research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of chlorido­[dihy­droxybis­(1-imino­eth­­oxy)]arsanido-κ3N,As,N′]platinum(II) and of a polymorph of chlorido­[dihy­droxybis­(1-imino­prop­­oxy)arsanido-κ3N,As,N′]platinum(II)

CROSSMARK_Color_square_no_text.svg

aUniversity of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
*Correspondence e-mail: schuttem@ufs.ac.za

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 November 2019; accepted 6 December 2019; online 10 January 2020)

Each central platinum(II) atom in the crystal structures of chlorido­[dihy­droxybis­(1-imino­eth­oxy)arsanido-κ3N,As,N′]platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido­[dihy­droxybis­(1-imino­prop­oxy)arsanido-κ3N,As,N′]platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitro­gen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intra­molecular and four classical inter­molecular hydrogen-bonding inter­actions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intra­molecular and four classical inter­molecular hydrogen-bonding inter­actions) is observed in the crystal structure of (2). Various π-inter­actions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring mol­ecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-inter­actions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.]). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed.

1. Chemical context

Platinum and arsenic compounds have shown great versatility in terms of applications in the biological and medicinal fields (Reedijk, 2009[Reedijk, J. (2009). Eur. J. Inorg. Chem. 2009, pp. 1303-1312.]). Platinum compounds are still the most widely used drugs in the fight against cancer in spite of the serious side effects and the resistance of some types of cancers (Miller et al., 2002[Miller, W. H., Schipper, H. M., Lee, J. S., Singer, J. & Waxman, S. (2002). Cancer Res. 62, 3893-3903.]; Basu & Krishnamurthy, 2010[Basu, A. & Krishnamurthy, S. (2010). J. Nucleic Acids, 2010, 1-16.]; Jakupec et al., 2003[Jakupec, M. A., Galanski, M. & Keppler, B. K. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 1-54.]; Kauffman et al., 2010[Kauffman, G. B., Pentimalli, R., Doldi, S. & Hall, M. D. (2010). Plat. Met. Rev. 54, 250-256.]; Wheate et al., 2010[Wheate, N. J., Walker, S., Craig, G. E. & Oun, R. (2010). Dalton Trans. 39, 8113-8127.]; Rosenberg et al., 1965[Rosenberg, B., Van Camp, I. & Krigas, T. (1965). Nature, 205, 698-699.]; Marino et al., 2017[Marino, T., Parise, A. & Russo, N. (2017). Phys. Chem. Chem. Phys. 19, 1328-1334.]; Aabo et al., 1998[Aabo, K., Adams, M., Adnitt, P., Alberts, D. S., Athanazziou, A., Barley, V., Bell, D. R., Bianchi, U., Bolis, G., Brady, M. F., Brodovsky, H. S., Bruckner, H., Buyse, M., Canetta, R., Chylak, V., Cohen, C. J., Colombo, N., Conte, P. F., Crowther, D., Edmonson, J. H., Gennatas, C., Gilbey, E., Gore, M., Guthrie, D., Kaye, S., Laing, A., Landoni, F., Leonard, R., Lewis, C., Liu, P., Mangioni, C., Marsoni, S., Meerpohl, H., Omura, G., Parmar, M., Pater, J., Pecorelli, S., Presti, M., Sauerbrei, W., Skarlos, D., Smalley, R., Solomon, H., Stewart, L., Sturgeon, J., Tattersall, M., Wharton, J., ten Bokkel Huinink, W., Tomirotti, M., Torri, W., Trope, C., Turbow, M., Vermorken, J., Webb, M., Wilbur, D., Williams, C., Wiltshaw, E. & Yeap, B. (1998). Br. J. Cancer, 78, 1479-1487.]; Kelland, 2007[Kelland, L. (2007). Nat. Rev. Cancer, 7, 573-584.]; Shi et al., 2019[Shi, H., Clarkson, G. J. & Sadler, P. J. (2019). Inorg. Chim. Acta, 489, 230-235.]). Tumoral malignancies have a high lethality rate and are among the most widespread and difficult diseases to treat. The need for the development of new drugs and treatment alternatives has increased as many of the available effective drugs are comparable and similar to each other (Ott, 2009[Ott, I. (2009). Coord. Chem. Rev. 253, 1670-1681.]; Burchenal, 1978[Burchenal, J. H. (1978). Biochimie, 60, 915-923.]). Platinum-based anti­tumour agents have guided and constructed the current tumor chemotherapy treatment, but the side effects complicate and inhibit their clinical application (Rosenberg et al., 1965[Rosenberg, B., Van Camp, I. & Krigas, T. (1965). Nature, 205, 698-699.]; Marino et al., 2017[Marino, T., Parise, A. & Russo, N. (2017). Phys. Chem. Chem. Phys. 19, 1328-1334.]; Basu & Krishnamurthy, 2010[Basu, A. & Krishnamurthy, S. (2010). J. Nucleic Acids, 2010, 1-16.]; Aabo et al., 1998[Aabo, K., Adams, M., Adnitt, P., Alberts, D. S., Athanazziou, A., Barley, V., Bell, D. R., Bianchi, U., Bolis, G., Brady, M. F., Brodovsky, H. S., Bruckner, H., Buyse, M., Canetta, R., Chylak, V., Cohen, C. J., Colombo, N., Conte, P. F., Crowther, D., Edmonson, J. H., Gennatas, C., Gilbey, E., Gore, M., Guthrie, D., Kaye, S., Laing, A., Landoni, F., Leonard, R., Lewis, C., Liu, P., Mangioni, C., Marsoni, S., Meerpohl, H., Omura, G., Parmar, M., Pater, J., Pecorelli, S., Presti, M., Sauerbrei, W., Skarlos, D., Smalley, R., Solomon, H., Stewart, L., Sturgeon, J., Tattersall, M., Wharton, J., ten Bokkel Huinink, W., Tomirotti, M., Torri, W., Trope, C., Turbow, M., Vermorken, J., Webb, M., Wilbur, D., Williams, C., Wiltshaw, E. & Yeap, B. (1998). Br. J. Cancer, 78, 1479-1487.]; Kelland, 2007[Kelland, L. (2007). Nat. Rev. Cancer, 7, 573-584.]; Shi et al., 2019[Shi, H., Clarkson, G. J. & Sadler, P. J. (2019). Inorg. Chim. Acta, 489, 230-235.]). Drug resistance is a major limiting factor in terms of the range of tumours that can be treated and the improvement of the therapy (Marino et al., 2017[Marino, T., Parise, A. & Russo, N. (2017). Phys. Chem. Chem. Phys. 19, 1328-1334.]). Arsenic trioxide was approved by the FDA in 2000 for the treatment of acute promyelocytic leukemia, and since then several studies have shown that the combinatorial employment of arsenic and platinum-based cancer drugs has shown significant therapeutic potential (Wang et al., 2004[Wang, G., Li, W., Cui, J., Gao, S., Yao, C., Jiang, Z., Song, Y., Yuan, C. J., Yang, Y., Liu, Z. & Cai, L. (2004). Hematol. Oncol. 22, 63-71.]; Shen et al., 2004[Shen, Z.-X., Shi, Z.-Z., Fang, J., Gu, B.-W., Li, J.-M., Zhu, Y.-M., Shi, J.-Y., Zheng, P.-Z., Yan, H., Liu, Y.-F., Chen, Y., Shen, Y., Wu, W., Tang, W., Waxman, S., De Thé, H., Wang, Z.-Y., Chen, S.-J. & Chen, Z. (2004). Proc. Natl Acad. Sci. USA, 101, 5328-5335.]; Emadi & Gore, 2010[Emadi, A. & Gore, S. D. (2010). Blood Rev. 24, 191-199.]; Zhang et al., 2009[Zhang, N., Wu, Z.-M., McGowan, E., Shi, J., Hong, Z.-B., Ding, C.-W., Xia, P. & Di, W. (2009). Cancer Sci. 100, 2459-2464.], 2010[Zhang, X.-W., Yan, X.-J., Zhou, Z.-R., Yang, F.-F., Wu, Z.-Y., Sun, H.-B., Liang, W.-X., Song, A.-X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.-Y., Yang, H.-Y., Huang, Q.-H., Zhou, G.-B., Tong, J.-H., Zhang, Y., Wu, J.-H., Hu, H. Y., de Thé, H., Chen, S.-J. & Chen, Z. (2010). Science, 328, 240-243.]). These results led to the synthesis of complexes containing both platinum and arsenic (Swindell et al., 2013[Swindell, E. P., Hankins, P. L., Chen, H., Miodragović, D. U. & O'Halloran, T. V. (2013). Inorg. Chem. 52, 12292-12304.]; Miodragović et al., 2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.], 2019[Miodragović, D., Swindell, E. P., Waxali, Z. S., Bogachkov, A. & O'Halloran, T. V. (2019). Inorg. Chim. Acta, 496, 119030.]), which were called arsenoplatins. Initial results indicate that these complexes are able to bypass drug-resistance mechanisms that lower the effect of cisplatin and have higher cytotoxicity than cisplatin in some cases. To date, the studies of Miodragović et al. (2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.], 2019[Miodragović, D., Swindell, E. P., Waxali, Z. S., Bogachkov, A. & O'Halloran, T. V. (2019). Inorg. Chim. Acta, 496, 119030.]) are the only crystallographic data available in the CCDC (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

[Scheme 1]

The structures reported here, [Pt(C4H10AsN2O4)Cl] (1), and [Pt(C6H14AsN2O4)Cl], (2), expand on this work and form part of an ongoing study on arsenoplatins, their solid- and solution-state behaviour and evaluation thereof.

2. Database survey

Two crystal structures similar to (1) were found after a search of the Cambridge Structure Database (CSD, Version 5.40, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), both of which (ODOHAS, ODOHEW) were reported by Miodragović et al. (2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.], 2019[Miodragović, D., Swindell, E. P., Waxali, Z. S., Bogachkov, A. & O'Halloran, T. V. (2019). Inorg. Chim. Acta, 496, 119030.]). They consist of the same arsenoplatin complex as (1), accompanied by an acetamide hemihydrate and acetamide solvent species in the unit cell, and crystallize in the P[\overline{1}] and P21/n space groups, respectively. The search also revealed that (2) represents a polymorph, with the first crystal structure determination (ODOGOF; Miodragović et al., 2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.]) in the ortho­rhom­bic space group type Pbca, in contrast to space group type P21/c of (2).

3. Structural commentary

In (1) the square-planar coordination environment around platinum(II) is defined by two nitro­gen donor atoms, a chlorido ligand and the coordination to arsenic. In turn, arsenic is coordinated by two oxygen donor atoms, two hydroxyl ligands and by platinum(II), completing a trigonal–bipyramidal coordination sphere (Fig. 1[link]). The first (ODOHAS) of the other two structure reports with a chlorido­[dihy­droxybis­(1-imino­eth­oxy)]arsanido]platinum(II) mol­ecule (Miodragović et al., 2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.]) is different from (1) because of an acetamide solvent mol­ecule in the unit cell and a different space group (P21/n), and the second (ODOHEW) crystallizes in the same space group as (1) (P[\overline{1}]) but with acetamide and hemihydrate solvent mol­ecules in the unit cell. The bond lengths in the title compound compare very well with those in the two structures in literature. The Pt—As bond length of 2.2730 (12) Å and the Pt—Cl bond length of 2.3401 (15) Å are similar to 2.2732 (3) and 2.3272 (8) Å for ODOHEW, and 2.2729 (2) and 2.3328 (6) Å for ODOHAS. The Pt—N bond lengths vary between 1.999 (4) and 2.005 (4) Å, the As—O bond lengths between 1.898 (3) and 2.107 (3) Å, and the As—OH bond lengths between 1.722 (3) and 1.738 (3) Å. Overall, these mol­ecular structures compare well. When comparing the Pt—As and Pt—Cl bond lengths to those of other platinum(II) complexes where As and Cl are in trans positions, it is clear that the Pt—As bond lengths do not vary significantly and range between 2.3333 (6) and 2.3599 (2) Å, while for the Pt—Cl bond lengths a greater variation is seen, in a range from 2.2917 (4) to 2.3927 (5) Å (Reinholdt & Bendix, 2017[Reinholdt, A. & Bendix, J. (2017). Inorg. Chem. 56, 12492-12497.]; Clegg, 2016[Clegg, W. (2016). Private communication (refcode: CCDC 1470767). CCDC, Cambridge, England. https:/doi.org/10.5517/ccdc.csd.cc1lcg3j]; Dube et al., 2016[Dube, J. W., Zheng, Y., Thiel, W. & Alcarazo, M. (2016). J. Am. Chem. Soc. 138, 6869-6877.]; Imoto et al., 2017[Imoto, H., Sasaki, H., Tanaka, S., Yumura, T. & Naka, K. (2017). Organometallics, 36, 2605-2611.]; Muessig et al., 2019[Muessig, J. H., Stennett, T. E., Schmidt, U., Dewhurst, R. D., Mailänder, L. & Braunschweig, H. (2019). Dalton Trans. 48, 3547-3550.]). While the Pt—Cl length in (1) compares well with these trans complexes, the Pt—As bond length is somewhat smaller. The square-planar coordination around the central platinum(II) atom is distorted with N1—Pt1—N2 and N1—Pt1—As1 being 173.90 (13) and 85.18 (11)°, respectively, deviating from the expected 180 and 90°. The trigonal–bipyramidal coordination around the arsenic atom is significantly distorted with O4—As1—O6, O1—As1—O2 and O1—As1—Pt1 being 106.98 (14), 174.04 (11) and 95.35 (10)°, deviating from the ideal 120, 180 and 90°, respectively. Considering arsenic with a coordination number of 5, the index τ5 parameter can be used to calculate any potential distortion (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The τ5 parameter is defined as (βα)/60° with β the largest and α the second largest angle in the coordination sphere and was calculated as 0.794 for (1), suggesting a significantly distorted trigonal–bipyramidal shape around arsenic (τ5 = 0 for an ideal square pyramid and 1 for an ideal trigonal bipyramid).

[Figure 1]
Figure 1
Mol­ecular structures of (1) and (2), indicating the numbering schemes. Displacement ellipsoids are drawn at a probability level of 50%.

The coordination environments of the platinum and arsenic atoms in (2) are the same as in (1), i.e. Pt1 is coordinated by a chlorido ligand, two nitro­gen donor atoms and arsenic, that is additionally bonded to two hydroxyl ligands and two oxygen donor atoms (Fig. 1[link]). The Pt—As and Pt—Cl bond lengths of 2.2672 (8) Å and 2.3387 (11) Å in (2) are virtually identical with the bond lengths of 2.2687 (4) Å and 2.3361 (9) Å, respectively, in the ortho­rhom­bic polymorph reported by Miodragović et al. (2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.]). Again, these Pt—As and Pt—Cl bond lengths fit well into the ranges reported for other structures where As and Cl are in trans positions. The square-planar coordination environment around the platinum(II) atom is similarly distorted in the structures of the two polymorphs, with the ideal 180° (N—Pt—N) and 90° (N—Pt—Cl) angles deviating at 173.59 (13) and 94.68 (9)° for the structure determined by Miodragović et al. (2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.]) and 173.20 (14) (N1—Pt1—N2) and 94.16 (11)° (N1—Pt1—Cl1) for (2), respectively. The largest deviation of the trigonal–bipyramidal coordination sphere of the arsenic atom in the polymorphic structures pertains to the Pt—As—OH angle, with reported values of 129.78 (10) and 124.67 (9)° for the ortho­rhom­bic structure (Miodragović et al., 2013[Miodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749-10752.]) and of 130.05 (11) and 124.46 (9)° for (2). The τ5 parameter for (2) is calculated as 0.711.

When comparing the mol­ecules of (1) and (2), it is clear that they do not differ much in terms of bond lengths and angles, with the only structural difference being the alkyl substituent on the ligand, viz. in (1) an ethyl and in (2) a propyl chain. The bond lengths around platinum are all similar (Pt—As, Pt—Cl, Pt—N) as well as the two pairs of As—OH distances. There is a slight variation in the As—O bond lengths, 1.898 (3) and 2.107 (3) Å for (1) and 1.946 (3) and 1.979 (3) Å for (2). The N1—Pt1—N2 bond angles are similar [173.90 (13)° for (1) and 173.20 (14)° for (2)] while there are slight differences for the N—Pt1—As1 and N—Pt—Cl1 bond angles: 85.18 (11) and 89.42 (11)° for (1), and 87.25 (10) and 86.05 (10)° for (2) (N1—Pt1—As1, N2—Pt1—As1), and 93.28 (11) and 92.34 (11)° for (1) and 94.16 (11) and 92.53 (10)° for (2) (N1—Pt1—Cl1, N2—Pt1—Cl1). The As1—Pt1—Cl1 bond angles also vary being 174.79 (3) and 178.51 (3)° for (1) and (2). The bond angles around arsenic are all in a similar range but have more variation in some of the angles, for instance 126.42 (10) and 130.05 (11)° (O6—As1—Pt1), 90.24 (9) and 94.20 (9)° (O2—As1—Pt1), and 95.35 (10) and 93.12 (8)° (O1—As1—Pt1) for (1) and (2), respectively. The trigonal– bipyramidal coord­ination environment around arsenic is distorted in both mol­ecules with a τ5 parameter value of 0.794 and 0.711 for (1) and (2). Thus, the As atom in (2) shows a slightly higher distortion than in (1).

4. Supra­molecular features

In the crystal structure of (1), six hydrogen-bonding inter­actions are observed (Table 1[link]), five inter­molecular (N1—H1⋯O4i, N2—H2⋯O6ii, O4—H4⋯O2iii, O6—H6⋯Cl1iv, C3—H3B⋯Clv) and one intra­molecular (O6—H6⋯O2), as illustrated in Fig. 2[link]. Bifurcation creates inter- and intra­molecular inter­actions that can contribute to the stability of the structure. One of the donor hydrogen atoms (H6) takes part in hydrogen-bonding inter­actions to an oxygen atom (O2) and a chloride atom (Cl1) and forms an unsymmetrical bifurcated bond. Overall, the four stronger inter­molecular hydrogen-bonding inter­actions sustain an infinite three-dimensional framework (Fig. 3[link]). An inter­molecular cluster is formed from the strongest hydrogen-bonding inter­action [O4⋯O2iii = 2.750 (4) Å], which generates an infinite chain along the c-axis direction (as can be seen in Fig. 3[link]). Various π-inter­actions are also observed in (1), defined by the platinum(II) atom of one mol­ecule to the centroid of the (Pt1,As1,C2,N2,O2) ring with a Pt⋯centroid distance of 3.7225 (7) Å, by the centroid of the (Pt1,As1,C2,N2,O2) ring to the centroid of the (Pt1,As1,C2,N2,O2) (−x, −y, 1 − z) ring of an adjacent mol­ecule with a distance of 3.7456 (4) Å, and by the centroid of the (Pt1,As1,C1,N1,O1) ring to the centroid of another (Pt1,As1,C1,N1,O2) (−x, −y, −z) ring with a distance of 3.7960 (6) Å (Fig. 4[link]). When viewed along the c axis, individual mol­ecules pack in `column-like' structures in an alternating head-to-tail fashion, as illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.901 (19) 2.50 (5) 3.077 (5) 122 (4)
N2—H2⋯O6ii 0.90 (2) 2.51 (4) 3.280 (5) 143 (5)
O4—H4⋯O2iii 0.821 (19) 1.93 (2) 2.750 (4) 173 (6)
O6—H6⋯O2 0.827 (19) 2.27 (5) 2.643 (4) 108 (4)
O6—H6⋯Cl1iv 0.827 (19) 2.45 (3) 3.191 (3) 149 (5)
C3—H3B⋯Cl1v 0.96 2.72 3.613 (5) 155
Symmetry codes: (i) -x, -y, -z; (ii) x+1, y, z; (iii) -x, -y-1, -z+1; (iv) -x, -y, -z+1; (v) x-1, y, z.
[Figure 2]
Figure 2
Hydrogen-bonding inter­actions (indicated by purple dashed lines) observed in the structures of (1) and (2). Hydrogen atoms not involved in hydrogen-bonding inter­actions were omitted for clarity.
[Figure 3]
Figure 3
Illustration of the infinite three-dimensional frameworks formed by the hydrogen-bonding inter­actions in (1) and (2). Blue dashed lines indicate the infinite networks along the a axes, purple dashed lines along the b axes and gold dashed lines along the c axes. Hydrogen atoms not involved in the inter­actions were omitted for clarity.
[Figure 4]
Figure 4
π-inter­actions observed in the crystal structures of (1) and (2). Hydrogen atoms were omitted for clarity.

The crystal structure of (2) is likewise stabilized by one intra­molecular (O6—H6⋯O1) and five inter­molecular (N1—H1⋯O6i, N2—H2⋯Cl1ii, O4—H4⋯Cl1iii, O6—H6⋯O4iv, C6—H6A⋯Cl1ii) hydrogen-bonding inter­actions (Table 2[link], Fig. 2[link]), again with an unsymmetrical bifurcated hydrogen bond involving atom H6 (bonding to O1 and O4) and a resulting three-dimensional network structure, as illustrated in Fig. 3[link]. In addition, Cl1 is the acceptor of two hydrogen-bonding inter­actions. Two weak π-inter­actions are also observed in (2), one from Pt1 to the centroid of Pt1,As1,O1,C1,N1 with a distance of 3.8213 (2) Å and the other from Cl1 to a symmetry-related centroid (Pt1,As1,O1,C1,N1; 1 − x, −y, −z) with a distance of 3.8252 (12) Å (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.88 (5) 2.19 (5) 3.041 (4) 163 (5)
N2—H2⋯Cl1ii 0.854 (19) 2.71 (4) 3.408 (4) 140 (4)
O4—H4⋯Cl1iii 0.82 2.28 3.071 (3) 161
O6—H6⋯O1 0.82 2.34 2.608 (4) 100
O6—H6⋯O4iv 0.82 1.92 2.712 (4) 162
C6—H6A⋯Cl1ii 0.96 2.82 3.735 (5) 159
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) -x+1, -y, -z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

In comparison, mol­ecules in (1) and (2) pack differently due to the presence of different alkyl chains (Fig. 3[link]).

5. Synthesis and crystallization

Synthesis of 1

K2PtCl4 (416 mg, 1 mmol) was added to a 125 ml solution of 9:1 (v:v) CH3CN/H2O. The mixture was stirred at 363 K. Once the K2PtCl4 had dissolved, As2O3 (405 mg, 2.05 mmol) was added to the solution and refluxed at 363 K for 48 h. The mixture was then filtered, and the filtrate was left to stand at room temperature. Crystals suitable for X-ray crystallography were obtained by slow evaporation. Yield: 301 mg (66%). 1H NMR (300.18 MHz, dimethyl sulfoxide-d6): σ = 7.30 (OH, 2H,s), 6.69 (NH, 2H,s), 1.75 (CH3, 6H, s) ppm. 13C NMR (150.95 MHz, dimethyl sulfoxide-d6): σ =172 (CN), 23 (CH3) ppm. 195Pt NMR (242.99 MHz, dimethyl sulfoxide-d6): σ = −3590.62 ppm. UV/Vis = λ = 285 nm, = 4029 dm3 mol−1 cm−1. Analysis calculated: C, 10.55; H, 2.21; N, 6.15. Found: C, 10.64; H, 2.22; N, 6.09%.

Synthesis of 2

K2PtCl4 (422 mg, 1.02 mmol) was added to a 50 ml solution of 9:1 (v:v) H2O/CH3CH2CN. The mixture was stirred at room temperature. Once the K2PtCl4 had dissolved, As2O3 (400 mg, 2.02 mmol) was added to the solution and was stirred at room temperature for 96 h. The solution was cooled in an ice bath and then filtered. The filtrate was left to stand at room temperature. Crystals suitable for X-ray crystallography were obtained by slow evaporation. Yield: 278 mg (56%). 1H NMR (600.28 MHz, dimethyl sulfoxide-d6): δ = 8.89 (OH, 2H, s), 7.99 (NH, 2H, s), 2.48 (CH2, 4H, q), 1.04 (CH3, 6H, t). 13C NMR (150.95 MHz, dimethyl sulfoxide-d6): δ = 176.18 (CN), 24.53 (CH2), 11.70 (CH3). 195Pt NMR (242.99 MHz, dimethyl sulfoxide-d6) = −3591.52. UV/Vis: λmax = 270 nm, = 4231 L mol−1 cm−1. Analysis calculated C, 14.90; H, 2.92; N, 5.79. Found: C, 14.82; H, 2.91; N, 5.76.

6. Refinement

Crystal data and details of data collections and structure refinements are summarized in Table 3[link]. Methyl and methyl­ene hydrogen atoms were placed in geometrically idealized positions (C—H = 0.95–0.97 Å) and constrained to ride on their parent atoms [Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C)]. The OH and NH hydrogen atoms were located in a difference-Fourier map and their positional parameters were constrained with O—H = 0.84 (2) Å and N—H = 0.89 (2) Å for (1), and N—H = 0.87 (2) Å for (2) with O—H distances fixed at 0.82 Å and with Uiso(H) = 1.5Ueq(O). For (2), the Fc versus Fo plot proved ten reflections to be outliers, and they were removed from the refinement as systematic errors.

Table 3
Experimental details

  (1) 2
Crystal data
Chemical formula [PtCl(C4H10AsN2O4)] [Pt(C6H14AsN2O4)Cl]
Mr 455.59 483.65
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 7.272 (1), 8.099 (1), 9.350 (2) 8.9009 (3), 14.1270 (5), 9.6438 (3)
α, β, γ (°) 66.588 (5), 83.993 (5), 76.737 (5) 90, 98.243 (2), 90
V3) 491.81 (14) 1200.11 (9)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 17.86 14.65
Crystal size (mm) 0.39 × 0.29 × 0.14 0.55 × 0.42 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.003, 0.090 0.001, 0.301
No. of measured, independent and observed [I > 2σ(I)] reflections 8305, 2435, 2345 41298, 2891, 2700
Rint 0.039 0.047
(sin θ/λ)max−1) 0.667 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.18 0.022, 0.081, 1.05
No. of reflections 2411 2891
No. of parameters 136 148
No. of restraints 4 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −2.05 1.53, −1.98
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Chlorido[dihydroxybis(1-iminoethoxy)arsanido-κN,As,N']platinum(II) (1) top
Crystal data top
[Pt(C4H10AsN2O4)Cl]Z = 2
Mr = 455.59F(000) = 416
Triclinic, P1Dx = 3.076 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.272 (1) ÅCell parameters from 6890 reflections
b = 8.099 (1) Åθ = 3.6–28.3°
c = 9.350 (2) ŵ = 17.86 mm1
α = 66.588 (5)°T = 100 K
β = 83.993 (5)°Cuboid, colourless
γ = 76.737 (5)°0.39 × 0.29 × 0.14 mm
V = 491.81 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2345 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.3°, θmin = 3.8°
Tmin = 0.003, Tmax = 0.090h = 99
8305 measured reflectionsk = 810
2435 independent reflectionsl = 1212
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.017P)2 + 1.0064P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
2411 reflectionsΔρmax = 0.79 e Å3
136 parametersΔρmin = 2.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.07024 (2)0.05975 (2)0.24814 (2)0.00525 (6)
As10.10555 (5)0.15921 (5)0.31382 (4)0.00631 (9)
Cl10.22859 (14)0.30050 (13)0.18937 (12)0.01233 (19)
O40.0662 (4)0.3392 (4)0.2529 (3)0.0115 (6)
O10.2849 (4)0.0205 (4)0.1539 (3)0.0113 (6)
C30.3872 (6)0.2425 (6)0.0760 (5)0.0130 (8)
H3B0.5082290.2856420.0371370.019*
H3A0.4001720.1622570.1254550.019*
H3C0.3392480.3454390.1502840.019*
C50.3527 (6)0.3940 (6)0.6461 (5)0.0136 (8)
H5A0.4512720.3332160.6468090.02*
H5C0.4071260.5055190.6305690.02*
H5B0.2851850.4226310.7439990.02*
O20.0724 (4)0.3296 (4)0.5035 (3)0.0098 (6)
N20.2483 (5)0.1101 (5)0.4204 (4)0.0098 (7)
O60.2912 (4)0.1890 (4)0.4486 (3)0.0109 (6)
N10.1134 (5)0.2051 (5)0.0754 (4)0.0099 (7)
C10.2535 (6)0.1403 (5)0.0559 (4)0.0083 (7)
C20.2192 (6)0.2701 (5)0.5165 (5)0.0090 (7)
H20.355 (5)0.091 (8)0.448 (6)0.025 (15)*
H10.113 (8)0.314 (4)0.004 (5)0.025 (15)*
H60.236 (7)0.202 (7)0.527 (4)0.017 (13)*
H40.059 (8)0.438 (4)0.328 (5)0.026 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00569 (9)0.00337 (9)0.00559 (9)0.00199 (6)0.00017 (6)0.00001 (6)
As10.00695 (19)0.00417 (19)0.00666 (18)0.00267 (14)0.00050 (14)0.00001 (14)
Cl10.0149 (5)0.0096 (4)0.0132 (4)0.0071 (4)0.0013 (4)0.0029 (4)
O40.0210 (15)0.0055 (13)0.0089 (13)0.0049 (11)0.0006 (11)0.0024 (11)
O10.0107 (14)0.0101 (14)0.0100 (13)0.0045 (11)0.0032 (11)0.0013 (11)
C30.0101 (19)0.014 (2)0.0105 (18)0.0002 (15)0.0032 (15)0.0015 (15)
C50.0084 (18)0.0122 (19)0.0143 (19)0.0030 (15)0.0055 (15)0.0029 (15)
O20.0107 (14)0.0059 (13)0.0098 (13)0.0049 (10)0.0003 (11)0.0016 (11)
N20.0068 (16)0.0103 (17)0.0109 (16)0.0039 (13)0.0017 (13)0.0010 (13)
O60.0062 (13)0.0161 (14)0.0095 (13)0.0038 (11)0.0006 (11)0.0034 (11)
N10.0128 (17)0.0059 (16)0.0091 (16)0.0024 (13)0.0009 (13)0.0005 (13)
C10.0108 (18)0.0048 (17)0.0065 (17)0.0022 (14)0.0007 (14)0.0013 (14)
C20.0082 (18)0.0074 (18)0.0092 (17)0.0002 (14)0.0004 (14)0.0021 (14)
Geometric parameters (Å, º) top
Pt1—N11.999 (4)C3—H3A0.96
Pt1—N22.005 (4)C3—H3C0.96
Pt1—As12.2730 (12)C5—C21.501 (5)
Pt1—Cl12.3401 (15)C5—H5A0.96
As1—O41.722 (3)C5—H5C0.96
As1—O61.738 (3)C5—H5B0.96
As1—O11.898 (3)O2—C21.302 (5)
As1—O22.107 (3)N2—C21.301 (5)
O4—H40.821 (19)N2—H20.90 (2)
O1—C11.316 (5)O6—H60.827 (19)
C3—C11.491 (5)N1—C11.306 (5)
C3—H3B0.96N1—H10.901 (19)
N1—Pt1—N2173.90 (13)H3B—C3—H3C109.5
N1—Pt1—As185.18 (11)H3A—C3—H3C109.5
N2—Pt1—As189.42 (11)C2—C5—H5A109.5
N1—Pt1—Cl193.28 (11)C2—C5—H5C109.5
N2—Pt1—Cl192.34 (11)H5A—C5—H5C109.5
As1—Pt1—Cl1174.79 (3)C2—C5—H5B109.5
O4—As1—O6106.98 (14)H5A—C5—H5B109.5
O4—As1—O190.06 (14)H5C—C5—H5B109.5
O6—As1—O188.71 (14)C2—O2—As1116.5 (2)
O4—As1—O288.29 (13)C2—N2—Pt1122.5 (3)
O6—As1—O286.29 (13)C2—N2—H2109 (4)
O1—As1—O2174.04 (11)Pt1—N2—H2129 (4)
O4—As1—Pt1126.37 (10)As1—O6—H6100 (4)
O6—As1—Pt1126.42 (10)C1—N1—Pt1121.7 (3)
O1—As1—Pt195.35 (10)C1—N1—H1109 (4)
O2—As1—Pt190.24 (9)Pt1—N1—H1130 (4)
As1—O4—H4111 (4)N1—C1—O1121.2 (4)
C1—O1—As1116.4 (3)N1—C1—C3122.7 (4)
C1—C3—H3B109.5O1—C1—C3116.1 (4)
C1—C3—H3A109.5N2—C2—O2121.1 (4)
H3B—C3—H3A109.5N2—C2—C5121.7 (4)
C1—C3—H3C109.5O2—C2—C5117.2 (3)
O4—As1—O1—C1123.0 (3)As1—O1—C1—C3175.8 (3)
O6—As1—O1—C1130.0 (3)Pt1—N2—C2—O21.2 (6)
Pt1—As1—O1—C13.5 (3)Pt1—N2—C2—C5179.1 (3)
Pt1—N1—C1—O13.2 (6)As1—O2—C2—N22.8 (5)
Pt1—N1—C1—C3177.2 (3)As1—O2—C2—C5177.0 (3)
As1—O1—C1—N14.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.901 (19)2.50 (5)3.077 (5)122 (4)
N2—H2···O6ii0.90 (2)2.51 (4)3.280 (5)143 (5)
O4—H4···O2iii0.821 (19)1.93 (2)2.750 (4)173 (6)
O6—H6···O20.827 (19)2.27 (5)2.643 (4)108 (4)
O6—H6···Cl1iv0.827 (19)2.45 (3)3.191 (3)149 (5)
C3—H3B···Cl1v0.962.723.613 (5)155
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y1, z+1; (iv) x, y, z+1; (v) x1, y, z.
Chlorido[dihydroxybis(1-iminopropoxy)arsanido-κN,As,N']platinum(II) (2) top
Crystal data top
[Pt(C6H14AsN2O4)Cl]F(000) = 896
Mr = 483.65Dx = 2.677 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 9966 reflections
a = 8.9009 (3) Åθ = 3.6–28.4°
b = 14.1270 (5) ŵ = 14.65 mm1
c = 9.6438 (3) ÅT = 100 K
β = 98.243 (2)°Plate, colourless
V = 1200.11 (9) Å30.55 × 0.42 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2700 reflections with I > 2σ(I)
φ and ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.0°, θmin = 4.4°
Tmin = 0.001, Tmax = 0.301h = 1111
41298 measured reflectionsk = 1818
2891 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0629P)2 + 1.201P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2891 reflectionsΔρmax = 1.53 e Å3
148 parametersΔρmin = 1.97 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.33235 (2)0.06675 (2)0.08616 (2)0.00918 (9)
As10.47791 (4)0.19900 (3)0.11318 (4)0.00918 (11)
Cl10.17867 (12)0.06796 (6)0.05304 (12)0.0183 (2)
O40.6100 (3)0.2309 (2)0.0038 (3)0.0127 (5)
H40.6761650.1902330.0076010.019*
O10.6421 (3)0.13513 (19)0.2392 (3)0.0127 (5)
O60.4810 (3)0.2897 (2)0.2331 (3)0.0150 (6)
H60.5241350.271790.3094570.022*
C50.1062 (5)0.2938 (3)0.1667 (4)0.0168 (8)
H5B0.1670520.3360470.215150.02*
H5A0.0476020.3326190.1109980.02*
C20.2107 (5)0.2323 (3)0.0697 (4)0.0127 (7)
N20.1856 (4)0.1445 (2)0.0450 (3)0.0134 (6)
C40.7743 (6)0.0425 (4)0.5043 (5)0.0297 (10)
H4B0.790750.1093210.4959940.045*
H4A0.8619940.0141450.5578760.045*
H4C0.687230.0320540.5506480.045*
O20.3329 (3)0.27611 (19)0.0081 (3)0.0130 (5)
C10.6203 (5)0.0463 (3)0.2667 (4)0.0119 (7)
C30.7473 (5)0.0015 (3)0.3597 (4)0.0180 (8)
H3B0.83950.0028830.3173290.022*
H3A0.7232110.0680670.3680960.022*
N10.4959 (4)0.0020 (2)0.2166 (3)0.0129 (6)
C60.0037 (5)0.2407 (3)0.2757 (5)0.0260 (10)
H6B0.0522890.1986480.3274780.039*
H6C0.0588970.2852630.3387870.039*
H6A0.0735550.2048230.2295490.039*
H10.489 (6)0.057 (4)0.244 (6)0.026 (17)*
H20.106 (4)0.120 (4)0.090 (5)0.023 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01054 (13)0.00700 (12)0.00989 (12)0.00034 (4)0.00112 (8)0.00025 (4)
As10.0127 (2)0.00657 (19)0.00790 (18)0.00061 (13)0.00022 (15)0.00002 (12)
Cl10.0126 (5)0.0103 (5)0.0318 (6)0.0023 (3)0.0029 (4)0.0018 (3)
O40.0132 (14)0.0138 (12)0.0109 (11)0.0004 (10)0.0009 (10)0.0029 (10)
O10.0149 (14)0.0097 (12)0.0127 (12)0.0006 (10)0.0008 (10)0.0028 (10)
O60.0258 (16)0.0084 (13)0.0092 (12)0.0020 (11)0.0026 (11)0.0014 (9)
C50.014 (2)0.0172 (19)0.0180 (18)0.0012 (15)0.0003 (15)0.0040 (15)
C20.0152 (19)0.0142 (18)0.0086 (15)0.0040 (15)0.0014 (13)0.0010 (13)
N20.0125 (16)0.0132 (16)0.0143 (15)0.0009 (13)0.0008 (13)0.0009 (12)
C40.032 (3)0.035 (3)0.019 (2)0.010 (2)0.0082 (19)0.001 (2)
O20.0139 (14)0.0104 (12)0.0139 (12)0.0002 (10)0.0010 (10)0.0018 (10)
C10.016 (2)0.0103 (16)0.0107 (16)0.0016 (15)0.0053 (14)0.0001 (13)
C30.020 (2)0.0132 (18)0.0191 (18)0.0038 (15)0.0020 (16)0.0029 (14)
N10.0178 (17)0.0085 (15)0.0122 (14)0.0028 (12)0.0013 (12)0.0019 (12)
C60.023 (2)0.029 (2)0.022 (2)0.0019 (18)0.0081 (18)0.0108 (18)
Geometric parameters (Å, º) top
Pt1—N12.003 (3)C2—N21.289 (5)
Pt1—N22.010 (3)C2—O21.316 (5)
Pt1—As12.2672 (8)N2—H20.854 (19)
Pt1—Cl12.3387 (11)C4—C31.514 (6)
As1—O61.724 (3)C4—H4B0.96
As1—O41.747 (3)C4—H4A0.96
As1—O21.946 (3)C4—H4C0.96
As1—O11.979 (3)C1—N11.303 (5)
O4—H40.82C1—C31.500 (5)
O1—C11.303 (4)C3—H3B0.97
O6—H60.82C3—H3A0.97
C5—C21.498 (5)N1—H10.88 (5)
C5—C61.527 (6)C6—H6B0.96
C5—H5B0.97C6—H6C0.96
C5—H5A0.97C6—H6A0.96
N1—Pt1—N2173.20 (14)C2—N2—Pt1121.9 (3)
N1—Pt1—As187.25 (10)C2—N2—H2117 (4)
N2—Pt1—As186.05 (10)Pt1—N2—H2121 (4)
N1—Pt1—Cl194.16 (11)C3—C4—H4B109.5
N2—Pt1—Cl192.53 (10)C3—C4—H4A109.5
As1—Pt1—Cl1178.51 (3)H4B—C4—H4A109.5
O6—As1—O4105.44 (14)C3—C4—H4C109.5
O6—As1—O286.12 (13)H4B—C4—H4C109.5
O4—As1—O286.48 (13)H4A—C4—H4C109.5
O6—As1—O189.28 (12)C2—O2—As1116.2 (2)
O4—As1—O189.27 (13)O1—C1—N1122.0 (4)
O2—As1—O1172.68 (11)O1—C1—C3115.7 (4)
O6—As1—Pt1130.05 (11)N1—C1—C3122.2 (4)
O4—As1—Pt1124.46 (9)C1—C3—C4111.8 (4)
O2—As1—Pt194.20 (9)C1—C3—H3B109.3
O1—As1—Pt193.12 (8)C4—C3—H3B109.3
As1—O4—H4109.5C1—C3—H3A109.3
C1—O1—As1116.5 (2)C4—C3—H3A109.3
As1—O6—H6109.5H3B—C3—H3A107.9
C2—C5—C6115.1 (3)C1—N1—Pt1121.1 (3)
C2—C5—H5B108.5C1—N1—H1116 (4)
C6—C5—H5B108.5Pt1—N1—H1123 (4)
C2—C5—H5A108.5C5—C6—H6B109.5
C6—C5—H5A108.5C5—C6—H6C109.5
H5B—C5—H5A107.5H6B—C6—H6C109.5
N2—C2—O2121.5 (3)C5—C6—H6A109.5
N2—C2—C5124.4 (4)H6B—C6—H6A109.5
O2—C2—C5114.1 (3)H6C—C6—H6A109.5
C6—C5—C2—N221.3 (6)As1—O1—C1—N11.4 (5)
C6—C5—C2—O2159.6 (3)As1—O1—C1—C3178.6 (3)
O2—C2—N2—Pt11.3 (5)O1—C1—C3—C463.1 (5)
C5—C2—N2—Pt1179.8 (3)N1—C1—C3—C4116.9 (4)
N2—C2—O2—As13.5 (5)O1—C1—N1—Pt12.7 (5)
C5—C2—O2—As1177.5 (2)C3—C1—N1—Pt1177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.88 (5)2.19 (5)3.041 (4)163 (5)
N2—H2···Cl1ii0.854 (19)2.71 (4)3.408 (4)140 (4)
O4—H4···Cl1iii0.822.283.071 (3)161
O6—H6···O10.822.342.608 (4)100
O6—H6···O4iv0.821.922.712 (4)162
C6—H6A···Cl1ii0.962.823.735 (5)159
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2.
 

Funding information

We would like to thank the University of the Free State and the South African National Research Foundation (NRF) for financial support. Part of this work is based on the research supported by the National Research Foundation.

References

First citationAabo, K., Adams, M., Adnitt, P., Alberts, D. S., Athanazziou, A., Barley, V., Bell, D. R., Bianchi, U., Bolis, G., Brady, M. F., Brodovsky, H. S., Bruckner, H., Buyse, M., Canetta, R., Chylak, V., Cohen, C. J., Colombo, N., Conte, P. F., Crowther, D., Edmonson, J. H., Gennatas, C., Gilbey, E., Gore, M., Guthrie, D., Kaye, S., Laing, A., Landoni, F., Leonard, R., Lewis, C., Liu, P., Mangioni, C., Marsoni, S., Meerpohl, H., Omura, G., Parmar, M., Pater, J., Pecorelli, S., Presti, M., Sauerbrei, W., Skarlos, D., Smalley, R., Solomon, H., Stewart, L., Sturgeon, J., Tattersall, M., Wharton, J., ten Bokkel Huinink, W., Tomirotti, M., Torri, W., Trope, C., Turbow, M., Vermorken, J., Webb, M., Wilbur, D., Williams, C., Wiltshaw, E. & Yeap, B. (1998). Br. J. Cancer, 78, 1479–1487.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBasu, A. & Krishnamurthy, S. (2010). J. Nucleic Acids, 2010, 1–16.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurchenal, J. H. (1978). Biochimie, 60, 915–923.  CrossRef Web of Science Google Scholar
First citationClegg, W. (2016). Private communication (refcode: CCDC 1470767). CCDC, Cambridge, England. https:/doi.org/10.5517/ccdc.csd.cc1lcg3j  Google Scholar
First citationDube, J. W., Zheng, Y., Thiel, W. & Alcarazo, M. (2016). J. Am. Chem. Soc. 138, 6869–6877.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEmadi, A. & Gore, S. D. (2010). Blood Rev. 24, 191–199.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationImoto, H., Sasaki, H., Tanaka, S., Yumura, T. & Naka, K. (2017). Organometallics, 36, 2605–2611.  Web of Science CSD CrossRef CAS Google Scholar
First citationJakupec, M. A., Galanski, M. & Keppler, B. K. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 1–54.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKauffman, G. B., Pentimalli, R., Doldi, S. & Hall, M. D. (2010). Plat. Met. Rev. 54, 250–256.  Web of Science CrossRef CAS Google Scholar
First citationKelland, L. (2007). Nat. Rev. Cancer, 7, 573–584.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarino, T., Parise, A. & Russo, N. (2017). Phys. Chem. Chem. Phys. 19, 1328–1334.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMiller, W. H., Schipper, H. M., Lee, J. S., Singer, J. & Waxman, S. (2002). Cancer Res. 62, 3893–3903.  Web of Science PubMed CAS Google Scholar
First citationMiodragović, D., Swindell, E. P., Waxali, Z. S., Bogachkov, A. & O'Halloran, T. V. (2019). Inorg. Chim. Acta, 496, 119030.  Google Scholar
First citationMiodragović, D. U., Quentzel, J. A., Kurutz, J. W., Stern, C. L., Ahn, R. W., Kandela, I., Mazar, A. & O'Halloran, T. V. (2013). Angew. Chem. Int. Ed. 52, 10749–10752.  Google Scholar
First citationMuessig, J. H., Stennett, T. E., Schmidt, U., Dewhurst, R. D., Mailänder, L. & Braunschweig, H. (2019). Dalton Trans. 48, 3547–3550.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOtt, I. (2009). Coord. Chem. Rev. 253, 1670–1681.  Web of Science CrossRef CAS Google Scholar
First citationReedijk, J. (2009). Eur. J. Inorg. Chem. 2009, pp. 1303–1312.  Web of Science CrossRef Google Scholar
First citationReinholdt, A. & Bendix, J. (2017). Inorg. Chem. 56, 12492–12497.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRosenberg, B., Van Camp, I. & Krigas, T. (1965). Nature, 205, 698–699.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, Z.-X., Shi, Z.-Z., Fang, J., Gu, B.-W., Li, J.-M., Zhu, Y.-M., Shi, J.-Y., Zheng, P.-Z., Yan, H., Liu, Y.-F., Chen, Y., Shen, Y., Wu, W., Tang, W., Waxman, S., De Thé, H., Wang, Z.-Y., Chen, S.-J. & Chen, Z. (2004). Proc. Natl Acad. Sci. USA, 101, 5328–5335.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShi, H., Clarkson, G. J. & Sadler, P. J. (2019). Inorg. Chim. Acta, 489, 230–235.  Web of Science CSD CrossRef CAS Google Scholar
First citationSwindell, E. P., Hankins, P. L., Chen, H., Miodragović, D. U. & O'Halloran, T. V. (2013). Inorg. Chem. 52, 12292–12304.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, G., Li, W., Cui, J., Gao, S., Yao, C., Jiang, Z., Song, Y., Yuan, C. J., Yang, Y., Liu, Z. & Cai, L. (2004). Hematol. Oncol. 22, 63–71.  Web of Science CrossRef PubMed Google Scholar
First citationWheate, N. J., Walker, S., Craig, G. E. & Oun, R. (2010). Dalton Trans. 39, 8113–8127.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, N., Wu, Z.-M., McGowan, E., Shi, J., Hong, Z.-B., Ding, C.-W., Xia, P. & Di, W. (2009). Cancer Sci. 100, 2459–2464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, X.-W., Yan, X.-J., Zhou, Z.-R., Yang, F.-F., Wu, Z.-Y., Sun, H.-B., Liang, W.-X., Song, A.-X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.-Y., Yang, H.-Y., Huang, Q.-H., Zhou, G.-B., Tong, J.-H., Zhang, Y., Wu, J.-H., Hu, H. Y., de Thé, H., Chen, S.-J. & Chen, Z. (2010). Science, 328, 240–243.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds