research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­deca­kis­(μ-propionato)hepta­barium] propionic acid monosolvate tetra­hydrate]

CROSSMARK_Color_square_no_text.svg

aInst. of Physics, v. v. i., Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 November 2019; accepted 24 January 2020; online 31 January 2020)

The title compound, {[Ba7(C3H5O2)14]·0.946C3H6O2·4H2O}n, is represented by a metal–organic framework structure that is held together by Ba—O—Ba bonds, as well as by O—H⋯O hydrogen bonds of moderate strength. The structure comprises of four independent Ba2+ cations (one of which is situated on a twofold rotation axis), seven independent propionate and two independent water mol­ecules. The bond-valence sums of all the cations indicate a slight overbonding. There is also an occupationally, as well as a positionally disordered propionic acid mol­ecule present in the structure. Its occupation is slightly lower than the full occupation while the disordered mol­ecules occupy two positions related by a rotation about a twofold rotation axis. In addition, the methyl group in the symmetry-independent propionic acid mol­ecule is also disordered, and occupies two positions. Each propionic acid mol­ecule coordinates to just one cation from a pair of symmetry-equivalent Ba2+ sites and is simultaneously bonded by an O—H⋯Opropionate hydrogen bond. This means that on a microscopic scale, the coordination number of the corresponding Ba2+ site is either 9 or 10. The methyl as well as hy­droxy hydrogen atoms of the disordered propionic acid mol­ecule were not determined.

1. Chemical context

A relatively low number of structurally determined metal propionates with divalent cations are known so far, as manifested by comparison of the numbers of propionates, acetates and formates with alkaline-earth cations which were retrieved from the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; version 5.40 from November 2018). Their numbers are 8, 60 and 70, respectively. One of the reasons for such a low number of determined structures might be associated with the tendency for difficult crystallization in case of some propionates. As an example of a difficult crystallization of a propionate salt from aqueous solution, Ca(propionate)2 and Cd(propionate)2 in a 2:1 molar ratio (Fábry, 2020[Fábry, J. (2020). Unpublished results.]) can be given.

Among the propionate salts, the most studied compounds are the isostructural salts Ca2Pb(propionate)6 and Ca2Sr(propionate)6. In the latter compounds, ferroelectric phases occur (see a short review by Nakamura & Deguchi, 1992[Nakamura, E. & Deguchi, K. (1992). Ferroelectrics, 137, 153-163.]). Structurally related Ca2Ba(propionate)6 shows inter­esting structural properties such as positional disorder of propionate chains in the room-temperature phase with symmetry Fd[\overline{3}]m (Stadnicka & Glazer, 1980[Stadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977-2985.]). This disorder is a reason for diffuse streaks in the diffraction pattern, indicating correlated occurrence of the disordered propionate mol­ecules. The latter compound undergoes low-temperature phase transitions to phases with suggested ortho­rhom­bic symmetry (Gesi, 1993[Gesi, K. (1993). J. Phys. Soc. Jpn, 62, 4511-4515.]).

[Scheme 1]

The title compound was prepared serendipitously. A few crystals of it were isolated from a batch of seemingly cubic crystals (they showed no extinction under polarized light) that grew from aqueous solutions of propionic acid (molar proportion > 30) with the amounts of BaCO3 and 4MgCO3·Mg(OH)2·4H2O in a molar ratio of 5:2; the pH of the solution was about 6. The motivation for the synthesis was a planned preparation of an analogue of Ca2Ba(propionate)6 where Ca2+ and Ba2+ are overbonded and slightly underbonded (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), respectively. For example, in the above-mentioned room-temperature phase of Ca2Ba(propionate)6, the bond-valence sums (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) of Ca2+ and Ba2+ amount to 2.78 (1) and 1.93 (1) valence units, respectively [see the refinement/model `A' given in the article by Stadnicka & Glazer (1980[Stadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977-2985.]) who discussed strong bonding of Ca2+ in this structure]. It was therefore hoped that a hypothetical structure `Ba2Mg(propionate)6' might be isostructural to Ca2Ba(propionate)6 or related to it despite an expected lowering of the bond-valence sum by smaller Mg2+ cations. Indeed, alongside a few crystals of the title compound, cubic crystals were obtained, the structure determination of which is ongoing at present.

2. Structural commentary

A view of the crystal structure is given in Fig. 1[link]. There are four independent Ba2+ cations that are all coordinated by oxygen atoms stemming either from the carboxyl­ate or carb­oxy­lic groups or from water mol­ecules. The latter mol­ecules coordinate exclusively to Ba22+. Ba32+ is coordinated by the carb­oxy­lic group of an occupationally and positionally disordered propionic acid mol­ecule. Ba42+ is situated on a twofold rotation axis, i.e. on the Wyckoff position c. An overview of the coordination environments around each of the Ba2+ cations is given in Table 1[link] with corresponding illustrations shown in Fig. 2[link]ad. All Ba2+ cations are slightly overbonded (Table 1[link]). Fig. 3[link]ag shows all seven independent propionate mol­ecules coordinating the Ba2+ cations.

Table 1
Bonding properties of Ba2+ cationsa in the title structure

Atom Coordination number dmin(Ba—O) (Å) dmax(Ba—O) (Å) Bond valence sum (v.u.)a
Ba1 9 2.666 (2) 2.923 (2) 2.191 (5)
Ba2 9 2.685 (2) 2.940 (2) 2.286 (5)
Ba3b 9.473 2.673 (2) 3.084 (2) 2.248 (5)
Ba3c 9.500 2.673 (2) 3.084 (2) 2.255 (5)
Ba3d 9 2.673 (2) 3.084 (2) 2.138 (5)
Ba3e 10 2.673 (2) 3.084 (2) 2.372 (6)
Ba4 8 2.670 (2) 2.868 (2) 2.204 (5)
Notes: (a) Calculation with the parameters of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]); (b) consideration of a disordered propionic acid mol­ecule with refined occupancy = 0.473 (4); (c) consideration of a disordered propionic acid mol­ecule with 0.5 occupancy; (d) excluding the disordered propionic acid mol­ecule; (e) local full occupation.
[Figure 1]
Figure 1
A view of the crystal structure along the b axis. Ba, O, C and water H atoms are shown as green, red, dark gray and tiny gray spheres, respectively.
[Figure 2]
Figure 2
A view of the oxygen coordination around the cations, with displacement ellipsoids shown at the 50% probability level. (a) Ba12+, (b) Ba22+, (c) Ba32+ and (d) Ba42+ [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + [{1\over 2}], y + [{1\over 2}], z; (iii) −x + 1, −y + 1, −z + 1; (iv) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (v) x + [{3\over 2}], y + [{1\over 2}], z; (vi) −x + 1, y, −z + [{3\over 2}]].
[Figure 3]
Figure 3
Mol­ecular structures of the propionate mol­ecules, with displacement ellipsoids shown at the 50% probability level. (a) mol­ecules with the carboxyl­ate atom C1, (b) mol­ecules with the carboxyl­ate atom C4, (c) mol­ecules with the carboxyl­ate atom C7, (d) mol­ecules with the carboxyl­ate atom C10, (e) mol­ecules with the carboxyl­ate atom C13, (f) mol­ecules with the carboxyl­ate atom C16 and (g) mol­ecules with the carboxyl­ate atom C19.

It can readily be seen from Fig. 1[link] that the cohesion within the crystal structure is mostly provided by a three-dimensional network of Ba—O—Ba bonds. This network is shown in more detail in Fig. 4[link], which also includes O—H⋯O hydrogen bonds of moderate strength (Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press.]). The corresponding donor groups are water mol­ecules while the acceptors are carboxyl­ate oxygen atoms. Numerical details of hydrogen-bonding inter­actions are provided in Table 2[link], excluding the Opropionic acid—H⋯Opropionate hydrogen bond along O16⋯O4vii [2.706 (13) Å; symmetry code: (vii) −x + 1, −y, −z + 1] that is donated by the free propionic acid mol­ecule. This mol­ecule is disordered over two positions related by (−x + 1, y, −z + [{1\over 2}]) about a twofold rotation axis (Wyckoff position c). The low occupancy is probably the reason why the bridging hydrogen atom of the O16⋯O4vii hydrogen bond could not be located in the difference electron density map. However, the angle C22—O16⋯O4vii, which measures 110.8 (8)°, is close to the tetra­hedral angle and is in agreement with the assumed presence of a hydrogen bond. The longer C22—O16 bond [1.303 (18) Å] in comparison with the C22—O15 bond [1.187 (12) Å)] indicates that the bridging hydrogen atom is attached to O16. Table 2[link] also lists a weak C—H⋯O inter­action between a methyl group and the carb­oxy­lic O atom of the propionic acid mol­ecule. The numerical parameters conform to the criteria for a weak hydrogen bond (Desiraju & Steiner, 1999[Desiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond, p. 65. Oxford University Press.]).

Table 2
Hydrogen-bond geometry (Å, °)

The hydrogen bond O16⋯O4vii is missing from this table because of the undetermined position of the bridging hydrogen atom.

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1O1w⋯O1iv 0.82 (3) 2.25 (3) 2.957 (3) 145 (4)
O1w—H2O1w⋯O2iii 0.82 (3) 2.00 (3) 2.813 (3) 171 (3)
O2w—H1O2w⋯O1wiii 0.82 (3) 2.15 (3) 2.963 (4) 172 (4)
O2w—H2O2w⋯O14vi 0.81 (3) 2.01 (3) 2.807 (3) 164 (4)
C17—H1c17⋯O16viii 0.99 2.43 2.989 (15) 115.22
Symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (iv) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (vi) −x + 1, y, −z + [{3\over 2}]; (vii) −x + 1, −y, −z + 1.
[Figure 4]
Figure 4
A view of the crystal structure excluding the propionate methyl­ene and methyl groups as well as the disordered propionic acid mol­ecule. Ba—O—Ba bonds and O—H⋯O bonds [except for O16⋯O4vii (−x + 1, −y, −z + 1) where the bridging hydrogen atom was not found] are displayed. For colour codes, see caption for Fig. 1[link].

Fig. 5[link]a shows a detailed view of the disordered propionic acid mol­ecule over two positions associated with the above-mentioned twofold rotation. The refined occupation of the mol­ecule of propionic acid converged to 0.473 (4) (full occupation of the site corresponds to 0.5). SQUEEZE, a functionality included in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), yielded a value of 0.431. This means that the occupation of the disordered mol­ecule is not full; however, analysis of the bond-valence sum for Ba32+ still points to a slight overbonding (Table 1[link]) even without the presence of propionic acid. On a microscopic scale, the propionic acid mol­ecule is only bonded to one of the Ba32+ cations from the pair of symmetry-equivalent cations (Ba3i and Ba3viii; see Fig. 5[link] and the symmetry codes given therein) by the bond (O15—Ba3i, O15x—Ba3viii). At the same time, it forms the above mentioned O—H⋯O hydrogen bonds along O16⋯O4vii and O16x⋯O4ix [2.706 (13) Å]. In addition to the occupational disorder of the propionic acid mol­ecule, its methyl group was found to be disordered over two positions. One of these positions (the methyl C24bx atom) is very close to atom C22 (Fig. 5[link]b). The occupational parameters of the disordered methyl groups split into C24a and C24b converged to 0.30 (2) and 0.17 (1); methyl hydrogen atoms were not found. The displacement parameters of the methyl group C24a (Fig. 5[link]a) are quite large and indicate an intense libration. The displacement parameter of C24b was constrained to that of C22 (Fig. 5[link]a).

[Figure 5]
Figure 5
(a) A view of a disordered propionic acid mol­ecule with displacement ellipsoids shown at the 30% probability level. (b) Section of the difference electron density map (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) through the atoms C22, C23 and C24bx. This section shows the region of the disordered propionic acid mol­ecule in part. Increments of positive and negative contours are 0.01 and 0.05 e Å−3. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (vii) −x + 1, −y, −z + 1; (viii) −x + [{3\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ix) x, −y, z − [{1\over 2}]]. The disordered atoms are related by a symmetry operation (Wyckoff position c) (x) −x + 1, y, −z + 1/29. For colours, see caption for Fig. 1[link].

Reported structures comprising propionate anions and/or propionic acid mol­ecules were retrieved from the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; version 5.40 from November 2018). Fig. 6[link] shows a scattergram of the shorter C—O (or C=O) and longer C—O (or C—OH) distances in the carboxyl­ate or carb­oxy­lic group, respectively. Corresponding distances in the title structure are normal although those pertinent to the carboxyl­ates are on the verge of the region where both C—O distances are about the same. Inter­estingly, there is no large difference between these parameters in the carboxyl­ate (black squares) and the carb­oxy­lic groups (red circles) in the propionate or propionic acid mol­ecules, respectively. There seem to be a clustering of points at about 1.21 and 1.35 Å, which manifest different bonding types in these mol­ecules.

[Figure 6]
Figure 6
Scattergram of the distances for the shorter and the longer C=O bonds in the carboxyl­ate groups in propionates (black squares) as well as of C=O bonds and C—OH bonds in propionic acid mol­ecules (red circles). The corresponding values for the propionates and the propionic acid mol­ecule present in the title structure are shown as green and blue triangles, respectively.

3. Synthesis and crystallization

1 g of BaCO3 and 0.95 g of basic magnesium carbonate [Aldrich, product number 13118, the powder diagram of which corresponded best to that of the powder diffraction file 01-070-0361 of PDF-4 (Inter­national Centre for Diffraction Data, 2019[International Centre for Diffraction Data (2019). PDF-4 (Powder Diffraction File 4).])], i.e. 4MgCO3·Mg(OH)2·4H2O], were dissolved in an aqueous solution of 2.28 g of propionic acid. These masses correspond to molar ratios of 5:2:30. The majority of the solid dissolved in the acid solution and a few ml of propionic acid (100%) were added to the solution, maintaining its pH between 6 and 7. The solution was then filtered through a sintered disk. The filtrate was concentrated by evaporation at 323 K until colourless crystals appeared. A prevalent majority of the crystals were of cubic form with a typical size of 1 mm. Under a polarizating microscope, these crystals did not show extinction, i.e. they were optically isotropic. However, among these crystals a few crystals that showed extinction were found. They were isolated and one of them was chosen for single crystal X-ray structure determination.

4. Structure determination and refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ba7(C3H5O2)14]·0.946C3H6O2·4H2O
Mr 2126.4
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 95
a, b, c (Å) 15.7831 (2), 14.0136 (2), 30.5583 (3)
V3) 6758.83 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.10
Crystal size (mm) 0.22 × 0.12 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.568, 0.656
No. of measured, independent and observed [I > 3σ(I)] reflections 112254, 8981, 8215
Rint 0.043
(sin θ/λ)max−1) 0.696
 
Refinement
R[I > 3σ(I)], wR(F), S 0.028, 0.071, 1.92
No. of reflections 8981
No. of parameters 428
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.14, −0.72
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), DIAMOND (Brandenburg, 2015[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]), Origin (Origin, 2000[Origin (2000). OriginLab Corporation, USA.]) and JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

The structure can be divided into a non-disordered part composed of the Ba2+ cations, propionate anions and water mol­ecules, and the disordered mol­ecule of propionic acid. The refinement of the non-disordered structure part was straightforward, with methyl­ene hydrogen atoms calculated and their parameters constrained to C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C). The methyl hydrogen atoms of the propionate mol­ecules were discernible in the difference electron density map. They were constrained with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The water hydrogen atoms were also discernible in the difference electron density map. Their positional parameters were restrained in such a way that O—H distances were set to 0.82 (1) Å, with Uiso(H) = 1.5Ueq(O). The residual maxima in the difference electron density map after the refinement of the non-disordered part of the structure conformed to the expected shape of the non-hydrogen atoms of a propionic acid mol­ecule (see Fig. 5[link]a,b). The functionality of SQUEEZE included in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) indicated 138 electrons corresponding to the symmetry-related regions with the disordered mol­ecule present in the unit cell. Since a propionic acid mol­ecule has 40 electrons, the expected occupational parameter for the disordered mol­ecule is 138/160 = 0.8625 or 0.4313 for the occupancy considering the special position (twofold rotation axis) in its vicinity. The value of the expected occupancy is in fair agreement with the refined value of 0.473 (4) for the mol­ecule of propionic acid where four hydrogen atoms remained undetermined (the methyl as well as the hy­droxy hydrogen atoms). This disorder results in a statistical distribution of the mol­ecule about the twofold rotation axis, indicating that vacancies without the mol­ecule of propionic acid are likely to be present in the crystal structure. Reliability factors of a trial refinement with assumed full occupation of the disordered mol­ecule converged with neglig­ibly worse values and are collated in the refine_special_details section of the CIF. The respective electron densities of the peaks that were assigned to the atoms O15, O16, C22, C23 and C24a are 1.22, 0.97, 0.96, 0.82 and 0.31 e Å−3. The independently refined occupational parameters of the atoms of the disordered mol­ecule converged to the following values: O15: 0.410 (7); O16: 0.362 (7); C22: 0.571 (11); C23: 0.391 (9); C24: 0.184 (12), pointing to another type of occupational disorder, in particular regarding the distribution of the methyl group, which may partly overlap with atom C22 (Fig. 5[link]b). Treatment of these atoms after localization of all non-hydrogen atoms of the disordered propionic acid mol­ecule is described in detail in the refine_special_details section of the CIF.

43 reflections were discarded from the refinement because |Iobs − Icalc|/σ(Iobs) > 10. They are listed in the refine_special_details section of the CIF, together with the results of an alternative refinement with SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) where the contributions of the disordered propionic acid mol­ecule were removed using the SQUEEZE option in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg, 2015) and Origin (Origin, 2000); software used to prepare material for publication: JANA2006 (Petříček et al., 2014).

Poly[[tetradecakis(µ-propionato)heptabarium] propionic acid monosolvate tetrahydrate] top
Crystal data top
[Ba7(C3H5O2)14]·0.946C3H6O2·4H2OF(000) = 4063.4
Mr = 2126.4Dx = 2.090 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 70680 reflections
a = 15.7831 (2) Åθ = 2.8–29.6°
b = 14.0136 (2) ŵ = 4.10 mm1
c = 30.5583 (3) ÅT = 95 K
V = 6758.83 (15) Å3Prism, colourless
Z = 40.22 × 0.12 × 0.10 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
diffractometer
8981 independent reflections
Radiation source: X-ray tube8215 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 5.2027 pixels mm-1θmax = 29.6°, θmin = 2.4°
ω scansh = 1921
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 1818
Tmin = 0.568, Tmax = 0.656l = 4041
112254 measured reflections
Refinement top
Refinement on F2196 constraints
R[F > 3σ(F)] = 0.028for R[I>3σ (I)]H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.071Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.92(Δ/σ)max < 0.001
8981 reflectionsΔρmax = 1.14 e Å3
428 parametersΔρmin = 0.72 e Å3
7 restraints
Special details top

Refinement. 1) Reliability factors considering full occupation of the disordered propionic acid molecule: _refine_ls_R_factor_gt (0.0277), _refine_ls_wR_factor_gt (0.0698), _refine_ls_R_factor_all (0.0324), _refine_ls_wR_factor_ref (0.0712), _refine_ls_goodness_of_fit_ref (1.93), _refine_ls_goodness_of_fit_gt (1.98).

2) Details of the disorder in the proprionic acid molecule: The overall occupational parameter of the disordered propionic acid molecule was determined by refinement of the molecular part comprising of the atoms O15, O16 and C23 which seemed to be the ones least-affected by disorder or overlapping. This refined value has then been used as a value to which the sum of partial occupational parameters of the methyl atoms C24a and C24b should equal while refining the occupational parameter of C24b. The displacement parameter of C24b due to its proximity was supposed to be equal to that of C22 which was refined.

The positions of the methylene hydrogen atoms of C23a and C23b H1C23a, H2C23a; H1C23b, H2C23b) were calculated, with occupational parameters constrained to be equal to the occupational parameters of C24a and C24b, respectively, and with C—H = 0.99Å, Uiso(H) = 1.2Ueq(C). The distance C22—C23 was restrained to 1.52 (1) Å while the distances C23—C24a and C23—C24b were restrained to 1.50 (1) Å.

3) 43 diffractions with (Iobs-Icalc)/sigma(w)>10 were discarded from the refinement:

0 8 0; 6 4 1; 7 7 2; 1 8 2; 5 8 2; 6 8 2; 7 8 2; 2 10 2; 7 4 3; 8 1 4; 4 10 4; 3 4 5; 7 4 5; 6 6 6; 1 10 6; 5 10 6; 6 3 7; 3 4 7; 6 8 8; 0 10 8; 6 2 9; 1 3 9; 3 4 9; 6 6 9; 7 10 10; 5 1 11; 7 1 2; 3 3 12; 1 1 13; 5 1 13; 3 4 13; 4 5 13; 1 2 15; 1 6 15; 4 1 16; 0 2 17; 0 6 17; 1 1 19; 1 2 19; 3 4 21; 1 4 22; 1 1 25; 0 2 25.

4) An alternative refinement of the structure with the disordered propionic acid molecule being removed was carried out with SHELXL (Sheldrick, 2015b) using the SQUEEZE option in PLATON (Spek, 2015). The refinement converged with the folowing reliability factors: _refine_ls_R_factor_all = 0.0308, _refine_ls_R_factor_gt = 0.0280, _refine_ls_wR_factor_ref = 0.0584, _refine_ls_wR_factor_gt = 0.0577, 385 parameters, 9024 diffractions, 4 restraints, condition for the observed diffractions Iobs>2σ(Iobs).

These values are slightly better than those obtained from the refinement with JANA2006 (Petříček et al., 2014) with the same conditions for the observed diffractions Iobs>2σ(Iobs): _refine_ls_R_factor_all = 0.0324, _refine_ls_R_factor_gt = 0.0291, _refine_ls_wR_factor_ref = 0.0710, _refine_ls_wR_factor_gt = 0.0703, 428 parameters, 8981 diffractions, 7 restraints, 196 constraints. However, the refinement with JANA2006 did not include 4 × 4 × 0.946 electrons per unit cell into the calculation because the positions of the hydroxy as well as of the methyl hydrogen atoms of propionic acid were not determined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.265102 (12)0.276842 (14)0.409817 (6)0.01040 (6)
O10.20473 (14)0.15684 (17)0.48047 (7)0.0141 (7)
O20.20378 (14)0.31250 (17)0.49391 (7)0.0160 (7)
C10.19826 (19)0.2274 (3)0.50646 (10)0.0139 (10)
C20.1819 (2)0.2043 (3)0.55457 (10)0.0194 (11)
H1c20.1254290.1742230.5576290.0233*
H2c20.2210380.1532680.5641960.0233*
C30.1884 (3)0.2883 (3)0.58557 (11)0.0265 (12)
H1c30.1707550.2685260.6149480.0397*
H2c30.2471610.3108640.5865170.0397*
H3c30.1515420.3399580.5753110.0397*
O30.77274 (14)0.27521 (18)0.67975 (7)0.0165 (7)
O40.70280 (16)0.13907 (18)0.67159 (8)0.0216 (8)
C40.7343 (2)0.2046 (3)0.69537 (10)0.0161 (10)
C50.7235 (3)0.1981 (3)0.74443 (11)0.0272 (13)
H1c50.7069080.1322460.7525020.0327*
H2c50.6750650.2381980.7536110.0327*
C60.8025 (3)0.2269 (3)0.77026 (11)0.0310 (13)
H1c60.790280.2236930.8016660.0465*
H2c60.8490430.1832170.7632360.0465*
H3c60.8187050.292170.7624110.0465*
Ba20.596864 (11)0.480169 (14)0.553971 (6)0.00925 (6)
O50.39730 (13)0.31291 (17)0.46155 (7)0.0149 (7)
O60.50137 (14)0.39354 (17)0.49305 (7)0.0170 (7)
C70.45768 (19)0.3181 (2)0.48840 (9)0.0124 (9)
C80.4801 (2)0.2324 (3)0.51561 (11)0.0221 (11)
H1c80.5192830.2516280.5392980.0266*
H2c80.5116970.1859770.4974410.0266*
C90.4028 (2)0.1839 (3)0.53535 (12)0.0265 (12)
H1c90.4211140.1320780.5547060.0397*
H2c90.3699820.2305390.552180.0397*
H3c90.3674230.157710.5118640.0397*
O1w0.69585 (16)0.53342 (18)0.47792 (8)0.0176 (8)
H1o1w0.720 (2)0.4835 (17)0.4845 (14)0.0264*
H2o1w0.730 (2)0.575 (2)0.4853 (13)0.0264*
O2w0.43714 (16)0.4553 (2)0.59034 (8)0.0263 (9)
H1o2w0.398 (2)0.454 (3)0.5728 (12)0.0395*
H2o2w0.419 (3)0.472 (3)0.6140 (8)0.0395*
Ba30.723298 (12)0.460242 (14)0.675708 (6)0.01063 (6)
O70.32899 (14)0.09999 (17)0.39377 (7)0.0146 (7)
O80.26230 (14)0.02799 (17)0.41819 (8)0.0147 (7)
C100.3271 (2)0.0247 (2)0.41603 (10)0.0124 (9)
C110.4054 (2)0.0038 (3)0.44141 (13)0.0280 (13)
H1c110.3962350.008610.4729530.0336*
H2c110.4132130.073780.4395220.0336*
C120.4852 (2)0.0456 (3)0.42663 (16)0.0426 (17)
H1c120.5012380.0221040.3975760.0639*
H2c120.4753490.1145650.4252520.0639*
H3c120.5309350.032210.4474350.0639*
O90.57946 (15)0.58185 (18)0.69864 (7)0.0184 (7)
O100.61677 (15)0.58789 (17)0.62908 (7)0.0152 (7)
C130.5694 (2)0.6136 (2)0.66061 (11)0.0159 (10)
C140.4989 (2)0.6848 (3)0.65013 (13)0.0311 (13)
H1c140.5025170.703610.6189570.0373*
H2c140.4431440.6532960.6535630.0373*
C150.5020 (3)0.7718 (4)0.67817 (18)0.0504 (19)
H1c150.4598210.8179690.6679090.0756*
H2c150.4896990.7543130.7085580.0756*
H3c150.5586210.8003390.6764660.0756*
O110.62289 (13)0.33741 (17)0.61727 (7)0.0127 (7)
O120.57444 (14)0.35474 (18)0.68509 (7)0.0177 (7)
C160.5717 (2)0.3152 (2)0.64849 (10)0.0147 (10)
C170.5076 (3)0.2391 (3)0.63987 (13)0.0366 (14)
H1c170.5367970.1772330.6355430.0439*
H2c170.4796220.2512920.6114230.0439*
C180.4407 (4)0.2285 (4)0.67540 (16)0.069 (2)
H1c180.4040270.1740630.6685750.1033*
H2c180.4684230.2179220.7036730.1033*
H3c180.4064640.2868020.6768260.1033*
Ba40.50.45639 (2)0.750.01352 (8)
O130.68012 (16)0.44722 (19)0.76008 (7)0.0211 (8)
O140.61403 (16)0.4787 (2)0.82236 (8)0.0269 (9)
C190.6806 (2)0.4662 (3)0.80085 (11)0.0192 (11)
C200.7660 (2)0.4712 (3)0.82319 (11)0.0248 (13)
H1c200.8089340.4947630.8021970.0298*
H2c200.7858710.4058220.8299330.0298*
C210.7687 (2)0.5316 (3)0.86451 (12)0.0225 (12)
H1c210.827340.5369880.8747070.0338*
H2c210.7462580.5953230.8581780.0338*
H3c210.7341290.5013550.8872710.0338*
C220.4426 (5)0.0002 (7)0.2770 (3)0.031 (4)0.473 (4)
C24a0.508 (2)0.062 (4)0.2061 (7)0.16 (2)0.304 (15)
C24b0.533 (2)0.014 (2)0.2077 (7)0.031 (4)0.169 (15)
H1c23a0.5529350.0783070.2687380.0718*0.304 (15)
H2c23a0.5627250.0253360.2518890.0718*0.304 (15)
H1c23b0.5248420.0990050.2498150.0718*0.169 (15)
H2c23b0.5727770.0140630.2700390.0718*0.169 (15)
O150.3759 (5)0.0388 (6)0.2758 (2)0.050 (3)0.473 (4)
O160.4501 (8)0.0790 (10)0.2993 (4)0.071 (3)0.473 (4)
C230.5222 (10)0.0286 (11)0.2521 (6)0.060 (5)0.473 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01365 (10)0.00916 (11)0.00838 (10)0.00298 (7)0.00251 (6)0.00078 (7)
O10.0172 (11)0.0147 (13)0.0103 (11)0.0051 (10)0.0004 (8)0.0024 (9)
O20.0184 (12)0.0152 (13)0.0143 (12)0.0012 (10)0.0011 (9)0.0008 (9)
C10.0091 (15)0.0207 (19)0.0118 (16)0.0031 (13)0.0017 (11)0.0001 (13)
C20.0243 (19)0.020 (2)0.0139 (17)0.0002 (15)0.0026 (13)0.0002 (13)
C30.043 (2)0.023 (2)0.0128 (17)0.0025 (18)0.0039 (15)0.0018 (14)
O30.0211 (13)0.0181 (14)0.0104 (12)0.0062 (10)0.0022 (9)0.0031 (9)
O40.0291 (14)0.0141 (14)0.0216 (13)0.0038 (11)0.0049 (10)0.0003 (10)
C40.0210 (18)0.0154 (19)0.0118 (16)0.0085 (14)0.0039 (12)0.0006 (13)
C50.043 (2)0.025 (2)0.0132 (18)0.0031 (18)0.0071 (15)0.0051 (15)
C60.049 (3)0.030 (2)0.0146 (18)0.007 (2)0.0027 (16)0.0009 (16)
Ba20.00957 (10)0.00981 (11)0.00836 (10)0.00025 (7)0.00123 (6)0.00020 (7)
O50.0169 (12)0.0160 (13)0.0118 (11)0.0008 (10)0.0045 (8)0.0012 (9)
O60.0163 (12)0.0137 (13)0.0211 (12)0.0008 (10)0.0078 (9)0.0027 (9)
C70.0123 (15)0.0139 (17)0.0110 (15)0.0021 (13)0.0009 (11)0.0033 (12)
C80.0190 (18)0.018 (2)0.030 (2)0.0020 (15)0.0033 (14)0.0085 (15)
C90.0220 (19)0.024 (2)0.034 (2)0.0054 (16)0.0079 (15)0.0145 (17)
O1w0.0204 (13)0.0160 (14)0.0162 (12)0.0027 (11)0.0002 (10)0.0005 (10)
O2w0.0137 (13)0.0527 (19)0.0125 (13)0.0020 (12)0.0019 (9)0.0017 (12)
Ba30.01169 (10)0.01076 (11)0.00942 (10)0.00040 (7)0.00187 (6)0.00148 (7)
O70.0172 (12)0.0134 (12)0.0132 (11)0.0022 (10)0.0025 (9)0.0022 (9)
O80.0138 (12)0.0120 (13)0.0183 (12)0.0010 (9)0.0025 (9)0.0003 (9)
C100.0108 (15)0.0144 (17)0.0122 (16)0.0017 (13)0.0001 (11)0.0040 (12)
C110.025 (2)0.024 (2)0.035 (2)0.0055 (17)0.0136 (16)0.0035 (17)
C120.014 (2)0.039 (3)0.075 (4)0.0002 (19)0.018 (2)0.001 (2)
O90.0226 (13)0.0167 (13)0.0160 (12)0.0012 (11)0.0052 (9)0.0005 (10)
O100.0197 (12)0.0160 (13)0.0100 (11)0.0027 (10)0.0002 (9)0.0001 (9)
C130.0175 (16)0.0118 (17)0.0184 (17)0.0030 (14)0.0017 (13)0.0014 (13)
C140.024 (2)0.031 (2)0.038 (2)0.0067 (18)0.0017 (16)0.0008 (18)
C150.036 (3)0.041 (3)0.074 (4)0.014 (2)0.008 (2)0.016 (3)
O110.0121 (11)0.0153 (13)0.0106 (11)0.0013 (9)0.0032 (8)0.0008 (8)
O120.0168 (12)0.0208 (14)0.0154 (12)0.0028 (11)0.0048 (9)0.0055 (9)
C160.0157 (16)0.0146 (18)0.0137 (16)0.0009 (14)0.0046 (12)0.0008 (12)
C170.040 (2)0.039 (3)0.031 (2)0.026 (2)0.0169 (18)0.0183 (19)
C180.073 (4)0.071 (4)0.062 (3)0.061 (4)0.046 (3)0.035 (3)
Ba40.01414 (14)0.01790 (16)0.00851 (13)00.00393 (9)0
O130.0259 (14)0.0265 (15)0.0110 (12)0.0051 (11)0.0003 (10)0.0023 (10)
O140.0211 (13)0.048 (2)0.0111 (13)0.0057 (13)0.0015 (10)0.0005 (11)
C190.0256 (19)0.0198 (19)0.0123 (17)0.0049 (15)0.0013 (13)0.0010 (13)
C200.023 (2)0.037 (3)0.0148 (19)0.0069 (17)0.0013 (13)0.0007 (16)
C210.0209 (19)0.025 (2)0.0214 (19)0.0045 (16)0.0028 (14)0.0011 (15)
C220.037 (7)0.028 (5)0.029 (6)0.003 (5)0.014 (4)0.006 (4)
C24a0.12 (3)0.23 (5)0.14 (3)0.01 (3)0.05 (2)0.09 (3)
C24b0.037 (7)0.028 (5)0.029 (6)0.003 (5)0.014 (4)0.006 (4)
O150.038 (4)0.057 (5)0.054 (5)0.020 (4)0.014 (3)0.015 (4)
O160.037 (4)0.059 (6)0.116 (7)0.000 (4)0.002 (4)0.046 (5)
C230.050 (11)0.056 (8)0.074 (9)0.014 (6)0.031 (9)0.027 (7)
Geometric parameters (Å, º) top
O1—C11.273 (4)C18—H1c180.98
O2—C11.256 (4)C18—H2c180.98
C1—C21.528 (4)C18—H3c180.98
C2—H1c20.99O13—C191.274 (4)
C2—H2c20.99O14—C191.251 (4)
C2—C31.515 (5)C19—C201.513 (5)
C3—H1c30.98C20—H1c200.99
C3—H2c30.98C20—H2c200.99
C3—H3c30.98C20—C211.521 (5)
O3—C41.255 (4)C21—H1c210.98
O4—C41.272 (4)C21—H2c210.98
C4—C51.512 (5)C21—H3c210.98
C5—H1c50.99C22—O151.187 (12)
C5—H2c50.99C22—O161.303 (18)
C5—C61.529 (6)C22—C231.523 (18)
C6—H1c60.98C24a—C231.50 (3)
C6—H2c60.98C24b—C231.49 (3)
C6—H3c60.98H1c23a—C230.99
O5—C71.260 (4)H2c23a—C230.99
O6—C71.270 (4)H1c23b—C230.99
C7—C81.504 (5)H2c23b—C230.99
C8—H1c80.99Ba1—O12.898 (2)
C8—H2c80.99Ba1—O22.791 (2)
C8—C91.521 (5)Ba1—O3i2.835 (2)
C9—H1c90.98Ba1—O4i2.923 (2)
C9—H2c90.98Ba1—O52.666 (2)
C9—H3c90.98Ba1—O72.720 (2)
O1w—H1o1w0.82 (3)Ba1—O8ii2.781 (2)
O1w—H2o1w0.82 (3)Ba1—O10iii2.913 (2)
O2w—H1o2w0.82 (3)Ba1—O11i2.879 (2)
O2w—H2o2w0.81 (3)Ba2—O1iv2.774 (2)
O7—C101.256 (4)Ba2—O5iii2.940 (2)
O8—C101.263 (4)Ba2—O62.685 (2)
C10—C111.513 (5)Ba2—O6iii2.757 (2)
C11—H1c110.99Ba2—O1w2.898 (2)
C11—H2c110.99Ba2—O2w2.777 (3)
C11—C121.507 (6)Ba2—O8iv2.827 (2)
C12—H1c120.98Ba2—O102.765 (2)
C12—H2c120.98Ba2—O112.813 (2)
C12—H3c120.98Ba3—O32.711 (3)
O9—C131.255 (4)Ba3—O4v2.767 (3)
O10—C131.272 (4)Ba3—O7iv2.829 (2)
C13—C141.528 (5)Ba3—O8iv3.084 (2)
C14—H1c140.99Ba3—O92.924 (2)
C14—H2c140.99Ba3—O102.838 (2)
C14—C151.491 (7)Ba3—O112.943 (2)
C15—H1c150.98Ba3—O122.791 (2)
C15—H2c150.98Ba3—O132.673 (2)
C15—H3c150.98Ba3—O15iv2.828 (7)
H1c15—H2c151.6003Ba4—O92.670 (2)
H1c15—H3c151.6003Ba4—O9vi2.670 (2)
H2c15—H3c151.6003Ba4—O122.710 (2)
O11—C161.288 (4)Ba4—O12vi2.710 (2)
O12—C161.249 (4)Ba4—O132.862 (3)
C16—C171.494 (5)Ba4—O13vi2.862 (3)
C17—H1c170.99Ba4—O142.868 (2)
C17—H2c170.99Ba4—O14vi2.868 (2)
C17—C181.522 (7)
O1—C1—O2122.8 (3)O2—Ba1—O8ii71.65 (7)
O1—C1—C2116.7 (3)O2—Ba1—O10iii118.77 (6)
O2—C1—C2120.5 (3)O2—Ba1—O11i95.39 (6)
C1—C2—H1c2109.47O3i—Ba1—O4i45.29 (7)
C1—C2—H2c2109.47O3i—Ba1—O5126.01 (6)
C1—C2—C3115.2 (3)O3i—Ba1—O764.90 (7)
H1c2—C2—H2c2103.07O3i—Ba1—O8ii110.40 (7)
H1c2—C2—C3109.47O3i—Ba1—O10iii75.30 (6)
H2c2—C2—C3109.47O3i—Ba1—O11i67.20 (6)
C2—C3—H1c3109.47O4i—Ba1—O5133.75 (7)
C2—C3—H2c3109.47O4i—Ba1—O7109.79 (7)
C2—C3—H3c3109.47O4i—Ba1—O8ii68.25 (7)
H1c3—C3—H2c3109.47O4i—Ba1—O10iii66.77 (7)
H1c3—C3—H3c3109.47O4i—Ba1—O11i73.57 (7)
H2c3—C3—H3c3109.47O5—Ba1—O789.40 (7)
O3—C4—O4122.7 (3)O5—Ba1—O8ii83.15 (7)
O3—C4—C5118.6 (3)O5—Ba1—O10iii67.52 (6)
O4—C4—C5118.6 (3)O5—Ba1—O11i152.39 (7)
C4—C5—H1c5109.47O7—Ba1—O8ii166.01 (7)
C4—C5—H2c5109.47O7—Ba1—O10iii106.39 (7)
C4—C5—C6113.8 (3)O7—Ba1—O11i74.36 (6)
H1c5—C5—H2c5104.72O8ii—Ba1—O10iii59.80 (7)
H1c5—C5—C6109.47O8ii—Ba1—O11i116.89 (6)
H2c5—C5—C6109.47O10iii—Ba1—O11i138.06 (6)
C5—C6—H1c6109.47O1iv—Ba2—O5iii127.04 (6)
C5—C6—H2c6109.47O1iv—Ba2—O676.61 (7)
C5—C6—H3c6109.47O1iv—Ba2—O6iii126.29 (6)
H1c6—C6—H2c6109.47O1iv—Ba2—O1w62.81 (7)
H1c6—C6—H3c6109.47O1iv—Ba2—O2w128.49 (8)
H2c6—C6—H3c6109.47O1iv—Ba2—O8iv73.22 (7)
O5—C7—O6122.2 (3)O1iv—Ba2—O10128.55 (7)
O5—C7—C8119.4 (3)O1iv—Ba2—O1171.28 (6)
O6—C7—C8118.4 (3)O5iii—Ba2—O6110.59 (7)
C7—C8—H1c8109.47O5iii—Ba2—O6iii45.60 (6)
C7—C8—H2c8109.47O5iii—Ba2—O1w66.41 (7)
C7—C8—C9112.8 (3)O5iii—Ba2—O2w102.51 (8)
H1c8—C8—H2c8105.89O5iii—Ba2—O8iv77.63 (6)
H1c8—C8—C9109.47O5iii—Ba2—O1065.91 (6)
H2c8—C8—C9109.47O5iii—Ba2—O11143.89 (6)
C8—C9—H1c9109.47O6—Ba2—O6iii67.25 (7)
C8—C9—H2c9109.47O6—Ba2—O1w82.13 (7)
C8—C9—H3c9109.47O6—Ba2—O2w73.22 (7)
H1c9—C9—H2c9109.47O6—Ba2—O8iv146.54 (7)
H1c9—C9—H3c9109.47O6—Ba2—O10152.38 (7)
H2c9—C9—H3c9109.47O6—Ba2—O11103.72 (7)
H1o1w—O1w—H2o1w104 (3)O6iii—Ba2—O1w73.74 (7)
H1o2w—O2w—H2o2w109 (4)O6iii—Ba2—O2w77.20 (7)
O7—C10—O8122.6 (3)O6iii—Ba2—O8iv121.61 (7)
O7—C10—C11118.7 (3)O6iii—Ba2—O1098.40 (7)
O8—C10—C11118.7 (3)O6iii—Ba2—O11153.77 (6)
C10—C11—H1c11109.47O1w—Ba2—O2w147.42 (7)
C10—C11—H2c11109.47O1w—Ba2—O8iv71.48 (7)
C10—C11—C12114.1 (3)O1w—Ba2—O10117.64 (7)
H1c11—C11—H2c11104.42O1w—Ba2—O11130.99 (7)
H1c11—C11—C12109.47O2w—Ba2—O8iv138.40 (7)
H2c11—C11—C12109.47O2w—Ba2—O1080.75 (7)
C11—C12—H1c12109.47O2w—Ba2—O1176.60 (7)
C11—C12—H2c12109.47O8iv—Ba2—O1061.04 (7)
C11—C12—H3c12109.47O8iv—Ba2—O1180.03 (6)
H1c12—C12—H2c12109.47O10—Ba2—O1178.51 (6)
H1c12—C12—H3c12109.47O3—Ba3—O4v138.34 (7)
H2c12—C12—H3c12109.47O3—Ba3—O7iv65.10 (7)
O9—C13—O10121.8 (3)O3—Ba3—O8iv106.22 (6)
O9—C13—C14121.2 (3)O3—Ba3—O9140.37 (7)
O10—C13—C14117.0 (3)O3—Ba3—O10142.77 (7)
C13—C14—H1c14109.47O3—Ba3—O1167.87 (6)
C13—C14—H2c14109.47O3—Ba3—O1274.39 (7)
C13—C14—C15112.9 (3)O3—Ba3—O1387.95 (7)
H1c14—C14—H2c14105.79O3—Ba3—O15iv74.66 (16)
H1c14—C14—C15109.47O4v—Ba3—O7iv89.29 (7)
H2c14—C14—C15109.47O4v—Ba3—O8iv66.10 (6)
C14—C15—H1c15109.47O4v—Ba3—O979.07 (7)
C14—C15—H2c15109.47O4v—Ba3—O1069.89 (7)
C14—C15—H3c15109.47O4v—Ba3—O11136.80 (6)
H1c15—C15—H2c15109.47O4v—Ba3—O12147.07 (7)
H1c15—C15—H3c15109.47O4v—Ba3—O13102.31 (7)
H2c15—C15—H3c15109.47O4v—Ba3—O15iv70.16 (16)
O11—C16—O12122.3 (3)O7iv—Ba3—O8iv43.61 (6)
O11—C16—C17117.8 (3)O7iv—Ba3—O9144.26 (6)
O12—C16—C17119.9 (3)O7iv—Ba3—O1099.24 (6)
C16—C17—H1c17109.47O7iv—Ba3—O1171.80 (6)
C16—C17—H2c17109.47O7iv—Ba3—O12114.55 (7)
C16—C17—C18114.4 (4)O7iv—Ba3—O13148.63 (7)
H1c17—C17—H2c17104.01O7iv—Ba3—O15iv83.84 (15)
H1c17—C17—C18109.47O8iv—Ba3—O9101.45 (6)
H2c17—C17—C18109.47O8iv—Ba3—O1057.13 (6)
C17—C18—H1c18109.47O8iv—Ba3—O1173.92 (6)
C17—C18—H2c18109.47O8iv—Ba3—O12115.25 (6)
C17—C18—H3c18109.47O8iv—Ba3—O13165.74 (7)
H1c18—C18—H2c18109.47O8iv—Ba3—O15iv108.43 (15)
H1c18—C18—H3c18109.47O9—Ba3—O1045.02 (6)
H2c18—C18—H3c18109.47O9—Ba3—O1193.91 (6)
O13—C19—O14122.6 (3)O9—Ba3—O1268.32 (7)
O13—C19—C20117.1 (3)O9—Ba3—O1367.09 (7)
O14—C19—C20120.3 (3)O9—Ba3—O15iv122.20 (16)
C19—C20—H1c20109.47O10—Ba3—O1175.23 (6)
C19—C20—H2c20109.47O10—Ba3—O1283.50 (7)
C19—C20—C21115.2 (3)O10—Ba3—O13112.10 (7)
H1c20—C20—H2c20103.1O10—Ba3—O15iv139.87 (16)
H1c20—C20—C21109.47O11—Ba3—O1245.51 (6)
H2c20—C20—C21109.47O11—Ba3—O13114.08 (7)
C20—C21—H1c21109.47O11—Ba3—O15iv141.20 (16)
C20—C21—H2c21109.47O12—Ba3—O1369.52 (7)
C20—C21—H3c21109.47O12—Ba3—O15iv131.73 (16)
H1c21—C21—H2c21109.47O13—Ba3—O15iv73.25 (16)
H1c21—C21—H3c21109.47O9—Ba4—O9vi97.61 (7)
H2c21—C21—H3c21109.47O9—Ba4—O1273.28 (7)
O15—C22—O16119.1 (10)O9—Ba4—O12vi168.56 (7)
O15—C22—C23126.5 (11)O9—Ba4—O1368.05 (7)
O16—C22—C23114.3 (10)O9—Ba4—O13vi115.65 (7)
C22—C23—C24a115.3 (17)O9—Ba4—O1494.96 (7)
C22—C23—C24b116.0 (17)O9—Ba4—O14vi76.68 (7)
C22—C23—H1c23a109.47O9vi—Ba4—O12168.56 (7)
C22—C23—H2c23a109.47O9vi—Ba4—O12vi73.28 (7)
C22—C23—H1c23b109.47O9vi—Ba4—O13115.65 (7)
C22—C23—H2c23b109.47O9vi—Ba4—O13vi68.05 (7)
C24a—C23—H1c23a109.47O9vi—Ba4—O1476.68 (7)
C24a—C23—H2c23a109.47O9vi—Ba4—O14vi94.96 (7)
C24b—C23—H1c23b109.47O12—Ba4—O12vi116.58 (7)
C24b—C23—H2c23b109.47O12—Ba4—O1367.95 (7)
H1c23a—C23—H2c23a102.92O12—Ba4—O13vi109.16 (7)
H1c23b—C23—H2c23b102.1O12—Ba4—O14110.46 (7)
O1—Ba1—O245.88 (7)O12—Ba4—O14vi76.42 (7)
O1—Ba1—O3i125.73 (7)O12vi—Ba4—O13109.16 (7)
O1—Ba1—O4i139.24 (7)O12vi—Ba4—O13vi67.95 (7)
O1—Ba1—O585.73 (6)O12vi—Ba4—O1476.42 (7)
O1—Ba1—O774.18 (6)O12vi—Ba4—O14vi110.46 (7)
O1—Ba1—O8ii116.81 (7)O13—Ba4—O13vi174.86 (7)
O1—Ba1—O10iii153.16 (6)O13—Ba4—O1445.47 (7)
O1—Ba1—O11i68.60 (6)O13—Ba4—O14vi135.33 (7)
O2—Ba1—O3i161.74 (7)O13vi—Ba4—O14135.33 (7)
O2—Ba1—O4i126.49 (7)O13vi—Ba4—O14vi45.47 (7)
O2—Ba1—O572.03 (6)O14—Ba4—O14vi167.46 (9)
O2—Ba1—O7117.23 (7)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1; (v) x+3/2, y+1/2, z; (vi) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1o1w···O1iv0.82 (3)2.25 (3)2.957 (3)145 (4)
O1w—H2o1w···O2iii0.82 (3)2.00 (3)2.813 (3)171 (3)
O2w—H1o2w···O1wiii0.82 (3)2.15 (3)2.963 (3)172 (4)
O2w—H2o2w···O14vi0.81 (3)2.01 (3)2.807 (3)164 (4)
C17—H1c17···O16vii0.992.432.989 (15)115.22
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1; (vi) x+1, y, z+3/2; (vii) x+1, y, z+1.
Bonding properties of Ba2+ cations in the title structure top
AtomCoordination numberdmin(Ba—O) (Å)dmax(Ba—O) (Å)Bond valence sum (v.u.)a
Ba192.666 (2)2.923 (2)2.191 (5)
Ba292.685 (2)2.940 (2)2.286 (5)
Ba3b9.4732.673 (2)3.084 (2)2.248 (5)
Ba3c9.5002.673 (2)3.084 (2)2.255 (5)
Ba3d92.673 (2)3.084 (2)2.138 (5)
Ba3e102.673 (2)3.084 (2)2.372 (6)
Ba482.670 (2)2.868 (2)2.204 (5)
Notes: (a) Calculation with the parameters of Brese & O'Keeffe (1991); (b) consideration of a disordered propionic acid molecule with refined occupancy = 0.473 (4); (c) consideration of a disordered propionic acid molecule with 0.5 occupancy; (d) excluding the disordered propionic acid molecule; (e) local full occupation.
Hydrogen-bond geometry (Å, °) top
The hydrogen bond O16···O4vii is missing from this table because of the undetermined position of the bridging hydrogen atom.
D—H···AD—HH···AD···AD—H···A
O1w—H1O1w···O1iv0.82 (3)2.25 (3)2.957 (3)145 (4)
O1w—H2O1w···O2iii0.82 (3)2.00 (3)2.813 (3)171 (3)
O2w—H1O2w···O1wiii0.82 (3)2.15 (3)2.963 (4)172 (4)
O2w—H2O2w···O14vi0.81 (3)2.01 (3)2.807 (3)164 (4)
C17—H1c17···O16viii0.992.432.989 (15)115.22
Symmetry codes: (iii) -x+1, -y+1, -z + 1; (iv) x+1/2, -y+1/2, -z + 1; (vi) -x+1, y, -z + 3/2; (vii) -x+1, -y, -z + 1.
 

Acknowledgements

The authors expresses gratitude for the support provided by Project NPU I – LO1603 of the Ministry of Education of the Czech Republic to the Institute of Physics of the Academy of Sciences of the Czech Republic.

Funding information

Funding for this research was provided by: Ministry of Education of the Czech Republic (grant No. NPU I -- LO1603).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond, p. 65. Oxford University Press.  Google Scholar
First citationFábry, J. (2020). Unpublished results.  Google Scholar
First citationGesi, K. (1993). J. Phys. Soc. Jpn, 62, 4511–4515.  CrossRef Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationInternational Centre for Diffraction Data (2019). PDF-4 (Powder Diffraction File 4).  Google Scholar
First citationNakamura, E. & Deguchi, K. (1992). Ferroelectrics, 137, 153–163.  CrossRef CAS Google Scholar
First citationOrigin (2000). OriginLab Corporation, USA.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977–2985.  CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds