research communications
Synthesis and 0.84Sr0.16MoO4
of a mixed alkaline-earth powellite, CaaPacific Northwest National Laboratory, Richland, WA 99354, USA
*Correspondence e-mail: saehwa.chong@pnnl.gov
A mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4 (calcium strontium molybdate), was synthesized by a method and its was solved using single-crystal X-ray diffraction (SC-XRD) data. The compound crystallized in the I41/a as with a typical CaMoO4 powellite, but with larger unit-cell parameters and unit-cell volume as a result of the partial incorporation of larger Sr cations into the Ca sites within the crystal. The and volume were well fitted with the trendline calculated from literature values, and the powder X-ray diffraction (P-XRD) pattern of the ground crystal is in good agreement with the calculated pattern from the solved structure.
Keywords: powellite; mixed alkaline-earth powellite; single-crystal XRD.
CCDC reference: 1973412
1. Chemical context
Powellite (CaMoO4) is a naturally occurring mineral with the scheelite (CaWO4) structure and has been studied for different applications including laser materials, phosphors, catalysts, electrodes, and radionuclide waste forms (Kato et al., 2005; Lei & Yan, 2008; Rabuffetti et al., 2014; Peterson et al., 2018; Ryu et al., 2007). Powellites doped with rare-earth elements have broad absorption bands and fluorescence emissions in the visible to near-infrared range (Kim & Kang, 2007; Lei & Yan, 2008; Schmidt et al., 2013), and isostructural BaMoO4 and SrMoO4 crystals have high emission in the visible spectral region (Bi et al., 2008; Lei et al., 2010). Powellite has been investigated for use in a potential electrode with Li cyclability for battery applications (Reddy et al., 2013). Alkaline-earth powellites crystallize during the development of the ceramic-waste forms for radionuclides in the high-level waste (HLW) raffinate stream from aqueous reprocessing of used (Crum et al., 2019; Peterson et al., 2018).
Various methods have been used to synthesize scheelite-structured crystals including vapor diffusion sol-gel (VDSG), hydrothermal, molten salt reaction, Pechini, sonochemical, precipitation, solid-state, and pulsed-laser-induced methods (Culver et al., 2013; Lei & Yan, 2008; Wang et al., 2006; Kodaira et al., 2003; Geng et al., 2006; Ahmad et al., 2006; Ryu et al., 2007). The sizes and morphologies of the scheelite-structured crystals are important for specific applications and were controlled under some of these methods. Culver et al. (2013) successfully synthesized < 30 nm AMoO4 (A = Ca, Sr, Ba) crystals using the VDSG method for Li-ion battery electrodes. Lei & Yan (2008) showed different sizes (30–40 nm) of CaMO4:RE (M = W, Mo; RE = Eu, Tb) by varying the synthesis temperature (120–220°C) of hydrothermal experiments. Geng et al. (2006) used a sonochemical method with varying pH to synthesize PbWO4 with different morphologies. Ryu et al. (2007) used the pulsed-laser ablation method to synthesize spherical powellite particles of 16–29 nm.
2. Structural commentary
Powellite crystallizes in the tetragonal I41/a and contains Ca2+ cations coordinated by eight [MoO4]2− tetrahedra, sharing an oxygen atom with each tetrahedron. The of Ca0.84Sr0.16MoO4 is isostructural to powellite, but with larger unit-cell parameters and (Ca/Sr)—O bond distances compared to CaMoO4 powellite because of the partial incorporation of the larger Sr2+ cation into the Ca2+ sites (Fig. 1). Similarly, the Ba—O and Sr—O bond distances in BaMoO4 (Nassif et al., 1999; Panchal et al., 2006; Cavalcante et al., 2008) and SrMoO4 (Egorov-Tismenko et al., 1967; Gürmen et al., 1971; Nogueira et al., 2013) are longer than the Ca—O bond distance in CaMoO4 (Aleksandrov et al., 1968; Gürmen et al., 1971) or the (Ca/Sr)—O bond distance in this study. Fig. 2 shows a summary of unit-cell parameters (a and c), unit-cell volumes (V), and unit-cell densities (ρ) from the literature as well as the current composition including CaMoO4 (Aleksandrov et al., 1968; Gürmen et al., 1971; Wandahl & Christensen, 1987; Peterson et al., 2018), Ca0.747Sr0.194Ba0.059MoO4 (Peterson et al., 2018), SrMoO4 (Gürmen et al., 1971; Egorov-Tismenko et al., 1967; Nogueira et al., 2013; Peterson et al., 2018), Sr0.81Ba0.19MoO4 (Nogueira et al., 2013), Sr0.59Ba0.41MoO4 (Nogueira et al., 2013), Ca0.088Sr0.256Ba0.656MoO4 (Peterson et al., 2018), Sr0.27Ba0.73MoO4 (Nogueira et al., 2013), and BaMoO4 (Cavalcante et al., 2008; Panchal et al., 2006; Vegard & Refsum, 1927; Nogueira et al., 2013; Nassif et al., 1999; Bylichkina et al., 1970; Peterson et al., 2018). The structural parameters of Ca0.84Sr0.16MoO4 fit well to the trendlines in Fig. 2, and the data show well-fit linear relationships for the and volume. For the density, a non-linear trendline was drawn based on the densities of end members, and a linear trendline was drawn using the densities from both end members and mixed powellites from the literature (Fig. 2d). Despite our expectation, the density values did not fit well into either trendline, and more density values from different chemistries of mixed alkaline-earth powellites would help to understand the behavior of densities in powellites. The trendlines show that the unit cells, volumes, and densities all increase with larger alkaline-earth cations. Details of parameters, volumes, and densities from literature and the current study are summarized in Table 1.
3. Synthesis and crystallization
The mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4, was synthesized using the end-member powellites within a LiCl The loss of mass due to dehydration for LiCl was measured by placing a given amount of LiCl (Alfa Aesar, >99%) into a furnace at 100°C and weighing daily for five days. For the synthesis of CaMoO4 and SrMoO4, the stoichiometric amounts of CaCO3 (Alfa Aesar, >99.5%), SrCO3 (Sigma Aldrich, >99.9%), and MoO3 (Alfa Aesar, >99.5%) were placed in Pt/10%Rh crucible and heated to 1500°C at 5°C min−1, held for 30 min, ramped down to 1400°C at 1°C min−1, held for 1 h, and then cooled down to room temperature at 1°C min−1. Details of synthesis are provided elsewhere (Peterson et al., 2018). For the synthesis of Ca0.84Sr0.16MoO4, appropriate amounts of CaMoO4 and SrMoO4 powders were used as precursors and mixed together in Pt/10%Rh crucibles. Then, LiCl was added at a 1:1 ratio by mass, where the mass of CaMoO4 + SrMoO4 was equivalent to that of the LiCl. The crucible was covered with a tight-fitting Pt/10%Rh lid and heated according to a method described by Arora et al. (1983). The furnace was ramped up to 850°C, held for 2 h, abruptly decreased to 750°C, cooled to 550°C at a rate of 3°C h−1, and then the furnace was shut off. Crystals were recovered after washing in a sonic bath and rinsing with deionized water.
4. Refinement
Crystal data, data collection and structure . For the occupancy of the Ca and Sr sites, the occupancy parameters of both Sr and Ca were refined with isotropic atomic displacement parameters while keeping the total occupancy as 1. The refined occupancy values were 0.86 for Ca and 0.14 for Sr after rounding, and then these values were fixed and anisotropic refinements were performed on all the atoms including Ca, Sr, Mo, and O. The final converged at R1 = 4.30%, and the goodness-of-fit was 1.44. The single crystals of Ca0.84Sr0.16MoO4 were ground with a mortar and pestle. A selected crystal for SC-XRD was placed on a cryoloop in oil (Parabar 10312, Hampton Research). Powder X-ray diffraction (P-XRD) was performed using a Bruker D8 Advance diffractometer on a zero-background quartz sample holder. The measured P-XRD pattern was compared to the calculated pattern from the solved structure, and they were in good agreement (see Fig. 3).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1973412
https://doi.org/10.1107/S2056989019017092/vn2156sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019017092/vn2156Isup2.hkl
Data collection: APEX3 (Bruker, 2012); cell
JANA2006 (Petříček et al., 2014); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).Ca0.84Sr0.16MoO4 | Dx = 4.317 Mg m−3 |
Mr = 207.6 | Mo Kα radiation, λ = 0.71069 Å |
Tetragonal, I41/a:1 | Cell parameters from 6597 reflections |
Hall symbol: I 4bw -1bw | θ = 4.3–36.5° |
a = 5.2592 (1) Å | µ = 7.92 mm−1 |
c = 11.5497 (4) Å | T = 293 K |
V = 319.46 (1) Å3 | Irregular, light white |
Z = 4 | 0.05 × 0.05 × 0.03 mm |
F(000) = 388 |
Bruker D8 QUEST CMOS area detector diffractometer | 238 reflections with I > 2σ(I) |
Radiation source: X-ray tube | Rint = 0.131 |
φ and ω scans | θmax = 36.5°, θmin = 4.3° |
Absorption correction: multi-scan (SADABS) | h = −8→8 |
Tmin = 0.628, Tmax = 0.747 | k = −8→8 |
6597 measured reflections | l = −19→19 |
396 independent reflections |
Refinement on F | 2 constraints |
R[F > 3σ(F)] = 0.043 | Primary atom site location: iterative |
wR(F) = 0.042 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
S = 1.44 | (Δ/σ)max = 0.024 |
396 reflections | Δρmax = 2.76 e Å−3 |
14 parameters | Δρmin = −2.57 e Å−3 |
0 restraints |
Refinement. F000 reported from JANA is 388.0 and calculated is 387.5 from CheckCIF.Both occupancies of Ca and Sr were refined with isotropic ADP while keeping the total occupancy at 1 and same position for both atoms, and their occupancy values were closed to 0.84 ±0.001 and 0.16±0.001 respectively between the refinements. Therefore, we fixed the occupancy to 0.84 and 0.16 with rounding off, and the anisotropic refinement was applied after fixing the occupancies.The difference in reported and caculated rho(max)is likely due to difference in how PLATON and JANA2006 calculate Fourier maps and take weights of reflections into Fourier calculations. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.5 | 0.5 | 0 | 0.00778 (13) | |
Ca1 | 1 | 0.5 | 0.25 | 0.0074 (2) | 0.84 |
Sr1 | 1 | 0.5 | 0.25 | 0.0074 (2) | 0.16 |
O1 | 0.7420 (7) | 0.6444 (7) | 0.0837 (3) | 0.0114 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.0067 (2) | 0.0067 (2) | 0.0100 (2) | 0 | 0 | 0 |
Ca1 | 0.0076 (4) | 0.0076 (4) | 0.0072 (4) | 0 | 0 | 0 |
Sr1 | 0.0076 (4) | 0.0076 (4) | 0.0072 (4) | 0 | 0 | 0 |
O1 | 0.0127 (17) | 0.0088 (16) | 0.0126 (10) | −0.0017 (14) | −0.0039 (12) | 0.0016 (11) |
Mo1—Sr1i | 3.7188 | Ca1—Sr1iii | 3.9054 |
Mo1—Sr1ii | 3.7188 | Ca1—Sr1iv | 3.9054 |
Mo1—Sr1iii | 3.7188 | Sr1—Sr1viii | 3.9054 |
Mo1—Sr1iv | 3.7188 | Sr1—Sr1ix | 3.9054 |
Mo1—O1 | 1.769 (3) | Sr1—Sr1iii | 3.9054 |
Mo1—O1v | 1.769 (3) | Sr1—Sr1iv | 3.9054 |
Mo1—O1vi | 1.769 (3) | Sr1—O1 | 2.471 (3) |
Mo1—O1vii | 1.769 (3) | Sr1—O1x | 2.471 (3) |
Ca1—Ca1viii | 3.9054 | Sr1—O1ix | 2.505 (4) |
Ca1—Ca1ix | 3.9054 | Sr1—O1xi | 2.505 (4) |
Ca1—Ca1iii | 3.9054 | Sr1—O1xii | 2.505 (4) |
Ca1—Ca1iv | 3.9054 | Sr1—O1xiii | 2.505 (4) |
Ca1—Sr1 | 0 | Sr1—O1xiv | 2.471 (3) |
Ca1—Sr1viii | 3.9054 | Sr1—O1xv | 2.471 (3) |
Ca1—Sr1ix | 3.9054 | ||
Sr1i—Mo1—Sr1ii | 90 | Ca1—Sr1—Ca1ix | 0 |
Sr1i—Mo1—Sr1iii | 90 | Ca1—Sr1—Ca1iii | 0 |
Sr1i—Mo1—Sr1iv | 180.0 (5) | Ca1—Sr1—Ca1iv | 0 |
Sr1i—Mo1—O1 | 144.30 (11) | Ca1—Sr1—Sr1viii | 0 |
Sr1i—Mo1—O1v | 35.70 (11) | Ca1—Sr1—Sr1ix | 0 |
Sr1i—Mo1—O1vi | 78.16 (12) | Ca1—Sr1—Sr1iii | 0 |
Sr1i—Mo1—O1vii | 101.84 (12) | Ca1—Sr1—Sr1iv | 0 |
Sr1ii—Mo1—Sr1iii | 180.0 (5) | Ca1—Sr1—O1 | 0 |
Sr1ii—Mo1—Sr1iv | 90 | Ca1—Sr1—O1x | 0 |
Sr1ii—Mo1—O1 | 101.84 (12) | Ca1—Sr1—O1ix | 0 |
Sr1ii—Mo1—O1v | 78.16 (12) | Ca1—Sr1—O1xi | 0 |
Sr1ii—Mo1—O1vi | 144.30 (11) | Ca1—Sr1—O1xii | 0 |
Sr1ii—Mo1—O1vii | 35.70 (11) | Ca1—Sr1—O1xiii | 0 |
Sr1iii—Mo1—Sr1iv | 90 | Ca1—Sr1—O1xiv | 0 |
Sr1iii—Mo1—O1 | 78.16 (12) | Ca1—Sr1—O1xv | 0 |
Sr1iii—Mo1—O1v | 101.84 (12) | Ca1viii—Sr1—Ca1ix | 84.65 |
Sr1iii—Mo1—O1vi | 35.70 (11) | Ca1viii—Sr1—Ca1iii | 123.14 |
Sr1iii—Mo1—O1vii | 144.30 (11) | Ca1viii—Sr1—Ca1iv | 123.14 |
Sr1iv—Mo1—O1 | 35.70 (11) | Ca1viii—Sr1—Sr1viii | 0.0 (5) |
Sr1iv—Mo1—O1v | 144.30 (11) | Ca1viii—Sr1—Sr1ix | 84.65 |
Sr1iv—Mo1—O1vi | 101.84 (12) | Ca1viii—Sr1—Sr1iii | 123.14 |
Sr1iv—Mo1—O1vii | 78.16 (12) | Ca1viii—Sr1—Sr1iv | 123.14 |
O1—Mo1—O1v | 113.77 (15) | Ca1viii—Sr1—O1 | 101.82 (8) |
O1—Mo1—O1vi | 107.37 (16) | Ca1viii—Sr1—O1x | 160.80 (8) |
O1—Mo1—O1vii | 107.37 (16) | Ca1viii—Sr1—O1ix | 102.56 (7) |
O1v—Mo1—O1vi | 107.37 (16) | Ca1viii—Sr1—O1xi | 37.99 (8) |
O1v—Mo1—O1vii | 107.37 (16) | Ca1viii—Sr1—O1xii | 130.55 (8) |
O1vi—Mo1—O1vii | 113.77 (15) | Ca1viii—Sr1—O1xiii | 85.44 (8) |
Ca1viii—Ca1—Ca1ix | 84.65 | Ca1viii—Sr1—O1xiv | 68.42 (8) |
Ca1viii—Ca1—Ca1iii | 123.14 | Ca1viii—Sr1—O1xv | 38.60 (8) |
Ca1viii—Ca1—Ca1iv | 123.14 | Ca1ix—Sr1—Ca1iii | 123.14 |
Ca1viii—Ca1—Sr1 | 0 | Ca1ix—Sr1—Ca1iv | 123.14 |
Ca1viii—Ca1—Sr1viii | 0.0 (5) | Ca1ix—Sr1—Sr1viii | 84.65 |
Ca1viii—Ca1—Sr1ix | 84.65 | Ca1ix—Sr1—Sr1ix | 0.0 (5) |
Ca1viii—Ca1—Sr1iii | 123.14 | Ca1ix—Sr1—Sr1iii | 123.14 |
Ca1viii—Ca1—Sr1iv | 123.14 | Ca1ix—Sr1—Sr1iv | 123.14 |
Ca1ix—Ca1—Ca1iii | 123.14 | Ca1ix—Sr1—O1 | 160.80 (8) |
Ca1ix—Ca1—Ca1iv | 123.14 | Ca1ix—Sr1—O1x | 101.82 (8) |
Ca1ix—Ca1—Sr1 | 0 | Ca1ix—Sr1—O1ix | 37.99 (8) |
Ca1ix—Ca1—Sr1viii | 84.65 | Ca1ix—Sr1—O1xi | 102.56 (7) |
Ca1ix—Ca1—Sr1ix | 0.0 (5) | Ca1ix—Sr1—O1xii | 85.44 (8) |
Ca1ix—Ca1—Sr1iii | 123.14 | Ca1ix—Sr1—O1xiii | 130.55 (8) |
Ca1ix—Ca1—Sr1iv | 123.14 | Ca1ix—Sr1—O1xiv | 38.60 (8) |
Ca1iii—Ca1—Ca1iv | 84.65 | Ca1ix—Sr1—O1xv | 68.42 (8) |
Ca1iii—Ca1—Sr1 | 0 | Ca1iii—Sr1—Ca1iv | 84.65 |
Ca1iii—Ca1—Sr1viii | 123.14 | Ca1iii—Sr1—Sr1viii | 123.14 |
Ca1iii—Ca1—Sr1ix | 123.14 | Ca1iii—Sr1—Sr1ix | 123.14 |
Ca1iii—Ca1—Sr1iii | 0.0 (5) | Ca1iii—Sr1—Sr1iii | 0.0 (5) |
Ca1iii—Ca1—Sr1iv | 84.65 | Ca1iii—Sr1—Sr1iv | 84.65 |
Ca1iv—Ca1—Sr1 | 0 | Ca1iii—Sr1—O1 | 68.42 (8) |
Ca1iv—Ca1—Sr1viii | 123.14 | Ca1iii—Sr1—O1x | 38.60 (8) |
Ca1iv—Ca1—Sr1ix | 123.14 | Ca1iii—Sr1—O1ix | 85.44 (8) |
Ca1iv—Ca1—Sr1iii | 84.65 | Ca1iii—Sr1—O1xi | 130.55 (8) |
Ca1iv—Ca1—Sr1iv | 0.0 (5) | Ca1iii—Sr1—O1xii | 102.56 (7) |
Sr1—Ca1—Sr1viii | 0 | Ca1iii—Sr1—O1xiii | 37.99 (8) |
Sr1—Ca1—Sr1ix | 0 | Ca1iii—Sr1—O1xiv | 160.80 (8) |
Sr1—Ca1—Sr1iii | 0 | Ca1iii—Sr1—O1xv | 101.82 (8) |
Sr1—Ca1—Sr1iv | 0 | Ca1iv—Sr1—Sr1viii | 123.14 |
Sr1viii—Ca1—Sr1ix | 84.65 | Ca1iv—Sr1—Sr1ix | 123.14 |
Sr1viii—Ca1—Sr1iii | 123.14 | Ca1iv—Sr1—Sr1iii | 84.65 |
Sr1viii—Ca1—Sr1iv | 123.14 | Ca1iv—Sr1—Sr1iv | 0.0 (5) |
Sr1ix—Ca1—Sr1iii | 123.14 | Ca1iv—Sr1—O1 | 38.60 (8) |
Sr1ix—Ca1—Sr1iv | 123.14 | Ca1iv—Sr1—O1x | 68.42 (8) |
Sr1iii—Ca1—Sr1iv | 84.65 | Ca1iv—Sr1—O1ix | 130.55 (8) |
Mo1viii—Sr1—Mo1xvi | 90 | Ca1iv—Sr1—O1xi | 85.44 (8) |
Mo1viii—Sr1—Mo1ix | 90 | Ca1iv—Sr1—O1xii | 37.99 (8) |
Mo1viii—Sr1—Mo1xvii | 180.0 (5) | Ca1iv—Sr1—O1xiii | 102.56 (7) |
Mo1viii—Sr1—Ca1 | 0 | Ca1iv—Sr1—O1xiv | 101.82 (8) |
Mo1viii—Sr1—Ca1viii | 61.57 | Ca1iv—Sr1—O1xv | 160.80 (8) |
Mo1viii—Sr1—Ca1ix | 118.43 | Sr1viii—Sr1—Sr1ix | 84.65 |
Mo1viii—Sr1—Ca1iii | 61.57 | Sr1viii—Sr1—Sr1iii | 123.14 |
Mo1viii—Sr1—Ca1iv | 118.43 | Sr1viii—Sr1—Sr1iv | 123.14 |
Mo1viii—Sr1—Sr1viii | 61.57 | Sr1viii—Sr1—O1 | 101.82 (8) |
Mo1viii—Sr1—Sr1ix | 118.43 | Sr1viii—Sr1—O1x | 160.80 (8) |
Mo1viii—Sr1—Sr1iii | 61.57 | Sr1viii—Sr1—O1ix | 102.56 (7) |
Mo1viii—Sr1—Sr1iv | 118.43 | Sr1viii—Sr1—O1xi | 37.99 (8) |
Mo1viii—Sr1—O1 | 80.15 (8) | Sr1viii—Sr1—O1xii | 130.55 (8) |
Mo1viii—Sr1—O1x | 99.85 (8) | Sr1viii—Sr1—O1xiii | 85.44 (8) |
Mo1viii—Sr1—O1ix | 98.33 (8) | Sr1viii—Sr1—O1xiv | 68.42 (8) |
Mo1viii—Sr1—O1xi | 81.67 (8) | Sr1viii—Sr1—O1xv | 38.60 (8) |
Mo1viii—Sr1—O1xii | 155.66 (7) | Sr1ix—Sr1—Sr1iii | 123.14 |
Mo1viii—Sr1—O1xiii | 24.34 (7) | Sr1ix—Sr1—Sr1iv | 123.14 |
Mo1viii—Sr1—O1xiv | 127.27 (8) | Sr1ix—Sr1—O1 | 160.80 (8) |
Mo1viii—Sr1—O1xv | 52.73 (8) | Sr1ix—Sr1—O1x | 101.82 (8) |
Mo1xvi—Sr1—Mo1ix | 180.0 (5) | Sr1ix—Sr1—O1ix | 37.99 (8) |
Mo1xvi—Sr1—Mo1xvii | 90 | Sr1ix—Sr1—O1xi | 102.56 (7) |
Mo1xvi—Sr1—Ca1 | 0 | Sr1ix—Sr1—O1xii | 85.44 (8) |
Mo1xvi—Sr1—Ca1viii | 61.57 | Sr1ix—Sr1—O1xiii | 130.55 (8) |
Mo1xvi—Sr1—Ca1ix | 118.43 | Sr1ix—Sr1—O1xiv | 38.60 (8) |
Mo1xvi—Sr1—Ca1iii | 118.43 | Sr1ix—Sr1—O1xv | 68.42 (8) |
Mo1xvi—Sr1—Ca1iv | 61.57 | Sr1iii—Sr1—Sr1iv | 84.65 |
Mo1xvi—Sr1—Sr1viii | 61.57 | Sr1iii—Sr1—O1 | 68.42 (8) |
Mo1xvi—Sr1—Sr1ix | 118.43 | Sr1iii—Sr1—O1x | 38.60 (8) |
Mo1xvi—Sr1—Sr1iii | 118.43 | Sr1iii—Sr1—O1ix | 85.44 (8) |
Mo1xvi—Sr1—Sr1iv | 61.57 | Sr1iii—Sr1—O1xi | 130.55 (8) |
Mo1xvi—Sr1—O1 | 52.73 (8) | Sr1iii—Sr1—O1xii | 102.56 (7) |
Mo1xvi—Sr1—O1x | 127.27 (8) | Sr1iii—Sr1—O1xiii | 37.99 (8) |
Mo1xvi—Sr1—O1ix | 155.66 (7) | Sr1iii—Sr1—O1xiv | 160.80 (8) |
Mo1xvi—Sr1—O1xi | 24.34 (7) | Sr1iii—Sr1—O1xv | 101.82 (8) |
Mo1xvi—Sr1—O1xii | 81.67 (8) | Sr1iv—Sr1—O1 | 38.60 (8) |
Mo1xvi—Sr1—O1xiii | 98.33 (8) | Sr1iv—Sr1—O1x | 68.42 (8) |
Mo1xvi—Sr1—O1xiv | 80.15 (8) | Sr1iv—Sr1—O1ix | 130.55 (8) |
Mo1xvi—Sr1—O1xv | 99.85 (8) | Sr1iv—Sr1—O1xi | 85.44 (8) |
Mo1ix—Sr1—Mo1xvii | 90 | Sr1iv—Sr1—O1xii | 37.99 (8) |
Mo1ix—Sr1—Ca1 | 0 | Sr1iv—Sr1—O1xiii | 102.56 (7) |
Mo1ix—Sr1—Ca1viii | 118.43 | Sr1iv—Sr1—O1xiv | 101.82 (8) |
Mo1ix—Sr1—Ca1ix | 61.57 | Sr1iv—Sr1—O1xv | 160.80 (8) |
Mo1ix—Sr1—Ca1iii | 61.57 | O1—Sr1—O1x | 77.98 (11) |
Mo1ix—Sr1—Ca1iv | 118.43 | O1—Sr1—O1ix | 151.21 (11) |
Mo1ix—Sr1—Sr1viii | 118.43 | O1—Sr1—O1xi | 73.95 (11) |
Mo1ix—Sr1—Sr1ix | 61.57 | O1—Sr1—O1xii | 76.60 (11) |
Mo1ix—Sr1—Sr1iii | 61.57 | O1—Sr1—O1xiii | 68.41 (11) |
Mo1ix—Sr1—Sr1iv | 118.43 | O1—Sr1—O1xiv | 127.16 (12) |
Mo1ix—Sr1—O1 | 127.27 (8) | O1—Sr1—O1xv | 127.16 (12) |
Mo1ix—Sr1—O1x | 52.73 (8) | O1x—Sr1—O1ix | 73.95 (11) |
Mo1ix—Sr1—O1ix | 24.34 (7) | O1x—Sr1—O1xi | 151.21 (11) |
Mo1ix—Sr1—O1xi | 155.66 (7) | O1x—Sr1—O1xii | 68.41 (11) |
Mo1ix—Sr1—O1xii | 98.33 (8) | O1x—Sr1—O1xiii | 76.60 (11) |
Mo1ix—Sr1—O1xiii | 81.67 (8) | O1x—Sr1—O1xiv | 127.16 (12) |
Mo1ix—Sr1—O1xiv | 99.85 (8) | O1x—Sr1—O1xv | 127.16 (12) |
Mo1ix—Sr1—O1xv | 80.15 (8) | O1ix—Sr1—O1xi | 134.61 (10) |
Mo1xvii—Sr1—Ca1 | 0 | O1ix—Sr1—O1xii | 98.56 (12) |
Mo1xvii—Sr1—Ca1viii | 118.43 | O1ix—Sr1—O1xiii | 98.56 (12) |
Mo1xvii—Sr1—Ca1ix | 61.57 | O1ix—Sr1—O1xiv | 76.60 (11) |
Mo1xvii—Sr1—Ca1iii | 118.43 | O1ix—Sr1—O1xv | 68.41 (11) |
Mo1xvii—Sr1—Ca1iv | 61.57 | O1xi—Sr1—O1xii | 98.56 (12) |
Mo1xvii—Sr1—Sr1viii | 118.43 | O1xi—Sr1—O1xiii | 98.56 (12) |
Mo1xvii—Sr1—Sr1ix | 61.57 | O1xi—Sr1—O1xiv | 68.41 (11) |
Mo1xvii—Sr1—Sr1iii | 118.43 | O1xi—Sr1—O1xv | 76.60 (11) |
Mo1xvii—Sr1—Sr1iv | 61.57 | O1xii—Sr1—O1xiii | 134.61 (10) |
Mo1xvii—Sr1—O1 | 99.85 (8) | O1xii—Sr1—O1xiv | 73.95 (11) |
Mo1xvii—Sr1—O1x | 80.15 (8) | O1xii—Sr1—O1xv | 151.21 (11) |
Mo1xvii—Sr1—O1ix | 81.67 (8) | O1xiii—Sr1—O1xiv | 151.21 (11) |
Mo1xvii—Sr1—O1xi | 98.33 (8) | O1xiii—Sr1—O1xv | 73.95 (11) |
Mo1xvii—Sr1—O1xii | 24.34 (7) | O1xiv—Sr1—O1xv | 77.98 (11) |
Mo1xvii—Sr1—O1xiii | 155.66 (7) | Mo1—O1—Sr1 | 133.45 (18) |
Mo1xvii—Sr1—O1xiv | 52.73 (8) | Mo1—O1—Sr1iv | 119.96 (15) |
Mo1xvii—Sr1—O1xv | 127.27 (8) | Sr1—O1—Sr1iv | 103.40 (13) |
Ca1—Sr1—Ca1viii | 0 |
Symmetry codes: (i) −y+1/2, x−1, z−1/4; (ii) −y+1/2, x, z−1/4; (iii) −y+3/2, x−1, z−1/4; (iv) −y+3/2, x, z−1/4; (v) −x+1, −y+1, z; (vi) y, −x+1, −z; (vii) −y+1, x, −z; (viii) −y+1, x−1/2, z+1/4; (ix) −y+2, x−1/2, z+1/4; (x) −x+2, −y+1, z; (xi) y, −x+3/2, z+1/4; (xii) −x+2, −y+3/2, −z+1/4; (xiii) x, y−1/2, −z+1/4; (xiv) y+1/2, −x+3/2, −z+1/2; (xv) −y+3/2, x−1/2, −z+1/2; (xvi) −y+1, x+1/2, z+1/4; (xvii) −y+2, x+1/2, z+1/4. |
Densities are calculated from crystallographic data. |
Chemistry | a (Å) | c (Å) | Volume (Å3) | Density (Mg m-3) | Reference |
CaMoO4 | 5.224 | 11.43 | 311.93 | 4.26 | (Aleksandrov et al., 1968) |
CaMoO4 | 5.224 | 11.43 | 312.17 | 4.26 | (Gürmen et al., 1971) |
CaMoO4 | 5.2235 | 11.4298 | 311.86 | 4.26 | (Wandahl & Christensen, 1987) |
CaMoO4 | 5.2268 | 11.4345 | 312.38 | 4.25 | (Peterson et al., 2018) |
Ca0.84Sr0.16MoO4 | 5.2592 | 11.5500 | 319.45 | 4.32 | Current study |
SrMoO4 | 5.394 | 12.017 | 349.64 | 4.7 | (Egorov-Tismenko et al., 1967) |
SrMoO4 | 5.3944 | 12.02 | 349.78 | 4.7 | (Gürmen et al., 1971) |
SrMoO4 | 5.4026 | 12.0411 | 351.46 | 4.68 | (Nogueira et al., 2013) |
SrMoO4 | 5.3963 | 12.0248 | 350.16 | 4.7 | (Peterson et al., 2018) |
Sr0.81Ba0.19MoO4 | 5.4571 | 12.2548 | 364.95 | 4.68 | (Nogueira et al., 2013) |
Sr0.59Ba0.41MoO4 | 5.5073 | 12.4789 | 378.49 | 4.7 | (Nogueira et al., 2013) |
Sr0.27Ba0.73MoO4 | 5.5491 | 12.6680 | 390.08 | 4.83 | (Nogueira et al., 2013) |
BaMoO4 | 5.567 | 12.78 | 396.07 | 4.99 | (Vegard & Refsum, 1927) |
BaMoO4 | 5.62 | 12.82 | 404.91 | 4.88 | (Bylichkina et al., 1970) |
BaMoO4 | 5.5479 | 12.743 | 392.22 | 5.03 | (Nassif et al., 1999) |
BaMoO4 | 5.5800 | 12.820 | 399.17 | 4.95 | (Panchal et al., 2006) |
BaMoO4 | 5.5696 | 12.7865 | 396.64 | 4.98 | (Cavalcante et al., 2008) |
BaMoO4 | 5.5848 | 12.8292 | 400.15 | 4.93 | (Nogueira et al., 2013) |
BaMoO4 | 5.5828 | 12.8204 | 399.59 | 4.94 | (Peterson et al., 2018) |
Acknowledgements
The authors acknowledge financial support from the US Department of Energy Office of Nuclear Energy (DOE-NE). The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05–76RL01830.
References
Ahmad, G., Dickerson, M. B., Church, B. C., Cai, Y., Jones, S. E., Naik, R. R., King, J. S., Summers, C. J., Kröger, N. & Sandhage, K. H. (2006). Adv. Mater. 18, 1759–1763. Web of Science CrossRef CAS Google Scholar
Aleksandrov, V. B., Gorbatyii, L. V. & Ilyukhin, V. V. (1968). Kristallografiya, 13, 512–513. CAS Google Scholar
Arora, S. K., Godbole, R. S. & Rao, G. S. T. (1983). J. Am. Ceram. Soc. 66, 321–323. CrossRef CAS Web of Science Google Scholar
Bi, J., Cui, C.-H., Lai, X., Shi, F. & Gao, D.-J. (2008). Mater. Res. Bull. 43, 743–747. Web of Science CrossRef CAS Google Scholar
Bruker (2012). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bylichkina, T. I., Soleva, L. I., Pobedimskaya, E. A., Porai Koshits, M. A. & Belov, N. V. (1970). Kristallografiya, 15, 165–167. CAS Google Scholar
Cavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Joya, M. R., Pizani, P. S., Varela, J. A. & Longo, E. (2008). J. Phys. Chem. Solids, 69, 2674–2680. Web of Science CrossRef ICSD CAS Google Scholar
Crum, J. V., Chong, S., Peterson, J. A. & Riley, B. J. (2019). Acta Cryst. E75, 1020–1025. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Culver, S. P., Rabuffetti, F. A., Zhou, S., Mecklenburg, M., Song, Y., Melot, B. C. & Brutchey, R. L. (2013). Chem. Mater. 25, 4129–4134. Web of Science CrossRef ICSD CAS Google Scholar
Egorov-Tismenko, Y. K., Simonov, M. A. & Belov, N. V. (1967). Kristallografiya, 12, 511–512. CAS Google Scholar
Geng, J., Zhu, J.-J. & Chen, H.-Y. (2006). Cryst. Growth Des. 6, 321–326. Web of Science CrossRef CAS Google Scholar
Gürmen, E., Daniels, E. & King, J. S. (1971). J. Chem. Phys. 55, 1093–1097. Google Scholar
Kato, A., Oishi, S., Shishido, T., Yamazaki, M. & Iida, S. (2005). J. Phys. Chem. Solids, 66, 2079–2081. Web of Science CrossRef CAS Google Scholar
Kim, T. & Kang, S. (2007). J. Lumin. 122–123, 964–966. Web of Science CrossRef CAS Google Scholar
Kodaira, C. A., Brito, H. F. & Felinto, M. C. F. C. (2003). J. Solid State Chem. 171, 401–407. Web of Science CrossRef CAS Google Scholar
Lei, F. & Yan, B. (2008). J. Solid State Chem. 181, 855–862. Web of Science CrossRef CAS Google Scholar
Lei, H., Zhang, S., Zhu, X., Sun, Y. & Fu, Y. (2010). Mater. Lett. 64, 344–346. Web of Science CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nassif, V., Carbonio, R. E. & Alonso, J. A. (1999). J. Solid State Chem. 146, 266–270. Web of Science CrossRef ICSD CAS Google Scholar
Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434–1446. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Panchal, V., Garg, N. & Sharma, S. M. (2006). J. Phys. Condens. Matter, 18, 3917–3929. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623–634. Web of Science CrossRef CAS Google Scholar
Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Rabuffetti, F. A., Culver, S. P., Suescun, L. & Brutchey, R. L. (2014). Inorg. Chem. 53, 1056–1061. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Reddy, M., Subba Rao, G. V. & Chowdari, B. V. R. (2013). Chem. Rev. 113, 5364–5457. Web of Science CrossRef CAS PubMed Google Scholar
Ryu, J. H., Bang, S. Y., Yoon, J.-W., Lim, C. S. & Shim, K. B. (2007). Appl. Surf. Sci. 253, 8408–8414. Web of Science CrossRef CAS Google Scholar
Schmidt, M., Heck, S., Bosbach, D., Ganschow, S., Walther, C. & Stumpf, T. (2013). Dalton Trans. 42, 8387–8393. Web of Science CrossRef CAS PubMed Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Vegard, L. & Refsum, A. (1927). Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo 1: Matematisk-Naturvidenskapelig Klasse, 1. Google Scholar
Wandahl, G. & Christensen, A. N. (1987). Acta Chem. Scand. 41, 358–360. CrossRef ICSD Web of Science Google Scholar
Wang, Y., Ma, J., Tao, J., Zhu, X., Zhou, J., Zhao, Z., Xie, L. & Tian, H. (2006). Mater. Lett. 60, 291–293. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.