research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4

CROSSMARK_Color_square_no_text.svg

aPacific Northwest National Laboratory, Richland, WA 99354, USA
*Correspondence e-mail: saehwa.chong@pnnl.gov

Edited by A. Van der Lee, Université de Montpellier II, France (Received 16 December 2019; accepted 20 December 2019; online 3 January 2020)

A mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4 (calcium strontium molybdate), was synthesized by a flux method and its crystal structure was solved using single-crystal X-ray diffraction (SC-XRD) data. The compound crystallized in the I41/a space group as with a typical CaMoO4 powellite, but with larger unit-cell parameters and unit-cell volume as a result of the partial incorporation of larger Sr cations into the Ca sites within the crystal. The unit cell and volume were well fitted with the trendline calculated from literature values, and the powder X-ray diffraction (P-XRD) pattern of the ground crystal is in good agreement with the calculated pattern from the solved structure.

1. Chemical context

Powellite (CaMoO4) is a naturally occurring mineral with the scheelite (CaWO4) structure and has been studied for different applications including laser materials, phosphors, catalysts, electrodes, and radionuclide waste forms (Kato et al., 2005[Kato, A., Oishi, S., Shishido, T., Yamazaki, M. & Iida, S. (2005). J. Phys. Chem. Solids, 66, 2079-2081.]; Lei & Yan, 2008[Lei, F. & Yan, B. (2008). J. Solid State Chem. 181, 855-862.]; Rabuffetti et al., 2014[Rabuffetti, F. A., Culver, S. P., Suescun, L. & Brutchey, R. L. (2014). Inorg. Chem. 53, 1056-1061.]; Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.]; Ryu et al., 2007[Ryu, J. H., Bang, S. Y., Yoon, J.-W., Lim, C. S. & Shim, K. B. (2007). Appl. Surf. Sci. 253, 8408-8414.]). Powellites doped with rare-earth elements have broad absorption bands and fluorescence emissions in the visible to near-infrared range (Kim & Kang, 2007[Kim, T. & Kang, S. (2007). J. Lumin. 122-123, 964-966.]; Lei & Yan, 2008[Lei, F. & Yan, B. (2008). J. Solid State Chem. 181, 855-862.]; Schmidt et al., 2013[Schmidt, M., Heck, S., Bosbach, D., Ganschow, S., Walther, C. & Stumpf, T. (2013). Dalton Trans. 42, 8387-8393.]), and isostructural BaMoO4 and SrMoO4 crystals have high photoluminescence emission in the visible spectral region (Bi et al., 2008[Bi, J., Cui, C.-H., Lai, X., Shi, F. & Gao, D.-J. (2008). Mater. Res. Bull. 43, 743-747.]; Lei et al., 2010[Lei, H., Zhang, S., Zhu, X., Sun, Y. & Fu, Y. (2010). Mater. Lett. 64, 344-346.]). Powellite has been investigated for use in a potential electrode with Li cyclability for battery applications (Reddy et al., 2013[Reddy, M., Subba Rao, G. V. & Chowdari, B. V. R. (2013). Chem. Rev. 113, 5364-5457.]). Alkaline-earth powellites crystallize during the development of the ceramic-waste forms for radionuclides in the high-level waste (HLW) raffinate stream from aqueous reprocessing of used nuclear fuel (Crum et al., 2019[Crum, J. V., Chong, S., Peterson, J. A. & Riley, B. J. (2019). Acta Cryst. E75, 1020-1025.]; Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.]).

Various methods have been used to synthesize scheelite-structured crystals including vapor diffusion sol-gel (VDSG), hydro­thermal, molten salt reaction, Pechini, sonochemical, precipitation, solid-state, and pulsed-laser-induced methods (Culver et al., 2013[Culver, S. P., Rabuffetti, F. A., Zhou, S., Mecklenburg, M., Song, Y., Melot, B. C. & Brutchey, R. L. (2013). Chem. Mater. 25, 4129-4134.]; Lei & Yan, 2008[Lei, F. & Yan, B. (2008). J. Solid State Chem. 181, 855-862.]; Wang et al., 2006[Wang, Y., Ma, J., Tao, J., Zhu, X., Zhou, J., Zhao, Z., Xie, L. & Tian, H. (2006). Mater. Lett. 60, 291-293.]; Kodaira et al., 2003[Kodaira, C. A., Brito, H. F. & Felinto, M. C. F. C. (2003). J. Solid State Chem. 171, 401-407.]; Geng et al., 2006[Geng, J., Zhu, J.-J. & Chen, H.-Y. (2006). Cryst. Growth Des. 6, 321-326.]; Ahmad et al., 2006[Ahmad, G., Dickerson, M. B., Church, B. C., Cai, Y., Jones, S. E., Naik, R. R., King, J. S., Summers, C. J., Kröger, N. & Sandhage, K. H. (2006). Adv. Mater. 18, 1759-1763.]; Ryu et al., 2007[Ryu, J. H., Bang, S. Y., Yoon, J.-W., Lim, C. S. & Shim, K. B. (2007). Appl. Surf. Sci. 253, 8408-8414.]). The sizes and morphologies of the scheelite-structured crystals are important for specific applications and were controlled under some of these methods. Culver et al. (2013[Culver, S. P., Rabuffetti, F. A., Zhou, S., Mecklenburg, M., Song, Y., Melot, B. C. & Brutchey, R. L. (2013). Chem. Mater. 25, 4129-4134.]) successfully synthesized < 30 nm AMoO4 (A = Ca, Sr, Ba) crystals using the VDSG method for Li-ion battery electrodes. Lei & Yan (2008[Lei, F. & Yan, B. (2008). J. Solid State Chem. 181, 855-862.]) showed different sizes (30–40 nm) of CaMO4:RE (M = W, Mo; RE = Eu, Tb) by varying the synthesis temperature (120–220°C) of hydro­thermal experiments. Geng et al. (2006[Geng, J., Zhu, J.-J. & Chen, H.-Y. (2006). Cryst. Growth Des. 6, 321-326.]) used a sonochemical method with varying pH to synthesize PbWO4 with different morphologies. Ryu et al. (2007[Ryu, J. H., Bang, S. Y., Yoon, J.-W., Lim, C. S. & Shim, K. B. (2007). Appl. Surf. Sci. 253, 8408-8414.]) used the pulsed-laser ablation method to synthesize spherical powellite particles of 16–29 nm.

2. Structural commentary

Powellite crystallizes in the tetra­gonal space group I41/a and contains Ca2+ cations coordinated by eight [MoO4]2− tetra­hedra, sharing an oxygen atom with each tetra­hedron. The crystal structure of Ca0.84Sr0.16MoO4 is isostructural to powellite, but with larger unit-cell parameters and (Ca/Sr)—O bond distances compared to CaMoO4 powellite because of the partial incorporation of the larger Sr2+ cation into the Ca2+ sites (Fig. 1[link]). Similarly, the Ba—O and Sr—O bond distances in BaMoO4 (Nassif et al., 1999[Nassif, V., Carbonio, R. E. & Alonso, J. A. (1999). J. Solid State Chem. 146, 266-270.]; Panchal et al., 2006[Panchal, V., Garg, N. & Sharma, S. M. (2006). J. Phys. Condens. Matter, 18, 3917-3929.]; Cavalcante et al., 2008[Cavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Joya, M. R., Pizani, P. S., Varela, J. A. & Longo, E. (2008). J. Phys. Chem. Solids, 69, 2674-2680.]) and SrMoO4 (Egorov-Tismenko et al., 1967[Egorov-Tismenko, Y. K., Simonov, M. A. & Belov, N. V. (1967). Kristallografiya, 12, 511-512.]; Gürmen et al., 1971[Gürmen, E., Daniels, E. & King, J. S. (1971). J. Chem. Phys. 55, 1093-1097.]; Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.]) are longer than the Ca—O bond distance in CaMoO4 (Aleksandrov et al., 1968[Aleksandrov, V. B., Gorbatyii, L. V. & Ilyukhin, V. V. (1968). Kristallografiya, 13, 512-513.]; Gürmen et al., 1971[Gürmen, E., Daniels, E. & King, J. S. (1971). J. Chem. Phys. 55, 1093-1097.]) or the (Ca/Sr)—O bond distance in this study. Fig. 2[link] shows a summary of unit-cell parameters (a and c), unit-cell volumes (V), and unit-cell densities (ρ) from the literature as well as the current composition including CaMoO4 (Aleksandrov et al., 1968[Aleksandrov, V. B., Gorbatyii, L. V. & Ilyukhin, V. V. (1968). Kristallografiya, 13, 512-513.]; Gürmen et al., 1971[Gürmen, E., Daniels, E. & King, J. S. (1971). J. Chem. Phys. 55, 1093-1097.]; Wandahl & Christensen, 1987[Wandahl, G. & Christensen, A. N. (1987). Acta Chem. Scand. 41, 358-360.]; Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.]), Ca0.747Sr0.194Ba0.059MoO4 (Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.]), SrMoO4 (Gürmen et al., 1971[Gürmen, E., Daniels, E. & King, J. S. (1971). J. Chem. Phys. 55, 1093-1097.]; Egorov-Tismenko et al., 1967[Egorov-Tismenko, Y. K., Simonov, M. A. & Belov, N. V. (1967). Kristallografiya, 12, 511-512.]; Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.]; Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.]), Sr0.81Ba0.19MoO4 (Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.]), Sr0.59Ba0.41MoO4 (Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.]), Ca0.088Sr0.256Ba0.656MoO4 (Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.]), Sr0.27Ba0.73MoO4 (Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.]), and BaMoO4 (Cavalcante et al., 2008[Cavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Joya, M. R., Pizani, P. S., Varela, J. A. & Longo, E. (2008). J. Phys. Chem. Solids, 69, 2674-2680.]; Panchal et al., 2006[Panchal, V., Garg, N. & Sharma, S. M. (2006). J. Phys. Condens. Matter, 18, 3917-3929.]; Vegard & Refsum, 1927[Vegard, L. & Refsum, A. (1927). Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo 1: Matematisk-Naturvidenskapelig Klasse, 1.]; Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.]; Nassif et al., 1999[Nassif, V., Carbonio, R. E. & Alonso, J. A. (1999). J. Solid State Chem. 146, 266-270.]; Bylichkina et al., 1970[Bylichkina, T. I., Soleva, L. I., Pobedimskaya, E. A., Porai Koshits, M. A. & Belov, N. V. (1970). Kristallografiya, 15, 165-167.]; Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.]). The structural parameters of Ca0.84Sr0.16MoO4 fit well to the trendlines in Fig. 2[link], and the data show well-fit linear relationships for the unit cell and volume. For the density, a non-linear trendline was drawn based on the densities of end members, and a linear trendline was drawn using the densities from both end members and mixed powellites from the literature (Fig. 2[link]d). Despite our expectation, the density values did not fit well into either trendline, and more density values from different chemistries of mixed alkaline-earth powellites would help to understand the behavior of densities in powellites. The trendlines show that the unit cells, volumes, and densities all increase with larger alkaline-earth cations. Details of unit cell parameters, volumes, and densities from literature and the current study are summarized in Table 1[link].

Table 1
Summary of data on (Ca, Sr, Ba)MoO4 crystals from the literature and current study

Densities are calculated from crystallographic data.

Chemistry a (Å) c (Å) Volume (Å3) Density (Mg m−3) Reference
CaMoO4 5.224 11.43 311.93 4.26 (Aleksandrov et al., 1968[Aleksandrov, V. B., Gorbatyii, L. V. & Ilyukhin, V. V. (1968). Kristallografiya, 13, 512-513.])
CaMoO4 5.224 11.43 312.17 4.26 (Gürmen et al., 1971[Gürmen, E., Daniels, E. & King, J. S. (1971). J. Chem. Phys. 55, 1093-1097.])
CaMoO4 5.2235 11.4298 311.86 4.26 (Wandahl & Christensen, 1987[Wandahl, G. & Christensen, A. N. (1987). Acta Chem. Scand. 41, 358-360.])
CaMoO4 5.2268 11.4345 312.38 4.25 (Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.])
Ca0.84Sr0.16MoO4 5.2592 11.5500 319.45 4.32 Current study
SrMoO4 5.394 12.017 349.64 4.7 (Egorov-Tismenko et al., 1967[Egorov-Tismenko, Y. K., Simonov, M. A. & Belov, N. V. (1967). Kristallografiya, 12, 511-512.])
SrMoO4 5.3944 12.02 349.78 4.7 (Gürmen et al., 1971[Gürmen, E., Daniels, E. & King, J. S. (1971). J. Chem. Phys. 55, 1093-1097.])
SrMoO4 5.4026 12.0411 351.46 4.68 (Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.])
SrMoO4 5.3963 12.0248 350.16 4.7 (Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.])
Sr0.81Ba0.19MoO4 5.4571 12.2548 364.95 4.68 (Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.])
Sr0.59Ba0.41MoO4 5.5073 12.4789 378.49 4.7 (Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.])
Sr0.27Ba0.73MoO4 5.5491 12.6680 390.08 4.83 (Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.])
BaMoO4 5.567 12.78 396.07 4.99 (Vegard & Refsum, 1927[Vegard, L. & Refsum, A. (1927). Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo 1: Matematisk-Naturvidenskapelig Klasse, 1.])
BaMoO4 5.62 12.82 404.91 4.88 (Bylichkina et al., 1970[Bylichkina, T. I., Soleva, L. I., Pobedimskaya, E. A., Porai Koshits, M. A. & Belov, N. V. (1970). Kristallografiya, 15, 165-167.])
BaMoO4 5.5479 12.743 392.22 5.03 (Nassif et al., 1999[Nassif, V., Carbonio, R. E. & Alonso, J. A. (1999). J. Solid State Chem. 146, 266-270.])
BaMoO4 5.5800 12.820 399.17 4.95 (Panchal et al., 2006[Panchal, V., Garg, N. & Sharma, S. M. (2006). J. Phys. Condens. Matter, 18, 3917-3929.])
BaMoO4 5.5696 12.7865 396.64 4.98 (Cavalcante et al., 2008[Cavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Joya, M. R., Pizani, P. S., Varela, J. A. & Longo, E. (2008). J. Phys. Chem. Solids, 69, 2674-2680.])
BaMoO4 5.5848 12.8292 400.15 4.93 (Nogueira et al., 2013[Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.])
BaMoO4 5.5828 12.8204 399.59 4.94 (Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.])
[Figure 1]
Figure 1
(a) Crystal structure of Ca0.84Sr0.16MoO4 and (b) coordination of eight [MoO4]2− tetra­hedra with respect to the Ca/Sr cations.
[Figure 2]
Figure 2
Summary of (a) unit-cell parameter a, (b) unit-cell parameter c, (c) unit-cell volume (V), and (d) density (ρ) as a function of the average ionic crystal radii in the structure (coordination number = 8) from Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). Data for the end members include averages and standard deviations from multiple sources.

3. Synthesis and crystallization

The mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4, was synthesized using the end-member powellites within a LiCl flux. The loss of mass due to dehydration for LiCl was measured by placing a given amount of LiCl (Alfa Aesar, >99%) into a furnace at 100°C and weighing daily for five days. For the synthesis of CaMoO4 and SrMoO4, the stoichiometric amounts of CaCO3 (Alfa Aesar, >99.5%), SrCO3 (Sigma Aldrich, >99.9%), and MoO3 (Alfa Aesar, >99.5%) were placed in Pt/10%Rh crucible and heated to 1500°C at 5°C min−1, held for 30 min, ramped down to 1400°C at 1°C min−1, held for 1 h, and then cooled down to room temperature at 1°C min−1. Details of synthesis are provided elsewhere (Peterson et al., 2018[Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.]). For the synthesis of Ca0.84Sr0.16MoO4, appropriate amounts of CaMoO4 and SrMoO4 powders were used as precursors and mixed together in Pt/10%Rh crucibles. Then, LiCl was added at a 1:1 ratio by mass, where the mass of CaMoO4 + SrMoO4 was equivalent to that of the LiCl. The crucible was covered with a tight-fitting Pt/10%Rh lid and heated according to a method described by Arora et al. (1983[Arora, S. K., Godbole, R. S. & Rao, G. S. T. (1983). J. Am. Ceram. Soc. 66, 321-323.]). The furnace was ramped up to 850°C, held for 2 h, abruptly decreased to 750°C, cooled to 550°C at a rate of 3°C h−1, and then the furnace was shut off. Crystals were recovered after washing in a sonic bath and rinsing with deionized water.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. For the occupancy refinement of the Ca and Sr sites, the occupancy parameters of both Sr and Ca were refined with isotropic atomic displacement parameters while keeping the total occupancy as 1. The refined occupancy values were 0.86 for Ca and 0.14 for Sr after rounding, and then these values were fixed and anisotropic refinements were performed on all the atoms including Ca, Sr, Mo, and O. The final refinement converged at R1 = 4.30%, and the goodness-of-fit was 1.44. The single crystals of Ca0.84Sr0.16MoO4 were ground with a mortar and pestle. A selected crystal for SC-XRD was placed on a cryoloop in oil (Parabar 10312, Hampton Research). Powder X-ray diffraction (P-XRD) was performed using a Bruker D8 Advance diffractometer on a zero-background quartz sample holder. The measured P-XRD pattern was compared to the calculated pattern from the solved structure, and they were in good agreement (see Fig. 3[link]).

Table 2
Experimental details

Crystal data
Chemical formula Ca0.84Sr0.16MoO4
Mr 207.6
Crystal system, space group Tetragonal, I41/a
Temperature (K) 293
a, c (Å) 5.2592 (1), 11.5497 (4)
V3) 319.46 (1)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.92
Crystal size (mm) 0.05 × 0.05 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST CMOS area detector
Absorption correction Multi-scan (SADABS)
Tmin, Tmax 0.628, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 6597, 396, 238
Rint 0.131
 
Refinement
R[F > 3σ(F)], wR(F), S 0.043, 0.042, 1.44
No. of reflections 396
No. of parameters 14
Δρmax, Δρmin (e Å−3) 2.76, −2.57
Computer programs: APEX3 and SAINT (Bruker, 2012[Bruker (2012). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 3]
Figure 3
Comparison between P-XRD pattern of ground Ca0.84Sr0.16MoO4 single crystals and calculated pattern generated from the solved structure.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: JANA2006 (Petříček et al., 2014); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Calcium strontium molybdate top
Crystal data top
Ca0.84Sr0.16MoO4Dx = 4.317 Mg m3
Mr = 207.6Mo Kα radiation, λ = 0.71069 Å
Tetragonal, I41/a:1Cell parameters from 6597 reflections
Hall symbol: I 4bw -1bwθ = 4.3–36.5°
a = 5.2592 (1) ŵ = 7.92 mm1
c = 11.5497 (4) ÅT = 293 K
V = 319.46 (1) Å3Irregular, light white
Z = 40.05 × 0.05 × 0.03 mm
F(000) = 388
Data collection top
Bruker D8 QUEST CMOS area detector
diffractometer
238 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.131
φ and ω scansθmax = 36.5°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS)
h = 88
Tmin = 0.628, Tmax = 0.747k = 88
6597 measured reflectionsl = 1919
396 independent reflections
Refinement top
Refinement on F2 constraints
R[F > 3σ(F)] = 0.043Primary atom site location: iterative
wR(F) = 0.042Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.44(Δ/σ)max = 0.024
396 reflectionsΔρmax = 2.76 e Å3
14 parametersΔρmin = 2.57 e Å3
0 restraints
Special details top

Refinement. F000 reported from JANA is 388.0 and calculated is 387.5 from CheckCIF.Both occupancies of Ca and Sr were refined with isotropic ADP while keeping the total occupancy at 1 and same position for both atoms, and their occupancy values were closed to 0.84 ±0.001 and 0.16±0.001 respectively between the refinements. Therefore, we fixed the occupancy to 0.84 and 0.16 with rounding off, and the anisotropic refinement was applied after fixing the occupancies.The difference in reported and caculated rho(max)is likely due to difference in how PLATON and JANA2006 calculate Fourier maps and take weights of reflections into Fourier calculations.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.50.500.00778 (13)
Ca110.50.250.0074 (2)0.84
Sr110.50.250.0074 (2)0.16
O10.7420 (7)0.6444 (7)0.0837 (3)0.0114 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0067 (2)0.0067 (2)0.0100 (2)000
Ca10.0076 (4)0.0076 (4)0.0072 (4)000
Sr10.0076 (4)0.0076 (4)0.0072 (4)000
O10.0127 (17)0.0088 (16)0.0126 (10)0.0017 (14)0.0039 (12)0.0016 (11)
Geometric parameters (Å, º) top
Mo1—Sr1i3.7188Ca1—Sr1iii3.9054
Mo1—Sr1ii3.7188Ca1—Sr1iv3.9054
Mo1—Sr1iii3.7188Sr1—Sr1viii3.9054
Mo1—Sr1iv3.7188Sr1—Sr1ix3.9054
Mo1—O11.769 (3)Sr1—Sr1iii3.9054
Mo1—O1v1.769 (3)Sr1—Sr1iv3.9054
Mo1—O1vi1.769 (3)Sr1—O12.471 (3)
Mo1—O1vii1.769 (3)Sr1—O1x2.471 (3)
Ca1—Ca1viii3.9054Sr1—O1ix2.505 (4)
Ca1—Ca1ix3.9054Sr1—O1xi2.505 (4)
Ca1—Ca1iii3.9054Sr1—O1xii2.505 (4)
Ca1—Ca1iv3.9054Sr1—O1xiii2.505 (4)
Ca1—Sr10Sr1—O1xiv2.471 (3)
Ca1—Sr1viii3.9054Sr1—O1xv2.471 (3)
Ca1—Sr1ix3.9054
Sr1i—Mo1—Sr1ii90Ca1—Sr1—Ca1ix0
Sr1i—Mo1—Sr1iii90Ca1—Sr1—Ca1iii0
Sr1i—Mo1—Sr1iv180.0 (5)Ca1—Sr1—Ca1iv0
Sr1i—Mo1—O1144.30 (11)Ca1—Sr1—Sr1viii0
Sr1i—Mo1—O1v35.70 (11)Ca1—Sr1—Sr1ix0
Sr1i—Mo1—O1vi78.16 (12)Ca1—Sr1—Sr1iii0
Sr1i—Mo1—O1vii101.84 (12)Ca1—Sr1—Sr1iv0
Sr1ii—Mo1—Sr1iii180.0 (5)Ca1—Sr1—O10
Sr1ii—Mo1—Sr1iv90Ca1—Sr1—O1x0
Sr1ii—Mo1—O1101.84 (12)Ca1—Sr1—O1ix0
Sr1ii—Mo1—O1v78.16 (12)Ca1—Sr1—O1xi0
Sr1ii—Mo1—O1vi144.30 (11)Ca1—Sr1—O1xii0
Sr1ii—Mo1—O1vii35.70 (11)Ca1—Sr1—O1xiii0
Sr1iii—Mo1—Sr1iv90Ca1—Sr1—O1xiv0
Sr1iii—Mo1—O178.16 (12)Ca1—Sr1—O1xv0
Sr1iii—Mo1—O1v101.84 (12)Ca1viii—Sr1—Ca1ix84.65
Sr1iii—Mo1—O1vi35.70 (11)Ca1viii—Sr1—Ca1iii123.14
Sr1iii—Mo1—O1vii144.30 (11)Ca1viii—Sr1—Ca1iv123.14
Sr1iv—Mo1—O135.70 (11)Ca1viii—Sr1—Sr1viii0.0 (5)
Sr1iv—Mo1—O1v144.30 (11)Ca1viii—Sr1—Sr1ix84.65
Sr1iv—Mo1—O1vi101.84 (12)Ca1viii—Sr1—Sr1iii123.14
Sr1iv—Mo1—O1vii78.16 (12)Ca1viii—Sr1—Sr1iv123.14
O1—Mo1—O1v113.77 (15)Ca1viii—Sr1—O1101.82 (8)
O1—Mo1—O1vi107.37 (16)Ca1viii—Sr1—O1x160.80 (8)
O1—Mo1—O1vii107.37 (16)Ca1viii—Sr1—O1ix102.56 (7)
O1v—Mo1—O1vi107.37 (16)Ca1viii—Sr1—O1xi37.99 (8)
O1v—Mo1—O1vii107.37 (16)Ca1viii—Sr1—O1xii130.55 (8)
O1vi—Mo1—O1vii113.77 (15)Ca1viii—Sr1—O1xiii85.44 (8)
Ca1viii—Ca1—Ca1ix84.65Ca1viii—Sr1—O1xiv68.42 (8)
Ca1viii—Ca1—Ca1iii123.14Ca1viii—Sr1—O1xv38.60 (8)
Ca1viii—Ca1—Ca1iv123.14Ca1ix—Sr1—Ca1iii123.14
Ca1viii—Ca1—Sr10Ca1ix—Sr1—Ca1iv123.14
Ca1viii—Ca1—Sr1viii0.0 (5)Ca1ix—Sr1—Sr1viii84.65
Ca1viii—Ca1—Sr1ix84.65Ca1ix—Sr1—Sr1ix0.0 (5)
Ca1viii—Ca1—Sr1iii123.14Ca1ix—Sr1—Sr1iii123.14
Ca1viii—Ca1—Sr1iv123.14Ca1ix—Sr1—Sr1iv123.14
Ca1ix—Ca1—Ca1iii123.14Ca1ix—Sr1—O1160.80 (8)
Ca1ix—Ca1—Ca1iv123.14Ca1ix—Sr1—O1x101.82 (8)
Ca1ix—Ca1—Sr10Ca1ix—Sr1—O1ix37.99 (8)
Ca1ix—Ca1—Sr1viii84.65Ca1ix—Sr1—O1xi102.56 (7)
Ca1ix—Ca1—Sr1ix0.0 (5)Ca1ix—Sr1—O1xii85.44 (8)
Ca1ix—Ca1—Sr1iii123.14Ca1ix—Sr1—O1xiii130.55 (8)
Ca1ix—Ca1—Sr1iv123.14Ca1ix—Sr1—O1xiv38.60 (8)
Ca1iii—Ca1—Ca1iv84.65Ca1ix—Sr1—O1xv68.42 (8)
Ca1iii—Ca1—Sr10Ca1iii—Sr1—Ca1iv84.65
Ca1iii—Ca1—Sr1viii123.14Ca1iii—Sr1—Sr1viii123.14
Ca1iii—Ca1—Sr1ix123.14Ca1iii—Sr1—Sr1ix123.14
Ca1iii—Ca1—Sr1iii0.0 (5)Ca1iii—Sr1—Sr1iii0.0 (5)
Ca1iii—Ca1—Sr1iv84.65Ca1iii—Sr1—Sr1iv84.65
Ca1iv—Ca1—Sr10Ca1iii—Sr1—O168.42 (8)
Ca1iv—Ca1—Sr1viii123.14Ca1iii—Sr1—O1x38.60 (8)
Ca1iv—Ca1—Sr1ix123.14Ca1iii—Sr1—O1ix85.44 (8)
Ca1iv—Ca1—Sr1iii84.65Ca1iii—Sr1—O1xi130.55 (8)
Ca1iv—Ca1—Sr1iv0.0 (5)Ca1iii—Sr1—O1xii102.56 (7)
Sr1—Ca1—Sr1viii0Ca1iii—Sr1—O1xiii37.99 (8)
Sr1—Ca1—Sr1ix0Ca1iii—Sr1—O1xiv160.80 (8)
Sr1—Ca1—Sr1iii0Ca1iii—Sr1—O1xv101.82 (8)
Sr1—Ca1—Sr1iv0Ca1iv—Sr1—Sr1viii123.14
Sr1viii—Ca1—Sr1ix84.65Ca1iv—Sr1—Sr1ix123.14
Sr1viii—Ca1—Sr1iii123.14Ca1iv—Sr1—Sr1iii84.65
Sr1viii—Ca1—Sr1iv123.14Ca1iv—Sr1—Sr1iv0.0 (5)
Sr1ix—Ca1—Sr1iii123.14Ca1iv—Sr1—O138.60 (8)
Sr1ix—Ca1—Sr1iv123.14Ca1iv—Sr1—O1x68.42 (8)
Sr1iii—Ca1—Sr1iv84.65Ca1iv—Sr1—O1ix130.55 (8)
Mo1viii—Sr1—Mo1xvi90Ca1iv—Sr1—O1xi85.44 (8)
Mo1viii—Sr1—Mo1ix90Ca1iv—Sr1—O1xii37.99 (8)
Mo1viii—Sr1—Mo1xvii180.0 (5)Ca1iv—Sr1—O1xiii102.56 (7)
Mo1viii—Sr1—Ca10Ca1iv—Sr1—O1xiv101.82 (8)
Mo1viii—Sr1—Ca1viii61.57Ca1iv—Sr1—O1xv160.80 (8)
Mo1viii—Sr1—Ca1ix118.43Sr1viii—Sr1—Sr1ix84.65
Mo1viii—Sr1—Ca1iii61.57Sr1viii—Sr1—Sr1iii123.14
Mo1viii—Sr1—Ca1iv118.43Sr1viii—Sr1—Sr1iv123.14
Mo1viii—Sr1—Sr1viii61.57Sr1viii—Sr1—O1101.82 (8)
Mo1viii—Sr1—Sr1ix118.43Sr1viii—Sr1—O1x160.80 (8)
Mo1viii—Sr1—Sr1iii61.57Sr1viii—Sr1—O1ix102.56 (7)
Mo1viii—Sr1—Sr1iv118.43Sr1viii—Sr1—O1xi37.99 (8)
Mo1viii—Sr1—O180.15 (8)Sr1viii—Sr1—O1xii130.55 (8)
Mo1viii—Sr1—O1x99.85 (8)Sr1viii—Sr1—O1xiii85.44 (8)
Mo1viii—Sr1—O1ix98.33 (8)Sr1viii—Sr1—O1xiv68.42 (8)
Mo1viii—Sr1—O1xi81.67 (8)Sr1viii—Sr1—O1xv38.60 (8)
Mo1viii—Sr1—O1xii155.66 (7)Sr1ix—Sr1—Sr1iii123.14
Mo1viii—Sr1—O1xiii24.34 (7)Sr1ix—Sr1—Sr1iv123.14
Mo1viii—Sr1—O1xiv127.27 (8)Sr1ix—Sr1—O1160.80 (8)
Mo1viii—Sr1—O1xv52.73 (8)Sr1ix—Sr1—O1x101.82 (8)
Mo1xvi—Sr1—Mo1ix180.0 (5)Sr1ix—Sr1—O1ix37.99 (8)
Mo1xvi—Sr1—Mo1xvii90Sr1ix—Sr1—O1xi102.56 (7)
Mo1xvi—Sr1—Ca10Sr1ix—Sr1—O1xii85.44 (8)
Mo1xvi—Sr1—Ca1viii61.57Sr1ix—Sr1—O1xiii130.55 (8)
Mo1xvi—Sr1—Ca1ix118.43Sr1ix—Sr1—O1xiv38.60 (8)
Mo1xvi—Sr1—Ca1iii118.43Sr1ix—Sr1—O1xv68.42 (8)
Mo1xvi—Sr1—Ca1iv61.57Sr1iii—Sr1—Sr1iv84.65
Mo1xvi—Sr1—Sr1viii61.57Sr1iii—Sr1—O168.42 (8)
Mo1xvi—Sr1—Sr1ix118.43Sr1iii—Sr1—O1x38.60 (8)
Mo1xvi—Sr1—Sr1iii118.43Sr1iii—Sr1—O1ix85.44 (8)
Mo1xvi—Sr1—Sr1iv61.57Sr1iii—Sr1—O1xi130.55 (8)
Mo1xvi—Sr1—O152.73 (8)Sr1iii—Sr1—O1xii102.56 (7)
Mo1xvi—Sr1—O1x127.27 (8)Sr1iii—Sr1—O1xiii37.99 (8)
Mo1xvi—Sr1—O1ix155.66 (7)Sr1iii—Sr1—O1xiv160.80 (8)
Mo1xvi—Sr1—O1xi24.34 (7)Sr1iii—Sr1—O1xv101.82 (8)
Mo1xvi—Sr1—O1xii81.67 (8)Sr1iv—Sr1—O138.60 (8)
Mo1xvi—Sr1—O1xiii98.33 (8)Sr1iv—Sr1—O1x68.42 (8)
Mo1xvi—Sr1—O1xiv80.15 (8)Sr1iv—Sr1—O1ix130.55 (8)
Mo1xvi—Sr1—O1xv99.85 (8)Sr1iv—Sr1—O1xi85.44 (8)
Mo1ix—Sr1—Mo1xvii90Sr1iv—Sr1—O1xii37.99 (8)
Mo1ix—Sr1—Ca10Sr1iv—Sr1—O1xiii102.56 (7)
Mo1ix—Sr1—Ca1viii118.43Sr1iv—Sr1—O1xiv101.82 (8)
Mo1ix—Sr1—Ca1ix61.57Sr1iv—Sr1—O1xv160.80 (8)
Mo1ix—Sr1—Ca1iii61.57O1—Sr1—O1x77.98 (11)
Mo1ix—Sr1—Ca1iv118.43O1—Sr1—O1ix151.21 (11)
Mo1ix—Sr1—Sr1viii118.43O1—Sr1—O1xi73.95 (11)
Mo1ix—Sr1—Sr1ix61.57O1—Sr1—O1xii76.60 (11)
Mo1ix—Sr1—Sr1iii61.57O1—Sr1—O1xiii68.41 (11)
Mo1ix—Sr1—Sr1iv118.43O1—Sr1—O1xiv127.16 (12)
Mo1ix—Sr1—O1127.27 (8)O1—Sr1—O1xv127.16 (12)
Mo1ix—Sr1—O1x52.73 (8)O1x—Sr1—O1ix73.95 (11)
Mo1ix—Sr1—O1ix24.34 (7)O1x—Sr1—O1xi151.21 (11)
Mo1ix—Sr1—O1xi155.66 (7)O1x—Sr1—O1xii68.41 (11)
Mo1ix—Sr1—O1xii98.33 (8)O1x—Sr1—O1xiii76.60 (11)
Mo1ix—Sr1—O1xiii81.67 (8)O1x—Sr1—O1xiv127.16 (12)
Mo1ix—Sr1—O1xiv99.85 (8)O1x—Sr1—O1xv127.16 (12)
Mo1ix—Sr1—O1xv80.15 (8)O1ix—Sr1—O1xi134.61 (10)
Mo1xvii—Sr1—Ca10O1ix—Sr1—O1xii98.56 (12)
Mo1xvii—Sr1—Ca1viii118.43O1ix—Sr1—O1xiii98.56 (12)
Mo1xvii—Sr1—Ca1ix61.57O1ix—Sr1—O1xiv76.60 (11)
Mo1xvii—Sr1—Ca1iii118.43O1ix—Sr1—O1xv68.41 (11)
Mo1xvii—Sr1—Ca1iv61.57O1xi—Sr1—O1xii98.56 (12)
Mo1xvii—Sr1—Sr1viii118.43O1xi—Sr1—O1xiii98.56 (12)
Mo1xvii—Sr1—Sr1ix61.57O1xi—Sr1—O1xiv68.41 (11)
Mo1xvii—Sr1—Sr1iii118.43O1xi—Sr1—O1xv76.60 (11)
Mo1xvii—Sr1—Sr1iv61.57O1xii—Sr1—O1xiii134.61 (10)
Mo1xvii—Sr1—O199.85 (8)O1xii—Sr1—O1xiv73.95 (11)
Mo1xvii—Sr1—O1x80.15 (8)O1xii—Sr1—O1xv151.21 (11)
Mo1xvii—Sr1—O1ix81.67 (8)O1xiii—Sr1—O1xiv151.21 (11)
Mo1xvii—Sr1—O1xi98.33 (8)O1xiii—Sr1—O1xv73.95 (11)
Mo1xvii—Sr1—O1xii24.34 (7)O1xiv—Sr1—O1xv77.98 (11)
Mo1xvii—Sr1—O1xiii155.66 (7)Mo1—O1—Sr1133.45 (18)
Mo1xvii—Sr1—O1xiv52.73 (8)Mo1—O1—Sr1iv119.96 (15)
Mo1xvii—Sr1—O1xv127.27 (8)Sr1—O1—Sr1iv103.40 (13)
Ca1—Sr1—Ca1viii0
Symmetry codes: (i) y+1/2, x1, z1/4; (ii) y+1/2, x, z1/4; (iii) y+3/2, x1, z1/4; (iv) y+3/2, x, z1/4; (v) x+1, y+1, z; (vi) y, x+1, z; (vii) y+1, x, z; (viii) y+1, x1/2, z+1/4; (ix) y+2, x1/2, z+1/4; (x) x+2, y+1, z; (xi) y, x+3/2, z+1/4; (xii) x+2, y+3/2, z+1/4; (xiii) x, y1/2, z+1/4; (xiv) y+1/2, x+3/2, z+1/2; (xv) y+3/2, x1/2, z+1/2; (xvi) y+1, x+1/2, z+1/4; (xvii) y+2, x+1/2, z+1/4.
Summary of data on (Ca, Sr, Ba)MoO4 crystals from the literature and current study. top
Densities are calculated from crystallographic data.
Chemistrya (Å)c (Å)Volume (Å3)Density (Mg m-3)Reference
CaMoO45.22411.43311.934.26(Aleksandrov et al., 1968)
CaMoO45.22411.43312.174.26(Gürmen et al., 1971)
CaMoO45.223511.4298311.864.26(Wandahl & Christensen, 1987)
CaMoO45.226811.4345312.384.25(Peterson et al., 2018)
Ca0.84Sr0.16MoO45.259211.5500319.454.32Current study
SrMoO45.39412.017349.644.7(Egorov-Tismenko et al., 1967)
SrMoO45.394412.02349.784.7(Gürmen et al., 1971)
SrMoO45.402612.0411351.464.68(Nogueira et al., 2013)
SrMoO45.396312.0248350.164.7(Peterson et al., 2018)
Sr0.81Ba0.19MoO45.457112.2548364.954.68(Nogueira et al., 2013)
Sr0.59Ba0.41MoO45.507312.4789378.494.7(Nogueira et al., 2013)
Sr0.27Ba0.73MoO45.549112.6680390.084.83(Nogueira et al., 2013)
BaMoO45.56712.78396.074.99(Vegard & Refsum, 1927)
BaMoO45.6212.82404.914.88(Bylichkina et al., 1970)
BaMoO45.547912.743392.225.03(Nassif et al., 1999)
BaMoO45.580012.820399.174.95(Panchal et al., 2006)
BaMoO45.569612.7865396.644.98(Cavalcante et al., 2008)
BaMoO45.584812.8292400.154.93(Nogueira et al., 2013)
BaMoO45.582812.8204399.594.94(Peterson et al., 2018)
 

Acknowledgements

The authors acknowledge financial support from the US Department of Energy Office of Nuclear Energy (DOE-NE). The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05–76RL01830.

References

First citationAhmad, G., Dickerson, M. B., Church, B. C., Cai, Y., Jones, S. E., Naik, R. R., King, J. S., Summers, C. J., Kröger, N. & Sandhage, K. H. (2006). Adv. Mater. 18, 1759–1763.  Web of Science CrossRef CAS Google Scholar
First citationAleksandrov, V. B., Gorbatyii, L. V. & Ilyukhin, V. V. (1968). Kristallografiya, 13, 512–513.  CAS Google Scholar
First citationArora, S. K., Godbole, R. S. & Rao, G. S. T. (1983). J. Am. Ceram. Soc. 66, 321–323.  CrossRef CAS Web of Science Google Scholar
First citationBi, J., Cui, C.-H., Lai, X., Shi, F. & Gao, D.-J. (2008). Mater. Res. Bull. 43, 743–747.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2012). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBylichkina, T. I., Soleva, L. I., Pobedimskaya, E. A., Porai Koshits, M. A. & Belov, N. V. (1970). Kristallografiya, 15, 165–167.  CAS Google Scholar
First citationCavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Joya, M. R., Pizani, P. S., Varela, J. A. & Longo, E. (2008). J. Phys. Chem. Solids, 69, 2674–2680.  Web of Science CrossRef ICSD CAS Google Scholar
First citationCrum, J. V., Chong, S., Peterson, J. A. & Riley, B. J. (2019). Acta Cryst. E75, 1020–1025.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationCulver, S. P., Rabuffetti, F. A., Zhou, S., Mecklenburg, M., Song, Y., Melot, B. C. & Brutchey, R. L. (2013). Chem. Mater. 25, 4129–4134.  Web of Science CrossRef ICSD CAS Google Scholar
First citationEgorov-Tismenko, Y. K., Simonov, M. A. & Belov, N. V. (1967). Kristallografiya, 12, 511–512.  CAS Google Scholar
First citationGeng, J., Zhu, J.-J. & Chen, H.-Y. (2006). Cryst. Growth Des. 6, 321–326.  Web of Science CrossRef CAS Google Scholar
First citationGürmen, E., Daniels, E. & King, J. S. (1971). J. Chem. Phys. 55, 1093–1097.  Google Scholar
First citationKato, A., Oishi, S., Shishido, T., Yamazaki, M. & Iida, S. (2005). J. Phys. Chem. Solids, 66, 2079–2081.  Web of Science CrossRef CAS Google Scholar
First citationKim, T. & Kang, S. (2007). J. Lumin. 122–123, 964–966.  Web of Science CrossRef CAS Google Scholar
First citationKodaira, C. A., Brito, H. F. & Felinto, M. C. F. C. (2003). J. Solid State Chem. 171, 401–407.  Web of Science CrossRef CAS Google Scholar
First citationLei, F. & Yan, B. (2008). J. Solid State Chem. 181, 855–862.  Web of Science CrossRef CAS Google Scholar
First citationLei, H., Zhang, S., Zhu, X., Sun, Y. & Fu, Y. (2010). Mater. Lett. 64, 344–346.  Web of Science CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNassif, V., Carbonio, R. E. & Alonso, J. A. (1999). J. Solid State Chem. 146, 266–270.  Web of Science CrossRef ICSD CAS Google Scholar
First citationNogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. & Longo, E. (2013). J. Appl. Cryst. 46, 1434–1446.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPanchal, V., Garg, N. & Sharma, S. M. (2006). J. Phys. Condens. Matter, 18, 3917–3929.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationPeterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. & Neeway, J. J. (2018). J. Nucl. Mater. 510, 623–634.  Web of Science CrossRef CAS Google Scholar
First citationPetříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRabuffetti, F. A., Culver, S. P., Suescun, L. & Brutchey, R. L. (2014). Inorg. Chem. 53, 1056–1061.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationReddy, M., Subba Rao, G. V. & Chowdari, B. V. R. (2013). Chem. Rev. 113, 5364–5457.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRyu, J. H., Bang, S. Y., Yoon, J.-W., Lim, C. S. & Shim, K. B. (2007). Appl. Surf. Sci. 253, 8408–8414.  Web of Science CrossRef CAS Google Scholar
First citationSchmidt, M., Heck, S., Bosbach, D., Ganschow, S., Walther, C. & Stumpf, T. (2013). Dalton Trans. 42, 8387–8393.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationVegard, L. & Refsum, A. (1927). Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo 1: Matematisk-Naturvidenskapelig Klasse, 1.  Google Scholar
First citationWandahl, G. & Christensen, A. N. (1987). Acta Chem. Scand. 41, 358–360.  CrossRef ICSD Web of Science Google Scholar
First citationWang, Y., Ma, J., Tao, J., Zhu, X., Zhou, J., Zhao, Z., Xie, L. & Tian, H. (2006). Mater. Lett. 60, 291–293.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds