Refinement
Crystal data, data collection and structure . The two carbon atoms at the end of the nonyl chain, C23 and C24, are disordered in a 0.562 (4)/0.438 (4) ratio. These were refined with restraints that the two components have comparable geometries. The H atoms on these carbons as well as those on C22 were included as riding contributions in idealized positions (C—H = 0.99 Å with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 5
|
Supporting information
CCDC reference: 1980073
https://doi.org/10.1107/S2056989020001036/lh5943sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020001036/lh5943Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020001036/lh5943Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020001036/lh5943Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H27Cl2NOS | Z = 2 |
Mr = 448.42 | F(000) = 472 |
Triclinic, P1 | Dx = 1.304 Mg m−3 |
a = 8.9961 (3) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 10.3755 (3) Å | Cell parameters from 7317 reflections |
c = 13.2565 (4) Å | θ = 3.5–72.4° |
α = 73.857 (1)° | µ = 3.52 mm−1 |
β = 88.119 (1)° | T = 150 K |
γ = 74.182 (1)° | Column, colourless |
V = 1142.32 (6) Å3 | 0.20 × 0.14 × 0.08 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 4246 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 3772 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 3.5° |
ω scans | h = −10→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.54, Tmax = 0.76 | l = −13→15 |
8788 measured reflections |
Refinement on F2 | Primary atom site location: dual space |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: mixed |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0512P)2 + 0.6585P] where P = (Fo2 + 2Fc2)/3 |
4246 reflections | (Δ/σ)max < 0.001 |
349 parameters | Δρmax = 0.32 e Å−3 |
14 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The two carbons at the end of the nonyl chain, C23 and C24, are disordered in a 0.562 (4)/0.438 (4) ratio. These were refined with restraints that the two components have comparable geometries. The H-atoms on these carbons as well as those on C22 were included as riding contributions in idealized positions. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.49354 (7) | 0.17182 (5) | 0.85050 (4) | 0.04871 (16) | |
Cl2 | 0.90576 (10) | −0.32166 (6) | 1.00981 (5) | 0.0707 (2) | |
S1 | 0.74621 (5) | 0.09525 (4) | 0.49738 (4) | 0.03192 (13) | |
O1 | 0.30841 (14) | 0.26156 (14) | 0.47052 (11) | 0.0350 (3) | |
N1 | 0.49478 (16) | 0.35999 (15) | 0.39383 (12) | 0.0290 (3) | |
C1 | 0.77339 (19) | 0.26057 (18) | 0.43712 (14) | 0.0278 (4) | |
C2 | 0.9224 (2) | 0.2768 (2) | 0.43323 (15) | 0.0330 (4) | |
H2 | 1.005 (3) | 0.196 (3) | 0.4656 (18) | 0.042 (6)* | |
C3 | 0.9469 (2) | 0.4057 (2) | 0.38810 (17) | 0.0380 (4) | |
H3 | 1.051 (3) | 0.414 (3) | 0.387 (2) | 0.052 (7)* | |
C4 | 0.8221 (2) | 0.5199 (2) | 0.34844 (18) | 0.0410 (5) | |
H4 | 0.837 (3) | 0.613 (3) | 0.316 (2) | 0.056 (7)* | |
C5 | 0.6730 (2) | 0.5053 (2) | 0.35211 (17) | 0.0366 (4) | |
H5 | 0.589 (3) | 0.587 (2) | 0.3270 (18) | 0.039 (6)* | |
C6 | 0.64689 (19) | 0.37512 (19) | 0.39486 (14) | 0.0287 (4) | |
C7 | 0.4449 (2) | 0.26179 (18) | 0.46805 (14) | 0.0286 (4) | |
C8 | 0.5633 (2) | 0.15326 (18) | 0.54591 (15) | 0.0291 (4) | |
C9 | 0.5205 (2) | 0.1027 (2) | 0.64295 (16) | 0.0344 (4) | |
H9 | 0.408 (3) | 0.145 (3) | 0.656 (2) | 0.057 (7)* | |
C10 | 0.6193 (2) | −0.0020 (2) | 0.73085 (15) | 0.0331 (4) | |
C11 | 0.6141 (2) | 0.0188 (2) | 0.83067 (16) | 0.0361 (4) | |
C12 | 0.7034 (3) | −0.0761 (2) | 0.91616 (17) | 0.0418 (5) | |
H12 | 0.700 (3) | −0.059 (3) | 0.986 (2) | 0.056 (7)* | |
C13 | 0.8000 (3) | −0.1984 (2) | 0.90162 (17) | 0.0429 (5) | |
C14 | 0.8106 (3) | −0.2233 (2) | 0.80462 (17) | 0.0407 (5) | |
H14 | 0.880 (3) | −0.309 (3) | 0.797 (2) | 0.050 (7)* | |
C15 | 0.7214 (2) | −0.1252 (2) | 0.72000 (16) | 0.0363 (4) | |
H15 | 0.729 (3) | −0.149 (3) | 0.655 (2) | 0.046 (6)* | |
C16 | 0.3799 (2) | 0.4592 (2) | 0.31152 (15) | 0.0309 (4) | |
H16A | 0.315 (3) | 0.405 (2) | 0.2923 (17) | 0.036 (6)* | |
H16B | 0.434 (2) | 0.491 (2) | 0.2491 (17) | 0.028 (5)* | |
C17 | 0.2769 (2) | 0.5837 (2) | 0.34303 (15) | 0.0313 (4) | |
H17A | 0.225 (3) | 0.548 (2) | 0.4065 (18) | 0.036 (6)* | |
H17B | 0.342 (3) | 0.636 (2) | 0.3630 (17) | 0.032 (5)* | |
C18 | 0.1618 (2) | 0.6778 (2) | 0.25291 (16) | 0.0325 (4) | |
H18A | 0.104 (3) | 0.623 (2) | 0.2318 (17) | 0.036 (6)* | |
H18B | 0.217 (3) | 0.703 (2) | 0.1916 (19) | 0.040 (6)* | |
C19 | 0.0581 (2) | 0.8062 (2) | 0.27852 (17) | 0.0348 (4) | |
H19A | 0.004 (3) | 0.776 (2) | 0.3390 (18) | 0.035 (6)* | |
H19B | 0.123 (3) | 0.859 (3) | 0.2959 (19) | 0.045 (6)* | |
C20 | −0.0531 (2) | 0.9040 (2) | 0.18839 (17) | 0.0372 (4) | |
H20A | −0.125 (3) | 0.853 (2) | 0.1714 (18) | 0.039 (6)* | |
H20B | 0.010 (3) | 0.934 (2) | 0.1228 (19) | 0.043 (6)* | |
C21 | −0.1479 (2) | 1.0373 (2) | 0.21183 (18) | 0.0383 (4) | |
H21A | −0.205 (3) | 1.011 (3) | 0.274 (2) | 0.059 (8)* | |
H21B | −0.080 (3) | 1.087 (2) | 0.2266 (18) | 0.042 (6)* | |
C22 | −0.2613 (3) | 1.1333 (2) | 0.12285 (19) | 0.0493 (6) | |
H22A | −0.325994 | 1.078902 | 0.104683 | 0.059* | |
H22B | −0.201418 | 1.161858 | 0.060625 | 0.059* | |
C23 | −0.3697 (8) | 1.2661 (4) | 0.1422 (6) | 0.0440 (18) | 0.562 (4) |
H23A | −0.458686 | 1.305117 | 0.090467 | 0.053* | 0.562 (4) |
H23B | −0.409306 | 1.245547 | 0.213838 | 0.053* | 0.562 (4) |
C24 | −0.2717 (6) | 1.3686 (5) | 0.1297 (4) | 0.0630 (10) | 0.562 (4) |
H24A | −0.335043 | 1.455992 | 0.141231 | 0.094* | 0.562 (4) |
H24B | −0.184022 | 1.328099 | 0.181244 | 0.094* | 0.562 (4) |
H24C | −0.233125 | 1.387336 | 0.058565 | 0.094* | 0.562 (4) |
C23A | −0.3282 (12) | 1.2751 (6) | 0.1453 (7) | 0.0440 (18) | 0.438 (4) |
H23C | −0.388048 | 1.262316 | 0.209642 | 0.053* | 0.438 (4) |
H23D | −0.242430 | 1.312260 | 0.158121 | 0.053* | 0.438 (4) |
C24A | −0.4333 (8) | 1.3801 (6) | 0.0534 (5) | 0.0630 (10) | 0.438 (4) |
H24D | −0.474134 | 1.469164 | 0.069938 | 0.094* | 0.438 (4) |
H24E | −0.373809 | 1.394060 | −0.010101 | 0.094* | 0.438 (4) |
H24F | −0.519298 | 1.344161 | 0.041374 | 0.094* | 0.438 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0592 (3) | 0.0364 (3) | 0.0409 (3) | −0.0014 (2) | 0.0109 (2) | −0.0080 (2) |
Cl2 | 0.1011 (6) | 0.0441 (3) | 0.0459 (3) | 0.0100 (3) | −0.0229 (3) | −0.0052 (2) |
S1 | 0.0281 (2) | 0.0251 (2) | 0.0361 (3) | −0.00014 (16) | 0.00197 (17) | −0.00517 (17) |
O1 | 0.0233 (6) | 0.0393 (7) | 0.0427 (8) | −0.0097 (5) | −0.0023 (5) | −0.0104 (6) |
N1 | 0.0200 (7) | 0.0281 (7) | 0.0351 (8) | −0.0032 (6) | −0.0043 (6) | −0.0054 (6) |
C1 | 0.0231 (8) | 0.0284 (8) | 0.0289 (9) | −0.0028 (7) | 0.0005 (6) | −0.0074 (7) |
C2 | 0.0207 (8) | 0.0363 (10) | 0.0357 (10) | 0.0002 (7) | −0.0005 (7) | −0.0076 (8) |
C3 | 0.0217 (9) | 0.0421 (11) | 0.0473 (12) | −0.0077 (8) | 0.0014 (8) | −0.0088 (9) |
C4 | 0.0275 (9) | 0.0339 (10) | 0.0569 (13) | −0.0089 (8) | 0.0019 (8) | −0.0049 (9) |
C5 | 0.0244 (9) | 0.0276 (9) | 0.0502 (12) | −0.0032 (7) | −0.0027 (8) | −0.0020 (8) |
C6 | 0.0198 (8) | 0.0299 (9) | 0.0338 (9) | −0.0038 (7) | −0.0009 (7) | −0.0076 (7) |
C7 | 0.0248 (8) | 0.0282 (8) | 0.0336 (9) | −0.0058 (7) | −0.0016 (7) | −0.0111 (7) |
C8 | 0.0248 (8) | 0.0264 (8) | 0.0359 (10) | −0.0063 (7) | −0.0018 (7) | −0.0087 (7) |
C9 | 0.0295 (9) | 0.0343 (10) | 0.0384 (10) | −0.0093 (8) | 0.0010 (8) | −0.0081 (8) |
C10 | 0.0312 (9) | 0.0335 (9) | 0.0345 (10) | −0.0129 (8) | 0.0021 (7) | −0.0055 (8) |
C11 | 0.0403 (10) | 0.0294 (9) | 0.0358 (10) | −0.0091 (8) | 0.0067 (8) | −0.0057 (8) |
C12 | 0.0550 (13) | 0.0372 (11) | 0.0312 (11) | −0.0117 (9) | 0.0019 (9) | −0.0077 (8) |
C13 | 0.0527 (12) | 0.0326 (10) | 0.0382 (11) | −0.0078 (9) | −0.0058 (9) | −0.0045 (8) |
C14 | 0.0463 (12) | 0.0320 (10) | 0.0434 (12) | −0.0083 (9) | −0.0026 (9) | −0.0117 (8) |
C15 | 0.0402 (11) | 0.0361 (10) | 0.0361 (10) | −0.0141 (8) | 0.0009 (8) | −0.0122 (8) |
C16 | 0.0240 (8) | 0.0312 (9) | 0.0326 (10) | −0.0018 (7) | −0.0053 (7) | −0.0058 (7) |
C17 | 0.0230 (8) | 0.0306 (9) | 0.0374 (10) | −0.0033 (7) | −0.0048 (7) | −0.0080 (8) |
C18 | 0.0253 (9) | 0.0322 (9) | 0.0359 (10) | −0.0033 (7) | −0.0033 (8) | −0.0067 (8) |
C19 | 0.0295 (9) | 0.0320 (10) | 0.0396 (11) | −0.0032 (8) | −0.0058 (8) | −0.0089 (8) |
C20 | 0.0332 (10) | 0.0318 (10) | 0.0406 (11) | 0.0006 (8) | −0.0052 (8) | −0.0088 (8) |
C21 | 0.0350 (10) | 0.0321 (10) | 0.0440 (12) | −0.0017 (8) | −0.0041 (9) | −0.0113 (8) |
C22 | 0.0505 (13) | 0.0366 (11) | 0.0476 (13) | 0.0079 (10) | −0.0053 (10) | −0.0095 (9) |
C23 | 0.033 (4) | 0.0350 (13) | 0.0547 (15) | 0.0018 (17) | 0.001 (2) | −0.0088 (11) |
C24 | 0.064 (2) | 0.0489 (19) | 0.061 (2) | 0.0064 (17) | −0.0022 (17) | −0.0126 (16) |
C23A | 0.033 (4) | 0.0350 (13) | 0.0547 (15) | 0.0018 (17) | 0.001 (2) | −0.0088 (11) |
C24A | 0.064 (2) | 0.0489 (19) | 0.061 (2) | 0.0064 (17) | −0.0022 (17) | −0.0126 (16) |
Cl1—C11 | 1.744 (2) | C16—H16B | 0.97 (2) |
Cl2—C13 | 1.733 (2) | C17—C18 | 1.528 (2) |
S1—C8 | 1.7578 (18) | C17—H17A | 0.98 (2) |
S1—C1 | 1.7589 (18) | C17—H17B | 0.98 (2) |
O1—C7 | 1.228 (2) | C18—C19 | 1.521 (3) |
N1—C7 | 1.368 (2) | C18—H18A | 0.96 (2) |
N1—C6 | 1.420 (2) | C18—H18B | 0.95 (2) |
N1—C16 | 1.479 (2) | C19—C20 | 1.519 (3) |
C1—C2 | 1.393 (3) | C19—H19A | 0.95 (2) |
C1—C6 | 1.398 (2) | C19—H19B | 0.97 (3) |
C2—C3 | 1.379 (3) | C20—C21 | 1.522 (3) |
C2—H2 | 0.96 (2) | C20—H20A | 1.00 (2) |
C3—C4 | 1.382 (3) | C20—H20B | 1.04 (2) |
C3—H3 | 0.96 (3) | C21—C22 | 1.515 (3) |
C4—C5 | 1.388 (3) | C21—H21A | 0.97 (3) |
C4—H4 | 0.99 (3) | C21—H21B | 0.96 (3) |
C5—C6 | 1.392 (3) | C22—C23 | 1.537 (4) |
C5—H5 | 0.96 (2) | C22—C23A | 1.537 (4) |
C7—C8 | 1.497 (2) | C22—H22A | 0.9900 |
C8—C9 | 1.334 (3) | C22—H22B | 0.9900 |
C9—C10 | 1.471 (3) | C23—C24 | 1.530 (7) |
C9—H9 | 1.02 (3) | C23—H23A | 0.9900 |
C10—C11 | 1.396 (3) | C23—H23B | 0.9900 |
C10—C15 | 1.397 (3) | C24—H24A | 0.9800 |
C11—C12 | 1.381 (3) | C24—H24B | 0.9800 |
C12—C13 | 1.388 (3) | C24—H24C | 0.9800 |
C12—H12 | 0.99 (3) | C23A—C24A | 1.530 (8) |
C13—C14 | 1.376 (3) | C23A—H23C | 0.9900 |
C14—C15 | 1.385 (3) | C23A—H23D | 0.9900 |
C14—H14 | 0.97 (3) | C24A—H24D | 0.9800 |
C15—H15 | 0.96 (3) | C24A—H24E | 0.9800 |
C16—C17 | 1.525 (3) | C24A—H24F | 0.9800 |
C16—H16A | 0.99 (2) | ||
Cl1···C5i | 3.634 (2) | C21···H24B | 2.86 |
Cl1···C12ii | 3.548 (2) | C24···H21B | 2.91 |
Cl1···H9 | 2.82 (3) | C24A···H24Eviii | 2.44 |
Cl1···H5i | 2.86 (2) | C24A···H24Fviii | 2.70 |
Cl1···H12ii | 2.92 (3) | C24A···H24Dviii | 1.94 |
Cl2···H20Aiii | 3.13 (2) | H3···H17Aix | 2.42 (4) |
Cl2···H24Ci | 3.01 | H5···H17B | 2.21 (4) |
S1···N1 | 3.0439 (16) | H5···H16B | 2.33 (3) |
S1···C15 | 3.236 (2) | H12···H22Aiii | 2.37 |
S1···H15 | 2.84 (3) | H16A···H18A | 2.47 (3) |
S1···H2iv | 3.15 (3) | H16B···H24Dvii | 2.54 |
O1···C3v | 3.268 (2) | H16B···H18B | 2.46 (3) |
O1···C17 | 3.238 (2) | H16B···H24Avii | 2.49 |
O1···C15vi | 3.270 (2) | H17A···H19A | 2.59 (3) |
O1···H3v | 2.51 (3) | H17B···H19B | 2.55 (4) |
O1···H16A | 2.43 (2) | H18B···H20B | 2.55 (3) |
O1···H17A | 2.75 (2) | H19A···H21A | 2.58 (4) |
O1···H9 | 2.49 (3) | H19B···H21B | 2.51 (4) |
O1···H15vi | 2.36 (3) | H20A···H22A | 2.49 |
C5···C17 | 3.430 (3) | H20B···H22B | 2.54 |
C5···C24vii | 3.58 | H21A···H23B | 2.55 |
C6···C24vii | 3.58 | H21A···H23C | 2.60 |
C24A···C24Aviii | 2.48 | H21B···H24B | 2.32 |
C2···H19Ai | 2.98 (2) | H21B···H23D | 2.34 |
C5···H24Avii | 2.99 | H22B···H24C | 2.27 |
C5···H16B | 2.64 (2) | H22B···H24E | 2.43 |
C5···H17B | 2.93 (3) | H24D···C24Aviii | 1.94 |
C7···H15vi | 2.95 (3) | H24D···H24Dviii | 1.82 |
C7···H17A | 2.99 (2) | H24D···H24Eviii | 1.70 |
C16···H5 | 2.62 (3) | H24D···H24Fviii | 2.07 |
C17···H3v | 2.98 (3) | H24E···H24Fviii | 2.54 |
C17···H5 | 2.82 (3) | ||
C8—S1—C1 | 97.27 (8) | C16—C17—H17B | 109.2 (13) |
C7—N1—C6 | 123.67 (14) | C18—C17—H17B | 110.8 (12) |
C7—N1—C16 | 117.19 (14) | H17A—C17—H17B | 106.0 (18) |
C6—N1—C16 | 119.07 (15) | C19—C18—C17 | 113.07 (16) |
C2—C1—C6 | 120.22 (17) | C19—C18—H18A | 112.5 (13) |
C2—C1—S1 | 119.25 (13) | C17—C18—H18A | 109.3 (13) |
C6—C1—S1 | 120.52 (13) | C19—C18—H18B | 111.2 (14) |
C3—C2—C1 | 120.53 (17) | C17—C18—H18B | 108.8 (14) |
C3—C2—H2 | 122.3 (14) | H18A—C18—H18B | 101.4 (19) |
C1—C2—H2 | 117.1 (14) | C20—C19—C18 | 113.91 (17) |
C2—C3—C4 | 119.53 (18) | C20—C19—H19A | 110.8 (14) |
C2—C3—H3 | 118.7 (16) | C18—C19—H19A | 108.3 (14) |
C4—C3—H3 | 121.7 (16) | C20—C19—H19B | 107.2 (14) |
C3—C4—C5 | 120.51 (19) | C18—C19—H19B | 108.7 (15) |
C3—C4—H4 | 120.8 (16) | H19A—C19—H19B | 107.7 (19) |
C5—C4—H4 | 118.7 (16) | C19—C20—C21 | 113.55 (18) |
C4—C5—C6 | 120.58 (17) | C19—C20—H20A | 108.8 (13) |
C4—C5—H5 | 118.4 (14) | C21—C20—H20A | 109.2 (13) |
C6—C5—H5 | 121.0 (14) | C19—C20—H20B | 109.1 (13) |
C5—C6—C1 | 118.59 (16) | C21—C20—H20B | 107.1 (13) |
C5—C6—N1 | 120.19 (15) | H20A—C20—H20B | 109.1 (19) |
C1—C6—N1 | 121.22 (16) | C22—C21—C20 | 113.53 (18) |
O1—C7—N1 | 121.48 (16) | C22—C21—H21A | 108.6 (17) |
O1—C7—C8 | 121.01 (16) | C20—C21—H21A | 107.9 (17) |
N1—C7—C8 | 117.51 (15) | C22—C21—H21B | 108.5 (14) |
C9—C8—C7 | 118.51 (17) | C20—C21—H21B | 109.6 (14) |
C9—C8—S1 | 125.47 (14) | H21A—C21—H21B | 109 (2) |
C7—C8—S1 | 115.89 (13) | C21—C22—C23 | 117.2 (4) |
C8—C9—C10 | 126.86 (18) | C21—C22—C23A | 109.3 (4) |
C8—C9—H9 | 114.5 (15) | C21—C22—H22A | 108.0 |
C10—C9—H9 | 118.6 (15) | C23—C22—H22A | 108.0 |
C11—C10—C15 | 116.75 (18) | C21—C22—H22B | 108.0 |
C11—C10—C9 | 120.39 (18) | C23—C22—H22B | 108.0 |
C15—C10—C9 | 122.85 (18) | H22A—C22—H22B | 107.2 |
C12—C11—C10 | 122.93 (19) | C24—C23—C22 | 105.7 (4) |
C12—C11—Cl1 | 117.26 (16) | C24—C23—H23A | 110.6 |
C10—C11—Cl1 | 119.80 (15) | C22—C23—H23A | 110.6 |
C11—C12—C13 | 117.9 (2) | C24—C23—H23B | 110.6 |
C11—C12—H12 | 121.9 (16) | C22—C23—H23B | 110.6 |
C13—C12—H12 | 120.1 (16) | H23A—C23—H23B | 108.7 |
C14—C13—C12 | 121.42 (19) | C23—C24—H24A | 109.5 |
C14—C13—Cl2 | 120.33 (17) | C23—C24—H24B | 109.5 |
C12—C13—Cl2 | 118.25 (17) | H24A—C24—H24B | 109.5 |
C13—C14—C15 | 119.3 (2) | C23—C24—H24C | 109.5 |
C13—C14—H14 | 119.4 (15) | H24A—C24—H24C | 109.5 |
C15—C14—H14 | 121.3 (15) | H24B—C24—H24C | 109.5 |
C14—C15—C10 | 121.63 (19) | C24A—C23A—C22 | 111.3 (6) |
C14—C15—H15 | 116.3 (15) | C24A—C23A—H23C | 109.4 |
C10—C15—H15 | 121.9 (15) | C22—C23A—H23C | 109.4 |
N1—C16—C17 | 115.05 (15) | C24A—C23A—H23D | 109.4 |
N1—C16—H16A | 106.7 (13) | C22—C23A—H23D | 109.4 |
C17—C16—H16A | 109.8 (13) | H23C—C23A—H23D | 108.0 |
N1—C16—H16B | 108.8 (12) | C23A—C24A—H24D | 109.5 |
C17—C16—H16B | 110.0 (12) | C23A—C24A—H24E | 109.5 |
H16A—C16—H16B | 106.0 (18) | H24D—C24A—H24E | 109.5 |
C16—C17—C18 | 110.52 (16) | C23A—C24A—H24F | 109.5 |
C16—C17—H17A | 107.9 (13) | H24D—C24A—H24F | 109.5 |
C18—C17—H17A | 112.2 (13) | H24E—C24A—H24F | 109.5 |
C8—S1—C1—C2 | 147.58 (16) | S1—C8—C9—C10 | 5.5 (3) |
C8—S1—C1—C6 | −31.51 (17) | C8—C9—C10—C11 | 133.9 (2) |
C6—C1—C2—C3 | 0.2 (3) | C8—C9—C10—C15 | −46.2 (3) |
S1—C1—C2—C3 | −178.87 (16) | C15—C10—C11—C12 | −0.3 (3) |
C1—C2—C3—C4 | 1.3 (3) | C9—C10—C11—C12 | 179.60 (19) |
C2—C3—C4—C5 | −1.1 (3) | C15—C10—C11—Cl1 | 178.39 (14) |
C3—C4—C5—C6 | −0.6 (4) | C9—C10—C11—Cl1 | −1.7 (3) |
C4—C5—C6—C1 | 2.1 (3) | C10—C11—C12—C13 | −1.3 (3) |
C4—C5—C6—N1 | −177.04 (19) | Cl1—C11—C12—C13 | 179.99 (17) |
C2—C1—C6—C5 | −1.9 (3) | C11—C12—C13—C14 | 1.9 (3) |
S1—C1—C6—C5 | 177.16 (15) | C11—C12—C13—Cl2 | −177.07 (17) |
C2—C1—C6—N1 | 177.25 (17) | C12—C13—C14—C15 | −1.0 (3) |
S1—C1—C6—N1 | −3.7 (2) | Cl2—C13—C14—C15 | 178.02 (17) |
C7—N1—C6—C5 | −150.53 (19) | C13—C14—C15—C10 | −0.7 (3) |
C16—N1—C6—C5 | 26.4 (3) | C11—C10—C15—C14 | 1.3 (3) |
C7—N1—C6—C1 | 30.3 (3) | C9—C10—C15—C14 | −178.57 (19) |
C16—N1—C6—C1 | −152.76 (17) | C7—N1—C16—C17 | 82.7 (2) |
C6—N1—C7—O1 | 172.26 (17) | C6—N1—C16—C17 | −94.4 (2) |
C16—N1—C7—O1 | −4.7 (3) | N1—C16—C17—C18 | −179.23 (15) |
C6—N1—C7—C8 | −8.3 (3) | C16—C17—C18—C19 | −178.51 (17) |
C16—N1—C7—C8 | 174.73 (16) | C17—C18—C19—C20 | 177.77 (17) |
O1—C7—C8—C9 | −32.8 (3) | C18—C19—C20—C21 | −175.70 (18) |
N1—C7—C8—C9 | 147.71 (18) | C19—C20—C21—C22 | −178.7 (2) |
O1—C7—C8—S1 | 143.15 (15) | C20—C21—C22—C23 | 176.0 (3) |
N1—C7—C8—S1 | −36.3 (2) | C20—C21—C22—C23A | −169.4 (5) |
C1—S1—C8—C9 | −133.86 (18) | C21—C22—C23—C24 | 78.1 (5) |
C1—S1—C8—C7 | 50.47 (14) | C21—C22—C23A—C24A | 175.2 (6) |
C7—C8—C9—C10 | −178.89 (17) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+2; (iii) x+1, y−1, z+1; (iv) −x+2, −y, −z+1; (v) x−1, y, z; (vi) −x+1, −y, −z+1; (vii) x+1, y−1, z; (viii) −x−1, −y+3, −z; (ix) x+1, y, z. |
Cg1 is the centroid of the ring A (C1–C6). |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1ix | 0.96 (3) | 2.51 (3) | 3.268 (2) | 136 (2) |
C5—H5···Cl1i | 0.96 (2) | 2.86 (2) | 3.634 (2) | 138.8 (17) |
C15—H15···O1vi | 0.96 (3) | 2.36 (3) | 3.270 (2) | 159 (2) |
C17—H17A···Cg1i | 0.98 (2) | 2.90 (2) | 3.619 (2) | 131.2 (17) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (vi) −x+1, −y, −z+1; (ix) x+1, y, z. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
Cl1—C11 | 1.744 (2) | 1.826 |
Cl2—C13 | 1.733 (2) | 1.821 |
S1—C8 | 1.7578 (18) | 1.831 |
S1—C1 | 1.7589 (18) | 1.830 |
O1—C7 | 1.228 (2) | 1.256 |
N1—C7 | 1.368 (2) | 1.392 |
N1—C6 | 1.420 (2) | 1.423 |
N1—C16 | 1.479 (2) | 1.489 |
C8—S1—C1 | 97.27 (8) | 99.15 |
C7—N1—C6 | 123.67 (14) | 124.78 |
C7—N1—C16 | 117.19 (14) | 114.70 |
C6—N1—C16 | 119.07 (15) | 119.29 |
C2—C1—C6 | 120.22 (17) | 121.21 |
C2—C1—S1 | 119.25 (13) | 117.28 |
C6—C1—S1 | 120.52 (13) | 121.48 |
C3—C2—S1 | 120.53 (17) | 120.47 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy, TE (eV) | -64734 |
EHOMO (eV) | -6.9440 |
ELUMO (eV) | -0.6941 |
Energy gap, ΔE (eV) | 6.2499 |
Dipole moment, µ (Debye) | 4.4939 |
Ionization potential, I (eV) | 6.9440 |
Electron affinity, A | 0.6941 |
Electro negativity, χ | 3.8191 |
Hardness, η | 3.1249 |
Electrophilicity index, ω | 2.3337 |
Softness, σ | 0.3200 |
Fraction of electron transferred, ΔN | 0.5090 |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. Mol. Pharmacol, 50, 1178–1188. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA Google Scholar
Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497. CAS Google Scholar
Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data, 2, x170646. Google Scholar
Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819. CAS Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764. Google Scholar
Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123. Web of Science CrossRef PubMed Google Scholar
Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCr Data, 2, x170097. Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100. CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385. CrossRef CAS Web of Science Google Scholar
Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156. CrossRef CAS Web of Science Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330. Web of Science CrossRef PubMed CAS Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data.1, x161012. Google Scholar
Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863. Google Scholar
Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889. Google Scholar
Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727. CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656. CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862. Web of Science CSD CrossRef CAS Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377–388. CAS Google Scholar
Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. CrossRef CAS PubMed Google Scholar
Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farm. Ed. Sci. 40, 369–376. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593. Web of Science CrossRef Google Scholar
Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415. CrossRef CAS Web of Science Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.