research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a tripeptide bi­phenyl hybrid C50H56N6O10·0.5H2O

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, VNU University of science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
*Correspondence e-mail: thaithanhthubui@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 9 January 2020; accepted 16 January 2020; online 21 January 2020)

A peptide biphenyl hybrid compound {systematic name: dimethyl 2,2′-[((2S,2′S)-2,2′-{[(2S,2′S)-1,1′-([1,1′-biphen­yl]-2,2′-dicarbon­yl)bis­(pyrrolidine-1,2-diyl-2-carbon­yl)]bis­(aza­nedi­yl)}bis­(3-phenyl­propano­yl))bis­(aza­nedi­yl)](2S,2′S)-dipropionate hemihydrate}, C50H56N6O10·0.5H2O, was prepared by coupling of [1,1′-biphen­yl]-2,2′-dicarbonyl dichloride, tri­ethyl­amine and the tripeptide Pro–Phe–Ala in CH2Cl2 at 273 K under an N2 atmosphere. In the crystal, the asymmetric unit contains the peptide biphenyl hybrid accompanied by one-half of a water mol­ecule. A C atom of one of the proline rings is disordered between two positions in a 0.746 (11):0.254 (11) ratio. An important structural aspect of peptide compounds is their capacity to self-associate mediated by inter­molecular and intra­molecular hydrogen bonding. This characteristic can be useful in understanding the inter­actions between peptides and biomacromolecular targets, as well as to explain peptide properties.

1. Chemical context

Peptides are combined linear chains of amino acids and are essential for all biological processes. Consequently, they are of great interest in the biomedical field, and research into the use of peptides and modified peptides as therapeutics is increasing rapidly. At present there are over 100 approved peptide-based therapeutics on the market, with the majority being smaller than 20 amino acids (Bruno et al., 2013[Bruno, B. J., Miller, G. D. & Lim, C. S. (2013). Ther. Deliv. 4, 1443-1467.]). However, these peptides have some drawbacks: their poor absorption after oral ingestion, low diffusion in tissue organs, and low metabolic stability towards protease enzymes as well as undesired side-effects of flexible peptides due to inter­action with several receptors.

To overcome these disadvantages, researchers are aiming at the development of new treatment methods based on peptides and proteins, by introducing both structural and functional specific modifications and maintaining the features responsible for biological activity. The synthesis, structure, and properties of peptide–biphenyl hybrids I and II (Fig. 1[link]), which are derivatives of 1,1-biphenyl with amino acids or peptide chains at the positions C2 and C2′ (Mann et al., 2002[Mann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624-3638.]; Montero, Mann et al., 2004[Montero, A., Mann, E., Chana, A. & Herradón, B. (2004). Chem. Bio-div. 1, 442-457.]) have been studied intensively to overcome the disadvantages mentioned above.

[Figure 1]
Figure 1
Structure of peptide-biphenyl hybrids I and II.

The combination of biphenyl and peptide fragments provides compounds with structural (Mann et al., 2002[Mann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624-3638.]) and biological properties of significant inter­est, as illustrated by the glycopeptide anti­biotic vancomycin, the proteasome inhibitor TMC-95A (Kaiser et al., 2004[Kaiser, M., Groll, M., Siciliano, C., Assfalg-Machleidt, I., Weyher, E., Kohno, J., Milbradt, A. G., Renner, C., Huber, R. & Moroder, L. (2004). ChemBioChem, 5, 1256-1266.]) and the peptide anti­biotic WS- 43708A (Rajamoorthi & Williams, 1987[Rajamoorthi, K. & Williams, D. H. (1987). J. Org. Chem. 52, 5435-5437.]), aryl­omycins (Schimana et al., 2002[Schimana, J., Gebhardt, K., Höltzel, A., Schmid, D. G., Süssmuth, R., Müller, J., Pukall, R. & Fiedler, H.-P. (2002). J. Antibiot. 55, 565-570.]) and biphenomycins (Ezaki et al., 1985[Ezaki, M., Iwami, M., Yamashita, M., Hashimoto, S., Komori, T., Umehara, K., Mine, Y., Kohsaka, M., Aoki, H. & Imanaka, H. (1985). J. Antibiot. 38, 1453-1461.]). The inhibition of calpain I by biphenyl derivatives and peptide–biphenyl hybrids was reported by Montero, Albericio et al. (2004[Montero, A., Albericio, F., Royo, M. & Herradón, B. (2004). Org. Lett. 6, 4089-4092.]).

Biphenyl is a typical drug-like scaffold, which is present in 2.1% of reference drug mol­ecules (Bemis et al., 1996[Bemis, G. W. & Murcko, M. (1996). J. Med. Chem. 39, 2887-2893.]). Based on the important role of the biphenyl unit and peptides in biological activity, we report here the synthesis and crystallographic study of a peptide–2,2′-biphenyl hybrid with the tripeptide Pro–Phe–Ala (Fig. 2[link]).

[Scheme 1]
[Figure 2]
Figure 2
A view of the mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

2. Structural commentary

The title compound crystallizes in space group P212121 with one mol­ecule of dimethyl 2,2′-[((2S,2′S)-2,2′-{[(2S,2′S)-1,1′-([1,1′-biphen­yl]-2,2′-dicarbon­yl)bis­(pyrrolidine-1,2-diyl-2-carbon­yl)]bis­(aza­nedi­yl)}bis­(3-phenyl­propano­yl))bis­(aza­ne­di­­yl)](2S,2′S)-dipropionate) and one-half of a water mol­ecule in the asymmetric unit (Fig. 2[link]). One of the proline rings is disordered over two conformations and atom C17 was refined using a split model with occupancies of 0.746 (11) and 0.254 (11). An intra­molecular hydrogen bond is formed between the NH and CO groups of the two tripeptides with a distance of 2.04 Å (N5—H5⋯O5=C19, see Table 1[link], Fig. 2[link]), which is slightly shorter than previously reported (Ranganathan et al., 1997[Ranganathan, D., Kurur, S., Madhusudanan, K. P. & Karle, I. L. (1997). Tetrahedron Lett. 38, 4659-4662.]). The C20–C25 and C26–C31 benzene rings are roughly perpendicular to each other, with a dihedral angle between them of 84.4 (4)°. An inter­esting feature is the non-coplanarity between each phenyl ring and the C=O function of the attached peptide bond. The C26—C31—C32=O6, C26—C31—C32—N4 and C25—C20—C19=O5, C25—C20—C19—N3 torsion angles are 59.8 (4)°, −123.0 (3)° and −85.9 (4)°, −96.8 (4)°, respectively. The torsion angles ω, Φ and Ψ along the two tripeptide backbones are given in Table 2[link]. The torsion angles φ and ψ of amino acids Phe2, Pro4, Phe5 and Ala6 (as defined in Table 2[link]) correspond with the α region in a Ramachandran plot, while for amino acids Pro1 and Ala3 the β region is observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11B⋯O10 0.87 2.15 2.899 (6) 145
O11—H11A⋯O7 0.87 2.03 2.804 (6) 145
C29—H29⋯O11i 0.95 2.57 3.339 (7) 138
N5—H5⋯O5 0.88 2.04 2.892 (3) 163
N2—H2⋯O3ii 0.88 2.11 2.867 (4) 143
C6—H6A⋯O2iii 1.00 2.67 3.647 (4) 165
C4—H4C⋯O4ii 0.98 2.55 3.480 (4) 159
C27—H27⋯O9iv 0.95 2.41 3.327 (5) 162
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Backbone torsion angles ω, Φ, Ψ (°) for the two tripeptide fragments

Pro1 ω1 C20—C19—N3—C15 170.3 (3)
  φ1 C19—N3—C15—C14 −66.2 (4)
  ψ1 N3—C15—C14—N2 152.4 (3)
Phe2 ω2 C15—C14—N2—C6 165.7 (3)
  φ2 C14—N2—C6—C5 −68.9 (4)
  ψ2 N2—C6—C5—N1 −48.1 (4)
Ala3 ω3 C6—C5—N1—C3 −174.4 (3)
  φ3 C5—N1—C3—C2 −145.1 (3)
  ψ3 N1—C3—C2—O1 158.6 (3)
Pro4 ω4 C31—C32—N4—C36 −169.3 (3)
  φ4 C32—N4—C36—C37 −58.8 (3)
  ψ4 N4—C36—C37—N5 −32.5 (4)
Phe5 ω5 C36—C37—N5—C38 −173.0 (3)
  φ5 C37—N5—C38—C46 −96.4 (3)
  ψ5 N5—C38—C46—N6 22.6 (4)
Ala6 ω6 C38—C46—N6—C47 169.3 (3)
  φ6 C46—N6—C47—C49 −52.1 (4)
  ψ6 N6—C47—C49—O10 −31.8 (4)

3. Supra­molecular features

The crystal packing is dominated by hydrogen bonding (Table 1[link]). The water mol­ecule stabilizes the packing by bridging atoms O10 and O7 (hydrogen bonds O11—H11B⋯O10, O11—H11A⋯O7) and makes an additional hydrogen bond C29—H29⋯O11 with a neighbouring mol­ecule. The mol­ecules are further linked via a hydrogen bond between the NH and CO groups of peptide bonds (N2—H2⋯O3=C5), resulting in chains running in the a-axis direction (Fig. 3[link]). In addition, five C–H⋯O=C inter­actions with H⋯O distances ranging from 2.41 to 2.67 Å are observed.

[Figure 3]
Figure 3
Partial crystal packing of the title compound with dashed lines representing the hydrogen bonds (see also Table 1[link]).

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.40, 2019.2; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a peptide–biphenyl hybrid with three amino acids gave no hits. We found nine structures of peptide–biphenyl hybrids containing one and two amino acids. In three of them a di­sulfide bridge is present. Three structures contain only one amino acid (MULLOU, Mann et al., 2002[Mann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624-3638.]; WAFRUR and WAFSAY, Herradón et al., 2004[Herradón, B., Montero, A., Mann, E. & Maestro, M. A. (2004). CrystEngComm, 6, 512-521.]) and two structures contain two amino acids (MULLUA, Mann et al., 2002[Mann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624-3638.]; WAFSEC, Herradón et al., 2004[Herradón, B., Montero, A., Mann, E. & Maestro, M. A. (2004). CrystEngComm, 6, 512-521.]). For the structures of MULLUA and WAFSEC, the torsion angles ϕ and ψ are located in different regions of the Ramachandran plot compared to the title structure.

5. Synthesis and crystallization

To a round-bottom flask was added amine HN–proline–phenyl­alanine–alanine–COOMe (1 eq.), Et3N (2 eq.) and anhydrous CH2Cl2 (50mL). To this solution was added a solution of (1,1′-biphen­yl)-2,2′-dicarbonyl dichloride in CH2Cl2 at 273 K under an N2 atmosphere. After completion of the reaction, the mixture was washed with 1N HCl solution, water and a solution of brine, respectively. The organic phase was dried over Na2SO4, filtered and evaporated under reduced pressure. The crude product was then purified by flash chromatography (AcOEt/hexane 3:2) to give a yellow solid (63% yield). The compound was recrystallized by slow evaporation in methanol to give crystals suitable for X-ray diffraction.

1H NMR (500 MHz, CDCl3, δ in ppm) δ 7.96 (s, 1H), 7.63 (d, J = 21.1 Hz, 1H), 7.56–7.28 (m, 7H), 7.32–7.07 (m, 11H), 6.90 (s, 1H), 6.84 (d, J = 7.1 Hz, 1H), 5.91 (s, 1H), 4.59–4.36 (m, 3H), 4.36–4.14 (m, 3H), 3.75–3.62 (m, 6H), 3.60–3.54 (m, 2H), 3.48–3.10 (m, 4H), 2.41 (s, 1H), 2.18 (s, 1H), 2.02–1.89 (m, 2H), 1.89–1.64 (m, 8H), 1.56 (s, 1H), 1.43 (s, 1H), 1.34–1.14 (m, 6H).

13C NMR (126 MHz, CDCl3, δ in ppm) δ 73.22, 172.49, 172.33, 171.45, 170.92, 170.60, 170.02, 169.43, 138.29, 137.02, 131.39, 131.03, 129.81, 129.71, 129.61, 129.41, 129.32, 128.97, 128.65, 128.50, 127.96, 127.66, 126.93, 126.63, 60.08, 58.57, 55.32, 52.37, 50.38, 48.13, 47.44, 39.20, 36.31, 32.00, 29.83, 28.58, 25.63, 24.63, 23.23, 18.56, 18.47, 18.14.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and treated as riding on their parent atoms with N—H = 0.88 Å and Uiso(H) = 1.2Ueq (N), Caromatic—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), Cproline, methylen—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C), Cmeth­yl—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C), Owater—H = 0.87 Å and Uiso(H) = 1.52Ueq(O). A rotating group model (AFIX 137) was applied to the methyl groups at C1, C4, C48, C50. The solvent water mol­ecule is disordered and was refined with a site occupation factor fixed to 0.5. The ring of one of the proline residues shows two conformations with refined occupancy factors for atom C17 converging to 0.746 (11) and 0.254 (11).

Table 3
Experimental details

Crystal data
Chemical formula C50H56N6O10·0.5H2O
Mr 910.01
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 9.9955 (5), 15.8364 (7), 31.1356 (14)
V3) 4928.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.28 × 0.2 × 0.15
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.695, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 43863, 10447, 8909
Rint 0.038
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.06
No. of reflections 10447
No. of parameters 621
No. of restraints 39
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dimethyl 2,2'-[((2S,2'S)-2,2'-{[(2S,2'S)-1,1'-([1,1'-biphenyl]-2,2'-dicarbonyl)bis(pyrrolidine-1,2-diyl-2-carbonyl)]bis(azanediyl)}bis(3-phenylpropanoyl))bis(azanediyl)](2S,2'S)-dipropionate hemihydrate top
Crystal data top
C50H56N6O10·0.5H2ODx = 1.226 Mg m3
Mr = 910.01Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9965 reflections
a = 9.9955 (5) Åθ = 3.1–26.5°
b = 15.8364 (7) ŵ = 0.09 mm1
c = 31.1356 (14) ÅT = 100 K
V = 4928.5 (4) Å3Prism, clear light yellow
Z = 40.28 × 0.2 × 0.15 mm
F(000) = 1932
Data collection top
Bruker D8 Quest CMOS
diffractometer
8909 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 26.8°, θmin = 2.9°
Tmin = 0.695, Tmax = 0.745h = 1212
43863 measured reflectionsk = 2020
10447 independent reflectionsl = 3932
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.586P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.05 e Å3
10447 reflectionsΔρmin = 0.17 e Å3
621 parametersAbsolute structure: Flack x determined using 3422 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
39 restraintsAbsolute structure parameter: 0.1 (3)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O80.5783 (2)0.35379 (15)0.61299 (7)0.0290 (5)
O50.1677 (2)0.52485 (14)0.62202 (7)0.0300 (5)
O60.1527 (2)0.33804 (15)0.71036 (7)0.0297 (5)
O70.1823 (2)0.20517 (14)0.61792 (8)0.0328 (5)
O90.7545 (2)0.24915 (17)0.69600 (8)0.0368 (6)
O40.3271 (2)0.67992 (16)0.56633 (8)0.0358 (6)
O100.5908 (3)0.18598 (15)0.65811 (8)0.0376 (6)
O30.3607 (2)0.78162 (16)0.46470 (8)0.0366 (6)
O20.0132 (3)0.94017 (16)0.53066 (9)0.0458 (7)
N50.2180 (2)0.34595 (17)0.61273 (8)0.0211 (5)
H50.18690.39680.61820.025*
O10.1553 (3)1.04279 (16)0.51105 (9)0.0452 (7)
N20.1356 (3)0.66860 (16)0.52816 (8)0.0251 (6)
H20.04900.65870.52920.030*
N60.4311 (3)0.32243 (18)0.66559 (8)0.0259 (6)
H60.34660.31780.67310.031*
N30.1878 (3)0.65960 (17)0.64292 (8)0.0296 (6)
N40.0114 (2)0.37316 (16)0.66369 (8)0.0229 (5)
N10.1567 (3)0.82474 (17)0.48518 (10)0.0336 (7)
H10.07970.80920.49640.040*
C50.2483 (3)0.7659 (2)0.47812 (10)0.0255 (7)
C20.1053 (4)0.9653 (2)0.50913 (12)0.0329 (8)
C490.6401 (3)0.2466 (2)0.68322 (10)0.0273 (7)
C370.1444 (3)0.27814 (19)0.62330 (10)0.0234 (6)
C190.2126 (3)0.5774 (2)0.64748 (10)0.0236 (6)
C460.4634 (3)0.34112 (19)0.62472 (10)0.0226 (6)
C400.2546 (3)0.3822 (2)0.52165 (9)0.0246 (6)
C380.3471 (3)0.3369 (2)0.59253 (9)0.0226 (6)
H380.34910.27880.58000.027*
C320.0613 (3)0.3867 (2)0.69939 (10)0.0247 (7)
C250.2567 (3)0.52550 (19)0.72356 (9)0.0227 (6)
C200.3034 (3)0.55266 (19)0.68390 (9)0.0231 (6)
C330.1105 (3)0.4298 (2)0.64412 (10)0.0272 (7)
H33A0.08320.48960.64680.033*
H33B0.19990.42230.65730.033*
C450.1501 (3)0.4389 (2)0.51655 (10)0.0284 (7)
H450.14900.48960.53280.034*
C220.5320 (3)0.5374 (2)0.70738 (12)0.0320 (7)
H220.62530.54170.70200.038*
C310.0216 (3)0.4610 (2)0.72602 (10)0.0268 (7)
C340.1097 (3)0.4010 (2)0.59730 (10)0.0306 (7)
H34A0.19460.41580.58270.037*
H34B0.03410.42630.58130.037*
C390.3631 (3)0.3978 (2)0.55481 (9)0.0254 (7)
H39A0.35740.45670.56530.031*
H39B0.45210.38970.54150.031*
C410.2561 (3)0.3086 (2)0.49701 (10)0.0292 (7)
H410.32790.26980.50000.035*
C230.4861 (3)0.5099 (2)0.74670 (12)0.0328 (8)
H230.54810.49480.76850.039*
C430.0489 (4)0.3485 (2)0.46349 (11)0.0332 (8)
H430.02130.33720.44370.040*
C80.1648 (4)0.6529 (2)0.40682 (10)0.0312 (7)
C140.2050 (3)0.6776 (2)0.56506 (10)0.0265 (7)
C440.0472 (4)0.4222 (2)0.48784 (11)0.0316 (8)
H440.02450.46120.48480.038*
C260.1115 (3)0.5259 (2)0.73614 (9)0.0255 (7)
C70.1065 (3)0.6452 (2)0.45158 (10)0.0306 (7)
H7A0.08290.58540.45700.037*
H7B0.02320.67880.45310.037*
C470.5353 (3)0.3100 (2)0.69728 (10)0.0269 (7)
H470.58050.36540.70250.032*
C60.2021 (3)0.6751 (2)0.48676 (10)0.0265 (7)
H6A0.28230.63740.48690.032*
C420.1532 (4)0.2917 (2)0.46815 (10)0.0326 (8)
H420.15460.24120.45170.039*
C210.4407 (3)0.5586 (2)0.67586 (11)0.0286 (7)
H210.47140.57730.64860.034*
C300.1064 (4)0.4624 (3)0.74307 (11)0.0395 (9)
H300.16680.41790.73660.047*
C360.0037 (3)0.2945 (2)0.63950 (10)0.0252 (7)
H360.02630.24590.65760.030*
C240.3505 (3)0.5042 (2)0.75457 (10)0.0293 (7)
H240.32070.48520.78190.035*
C90.1242 (4)0.7179 (2)0.37993 (11)0.0383 (8)
H90.05800.75680.38930.046*
C350.0937 (3)0.3060 (2)0.60144 (11)0.0307 (7)
H35A0.05600.28150.57480.037*
H35B0.18080.27870.60750.037*
C40.1237 (4)0.9350 (2)0.43102 (12)0.0353 (8)
H4A0.17710.90560.40920.053*
H4B0.12960.99610.42640.053*
H4C0.03020.91700.42880.053*
C290.1478 (4)0.5278 (3)0.76945 (13)0.0531 (12)
H290.23500.52710.78160.064*
C150.1186 (4)0.6907 (2)0.60477 (10)0.0317 (8)
H150.02940.66290.60140.038*
C270.0672 (3)0.5929 (3)0.76131 (12)0.0390 (9)
H270.12560.63870.76720.047*
C130.2600 (4)0.5956 (2)0.39230 (11)0.0355 (8)
H130.28860.55100.41050.043*
C30.1767 (3)0.9136 (2)0.47531 (12)0.0334 (8)
H30.27450.92660.47640.040*
C120.3135 (4)0.6032 (3)0.35134 (12)0.0440 (9)
H120.37760.56340.34140.053*
C100.1802 (5)0.7262 (3)0.33924 (12)0.0451 (10)
H100.15390.77170.32120.054*
C280.0625 (4)0.5933 (3)0.77791 (14)0.0561 (13)
H280.09170.63930.79510.067*
C110.2732 (4)0.6690 (3)0.32496 (12)0.0465 (10)
H110.31000.67450.29700.056*
C180.2329 (4)0.7290 (2)0.67105 (12)0.0388 (9)
H18C0.32320.74900.66280.047*0.746 (11)
H18D0.23400.71140.70160.047*0.746 (11)
H18A0.32920.72450.67820.047*0.254 (11)
H18B0.17980.73230.69780.047*0.254 (11)
C480.4734 (4)0.2800 (3)0.73931 (11)0.0402 (9)
H48A0.40470.32020.74850.060*
H48B0.54300.27610.76140.060*
H48C0.43260.22430.73510.060*
C500.6830 (5)0.1212 (2)0.64429 (13)0.0473 (10)
H50A0.74170.14380.62190.071*
H50B0.63270.07300.63280.071*
H50C0.73720.10260.66880.071*
C160.1028 (5)0.7859 (3)0.61383 (13)0.0511 (11)
H16C0.01170.80530.60620.061*0.746 (11)
H16D0.16880.81900.59710.061*0.746 (11)
H16A0.10910.81890.58690.061*0.254 (11)
H16B0.01560.79780.62760.061*0.254 (11)
C10.0909 (6)1.0984 (3)0.54255 (14)0.0606 (13)
H1A0.00511.10170.53650.091*
H1B0.13031.15490.54070.091*
H1C0.10461.07560.57150.091*
O110.3543 (5)0.0810 (3)0.6507 (2)0.0484 (14)0.5
H11A0.31640.11110.63070.073*0.5
H11B0.40780.11610.66360.073*0.5
C17B0.1282 (8)0.7962 (4)0.6631 (2)0.0526 (18)0.746 (11)
H17A0.16250.85330.67000.063*0.746 (11)
H17B0.04590.78540.67990.063*0.746 (11)
C17A0.204 (2)0.8050 (9)0.6403 (5)0.047 (3)0.254 (11)
H17C0.18010.85550.65740.057*0.254 (11)
H17D0.28470.81820.62330.057*0.254 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0180 (11)0.0412 (13)0.0278 (12)0.0043 (9)0.0010 (9)0.0014 (10)
O50.0355 (13)0.0288 (11)0.0256 (11)0.0027 (10)0.0080 (10)0.0001 (10)
O60.0248 (11)0.0390 (12)0.0254 (11)0.0010 (10)0.0052 (9)0.0020 (10)
O70.0321 (12)0.0245 (12)0.0419 (14)0.0017 (10)0.0016 (11)0.0055 (10)
O90.0242 (12)0.0512 (15)0.0351 (13)0.0127 (11)0.0037 (10)0.0015 (11)
O40.0274 (13)0.0468 (14)0.0333 (12)0.0080 (11)0.0101 (10)0.0035 (11)
O100.0392 (14)0.0353 (13)0.0384 (14)0.0094 (11)0.0051 (11)0.0034 (11)
O30.0253 (12)0.0438 (14)0.0407 (13)0.0030 (11)0.0031 (10)0.0034 (12)
O20.0446 (16)0.0348 (14)0.0578 (17)0.0044 (12)0.0116 (14)0.0067 (13)
N50.0173 (12)0.0239 (13)0.0222 (12)0.0018 (10)0.0022 (10)0.0012 (10)
O10.0634 (18)0.0328 (13)0.0393 (14)0.0167 (13)0.0107 (13)0.0015 (12)
N20.0224 (13)0.0277 (13)0.0252 (13)0.0021 (11)0.0046 (11)0.0002 (11)
N60.0172 (12)0.0391 (15)0.0213 (12)0.0049 (11)0.0014 (10)0.0013 (12)
N30.0371 (15)0.0299 (14)0.0218 (13)0.0084 (12)0.0079 (12)0.0024 (12)
N40.0197 (13)0.0271 (14)0.0220 (12)0.0007 (10)0.0024 (10)0.0025 (11)
N10.0206 (13)0.0251 (14)0.0550 (18)0.0025 (11)0.0028 (13)0.0033 (14)
C50.0217 (15)0.0329 (17)0.0219 (14)0.0012 (13)0.0060 (12)0.0029 (13)
C20.0330 (18)0.0254 (17)0.0403 (19)0.0030 (15)0.0114 (16)0.0037 (15)
C490.0243 (16)0.0335 (17)0.0242 (15)0.0084 (13)0.0011 (13)0.0054 (14)
C370.0239 (15)0.0243 (16)0.0219 (14)0.0009 (12)0.0043 (12)0.0028 (13)
C190.0226 (15)0.0288 (16)0.0194 (14)0.0006 (12)0.0019 (12)0.0003 (13)
C460.0190 (15)0.0261 (16)0.0228 (15)0.0057 (12)0.0002 (12)0.0012 (13)
C400.0254 (15)0.0301 (16)0.0182 (14)0.0049 (13)0.0025 (12)0.0018 (13)
C380.0183 (14)0.0271 (16)0.0224 (14)0.0047 (12)0.0007 (12)0.0025 (13)
C320.0182 (14)0.0348 (17)0.0211 (15)0.0048 (13)0.0005 (12)0.0031 (14)
C250.0175 (14)0.0295 (16)0.0211 (14)0.0007 (12)0.0011 (12)0.0041 (13)
C200.0238 (15)0.0234 (15)0.0220 (15)0.0045 (12)0.0012 (12)0.0034 (13)
C330.0184 (14)0.0346 (17)0.0284 (16)0.0043 (13)0.0021 (13)0.0027 (14)
C450.0318 (17)0.0260 (16)0.0273 (16)0.0054 (13)0.0040 (14)0.0028 (14)
C220.0175 (15)0.0378 (19)0.0405 (19)0.0006 (14)0.0039 (14)0.0035 (16)
C310.0184 (15)0.0426 (19)0.0193 (14)0.0038 (14)0.0020 (12)0.0056 (14)
C340.0210 (15)0.046 (2)0.0248 (16)0.0036 (15)0.0076 (13)0.0003 (15)
C390.0227 (15)0.0329 (17)0.0207 (14)0.0008 (13)0.0006 (12)0.0007 (13)
C410.0299 (17)0.0336 (18)0.0240 (15)0.0007 (14)0.0034 (14)0.0016 (14)
C230.0194 (16)0.045 (2)0.0335 (18)0.0016 (14)0.0076 (14)0.0080 (16)
C430.0337 (18)0.043 (2)0.0233 (16)0.0124 (16)0.0046 (14)0.0028 (15)
C80.0371 (19)0.0316 (17)0.0249 (15)0.0057 (15)0.0093 (14)0.0030 (14)
C140.0281 (16)0.0242 (16)0.0271 (16)0.0065 (13)0.0074 (13)0.0013 (13)
C440.0310 (17)0.0341 (18)0.0298 (17)0.0034 (14)0.0072 (14)0.0076 (15)
C260.0168 (14)0.0420 (18)0.0176 (14)0.0009 (13)0.0022 (12)0.0043 (14)
C70.0336 (18)0.0280 (16)0.0302 (17)0.0032 (14)0.0070 (14)0.0014 (14)
C470.0197 (15)0.0386 (19)0.0225 (15)0.0069 (13)0.0028 (12)0.0011 (14)
C60.0278 (16)0.0278 (16)0.0240 (15)0.0054 (13)0.0035 (13)0.0026 (13)
C420.0368 (18)0.0384 (18)0.0227 (15)0.0092 (15)0.0032 (14)0.0059 (14)
C210.0258 (16)0.0329 (17)0.0271 (16)0.0027 (13)0.0069 (13)0.0037 (14)
C300.0230 (17)0.065 (2)0.0305 (17)0.0115 (17)0.0001 (14)0.0164 (18)
C360.0216 (15)0.0269 (16)0.0270 (16)0.0033 (12)0.0037 (13)0.0027 (13)
C240.0242 (16)0.0427 (19)0.0210 (15)0.0012 (14)0.0001 (13)0.0050 (14)
C90.053 (2)0.0340 (18)0.0280 (17)0.0026 (17)0.0114 (16)0.0049 (16)
C350.0195 (15)0.043 (2)0.0298 (17)0.0022 (14)0.0056 (13)0.0112 (15)
C40.0323 (18)0.0298 (17)0.044 (2)0.0040 (14)0.0060 (16)0.0004 (16)
C290.0184 (17)0.096 (3)0.045 (2)0.004 (2)0.0057 (16)0.036 (2)
C150.0359 (19)0.0358 (18)0.0234 (15)0.0135 (15)0.0040 (14)0.0006 (14)
C270.0215 (16)0.059 (2)0.0369 (19)0.0037 (16)0.0039 (14)0.0240 (19)
C130.042 (2)0.0325 (18)0.0319 (17)0.0042 (16)0.0101 (16)0.0050 (15)
C30.0238 (16)0.0261 (16)0.050 (2)0.0059 (13)0.0012 (15)0.0029 (16)
C120.039 (2)0.056 (2)0.037 (2)0.0027 (18)0.0057 (16)0.0170 (19)
C100.064 (3)0.044 (2)0.0269 (17)0.008 (2)0.0122 (18)0.0006 (17)
C280.0237 (18)0.091 (3)0.054 (2)0.000 (2)0.0028 (17)0.046 (3)
C110.053 (2)0.063 (3)0.0238 (17)0.017 (2)0.0078 (17)0.0028 (18)
C180.050 (2)0.0321 (18)0.0340 (18)0.0109 (16)0.0127 (17)0.0093 (15)
C480.0300 (18)0.066 (3)0.0249 (17)0.0155 (18)0.0011 (14)0.0071 (18)
C500.068 (3)0.0342 (19)0.039 (2)0.0199 (19)0.003 (2)0.0003 (17)
C160.074 (3)0.043 (2)0.036 (2)0.033 (2)0.003 (2)0.0010 (18)
C10.113 (4)0.032 (2)0.037 (2)0.014 (2)0.006 (2)0.0101 (18)
O110.023 (2)0.048 (3)0.074 (4)0.004 (2)0.008 (3)0.001 (3)
C17B0.077 (4)0.044 (3)0.037 (3)0.028 (3)0.012 (3)0.015 (2)
C17A0.074 (7)0.029 (6)0.040 (6)0.015 (6)0.010 (6)0.019 (5)
Geometric parameters (Å, º) top
O8—C461.221 (4)C8—C91.388 (5)
O5—C191.234 (4)C8—C131.390 (5)
O6—C321.243 (4)C14—C151.523 (5)
O7—C371.227 (4)C44—H440.9500
O9—C491.211 (4)C26—C271.391 (5)
O4—C141.221 (4)C7—H7A0.9900
O10—C491.333 (4)C7—H7B0.9900
O10—C501.445 (4)C7—C61.529 (4)
O3—C51.224 (4)C47—H471.0000
O2—C21.207 (4)C47—C481.523 (5)
N5—H50.8800C6—H6A1.0000
N5—C371.343 (4)C42—H420.9500
N5—C381.443 (4)C21—H210.9500
O1—C21.326 (4)C30—H300.9500
O1—C11.466 (5)C30—C291.384 (6)
N2—H20.8800C36—H361.0000
N2—C141.350 (4)C36—C351.544 (4)
N2—C61.454 (4)C24—H240.9500
N6—H60.8800C9—H90.9500
N6—C461.346 (4)C9—C101.391 (5)
N6—C471.448 (4)C35—H35A0.9900
N3—C191.332 (4)C35—H35B0.9900
N3—C151.460 (4)C4—H4A0.9800
N3—C181.476 (4)C4—H4B0.9800
N4—C321.345 (4)C4—H4C0.9800
N4—C331.469 (4)C4—C31.515 (5)
N4—C361.463 (4)C29—H290.9500
N1—H10.8800C29—C281.369 (6)
N1—C51.325 (4)C15—H151.0000
N1—C31.454 (4)C15—C161.542 (5)
C5—C61.534 (5)C27—H270.9500
C2—C31.513 (5)C27—C281.395 (5)
C49—C471.515 (4)C13—H130.9500
C37—C361.516 (4)C13—C121.388 (5)
C19—C201.505 (4)C3—H31.0000
C46—C381.536 (4)C12—H120.9500
C40—C451.386 (5)C12—C111.387 (6)
C40—C391.518 (4)C10—H100.9500
C40—C411.396 (5)C10—C111.372 (6)
C38—H381.0000C28—H280.9500
C38—C391.528 (4)C11—H110.9500
C32—C311.492 (5)C18—H18C0.9900
C25—C201.388 (4)C18—H18D0.9900
C25—C261.503 (4)C18—H18A0.9900
C25—C241.387 (4)C18—H18B0.9900
C20—C211.398 (5)C18—C17B1.513 (6)
C33—H33A0.9900C18—C17A1.566 (15)
C33—H33B0.9900C48—H48A0.9800
C33—C341.527 (4)C48—H48B0.9800
C45—H450.9500C48—H48C0.9800
C45—C441.388 (5)C50—H50A0.9800
C22—H220.9500C50—H50B0.9800
C22—C231.378 (5)C50—H50C0.9800
C22—C211.382 (5)C16—H16C0.9900
C31—C261.402 (5)C16—H16D0.9900
C31—C301.385 (5)C16—H16A0.9900
C34—H34A0.9900C16—H16B0.9900
C34—H34B0.9900C16—C17B1.563 (7)
C34—C351.519 (5)C16—C17A1.335 (17)
C39—H39A0.9900C1—H1A0.9800
C39—H39B0.9900C1—H1B0.9800
C41—H410.9500C1—H1C0.9800
C41—C421.391 (5)O11—H11A0.8701
C23—H230.9500O11—H11B0.8694
C23—C241.380 (5)C17B—H17A0.9900
C43—H430.9500C17B—H17B0.9900
C43—C441.392 (5)C17A—H17C0.9900
C43—C421.386 (5)C17A—H17D0.9900
C8—C71.515 (5)
C49—O10—C50116.8 (3)C41—C42—H42120.0
C37—N5—H5119.4C43—C42—C41119.9 (3)
C37—N5—C38121.2 (3)C43—C42—H42120.0
C38—N5—H5119.4C20—C21—H21119.8
C2—O1—C1114.9 (3)C22—C21—C20120.3 (3)
C14—N2—H2119.6C22—C21—H21119.8
C14—N2—C6120.8 (3)C31—C30—H30119.5
C6—N2—H2119.6C29—C30—C31121.1 (4)
C46—N6—H6119.9C29—C30—H30119.5
C46—N6—C47120.1 (3)N4—C36—C37114.4 (2)
C47—N6—H6119.9N4—C36—H36109.5
C19—N3—C15120.3 (3)N4—C36—C35103.3 (2)
C19—N3—C18127.4 (3)C37—C36—H36109.5
C15—N3—C18112.1 (3)C37—C36—C35110.5 (3)
C32—N4—C33127.6 (3)C35—C36—H36109.5
C32—N4—C36120.4 (3)C25—C24—H24119.2
C36—N4—C33112.1 (2)C23—C24—C25121.6 (3)
C5—N1—H1118.3C23—C24—H24119.2
C5—N1—C3123.4 (3)C8—C9—H9120.0
C3—N1—H1118.3C8—C9—C10120.1 (4)
O3—C5—N1123.2 (3)C10—C9—H9120.0
O3—C5—C6121.8 (3)C34—C35—C36104.4 (3)
N1—C5—C6115.0 (3)C34—C35—H35A110.9
O2—C2—O1124.6 (4)C34—C35—H35B110.9
O2—C2—C3124.6 (3)C36—C35—H35A110.9
O1—C2—C3110.8 (3)C36—C35—H35B110.9
O9—C49—O10124.4 (3)H35A—C35—H35B108.9
O9—C49—C47122.4 (3)H4A—C4—H4B109.5
O10—C49—C47113.0 (3)H4A—C4—H4C109.5
O7—C37—N5123.4 (3)H4B—C4—H4C109.5
O7—C37—C36119.5 (3)C3—C4—H4A109.5
N5—C37—C36116.9 (3)C3—C4—H4B109.5
O5—C19—N3121.5 (3)C3—C4—H4C109.5
O5—C19—C20121.9 (3)C30—C29—H29120.2
N3—C19—C20116.6 (3)C28—C29—C30119.6 (4)
O8—C46—N6123.0 (3)C28—C29—H29120.2
O8—C46—C38121.6 (3)N3—C15—C14110.2 (3)
N6—C46—C38115.2 (3)N3—C15—H15111.1
C45—C40—C39120.8 (3)N3—C15—C16103.3 (3)
C45—C40—C41119.1 (3)C14—C15—H15111.1
C41—C40—C39120.1 (3)C14—C15—C16109.9 (3)
N5—C38—C46112.8 (2)C16—C15—H15111.1
N5—C38—H38106.2C26—C27—H27119.7
N5—C38—C39111.5 (2)C26—C27—C28120.6 (4)
C46—C38—H38106.2C28—C27—H27119.7
C39—C38—C46113.3 (3)C8—C13—H13119.8
C39—C38—H38106.2C12—C13—C8120.4 (4)
O6—C32—N4121.7 (3)C12—C13—H13119.8
O6—C32—C31122.1 (3)N1—C3—C2108.2 (3)
N4—C32—C31116.2 (3)N1—C3—C4111.1 (3)
C20—C25—C26123.7 (3)N1—C3—H3109.0
C24—C25—C20117.9 (3)C2—C3—C4110.4 (3)
C24—C25—C26118.2 (3)C2—C3—H3109.0
C25—C20—C19123.3 (3)C4—C3—H3109.0
C25—C20—C21120.7 (3)C13—C12—H12120.1
C21—C20—C19116.1 (3)C11—C12—C13119.8 (4)
N4—C33—H33A111.3C11—C12—H12120.1
N4—C33—H33B111.3C9—C10—H10119.8
N4—C33—C34102.2 (2)C11—C10—C9120.4 (4)
H33A—C33—H33B109.2C11—C10—H10119.8
C34—C33—H33A111.3C29—C28—C27120.2 (4)
C34—C33—H33B111.3C29—C28—H28119.9
C40—C45—H45119.7C27—C28—H28119.9
C40—C45—C44120.6 (3)C12—C11—H11120.0
C44—C45—H45119.7C10—C11—C12120.1 (4)
C23—C22—H22120.4C10—C11—H11120.0
C23—C22—C21119.2 (3)N3—C18—H18C111.3
C21—C22—H22120.4N3—C18—H18D111.3
C26—C31—C32122.2 (3)N3—C18—H18A112.0
C30—C31—C32118.1 (3)N3—C18—H18B112.0
C30—C31—C26119.6 (3)N3—C18—C17B102.4 (3)
C33—C34—H34A111.3N3—C18—C17A98.7 (6)
C33—C34—H34B111.3H18C—C18—H18D109.2
H34A—C34—H34B109.2H18A—C18—H18B109.7
C35—C34—C33102.4 (3)C17B—C18—H18C111.3
C35—C34—H34A111.3C17B—C18—H18D111.3
C35—C34—H34B111.3C17A—C18—H18A112.0
C40—C39—C38110.2 (3)C17A—C18—H18B112.0
C40—C39—H39A109.6C47—C48—H48A109.5
C40—C39—H39B109.6C47—C48—H48B109.5
C38—C39—H39A109.6C47—C48—H48C109.5
C38—C39—H39B109.6H48A—C48—H48B109.5
H39A—C39—H39B108.1H48A—C48—H48C109.5
C40—C41—H41119.7H48B—C48—H48C109.5
C42—C41—C40120.5 (3)O10—C50—H50A109.5
C42—C41—H41119.7O10—C50—H50B109.5
C22—C23—H23119.8O10—C50—H50C109.5
C22—C23—C24120.4 (3)H50A—C50—H50B109.5
C24—C23—H23119.8H50A—C50—H50C109.5
C44—C43—H43120.1H50B—C50—H50C109.5
C42—C43—H43120.1C15—C16—H16C110.7
C42—C43—C44119.8 (3)C15—C16—H16D110.7
C9—C8—C7120.1 (3)C15—C16—H16A110.8
C9—C8—C13119.2 (3)C15—C16—H16B110.8
C13—C8—C7120.6 (3)C15—C16—C17B105.4 (3)
O4—C14—N2123.0 (3)H16C—C16—H16D108.8
O4—C14—C15122.5 (3)H16A—C16—H16B108.8
N2—C14—C15114.4 (3)C17B—C16—H16C110.7
C45—C44—C43120.1 (3)C17B—C16—H16D110.7
C45—C44—H44120.0C17A—C16—C15104.9 (6)
C43—C44—H44120.0C17A—C16—H16A110.8
C31—C26—C25123.9 (3)C17A—C16—H16B110.8
C27—C26—C25117.3 (3)O1—C1—H1A109.5
C27—C26—C31118.8 (3)O1—C1—H1B109.5
C8—C7—H7A108.9O1—C1—H1C109.5
C8—C7—H7B108.9H1A—C1—H1B109.5
C8—C7—C6113.2 (3)H1A—C1—H1C109.5
H7A—C7—H7B107.8H1B—C1—H1C109.5
C6—C7—H7A108.9H11A—O11—H11B104.4
C6—C7—H7B108.9C18—C17B—C16101.5 (4)
N6—C47—C49113.0 (3)C18—C17B—H17A111.5
N6—C47—H47108.4C18—C17B—H17B111.5
N6—C47—C48109.6 (3)C16—C17B—H17A111.5
C49—C47—H47108.4C16—C17B—H17B111.5
C49—C47—C48108.9 (3)H17A—C17B—H17B109.3
C48—C47—H47108.4C18—C17A—H17C109.6
N2—C6—C5111.1 (3)C18—C17A—H17D109.6
N2—C6—C7109.1 (3)C16—C17A—C18110.2 (11)
N2—C6—H6A108.6C16—C17A—H17C109.6
C5—C6—H6A108.6C16—C17A—H17D109.6
C7—C6—C5110.7 (3)H17C—C17A—H17D108.1
C7—C6—H6A108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11B···O100.872.152.899 (6)145
O11—H11A···O70.872.032.804 (6)145
C29—H29···O11i0.952.573.339 (7)138
N5—H5···O50.882.042.892 (3)163
N2—H2···O3ii0.882.112.867 (4)143
C6—H6A···O2iii1.002.673.647 (4)165
C4—H4C···O4ii0.982.553.480 (4)159
C27—H27···O9iv0.952.413.327 (5)162
C1—H1B···O7v0.982.593.033 (5)108
C1—H1C···O7v0.982.633.033 (5)105
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y+1/2, z+3/2; (v) x, y+1, z.
Backbone torsion angles ω, Φ, Ψ (°) for the two tripeptide fragments top
Pro1ω1C20—C19—N3—C15170.3 (3)
Φ1C19—N3—C15—C14-66.2 (4)
Ψ1N3—C15—C14—N2152.4 (3)
Phe2ω2C15—C14—N2—C6165.7 (3)
Φ2C14—N2—C6—C5-68.9 (4)
Ψ2N2—C6—C5—N1-48.1 (4)
Ala3ω3C6—C5—N1—C3-174.4 (3)
Φ3C5—N1—C3—C2-145.1 (3)
Ψ3N1—C3—C2—O1158.6 (3)
Pro4ω4C31—C32—N4—C36-169.3 (3)
Φ4C32—N4—C36—C37-58.8 (3)
Ψ4N4—C36—C37—N5-32.5 (4)
Phe5ω5C36—C37—N5—C38-173.0 (3)
Φ5C37—N5—C38—C46-96.4 (3)
Ψ5N5—C38—C46—N622.6 (4)
Ala6ω6C38—C46—N6—C47169.3 (3)
Φ6C46—N6—C47—C49-52.1 (4)
Ψ6N6—C47—C49—O10-31.8 (4)
 

Funding information

TTTB and DHM are thankful to the Vietnam National University, Ha Noi (VNU) for financial support (Project QG.17–13).

References

First citationBemis, G. W. & Murcko, M. (1996). J. Med. Chem. 39, 2887–2893.  CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, B. J., Miller, G. D. & Lim, C. S. (2013). Ther. Deliv. 4, 1443–1467.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEzaki, M., Iwami, M., Yamashita, M., Hashimoto, S., Komori, T., Umehara, K., Mine, Y., Kohsaka, M., Aoki, H. & Imanaka, H. (1985). J. Antibiot. 38, 1453–1461.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerradón, B., Montero, A., Mann, E. & Maestro, M. A. (2004). CrystEngComm, 6, 512–521.  Google Scholar
First citationKaiser, M., Groll, M., Siciliano, C., Assfalg-Machleidt, I., Weyher, E., Kohno, J., Milbradt, A. G., Renner, C., Huber, R. & Moroder, L. (2004). ChemBioChem, 5, 1256–1266.  CrossRef PubMed CAS Google Scholar
First citationMann, E., Montero, A., Maestro, M. & Herradón, B. (2002). Helv. Chim. Acta, 85, 3624–3638.  CSD CrossRef CAS Google Scholar
First citationMontero, A., Albericio, F., Royo, M. & Herradón, B. (2004). Org. Lett. 6, 4089–4092.  CrossRef PubMed CAS Google Scholar
First citationMontero, A., Mann, E., Chana, A. & Herradón, B. (2004). Chem. Bio-div. 1, 442–457.  CrossRef CAS Google Scholar
First citationRajamoorthi, K. & Williams, D. H. (1987). J. Org. Chem. 52, 5435–5437.  CrossRef CAS Google Scholar
First citationRanganathan, D., Kurur, S., Madhusudanan, K. P. & Karle, I. L. (1997). Tetrahedron Lett. 38, 4659–4662.  CrossRef CAS Google Scholar
First citationSchimana, J., Gebhardt, K., Höltzel, A., Schmid, D. G., Süssmuth, R., Müller, J., Pukall, R. & Fiedler, H.-P. (2002). J. Antibiot. 55, 565–570.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds