research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, DFT and MEP study of (E)-2-{[(3-chloro­phen­yl)imino]­meth­yl}-6-methyl­phenol

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Educational Faculty, Department of Mathematic and Science Education, 55139, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, cYeditepe University, Department of Chemical Engineering, 34755, Istanbul, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, and eDepartment of Chemistry, Taras Shecchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: hanifesa@omu.edu.tr, tiskenderov@ukr.net

Edited by J. T. Mague, Tulane University, USA (Received 17 December 2019; accepted 31 December 2019; online 7 January 2020)

In the crystal structure of the title compound, C14H12ClNO, the mol­ecules are linked through C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming chains parallel to the [010] direction. ππ inter­actions and intra­molecular hydrogen bonds are also observed. The mol­ecular geometry of the title compound in the ground state has been calculated using density functional theory at the B3LYP level with the 6–311++G(2d,2p) basis set. Additionally, frontier mol­ecular orbital and mol­ecular electrostatic potential map analyses were performed.

1. Chemical context

Schiff bases, known as anils, imines or azomethines, have recently received considerable attention because of their good performance in coordination chemistry and anti-bacterial, anti-cancer and herbicidal applications (Piotr et al., 2009[Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]; Schiff, 1864[Schiff, H. (1864). Ann. Chem. Suppl, 3, 343-349.]). The presence of a lone pair of electrons in an sp2-hybridized orbital on the nitro­gen atom of the azomethine group is of considerable chemical and biological importance (Sinha et al., 2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]). In a continuation of our inter­est in the chemical, herbicidal and biological properties of Schiff bases we synthesized the title compound, (I)[link], as a potential anti-bacterial agent (Yılmaz et al., 2012[Yılmaz, I., Kazak, C., Gümüş, S., Ağar, E. & Ardalı, Y. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 423-428.]).

[Scheme 1]

We report herein the synthesis, crystal structure and quantum chemical computational studies of the Schiff base compound, (I)[link].

2. Structural commentary

The structure of the title compound (I)[link] is shown in Fig. 1[link]. It crystallizes in the ortho­rhom­bic space group Pbca with eight mol­ecules in the unit cell. The mol­ecular structure has two planar rings. The whole mol­ecule is approximately planar, with a maximum deviation of −0.0236 (12) Å from planarity for the C8 atom of Schiff base. The title compound displays an E configuration with respect to the C8=N double bond. The dihedral angle between the two phenyl ring planes is 0.34 (9)° and the C5—C8—N1—C9 torsion angle is −179.81 (15)°. The planar mol­ecular conformation is stabilized by the intra­molecular O1—H1⋯N1 hydrogen bond, which forms an S(6) motif.

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link] with the atom labelling. The dotted line indicates the intra­molecular O—H⋯N hydrogen bond. Displacement ellipsoids are shown at the 40% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by C10—H10⋯O1 hydrogen bonds (Table 1[link]), generating a C44(16) chain running parallel to the [010] direction (Fig. 2[link]). C—H⋯π inter­actions occur between the two phenyl rings (Fig. 3[link], Table 1[link]). ππ stacking inter­actions [centroid–centroid distance = 3.6389 (11) Å] between the chloro­phenyl and methyl­phenol rings are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.605 (2) 148
C10—H10⋯O1i 0.93 2.56 3.402 (2) 151
C2—H2⋯Cg1ii 0.93 2.75 3.561 (2) 147
C12—H12⋯Cg2iii 0.93 2.78 3.589 (2) 147
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Diagram showing the hydrogen-bonding inter­actions in (I)[link]. Displacement ellipsoids are drawn at the 40% probability level. Symmetry code: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}].
[Figure 3]
Figure 3
A partial packing diagram for (I)[link] showing the C—H⋯π inter­actions as dashed lines. Symmetry codes: (ii) −x + [{3\over 2}], y − [{1\over 2}], z; (iii) −x + [{1\over 2}], y + [{1\over 2}], z.. Cg1 and Cg2 are the centroids of the methyl­phenol and chloro­phenyl rings, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40; update Nov. 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave eighteen hits for the (E)-2-{[(3-chloro­phen­yl)imino]­meth­yl}-6-methyl­phen­ol structure. With a value of 1.271 (2) Å, the N1—C8 bond in the title compound (I)[link] is the same length within standard uncertainties as those in the structures of 2-[(E)-(5-chloro-2-methyl­phen­yl)imino­meth­yl]-4-methyl­phenol (AFILAE; Zheng, 2013b[Zheng, Y.-F. (2013b). Acta Cryst. E69, o1349.]), 2,4-di­bromo-6-{[(5-chloro-2-methyl­phen­yl)imino]­meth­yl}phen­ol (AGEGUQ; Zheng, 2013a[Zheng, Y. (2013a). Acta Cryst. E69, o1190.]), 2-[(E)-(2,4,6-tri­chloro­phen­yl)imino­meth­yl]phenol (AWUSIV; Fun et al., 2011[Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011). Acta Cryst. E67, o1934.]), N-(2-methyl-5-chloro­phen­yl)salicylaldimine (BEYQEB; Elmalı & Elerman, 1998[Elmalı, A. & Elerman, Y. (1998). J. Mol. Struct. 442, 31-37.]), (E)-2-[(3-chloro­phenyl­imino)­meth­yl]-4-meth­oxy­phenol (DUBNAQ; Özek et al., 2009[Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2009). J. Chem. Crystallogr. 39, 353-357.]), 3-{(E)-[(3,4-di­chloro­phen­yl)imino]­meth­yl}benzene-1,2-diol (MOYHAL; Tahir et al., 2015[Tahir, M. N., Shad, H. A., Rauf, A. & Khan, A. H. (2015). Acta Cryst. E71, o137-o138.]) and N-(3-chloro­phen­yl)salicylaldimine (NADZUO; Karakaş et al., 2004[Karakaş, A., Elmali, A., Ünver, H. & Svoboda, I. (2004). J. Mol. Struct. 702, 103-110.]) where the C=N bond length varies from 1.266 (4) to 1.290 (3) Å. These structures also have an intra­molecular O1—H1⋯N1 hydrogen bond resulting in the formation of a six-membered ring and exhibit an E configuration.

5. Frontier mol­ecular orbital analysis

The frontier mol­ecular orbitals are important in the deter­min­ation of the optical, electronic and anti-corrosion properties of a mol­ecular system (Koepnick et al., 2010[Koepnick, B. D., Lipscomb, J. S. & Taylor, D. K. (2010). J. Phys. Chem. A, 114, 13228-13233.]; Solomon et al., 2012[Solomon, R. V., Bella, A. P., Vedha, S. A. & Venuvanalingam, P. (2012). Phys. Chem. Chem. Phys. PCCP, 14, 14229-14237.]; Jafari et al., 2013[Jafari, H., Danaee, I., Eskandari, H. & RashvandAvei, M. (2013). Ind. Eng. Chem. Res. 52, 6617-6632.]). A mol­ecule with a small frontier orbital gap is more polarizable than one with a large gap and is considered a soft mol­ecule because of its high chemical reactivity and low kinetic stability (Prabavathi et al., 2015[Prabavathi, N., Senthil, N. N. & Krishnakumar, V. (2015). Pharm Anal Acta 6, 1-20.]). The energy levels of the HOMO (highest occupied mol­ecular orbital), HOMO-1, LUMO (lowest occupied mol­ecular orbital) and LUMO+1 orbitals calculated at the B3LYP/6-311++G(2d,2p) level (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]; Dennington et al., 2007[Dennington, R. I. I., Keith, T. & Millam, J. (2007). GaussView. Version 4.1.2. Semichem Inc., Shawnee Mission, KS, USA.]) for (I)[link] are shown in Fig. 4[link]. The HOMO, HOMO-1 and LUMO orbitals are delocalized over the two phenyl rings connected by a Schiff base bridge and HOMO and HOMO-1 can be said to be π-bonding orbitals. The LUMO+1 orbitals are delocalized on the chloro­phenyl ring and the C atom of the Schiff base. LUMO and LUMO+1 orbitals exhibit π* anti­bonding character. The energy gap of (I)[link] is 4.069 eV. The other mol­ecular orbital energies are shown in Fig. 4[link]. Electron affinity (A) and ionization potential (IP) can be defined as A = −ELUMO and IP = −EHOMO. Additionally, these values can also be used calculate the electronegativity (χ), chemical hardness (η) and chemical softness (S) (Prabavathi et al., 2015[Prabavathi, N., Senthil, N. N. & Krishnakumar, V. (2015). Pharm Anal Acta 6, 1-20.]; Karunakaran & Balachandran, 2014[Karunakaran, V. & Balachandran, V. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 128, 1-14.]). For the title compound (I)[link], A = 2.201 eV, IP = 6.270 eV, χ = 4.236 eV, η = 2.035 eV, and S = 0.246 eV.

[Figure 4]
Figure 4
Plots of the frontier orbitals and the energy gap for (I)[link].

6. Mol­ecular electrostatic potential surface analysis

The analysis of a three-dimensional plot of the mol­ecular electrostatic potential (MEP) surface is a technique for mapping the electrostatic potential onto the isoelectronic density surface, providing information about the reactive sites. The surface simultaneously displays mol­ecular size and shape and the electrostatic potential value. In the colour scheme adopted, red indicates an electron-rich region with a partial negative charge and blue an electron-deficient region with partial positive charge, light blue indicates a slightly electron-deficient region, yellow a slightly electron-rich region and green a neutral region (Politzer et al., 2002[Politzer, P. & Murray, J. S. (2002). Theor. Chimi. Acta, 108, 134-142.]). The MEP map of (I)[link] was obtained by the B3LYP/6-311++G(2d,2p) method. In Fig. 5[link], it is shown that (I)[link] has two possible sites of electrophilic attack. The negative region is localized on the protonated oxygen atom of methyl­phenol ring, O1, with a minimum value of −0.031 a.u. Positive potential sites of the compound are around hydrogen atoms. However, the maximum positive region is localized on the hydrogen atom bonded to the C atom forming the Schiff base, which can be considered as one possible site for nucleophilic attack, with a maximum value of 0.027 a.u.

[Figure 5]
Figure 5
Mol­ecular electrostatic potential (MEP) map calculated at the B3LYP/6–311++G(2d,2p) level.

7. Synthesis and crystallization

A mixture of 2-hy­droxy-3-methyl­benzaldehyde (34.0 mg, 0.25 mmol) and 4-chloro­aniline (31.9 mg, 0.25 mmol) was stirred with ethanol (30 mL) at 377 K for 4 h, affording the title compound (43.0 mg, yield 70%, m.p. 362–364 K). Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and refined using a riding model with C—H = 0.93–0.96 Å, Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C14H12ClNO
Mr 245.70
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 14.0717 (8), 6.4811 (4), 26.767 (2)
V3) 2441.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.45 × 0.43 × 0.38
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.820, 0.907
No. of measured, independent and observed [I > 2σ(I)] reflections 10011, 2052, 1669
Rint 0.033
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.05
No. of reflections 2052
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.24
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-2-{[(3-Chlorophenyl)imino]methyl}-6-methylphenol top
Crystal data top
C14H12ClNODx = 1.337 Mg m3
Mr = 245.70Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 15471 reflections
a = 14.0717 (8) Åθ = 1.5–25.2°
b = 6.4811 (4) ŵ = 0.29 mm1
c = 26.767 (2) ÅT = 296 K
V = 2441.1 (3) Å3Prism, orange
Z = 80.45 × 0.43 × 0.38 mm
F(000) = 1024
Data collection top
Stoe IPDS 2
diffractometer
2052 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1669 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.033
Detector resolution: 6.67 pixels mm-1θmax = 24.6°, θmin = 1.5°
rotation method scansh = 1616
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 67
Tmin = 0.820, Tmax = 0.907l = 3031
10011 measured reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.3364P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2052 reflectionsΔρmax = 0.16 e Å3
155 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33517 (5)0.79127 (10)0.03649 (2)0.0888 (3)
C120.32979 (13)0.7525 (3)0.13616 (8)0.0632 (5)
H120.2965690.8765590.1362290.076*
C130.35979 (13)0.6646 (3)0.09213 (7)0.0565 (5)
C110.35033 (14)0.6518 (3)0.18009 (8)0.0655 (5)
H110.3301630.7078010.2102660.079*
C140.40948 (13)0.4816 (3)0.09088 (7)0.0554 (5)
H140.4283700.4250040.0605360.067*
C90.43105 (12)0.3826 (3)0.13554 (6)0.0501 (4)
C100.40037 (13)0.4690 (3)0.18002 (7)0.0581 (5)
H100.4136350.4031100.2100870.070*
C80.51952 (12)0.1055 (3)0.10169 (7)0.0533 (4)
H80.5113860.1637280.0702260.064*
N10.48348 (10)0.1964 (2)0.13929 (5)0.0524 (4)
C40.60571 (14)0.1837 (3)0.06298 (7)0.0617 (5)
H40.5942840.1247670.0318690.074*
C50.57270 (12)0.0849 (3)0.10589 (6)0.0507 (4)
C30.65470 (14)0.3660 (3)0.06587 (8)0.0658 (5)
H30.6766830.4302040.0370240.079*
C60.59085 (12)0.1759 (3)0.15252 (6)0.0511 (4)
O10.56117 (10)0.0861 (2)0.19521 (4)0.0668 (4)
H10.5332500.0215250.1886230.100*
C20.67106 (13)0.4535 (3)0.11231 (8)0.0631 (5)
H20.7038930.5778250.1140780.076*
C10.64031 (13)0.3625 (3)0.15602 (7)0.0563 (5)
C70.65775 (16)0.4616 (4)0.20614 (9)0.0763 (6)
H7A0.6943770.5852610.2017240.114*
H7B0.5980040.4952400.2214260.114*
H7C0.6919730.3675150.2271970.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1145 (5)0.0730 (4)0.0790 (4)0.0241 (3)0.0112 (3)0.0176 (3)
C120.0587 (11)0.0503 (11)0.0807 (15)0.0027 (9)0.0037 (9)0.0065 (10)
C130.0583 (10)0.0475 (11)0.0637 (11)0.0008 (8)0.0049 (8)0.0044 (9)
C110.0684 (12)0.0645 (13)0.0635 (12)0.0014 (10)0.0096 (9)0.0150 (10)
C140.0651 (11)0.0511 (11)0.0502 (10)0.0032 (9)0.0001 (8)0.0002 (8)
C90.0527 (9)0.0450 (10)0.0526 (9)0.0037 (8)0.0025 (7)0.0014 (8)
C100.0644 (11)0.0594 (12)0.0506 (10)0.0040 (9)0.0028 (8)0.0030 (9)
C80.0620 (11)0.0483 (10)0.0498 (9)0.0007 (8)0.0023 (8)0.0062 (8)
N10.0595 (9)0.0461 (9)0.0517 (8)0.0007 (7)0.0021 (6)0.0006 (7)
C40.0693 (11)0.0610 (13)0.0546 (11)0.0007 (10)0.0075 (9)0.0022 (9)
C50.0545 (9)0.0454 (10)0.0520 (10)0.0020 (8)0.0018 (7)0.0011 (8)
C30.0676 (12)0.0597 (12)0.0702 (13)0.0030 (10)0.0129 (9)0.0078 (10)
C60.0532 (9)0.0483 (11)0.0518 (10)0.0016 (8)0.0018 (7)0.0006 (8)
O10.0889 (10)0.0615 (9)0.0500 (7)0.0148 (7)0.0033 (6)0.0003 (6)
C20.0545 (10)0.0492 (11)0.0854 (14)0.0022 (8)0.0064 (9)0.0017 (10)
C10.0521 (9)0.0512 (11)0.0655 (11)0.0010 (8)0.0028 (8)0.0064 (9)
C70.0836 (15)0.0674 (14)0.0779 (14)0.0115 (11)0.0107 (11)0.0173 (11)
Geometric parameters (Å, º) top
Cl1—C131.7357 (19)C4—C31.370 (3)
C12—C131.375 (3)C4—C51.395 (2)
C12—C111.376 (3)C4—H40.9300
C12—H120.9300C5—C61.404 (2)
C13—C141.377 (3)C3—C21.386 (3)
C11—C101.378 (3)C3—H30.9300
C11—H110.9300C6—O11.348 (2)
C14—C91.390 (2)C6—C11.399 (3)
C14—H140.9300O1—H10.8200
C9—C101.385 (2)C2—C11.380 (3)
C9—N11.418 (2)C2—H20.9300
C10—H100.9300C1—C71.507 (3)
C8—N11.271 (2)C7—H7A0.9600
C8—C51.448 (2)C7—H7B0.9600
C8—H80.9300C7—H7C0.9600
C13—C12—C11118.11 (18)C5—C4—H4119.4
C13—C12—H12120.9C4—C5—C6118.61 (16)
C11—C12—H12120.9C4—C5—C8119.96 (16)
C12—C13—C14122.25 (18)C6—C5—C8121.42 (16)
C12—C13—Cl1118.56 (15)C4—C3—C2119.16 (19)
C14—C13—Cl1119.19 (15)C4—C3—H3120.4
C12—C11—C10120.94 (18)C2—C3—H3120.4
C12—C11—H11119.5O1—C6—C1118.05 (15)
C10—C11—H11119.5O1—C6—C5121.05 (16)
C13—C14—C9119.17 (17)C1—C6—C5120.90 (16)
C13—C14—H14120.4C6—O1—H1109.5
C9—C14—H14120.4C1—C2—C3122.26 (18)
C10—C9—C14118.98 (17)C1—C2—H2118.9
C10—C9—N1116.45 (16)C3—C2—H2118.9
C14—C9—N1124.57 (16)C2—C1—C6117.95 (17)
C11—C10—C9120.54 (18)C2—C1—C7121.44 (18)
C11—C10—H10119.7C6—C1—C7120.61 (17)
C9—C10—H10119.7C1—C7—H7A109.5
N1—C8—C5122.65 (16)C1—C7—H7B109.5
N1—C8—H8118.7H7A—C7—H7B109.5
C5—C8—H8118.7C1—C7—H7C109.5
C8—N1—C9123.07 (15)H7A—C7—H7C109.5
C3—C4—C5121.12 (18)H7B—C7—H7C109.5
C3—C4—H4119.4
C11—C12—C13—C140.3 (3)N1—C8—C5—C4176.22 (18)
C11—C12—C13—Cl1179.48 (15)N1—C8—C5—C62.7 (3)
C13—C12—C11—C100.6 (3)C5—C4—C3—C20.3 (3)
C12—C13—C14—C90.6 (3)C4—C5—C6—O1179.49 (16)
Cl1—C13—C14—C9178.56 (14)C8—C5—C6—O11.6 (3)
C13—C14—C9—C101.2 (3)C4—C5—C6—C10.5 (3)
C13—C14—C9—N1178.54 (16)C8—C5—C6—C1178.43 (16)
C12—C11—C10—C90.1 (3)C4—C3—C2—C10.5 (3)
C14—C9—C10—C110.9 (3)C3—C2—C1—C60.2 (3)
N1—C9—C10—C11178.88 (16)C3—C2—C1—C7179.21 (19)
C5—C8—N1—C9179.81 (15)O1—C6—C1—C2179.65 (16)
C10—C9—N1—C8176.76 (17)C5—C6—C1—C20.3 (3)
C14—C9—N1—C83.0 (3)O1—C6—C1—C71.3 (3)
C3—C4—C5—C60.2 (3)C5—C6—C1—C7178.70 (17)
C3—C4—C5—C8178.79 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.605 (2)148
C10—H10···O1i0.932.563.402 (2)151
C2—H2···Cg1ii0.932.753.561 (2)147
C12—H12···Cg2iii0.932.783.589 (2)147
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y1/2, z; (iii) x+1/2, y+1/2, z.
 

Funding information

Funding for this research was provided by: Ondokuz Mayıs University (award No. PYO.FEN.1906.19.001).

References

First citationDennington, R. I. I., Keith, T. & Millam, J. (2007). GaussView. Version 4.1.2. Semichem Inc., Shawnee Mission, KS, USA.  Google Scholar
First citationElmalı, A. & Elerman, Y. (1998). J. Mol. Struct. 442, 31–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011). Acta Cryst. E67, o1934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJafari, H., Danaee, I., Eskandari, H. & RashvandAvei, M. (2013). Ind. Eng. Chem. Res. 52, 6617–6632.  Web of Science CrossRef CAS Google Scholar
First citationKarakaş, A., Elmali, A., Ünver, H. & Svoboda, I. (2004). J. Mol. Struct. 702, 103–110.  Google Scholar
First citationKarunakaran, V. & Balachandran, V. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 128, 1–14.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKoepnick, B. D., Lipscomb, J. S. & Taylor, D. K. (2010). J. Phys. Chem. A, 114, 13228–13233.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÖzek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2009). J. Chem. Crystallogr. 39, 353–357.  Google Scholar
First citationPolitzer, P. & Murray, J. S. (2002). Theor. Chimi. Acta, 108, 134–142.  Web of Science CrossRef CAS Google Scholar
First citationPrabavathi, N., Senthil, N. N. & Krishnakumar, V. (2015). Pharm Anal Acta 6, 1–20.  Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  Web of Science CrossRef CAS Google Scholar
First citationSchiff, H. (1864). Ann. Chem. Suppl, 3, 343–349.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSolomon, R. V., Bella, A. P., Vedha, S. A. & Venuvanalingam, P. (2012). Phys. Chem. Chem. Phys. PCCP, 14, 14229–14237.  Web of Science CrossRef PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTahir, M. N., Shad, H. A., Rauf, A. & Khan, A. H. (2015). Acta Cryst. E71, o137–o138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYılmaz, I., Kazak, C., Gümüş, S., Ağar, E. & Ardalı, Y. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 423–428.  Web of Science PubMed Google Scholar
First citationZheng, Y. (2013a). Acta Cryst. E69, o1190.  CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-F. (2013b). Acta Cryst. E69, o1349.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds