research communications
4Cu4.5(PO4)6
of silver strontium copper orthophosphate, AgSraLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: j_khmiyas@yahoo.fr
Crystals of the new compound, AgSr4Cu4.5(PO4)6, were grown successfully by the hydrothermal process. The of the of the title compound contains 40 independent atoms (4 Sr, 4.5 Cu, 1 Ag, 6 P and 24 O), which are all in general positions except for one Cu atom, which is located on an inversion centre. The Cu atoms are arranged in CuOn (n = 4 or 5) polyhedra, linked through common oxygen corners to build a rigid three-dimensional motif. The connection of these copper units is assured by PO4 tetrahedra. This arrangement allows the construction of layers extending parallel to the (100) plane and hosts suitable cavities in which Ag+ and Sr2+ cations are located. The crystal-structure cohesion is ensured by ionic bonds between the silver and strontium cations and the oxygen anions belonging to two adjacent sheets. Charge-distribution analysis and bond-valence-sum calculations were used to validate the structural model.
Keywords: crystal structure; AgSr4Cu4.5(PO4)6; transition metal phosphate; hydrothermal synthesis; layered structure.
CCDC reference: 1975726
1. Chemical context
The growing role of metal orthophosphates based on PO4 and MOn (where M is a metal cation) structural units is closely related to their ability to adopt different spatial arrangements. As has been pointed out previously, their physical and chemical properties, dynamic flexibility attributes and structural behaviour (Hadrich et al., 2001) can be correlated with the ionic radius of the metal cation (Jeżowska-Trzebiatowska et al., 1980). Furthermore, the ability of these metal cations to adopt different oxidation states as well as various coordination environments leads, in general, to open anionic three-dimensional frameworks. The structures of these classes of materials can easily accommodate a great variety of substituents, anionic and/or cationic, which can have a significant effect on the stability and on the morphology of structures and crystals, as is shown particularly in the apatite family (LeGeros & Tung, 1983) for which a considerable number of complex and versatile networks were described systematically. Open frameworks involved with various cavities such tunnels or cages, especially in phosphates containing mono, di and trivalent cations, are of particular interest owing to their potential applications in catalysis (Badrour et al., 2001) and as immobilizing carriers for various enzymes, e.g. CaTi4(PO4)6 (Suzuki et al., 1991) as well as for their photocatalytic activities in glass-ceramics containing MgTi4(PO4)6 crystals (Fu, 2014) and ionic-conductivity properties with Cal-xNa2xTi4(PO4)6 belonging to the Nasicon structure type (Mentre & Abraham, 1994). Much attention has been paid to compounds containing six PO4 tetrahedral units with different transition metal/phosphate ratios, e.g. Na4CaFe4(PO4)6 which adopts the Alluaudite structure in the ideal C2/c (Hidouri et al., 2004), Ba3V4(PO4)6 which crystallizes as a Langbeinite-type structure (Dross & Glaum, 2004), CuTi4(PO4)6 which belongs to the Nasicon family (Kasuga et al., 1999), the silver lead apatite Pb8Ag2(PO4)6 (Ternane et al., 2000), the mixed-valent iron(II/III) phosphate Fe7(PO4)6 (Belik et al., 2000) and Na2.5Y0.5Mg7(PO4)6 with a Fillowite-type structure (Jerbi et al., 2010). Through hydrothermal processes, and as part of our systematic studies of the crystal alkaline and alkaline earth monophosphates, we have previously succeeded in elaborating a number of compounds with three-dimensional networks featuring distinctive cavities including AgMg3(HPO4)2PO4 (Assani et al., 2011), Sr2Mn3(HPO4)2(PO4)2 (Khmiyas et al., 2013), SrMn2IIMnIII(PO4)3 (Alhakmi et al., 2013), NaMg3(HPO4)2PO4 (Ould Saleck et al., 2015). In an extension of our investigations and structural studies of various mono-divalent transition-metal phosphates a new phosphate copper (CuII)-based AgSr4Cu4.5(PO4)6 was prepared and successfully characterized. Charge-distribution (CHARDI) (Nespolo et al., 2001) and bond-valence-sum (BVS) calculations were used for validating the structural model. A careful examination of the literature as well as various databases reveals that the title compound AgSr4Cu4.5(PO4)6 is original and furthermore is not related to any family of reported compounds.
2. Structural commentary
The principal building units of the 4Cu4.5(PO4)6 are more or less distorted polyhedra (AgO5, CuO4, CuO5, SrO8, SrO9) and nearly regular PO4 tetrahedra, as shown in Fig. 1. In this structure, the copper atoms adopt two different environments: CuO4 and CuO5. Indeed, Cu1 and Cu2 exhibit a coordination sphere of four oxygen atoms, forming a flattened parallelogram for Cu1O4 and a distorted square plane for Cu2O4. The other copper atoms Cu3, Cu4 and Cu5 each occupy the centers of CuO5 square-based pyramids. A close inspection of the geometrical parameters of Cu3O5, Cu4O5 and Cu5O5 polyhedra reveals that the latter exhibit significant distortion. The phosphorus atoms are tetrahedrally coordinated with bond lengths and angles close to those reported for P5+ for this geometry. The crystal-structure framework of AgSr4Cu4.5(PO4)6 can be viewed as a three-dimensional network of corner-sharing CuOn (n = 4 or 5) units, thereby forming two types of [Cu3O12]18− trimers. The first trimer results from the zigzag succession in the following order Cu(4)O5 – Cu(2)O4 – Cu(5)O5. Similarly, the second type of trimer is built up from two-vertex-sharing of a single polyhedra, Cu1O4, sandwiched by two neighbouring Cu3O5 entities as shown in Fig. 2. Each oxygen atom of both trimers is connected to a nearly regular PO4 tetrahedron in such a way as to form two different [Cu3P10O40]24− ribbons (see Fig. 3 and 4). These adjacent ribbons are linked together through the PO4 tetrahedra, thus building a layer-like [Cu4.5(PO4)6]9− arrangement perpendicular to the [100] direction as shown in Fig. 5.
of AgSrCrystal cohesion and the junction between the stacked layers along the a-axis direction are ensured by ionic bonds involving the Sr2+ and Ag+ cations as shown in Fig. 6. The insertion of these mono and bivalent cations generates strong interactions inducing, consequently, a morphological deformation of the interlayer space, which explains the manifestation of the distorted sites. This result is confirmed by the CHARDI analysis of the coordination polyhedra by means of the effective (ECoN; Nespolo, 2016). The distortion of the metal–oxygen polyhedron becomes stronger when the ECoN value deviates further from the habitual (CN). This structural particularity is clearly noticeable when examining the numerical values of ECoN and CN for the various SrOn (n = 8 and 9) and AgO5 polyhedra. The differences ECoN (Sr1)/CN(Sr1) = 7.61/8, ECoN (Sr2)/CN(Sr2) = 6.96/8 and ECoN (Sr3)/CN(Sr3) = 6.8/8, reveal an increased distortion in the SrO8 groups ranging from the Sr1O8 to Sr3O8 polyhedra. The Sr2 atom is formally nine-coordinate with bond lengths varying from 2.480 (2) to 2.890 (2) Å. The site hosting Sr4 is very flexible and bulky, resulting in a greatly deformed SrO9 polyhedron. The geometry ratio ECoN (Ag1)/CN(Ag1) = 3.93/5 of the Ag1O5 polyhedron indicates a distorted square-pyramidal coordination environment. This behaviour can be attributed to the edge or face-sharing between these polyhedral units. This modality of linkage, as well as the ionic radius of Sr2+ and Ag+, induces a strong cation–cation electrostatic repulsion, which is reflected in the interatomic distances and consequently on the repetition of the ionic charge and bond-valence-sum (BVS) values.
The CHARDI analysis method gives the distribution of calculated ECoN numbers of a central cation among all the neighbouring anions (Hoppe, 1979). The calculation of this number is related directly to the distribution of charges in crystalline structures. The measure of the correctness of the structure (cation ratio) and of the degree of over or under bonding (anion ratio) is performed via the evaluation of the internal criterion q/Q (where q is the formal and Q the computed charge). The charge-distribution method (CD or CHARDI), developed by Hoppe et al. (1989), and the bond –valence (BVS) approach introduced to predict bond lengths in inorganic crystals (Brown, 1977, 1978) provide powerful tools for analysis of the connectivity of crystal structures and the validation of structural models. In the present study, both validation tools, BVS and CHARDI, are applied to the structural model of the title compound. Generally, for a well-refined structure, the calculated valences V(i) obtained by the BVS model and the computed charge Q(i) according to the CHARDI analysis must be in close agreement with the of the atoms. The CHARDI computations were carried out with the CHARDI2015 program (Nespolo & Guillot, 2016), while BVS was calculated using PLATON (Spek, 2009). In the all atoms are located on general positions (Wyckoff position 2i) of P except for Cu1, which is located on a special position (Wyckoff position 1a). The distribution of the electric charges at the 40 crystallographic sites of the shows that the Ag+, Sr2+, Cu2+ and P5+ cations fully occupy 16 sites. Otherwise, charge neutrality requires the location of 24 oxygen atoms in the remaining 2i sites. The first results of BVS calculations for Sr3 suggest a valence V(Sr3) = 1.900 v.u. for a CN = 7. This result can be significantly improved by widening the coordination sphere to 3.1410 Å, which allows the integration of a supplemental oxygen, thus inducing valence V(Sr3) = 1.962 v.u. The analysis of the data summarized in Table 1 reveals that the values obtained from charges Q(i) and bond-valence sums V(i) of the cations are all compatible with the weighted q(i)·sof(i). The minor deviations reported from these parameters with respect to the formal are closely related to the distortion level of the occupied sites. Despite these irregularities, all the values of the internal criterion q(i)/Q(i) are very close to unity, which confirms the validity of the structural model obtained from the X-ray diffraction data. The convergence of the CHARDI model is evaluated by the mean absolute percentage deviation (MAPD) as shown in the equation below, which measures the agreement between q(i) and Q(i) for the whole sets of PC atoms (polyhedron-centring atoms) and of V atoms (the vertex atoms) (Eon & Nespolo, 2015). For the cationic charges in the structure, we report that the calculated value of MAPD is only 1.7%.
where N is the number of polyhedron-centring or vertex atoms in the asymmetric unit.
|
The calculated anionic charges Q(i) of oxygen show a lowest deviation of the order of 4.5% with respect to q(i). These values of MAPD show that the dual description as cation-centred and anion-centred is satisfactory and adequate for the studied structural model. The ratio q(i)/Q(i) is approximately equal to 1 in most cases (Table 2), with some exceptions: q(O8)/Q(O8) = 1.16, q(O12)/Q(O12) = 0.92 and q(O22)/Q(O22) = 1.15. This anomaly of negative-charge repetition could be due to the OUB effect (over–under bonding effect) (Nespolo et al., 1999), which results from the repulsive interactions of the cations located at the centre of the polyhedra. Therefore the anionic charges of oxygen deviate slightly from the ideal value −2. This also explains the variation of cation–anion distances in the various polyhedra in the of AgSr4Cu4.5(PO4)6.
|
The plausibility of a crystal-structure model may also be tested by the global instability index (GII) (Salinas-Sanchez et al., 1992). The calculated value of the GII index measures the deviation of the bond-valence sums from the formal valence Vi averaged over all N atoms of the For an unstrained structure, GII is below 0.1 v.u. and may approach 0.2 v.u. in a structure with lattice-induced strains (Adams et al., 2004). Values larger than 0.2 v.u. are typically taken as an indication of the presence of intrinsic strains strong enough to cause instability of the (Brown, 1992). For the of the title compound, GII = 0.0944, which indicates high stability and rigidity of the proposed structural model.
3. Database survey
A search in the ICSD database shows that no compounds are currently known in the quaternary system AgO/SrO/CuO/P2O5. The same is true within the AgO/SrO/P2O5 ternary system. However, one compound is known in the AgO/CuO/P2O5 ternary system, viz. β-AgCuPO4 which crystallizes in the Pbca (Quarton & Oumba, 1983). There are seven compounds known in the ternary SrO/CuO/P2O5 system, viz. Sr9.1Cu1.4(PO4)7, Sr3Cu3(PO4)4 (Belik et al., 2002; Effenberger, 1999), Sr2.88Cu3.12(PO4)4 (Karanović et al., 2010), Sr5(CuO2)0.333(PO4)3 (Kazin et al., 2003), Sr2Cu(PO4)2, SrCu2(PO4)2 (Belik et al., 2005) and SrCu(P2O7) (Moqine et al., 1993). There is no apparent relation between the structures of these compounds and that of the title compound AgSr4Cu4.5(PO4)6.
4. Synthesis and crystallization
Single crystals of the title compound were obtained using the hydrothermal method with the following mixture of reagents: silver nitrate, strontium nitrate, metallic copper and 85wt% phosphoric acid in a proportion corresponding to the molar ratio Ag:Cu:Sr:P = 1:3:1:3. The hydrothermal reaction was conducted in a 23 mL Teflon-lined autoclave with 12 mL of distilled water under autogenous pressure. The vessel was heated to 473 K for 4 d. After being filtered off, washed with distilled water and dried in air, the reaction product consisted of a light-blue crystals in various forms corresponding to the title compound.
5. Refinement
Crystal data, data collection and structure . The of the occupation of all atom sites shows full occupancy and leads to the stoichiometric formula AgSr4Cu4.5(PO4)6. However, the difference-Fourier map shows two electron-density peaks of intensity 4.05 and −3.87 e Å−3 located at 0.63 and 0.59 Å from Ag1, respectively. These rather strong peaks could not be removed using a different integration strategy or another absorption model.
details are summarized in Table 3Supporting information
CCDC reference: 1975726
https://doi.org/10.1107/S2056989020000109/vn2155sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020000109/vn2155Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).AgCu4.50O24P6Sr4 | Z = 2 |
Mr = 1314.08 | F(000) = 1223 |
Triclinic, P1 | Dx = 4.209 Mg m−3 |
a = 9.1070 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1514 (1) Å | Cell parameters from 8573 reflections |
c = 13.7259 (2) Å | θ = 2.4–35.0° |
α = 97.498 (1)° | µ = 16.22 mm−1 |
β = 98.303 (1)° | T = 296 K |
γ = 110.875 (1)° | Block, light blue |
V = 1036.97 (2) Å3 | 0.30 × 0.27 × 0.21 mm |
Bruker X8 APEXII diffractometer | 8573 independent reflections |
Radiation source: fine-focus sealed tube | 7465 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 35.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −14→14 |
Tmin = 0.496, Tmax = 0.747 | k = −12→14 |
32671 measured reflections | l = −21→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0206P)2 + 3.8655P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.028 | (Δ/σ)max = 0.001 |
wR(F2) = 0.059 | Δρmax = 4.05 e Å−3 |
S = 1.03 | Δρmin = −3.87 e Å−3 |
8573 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
359 parameters | Extinction coefficient: 0.00083 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.60647 (3) | 0.58776 (4) | 0.10399 (2) | 0.02934 (7) | |
Sr1 | 0.28824 (3) | 0.81800 (3) | 0.01654 (2) | 0.00676 (5) | |
Sr2 | 0.07030 (3) | 0.54033 (3) | 0.33636 (2) | 0.00652 (5) | |
Sr3 | 0.63381 (3) | 0.17215 (3) | 0.32562 (2) | 0.00823 (5) | |
Sr4 | 0.87164 (3) | 0.85230 (3) | 0.35406 (2) | 0.00832 (5) | |
Cu1 | 0.000000 | 0.000000 | 0.000000 | 0.00876 (9) | |
Cu2 | 0.19756 (4) | 0.43833 (4) | 0.10393 (2) | 0.00679 (6) | |
Cu3 | 0.17555 (4) | −0.05281 (4) | 0.22039 (2) | 0.00602 (6) | |
Cu4 | 0.35439 (4) | 0.35727 (4) | 0.32546 (2) | 0.00693 (6) | |
Cu5 | 0.51284 (4) | 0.24192 (4) | 0.54770 (2) | 0.00725 (6) | |
P1 | −0.00318 (8) | 0.17911 (8) | 0.20922 (5) | 0.00451 (11) | |
P2 | 0.93662 (8) | 0.60245 (8) | 0.11620 (5) | 0.00507 (11) | |
P3 | 0.24288 (8) | 0.92189 (8) | 0.44052 (5) | 0.00544 (11) | |
P4 | 0.44974 (8) | 0.78964 (8) | 0.23844 (5) | 0.00542 (11) | |
P5 | 0.37042 (8) | 0.20301 (8) | 0.11200 (5) | 0.00480 (11) | |
P6 | 0.69847 (8) | 0.54683 (8) | 0.45908 (5) | 0.00475 (11) | |
O1 | 0.1628 (2) | 0.3232 (2) | 0.22180 (14) | 0.0064 (3) | |
O2 | 0.0314 (2) | 0.0493 (2) | 0.25727 (15) | 0.0091 (3) | |
O3 | −0.1119 (2) | 0.2403 (2) | 0.26131 (15) | 0.0093 (3) | |
O4 | −0.0762 (2) | 0.1176 (2) | 0.09618 (14) | 0.0092 (3) | |
O5 | 1.0559 (3) | 0.5276 (3) | 0.15350 (15) | 0.0128 (4) | |
O6 | 0.8509 (3) | 0.6235 (3) | 0.20225 (15) | 0.0112 (4) | |
O7 | 0.8129 (2) | 0.4854 (2) | 0.02384 (14) | 0.0092 (4) | |
O8 | 1.0258 (3) | 0.7603 (2) | 0.08664 (15) | 0.0116 (4) | |
O9 | 0.3837 (2) | 1.0680 (2) | 0.43059 (15) | 0.0106 (4) | |
O10 | 0.2988 (2) | 0.7963 (2) | 0.48272 (14) | 0.0089 (3) | |
O11 | 0.1335 (3) | 0.9560 (3) | 0.50496 (16) | 0.0129 (4) | |
O12 | 0.1398 (2) | 0.8387 (2) | 0.33335 (13) | 0.0065 (3) | |
O13 | 0.3714 (2) | 0.9110 (2) | 0.21547 (14) | 0.0087 (3) | |
O14 | 0.6258 (2) | 0.8917 (2) | 0.28321 (16) | 0.0107 (4) | |
O15 | 0.4209 (3) | 0.6805 (2) | 0.13724 (14) | 0.0099 (4) | |
O16 | 0.3742 (2) | 0.6848 (2) | 0.31152 (14) | 0.0089 (3) | |
O17 | 0.3381 (3) | 0.3334 (2) | 0.06366 (15) | 0.0094 (4) | |
O18 | 0.4811 (3) | 0.1406 (2) | 0.06409 (16) | 0.0108 (4) | |
O19 | 0.4412 (2) | 0.2650 (2) | 0.22584 (14) | 0.0092 (4) | |
O20 | 0.2067 (2) | 0.0587 (2) | 0.09995 (14) | 0.0070 (3) | |
O21 | 0.6559 (2) | 0.6837 (2) | 0.42809 (15) | 0.0094 (3) | |
O22 | 0.8374 (3) | 0.5349 (3) | 0.41485 (16) | 0.0160 (4) | |
O23 | 0.7430 (2) | 0.5693 (2) | 0.57441 (14) | 0.0090 (3) | |
O24 | 0.5494 (2) | 0.3884 (2) | 0.42094 (14) | 0.0083 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.01409 (12) | 0.04266 (17) | 0.03685 (16) | 0.01756 (12) | 0.00787 (11) | 0.00447 (13) |
Sr1 | 0.00637 (10) | 0.00740 (10) | 0.00765 (10) | 0.00327 (8) | 0.00283 (8) | 0.00199 (8) |
Sr2 | 0.00621 (10) | 0.00615 (10) | 0.00775 (10) | 0.00271 (8) | 0.00232 (8) | 0.00124 (7) |
Sr3 | 0.00784 (11) | 0.00971 (10) | 0.00884 (10) | 0.00481 (9) | 0.00298 (8) | 0.00198 (8) |
Sr4 | 0.00637 (11) | 0.01015 (11) | 0.01038 (10) | 0.00413 (9) | 0.00398 (8) | 0.00341 (8) |
Cu1 | 0.0054 (2) | 0.0135 (2) | 0.00640 (18) | 0.00484 (17) | −0.00058 (15) | −0.00297 (16) |
Cu2 | 0.00818 (15) | 0.00827 (14) | 0.00676 (13) | 0.00519 (12) | 0.00333 (11) | 0.00329 (10) |
Cu3 | 0.00630 (14) | 0.00746 (13) | 0.00649 (13) | 0.00409 (11) | 0.00282 (11) | 0.00295 (10) |
Cu4 | 0.00585 (14) | 0.00973 (14) | 0.00516 (12) | 0.00403 (11) | 0.00015 (10) | −0.00060 (10) |
Cu5 | 0.00636 (14) | 0.00897 (14) | 0.00652 (13) | 0.00391 (11) | 0.00033 (11) | 0.00019 (10) |
P1 | 0.0042 (3) | 0.0048 (3) | 0.0052 (2) | 0.0022 (2) | 0.0016 (2) | 0.0010 (2) |
P2 | 0.0043 (3) | 0.0056 (3) | 0.0050 (2) | 0.0017 (2) | 0.0006 (2) | 0.0011 (2) |
P3 | 0.0046 (3) | 0.0056 (3) | 0.0058 (3) | 0.0020 (2) | 0.0006 (2) | 0.0001 (2) |
P4 | 0.0047 (3) | 0.0063 (3) | 0.0053 (3) | 0.0024 (2) | 0.0007 (2) | 0.0012 (2) |
P5 | 0.0042 (3) | 0.0051 (3) | 0.0054 (2) | 0.0018 (2) | 0.0018 (2) | 0.0010 (2) |
P6 | 0.0043 (3) | 0.0060 (3) | 0.0048 (2) | 0.0024 (2) | 0.0017 (2) | 0.0016 (2) |
O1 | 0.0043 (8) | 0.0073 (8) | 0.0071 (8) | 0.0017 (6) | 0.0007 (6) | 0.0020 (6) |
O2 | 0.0109 (9) | 0.0090 (8) | 0.0119 (8) | 0.0065 (7) | 0.0058 (7) | 0.0056 (7) |
O3 | 0.0081 (9) | 0.0080 (8) | 0.0137 (9) | 0.0042 (7) | 0.0056 (7) | 0.0016 (7) |
O4 | 0.0083 (9) | 0.0128 (9) | 0.0067 (8) | 0.0059 (7) | −0.0001 (7) | −0.0005 (7) |
O5 | 0.0156 (10) | 0.0221 (11) | 0.0095 (8) | 0.0159 (9) | 0.0041 (7) | 0.0058 (8) |
O6 | 0.0088 (9) | 0.0165 (10) | 0.0098 (8) | 0.0063 (8) | 0.0038 (7) | 0.0011 (7) |
O7 | 0.0097 (9) | 0.0065 (8) | 0.0071 (8) | −0.0004 (7) | −0.0015 (7) | 0.0002 (6) |
O8 | 0.0122 (10) | 0.0079 (8) | 0.0110 (9) | −0.0011 (7) | 0.0034 (7) | 0.0023 (7) |
O9 | 0.0091 (9) | 0.0083 (8) | 0.0096 (8) | −0.0017 (7) | 0.0013 (7) | 0.0006 (7) |
O10 | 0.0104 (9) | 0.0114 (9) | 0.0080 (8) | 0.0072 (7) | 0.0019 (7) | 0.0038 (7) |
O11 | 0.0112 (10) | 0.0164 (10) | 0.0120 (9) | 0.0067 (8) | 0.0040 (7) | −0.0004 (7) |
O12 | 0.0061 (8) | 0.0075 (8) | 0.0052 (7) | 0.0020 (7) | 0.0002 (6) | 0.0018 (6) |
O13 | 0.0092 (9) | 0.0110 (9) | 0.0095 (8) | 0.0069 (7) | 0.0027 (7) | 0.0043 (7) |
O14 | 0.0063 (9) | 0.0086 (8) | 0.0157 (9) | 0.0020 (7) | −0.0011 (7) | 0.0032 (7) |
O15 | 0.0102 (9) | 0.0124 (9) | 0.0073 (8) | 0.0061 (7) | 0.0005 (7) | −0.0014 (7) |
O16 | 0.0084 (9) | 0.0106 (8) | 0.0069 (8) | 0.0023 (7) | 0.0011 (7) | 0.0035 (6) |
O17 | 0.0112 (9) | 0.0090 (8) | 0.0125 (9) | 0.0063 (7) | 0.0067 (7) | 0.0055 (7) |
O18 | 0.0102 (9) | 0.0108 (9) | 0.0152 (9) | 0.0063 (7) | 0.0077 (7) | 0.0028 (7) |
O19 | 0.0079 (9) | 0.0128 (9) | 0.0063 (8) | 0.0051 (7) | −0.0007 (7) | −0.0018 (7) |
O20 | 0.0049 (8) | 0.0061 (8) | 0.0081 (8) | 0.0004 (6) | 0.0001 (6) | 0.0017 (6) |
O21 | 0.0094 (9) | 0.0088 (8) | 0.0132 (9) | 0.0048 (7) | 0.0048 (7) | 0.0063 (7) |
O22 | 0.0108 (10) | 0.0293 (12) | 0.0141 (9) | 0.0117 (9) | 0.0087 (8) | 0.0067 (9) |
O23 | 0.0108 (9) | 0.0137 (9) | 0.0048 (7) | 0.0076 (7) | 0.0007 (7) | 0.0015 (6) |
O24 | 0.0068 (8) | 0.0070 (8) | 0.0095 (8) | 0.0020 (7) | −0.0012 (7) | 0.0007 (6) |
Ag1—O15 | 2.220 (2) | Cu2—O17 | 1.951 (2) |
Ag1—O6 | 2.319 (2) | Cu2—O7i | 1.9723 (19) |
Ag1—O17i | 2.565 (2) | Cu2—O1 | 2.0450 (19) |
Ag1—O17 | 2.630 (2) | Cu2—O15 | 2.348 (2) |
Ag1—O7 | 2.684 (2) | Cu3—O13vii | 1.936 (2) |
Sr1—O18i | 2.449 (2) | Cu3—O2 | 1.948 (2) |
Sr1—O7i | 2.5484 (19) | Cu3—O12vii | 1.9528 (18) |
Sr1—O4ii | 2.580 (2) | Cu3—O20 | 2.0551 (19) |
Sr1—O8iii | 2.610 (2) | Cu3—O8xi | 2.225 (2) |
Sr1—O15 | 2.615 (2) | Cu4—O23v | 1.914 (2) |
Sr1—O13 | 2.6628 (19) | Cu4—O19 | 1.922 (2) |
Sr1—O20iv | 2.7325 (19) | Cu4—O24 | 1.9553 (19) |
Sr1—O18iv | 2.774 (2) | Cu4—O1 | 1.9866 (19) |
Sr2—O5iii | 2.480 (2) | Cu5—O21v | 1.942 (2) |
Sr2—O22iii | 2.502 (2) | Cu5—O10v | 1.959 (2) |
Sr2—O23v | 2.517 (2) | Cu5—O16v | 1.9591 (19) |
Sr2—O12 | 2.5813 (19) | Cu5—O9vii | 1.988 (2) |
Sr2—O3 | 2.622 (2) | Cu5—O24 | 2.322 (2) |
Sr2—O16 | 2.703 (2) | P1—O3 | 1.516 (2) |
Sr2—O1 | 2.8087 (19) | P1—O2 | 1.535 (2) |
Sr2—O10 | 2.819 (2) | P1—O4 | 1.541 (2) |
Sr2—O6iii | 2.890 (2) | P1—O1 | 1.581 (2) |
Sr3—O3vi | 2.498 (2) | P2—O8 | 1.524 (2) |
Sr3—O19 | 2.520 (2) | P2—O6 | 1.535 (2) |
Sr3—O14vii | 2.529 (2) | P2—O5 | 1.540 (2) |
Sr3—O10v | 2.5672 (19) | P2—O7 | 1.548 (2) |
Sr3—O24 | 2.630 (2) | P3—O11 | 1.508 (2) |
Sr3—O13vii | 2.766 (2) | P3—O9 | 1.525 (2) |
Sr3—O9vii | 2.816 (2) | P3—O10 | 1.555 (2) |
Sr3—O22 | 3.139 (3) | P3—O12 | 1.5572 (19) |
Sr3—O11v | 3.511 (2) | P4—O14 | 1.523 (2) |
Sr4—O11viii | 2.455 (2) | P4—O15 | 1.530 (2) |
Sr4—O21 | 2.470 (2) | P4—O16 | 1.543 (2) |
Sr4—O14 | 2.475 (2) | P4—O13 | 1.560 (2) |
Sr4—O2ix | 2.539 (2) | P5—O18 | 1.509 (2) |
Sr4—O12vi | 2.543 (2) | P5—O17 | 1.533 (2) |
Sr4—O6 | 2.688 (2) | P5—O19 | 1.548 (2) |
Sr4—O11vi | 2.707 (2) | P5—O20 | 1.570 (2) |
Sr4—O22 | 3.048 (2) | P5—O1 | 2.988 (2) |
Cu1—O4x | 1.9515 (19) | P6—O22 | 1.512 (2) |
Cu1—O4 | 1.9515 (19) | P6—O21 | 1.529 (2) |
Cu1—O20x | 2.0138 (19) | P6—O23 | 1.544 (2) |
Cu1—O20 | 2.0138 (19) | P6—O24 | 1.553 (2) |
Cu2—O5iii | 1.912 (2) | ||
O15—Ag1—O6 | 130.30 (7) | O6—Sr4—O22 | 65.95 (6) |
O15—Ag1—O17i | 104.15 (7) | O11vi—Sr4—O22 | 80.99 (6) |
O6—Ag1—O17i | 107.23 (7) | O4x—Cu1—O4 | 180.0 |
O15—Ag1—O17 | 75.47 (7) | O4x—Cu1—O20x | 90.19 (8) |
O6—Ag1—O17 | 127.71 (7) | O4—Cu1—O20x | 89.82 (8) |
O17i—Ag1—O17 | 107.34 (5) | O4x—Cu1—O20 | 89.82 (8) |
O15—Ag1—O7 | 167.66 (7) | O4—Cu1—O20 | 90.18 (8) |
O6—Ag1—O7 | 59.96 (6) | O20x—Cu1—O20 | 180.0 |
O17i—Ag1—O7 | 64.01 (6) | O4x—Cu1—O8i | 104.34 (7) |
O17—Ag1—O7 | 103.95 (6) | O4—Cu1—O8i | 75.66 (7) |
O18i—Sr1—O7i | 94.81 (7) | O20x—Cu1—O8i | 65.34 (7) |
O18i—Sr1—O4ii | 108.26 (7) | O20—Cu1—O8i | 114.66 (7) |
O7i—Sr1—O4ii | 104.05 (6) | O4x—Cu1—O8xi | 75.66 (7) |
O18i—Sr1—O8iii | 174.83 (7) | O4—Cu1—O8xi | 104.34 (7) |
O7i—Sr1—O8iii | 82.72 (7) | O20x—Cu1—O8xi | 114.66 (7) |
O4ii—Sr1—O8iii | 68.14 (7) | O20—Cu1—O8xi | 65.34 (7) |
O18i—Sr1—O15 | 86.11 (7) | O8i—Cu1—O8xi | 180.00 (8) |
O7i—Sr1—O15 | 62.56 (6) | O5iii—Cu2—O17 | 174.10 (9) |
O4ii—Sr1—O15 | 161.76 (7) | O5iii—Cu2—O7i | 95.24 (9) |
O8iii—Sr1—O15 | 96.71 (7) | O17—Cu2—O7i | 90.39 (8) |
O18i—Sr1—O13 | 113.18 (7) | O5iii—Cu2—O1 | 82.50 (8) |
O7i—Sr1—O13 | 107.77 (6) | O17—Cu2—O1 | 91.63 (8) |
O4ii—Sr1—O13 | 124.26 (6) | O7i—Cu2—O1 | 168.00 (8) |
O8iii—Sr1—O13 | 71.95 (6) | O5iii—Cu2—O15 | 95.57 (9) |
O15—Sr1—O13 | 55.45 (6) | O17—Cu2—O15 | 87.46 (8) |
O18i—Sr1—O20iv | 124.05 (6) | O7i—Cu2—O15 | 76.16 (7) |
O7i—Sr1—O20iv | 141.00 (6) | O1—Cu2—O15 | 115.74 (7) |
O4ii—Sr1—O20iv | 63.53 (6) | O5iii—Cu2—O8i | 97.38 (8) |
O8iii—Sr1—O20iv | 58.28 (6) | O17—Cu2—O8i | 84.24 (8) |
O15—Sr1—O20iv | 118.08 (6) | O7i—Cu2—O8i | 56.67 (7) |
O13—Sr1—O20iv | 62.82 (6) | O1—Cu2—O8i | 111.79 (7) |
O18i—Sr1—O18iv | 71.86 (7) | O15—Cu2—O8i | 131.91 (6) |
O7i—Sr1—O18iv | 163.91 (6) | O5iii—Cu2—O4 | 83.95 (8) |
O4ii—Sr1—O18iv | 89.03 (6) | O17—Cu2—O4 | 92.22 (7) |
O8iii—Sr1—O18iv | 111.27 (6) | O7i—Cu2—O4 | 113.28 (7) |
O15—Sr1—O18iv | 106.49 (6) | O1—Cu2—O4 | 54.83 (6) |
O13—Sr1—O18iv | 70.98 (6) | O15—Cu2—O4 | 170.55 (6) |
O20iv—Sr1—O18iv | 53.59 (6) | O8i—Cu2—O4 | 57.36 (5) |
O5iii—Sr2—O22iii | 121.69 (7) | O13vii—Cu3—O2 | 160.18 (9) |
O5iii—Sr2—O23v | 116.94 (6) | O13vii—Cu3—O12vii | 91.65 (8) |
O22iii—Sr2—O23v | 115.45 (7) | O2—Cu3—O12vii | 88.14 (8) |
O5iii—Sr2—O12 | 81.20 (7) | O13vii—Cu3—O20 | 89.56 (8) |
O22iii—Sr2—O12 | 89.49 (7) | O2—Cu3—O20 | 91.05 (8) |
O23v—Sr2—O12 | 124.57 (6) | O12vii—Cu3—O20 | 178.46 (8) |
O5iii—Sr2—O3 | 77.65 (7) | O13vii—Cu3—O8xi | 96.00 (8) |
O22iii—Sr2—O3 | 83.32 (7) | O2—Cu3—O8xi | 103.27 (9) |
O23v—Sr2—O3 | 84.85 (7) | O12vii—Cu3—O8xi | 104.10 (8) |
O12—Sr2—O3 | 149.55 (6) | O20—Cu3—O8xi | 74.82 (7) |
O5iii—Sr2—O16 | 73.18 (7) | O13vii—Cu3—O19 | 71.97 (7) |
O22iii—Sr2—O16 | 152.12 (7) | O2—Cu3—O19 | 92.23 (7) |
O23v—Sr2—O16 | 68.53 (6) | O12vii—Cu3—O19 | 126.04 (7) |
O12—Sr2—O16 | 68.48 (6) | O20—Cu3—O19 | 55.29 (6) |
O3—Sr2—O16 | 124.31 (6) | O8xi—Cu3—O19 | 127.99 (6) |
O5iii—Sr2—O1 | 58.77 (6) | O13vii—Cu3—O9vii | 72.67 (7) |
O22iii—Sr2—O1 | 137.87 (7) | O2—Cu3—O9vii | 91.22 (7) |
O23v—Sr2—O1 | 61.68 (6) | O12vii—Cu3—O9vii | 54.82 (7) |
O12—Sr2—O1 | 128.37 (6) | O20—Cu3—O9vii | 126.52 (7) |
O3—Sr2—O1 | 54.80 (6) | O8xi—Cu3—O9vii | 154.46 (7) |
O16—Sr2—O1 | 69.52 (6) | O19—Cu3—O9vii | 71.23 (5) |
O5iii—Sr2—O10 | 122.96 (7) | O23v—Cu4—O19 | 175.03 (9) |
O22iii—Sr2—O10 | 94.73 (7) | O23v—Cu4—O24 | 94.12 (8) |
O23v—Sr2—O10 | 73.63 (6) | O19—Cu4—O24 | 86.62 (8) |
O12—Sr2—O10 | 54.70 (6) | O23v—Cu4—O1 | 89.30 (8) |
O3—Sr2—O10 | 155.20 (6) | O19—Cu4—O1 | 90.03 (8) |
O16—Sr2—O10 | 58.88 (6) | O24—Cu4—O1 | 176.54 (8) |
O1—Sr2—O10 | 120.87 (6) | O23v—Cu4—O16 | 70.33 (7) |
O5iii—Sr2—O6iii | 54.03 (6) | O19—Cu4—O16 | 114.25 (7) |
O22iii—Sr2—O6iii | 70.73 (6) | O24—Cu4—O16 | 104.78 (7) |
O23v—Sr2—O6iii | 169.49 (6) | O1—Cu4—O16 | 75.83 (7) |
O12—Sr2—O6iii | 62.19 (6) | O23v—Cu4—O2 | 87.24 (7) |
O3—Sr2—O6iii | 87.58 (6) | O19—Cu4—O2 | 88.45 (7) |
O16—Sr2—O6iii | 110.36 (6) | O24—Cu4—O2 | 128.42 (7) |
O1—Sr2—O6iii | 107.91 (6) | O1—Cu4—O2 | 52.25 (6) |
O10—Sr2—O6iii | 115.23 (6) | O16—Cu4—O2 | 123.74 (5) |
O3vi—Sr3—O19 | 110.38 (7) | O21v—Cu5—O10v | 169.90 (9) |
O3vi—Sr3—O14vii | 82.58 (7) | O21v—Cu5—O16v | 92.79 (9) |
O19—Sr3—O14vii | 122.19 (6) | O10v—Cu5—O16v | 87.76 (8) |
O3vi—Sr3—O10v | 108.90 (7) | O21v—Cu5—O9vii | 97.24 (9) |
O19—Sr3—O10v | 127.01 (6) | O10v—Cu5—O9vii | 86.98 (9) |
O14vii—Sr3—O10v | 96.76 (6) | O16v—Cu5—O9vii | 151.10 (9) |
O3vi—Sr3—O24 | 122.99 (6) | O21v—Cu5—O24 | 87.84 (8) |
O19—Sr3—O24 | 62.15 (6) | O10v—Cu5—O24 | 83.75 (8) |
O14vii—Sr3—O24 | 152.48 (7) | O16v—Cu5—O24 | 126.58 (8) |
O10v—Sr3—O24 | 67.04 (6) | O9vii—Cu5—O24 | 80.99 (8) |
O3vi—Sr3—O13vii | 117.02 (6) | O21v—Cu5—O23 | 91.10 (7) |
O19—Sr3—O13vii | 70.32 (6) | O10v—Cu5—O23 | 79.53 (7) |
O14vii—Sr3—O13vii | 54.77 (6) | O16v—Cu5—O23 | 71.14 (7) |
O10v—Sr3—O13vii | 119.03 (6) | O9vii—Cu5—O23 | 135.31 (7) |
O24—Sr3—O13vii | 112.29 (6) | O24—Cu5—O23 | 55.44 (6) |
O3vi—Sr3—O9vii | 166.81 (6) | O21v—Cu5—O14v | 70.52 (7) |
O19—Sr3—O9vii | 82.79 (6) | O10v—Cu5—O14v | 117.73 (7) |
O14vii—Sr3—O9vii | 90.80 (6) | O16v—Cu5—O14v | 56.61 (7) |
O10v—Sr3—O9vii | 60.41 (6) | O9vii—Cu5—O14v | 101.64 (7) |
O24—Sr3—O9vii | 62.03 (6) | O24—Cu5—O14v | 158.36 (6) |
O13vii—Sr3—O9vii | 66.93 (6) | O23—Cu5—O14v | 122.40 (5) |
O3vi—Sr3—O22 | 73.38 (6) | O3—P1—O2 | 111.77 (11) |
O19—Sr3—O22 | 86.10 (6) | O3—P1—O4 | 110.53 (12) |
O14vii—Sr3—O22 | 148.30 (6) | O2—P1—O4 | 110.81 (11) |
O10v—Sr3—O22 | 72.66 (6) | O3—P1—O1 | 107.91 (11) |
O24—Sr3—O22 | 50.51 (6) | O2—P1—O1 | 107.36 (11) |
O13vii—Sr3—O22 | 156.23 (6) | O4—P1—O1 | 108.30 (11) |
O9vii—Sr3—O22 | 108.16 (6) | O8—P2—O6 | 112.23 (12) |
O3vi—Sr3—O11v | 78.24 (6) | O8—P2—O5 | 110.05 (13) |
O19—Sr3—O11v | 170.75 (6) | O6—P2—O5 | 106.61 (12) |
O14vii—Sr3—O11v | 61.04 (6) | O8—P2—O7 | 109.64 (11) |
O10v—Sr3—O11v | 44.55 (6) | O6—P2—O7 | 109.63 (12) |
O24—Sr3—O11v | 110.69 (5) | O5—P2—O7 | 108.57 (12) |
O13vii—Sr3—O11v | 109.31 (5) | O11—P3—O9 | 115.26 (12) |
O9vii—Sr3—O11v | 88.58 (6) | O11—P3—O10 | 107.09 (12) |
O22—Sr3—O11v | 93.45 (6) | O9—P3—O10 | 112.23 (12) |
O11viii—Sr4—O21 | 77.94 (7) | O11—P3—O12 | 107.68 (12) |
O11viii—Sr4—O14 | 80.40 (7) | O9—P3—O12 | 107.88 (11) |
O21—Sr4—O14 | 74.02 (7) | O10—P3—O12 | 106.25 (11) |
O11viii—Sr4—O2ix | 98.52 (7) | O14—P4—O15 | 114.18 (12) |
O21—Sr4—O2ix | 163.95 (7) | O14—P4—O16 | 110.49 (11) |
O14—Sr4—O2ix | 89.98 (7) | O15—P4—O16 | 108.08 (12) |
O11viii—Sr4—O12vi | 118.73 (7) | O14—P4—O13 | 104.92 (11) |
O21—Sr4—O12vi | 130.97 (6) | O15—P4—O13 | 105.27 (11) |
O14—Sr4—O12vi | 149.08 (7) | O16—P4—O13 | 113.93 (11) |
O2ix—Sr4—O12vi | 64.54 (6) | O18—P5—O17 | 113.12 (11) |
O11viii—Sr4—O6 | 174.63 (7) | O18—P5—O19 | 109.40 (12) |
O21—Sr4—O6 | 96.83 (7) | O17—P5—O19 | 110.47 (11) |
O14—Sr4—O6 | 97.07 (7) | O18—P5—O20 | 107.49 (11) |
O2ix—Sr4—O6 | 86.17 (6) | O17—P5—O20 | 108.67 (11) |
O12vi—Sr4—O6 | 65.64 (6) | O19—P5—O20 | 107.49 (11) |
O11viii—Sr4—O11vi | 65.85 (8) | O18—P5—O1 | 175.64 (9) |
O21—Sr4—O11vi | 103.32 (7) | O17—P5—O1 | 70.46 (8) |
O14—Sr4—O11vi | 145.70 (7) | O19—P5—O1 | 66.55 (8) |
O2ix—Sr4—O11vi | 89.13 (7) | O20—P5—O1 | 72.96 (8) |
O12vi—Sr4—O11vi | 56.15 (6) | O22—P6—O21 | 110.56 (12) |
O6—Sr4—O11vi | 117.07 (6) | O22—P6—O23 | 109.07 (12) |
O11viii—Sr4—O22 | 111.04 (7) | O21—P6—O23 | 111.36 (11) |
O21—Sr4—O22 | 52.59 (6) | O22—P6—O24 | 109.57 (13) |
O14—Sr4—O22 | 118.68 (6) | O21—P6—O24 | 108.90 (11) |
O2ix—Sr4—O22 | 141.14 (6) | O23—P6—O24 | 107.32 (11) |
O12vi—Sr4—O22 | 79.02 (6) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) x−1, y, z; (iv) x, y+1, z; (v) −x+1, −y+1, −z+1; (vi) x+1, y, z; (vii) x, y−1, z; (viii) −x+1, −y+2, −z+1; (ix) x+1, y+1, z; (x) −x, −y, −z; (xi) x−1, y−1, z. |
q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number. |
Cation | q(i)·sof(i) | CN(i) | ECoN(i) | V(i) | Q(i) | q(i)/Q(i) |
Ag1 | 1 | 5 | 3.93 | 0.998 | 1.02 | 0.98 |
Sr1 | 2 | 8 | 7.61 | 2.125 | 2.03 | 0.98 |
Sr2 | 2 | 8 | 6.96 | 2.308 | 1.99 | 1.00 |
Sr3 | 2 | 8 | 6.80 | 1.962 | 1.98 | 1.01 |
Sr4 | 2 | 9 | 8.07 | 2.248 | 2.01 | 0.99 |
Cu1 | 2 | 4 | 3.97 | 1.765 | 1.92 | 1.04 |
Cu2 | 2 | 4 | 3.97 | 2.000 | 1.96 | 1.02 |
Cu3 | 2 | 5 | 4.55 | 2.050 | 1.94 | 1.03 |
Cu4 | 2 | 5 | 4.37 | 2.039 | 2.00 | 1.00 |
Cu5 | 2 | 5 | 4.25 | 1.957 | 1.94 | 1.03 |
P1 | 5 | 4 | 3.97 | 4.892 | 4.91 | 1.02 |
P2 | 5 | 4 | 4.00 | 4.962 | 5.20 | 0.96 |
P3 | 5 | 4 | 3.97 | 4.974 | 4.98 | 1.00 |
P4 | 5 | 4 | 3.99 | 4.944 | 5.04 | 0.99 |
P5 | 5 | 4 | 3.97 | 4.939 | 4.93 | 1.01 |
P6 | 5 | 4 | 3.99 | 5.016 | 5.10 | 0.98 |
Atom | sof(i) | q(i) | Q(i) | q(i)/Q(i) |
O1 | 1 | -2 | -2.02 | 0.99 |
O2 | 1 | -2 | -2.07 | 0.97 |
O3 | 1 | -2 | -1.98 | 1.01 |
O4 | 1 | -2 | -2.08 | 0.96 |
O5 | 1 | -2 | -2.12 | 0.94 |
O6 | 1 | -2 | -1.85 | 1.08 |
O7 | 1 | -2 | -2.05 | 0.97 |
O8 | 1 | -2 | -1.73 | 1.16 |
O9 | 1 | -2 | -1.90 | 1.05 |
O10 | 1 | -2 | -2.09 | 0.96 |
O11 | 1 | -2 | -1.92 | 1.04 |
O12 | 1 | -2 | -2.18 | 0.92 |
O13 | 1 | -2 | -2.06 | 0.97 |
O14 | 1 | -2 | -2.00 | 1.00 |
O15 | 1 | -2 | -1.98 | 1.01 |
O16 | 1 | -2 | -1.91 | 1.05 |
O17 | 1 | -2 | -2.05 | 0.98 |
O18 | 1 | -2 | -1.91 | 1.05 |
O19 | 1 | -2 | -2.09 | 0.96 |
O20 | 1 | -2 | -2.09 | 0.96 |
O21 | 1 | -2 | -2.12 | 0.94 |
O22 | 1 | -2 | -1.74 | 1.15 |
O23 | 1 | -2 | -2.05 | 0.97 |
O24 | 1 | -2 | -2.00 | 1.00 |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.
References
Adams, S., Moretzki, O. & Canadell, E. (2004). Solid State Ionics, 168, 281–290. Web of Science CrossRef ICSD CAS Google Scholar
Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013). Acta Cryst. E69, i56. CrossRef ICSD IUCr Journals Google Scholar
Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i5. Web of Science CrossRef IUCr Journals Google Scholar
Badrour, L., Oukerroum, J., Amenzou, H., Bensitel, M., Sadel, A. & Zahir, M. (2001). Ann. Chim. Sci. Mat. 26, 6, 131–138. Google Scholar
Belik, A. A., Azuma, M., Matsuo, A., Whangbo, M. H., Koo, H. J., Kikuchi, J., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2005). Inorg. Chem. 44, 6632–6640. Web of Science CrossRef ICSD PubMed CAS Google Scholar
Belik, A. A., Malakho, A. P., Lazoryak, B. I. & Khasanov, S. S. (2002). J. Solid State Chem. 163, 121–131. Web of Science CrossRef ICSD CAS Google Scholar
Belik, A. A., Malakho, A. P., Pokholok, K. V., Lazoryak, B. I. & Khasanov, S. S. (2000). J. Solid State Chem. 150, 159–166. Web of Science CrossRef ICSD CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. (1977). Acta Cryst. B33, 1305–1310. CrossRef CAS IUCr Journals Web of Science Google Scholar
Brown, I. D. (1978). Chem. Soc. Rev. 7, 359–376. CrossRef CAS Web of Science Google Scholar
Brown, I. D. (1992). Z. Kristallogr. 199, 255–272. CrossRef ICSD CAS Web of Science Google Scholar
Bruker (2009). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Droß, T. & Glaum, R. (2004). Acta Cryst. E60, i58–i60. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Effenberger, H. (1999). J. Solid State Chem. 142, 6–13. Web of Science CrossRef ICSD CAS Google Scholar
Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47. Web of Science CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fu, J. (2014). Mater. Lett. 118, 84–87. Web of Science CrossRef CAS Google Scholar
Hadrich, A., Lautié, A. & Mhiri, T. (2001). Spectrochim. Acta Part A, 57, 1673–1681. Web of Science CrossRef CAS Google Scholar
Hidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J. & Ben Amara, M. (2004). J. Solid State Chem. 177, 55–60. Web of Science CrossRef ICSD CAS Google Scholar
Hoppe, R. (1979). Z. Kristallogr. 150, 23–52. CrossRef CAS Web of Science Google Scholar
Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122. CrossRef CAS Web of Science Google Scholar
Jerbi, H., Hidouri, M. & Ben Amara, M. (2010). J. Rare Earths, 28, 481–487. Web of Science CrossRef ICSD CAS Google Scholar
Jeżowska-Trzebiatowska, B., Mazurak, Z. & Lis, T. (1980). Acta Cryst. B36, 1639–1641. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Karanović, L., Šutović, S., Poleti, D., Đorđević, T. & Pačevski, A. (2010). Acta Cryst. C66, i42–i44. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Kasuga, T., Yamamoto, K., Tsuzuki, T., Nogami, M. & Abe, Y. (1999). Mater. Res. Bull. 34, 10–11, 1595–1600. Google Scholar
Kazin, P. E., Karpov, A. S., Jansen, M., Nuss, J. & Tretyakov, Y. D. (2003). Z. Anorg. Allg. Chem. 629, 344–352. Web of Science CrossRef ICSD CAS Google Scholar
Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, i50. CrossRef ICSD IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
LeGeros, R. Z. & Tung, M. S. (1983). Caries Res. 17, 419–429. CrossRef CAS PubMed Web of Science Google Scholar
Mentre, O., Abraham, F., Deffontaines, B. & Vast, P. (1994). Solid State Ionics, 72, 293–299. CrossRef CAS Web of Science Google Scholar
Moqine, A., Boukhari, A., Elammari, L. & Durand, J. (1993). J. Solid State Chem. 107, 368–372. CrossRef ICSD CAS Web of Science Google Scholar
Nespolo, M. (2016). Acta Cryst. B72, 51–66. Web of Science CrossRef IUCr Journals Google Scholar
Nespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652–664. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nespolo, M., Ferraris, G. & Ohashi, H. (1999). Acta Cryst. B55, 902–916. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Quarton, M. & Oumba, M. T. (1983). Mater. Res. Bull. 18, 967–974. CrossRef ICSD CAS Web of Science Google Scholar
Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suzuki, T., Toriyama, M., Hosono, H. & Abe, Y. (1991). J. Ferment. Bioeng. 72, 5, 384–391. Google Scholar
Ternane, R., Ferid, M., Kbir-Ariguib, N. & Trabelsi-Ayedi, M. (2000). J. Alloys Compd. 308, 83–86. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.