research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analysis of trans-bis­­(thio­cyanato-κN)bis­­{2,4,6-tri­methyl-N-[(pyridin-2-yl)methyl­­idene]aniline-κ2N,N′}manganese(II) and trans-bis­­(thio­cyanato-κN)bis­­{2,4,6-tri­methyl-N-[(pyridin-2-yl)methyl­­idene]aniline-κ2N,N′}nickel(II))

CROSSMARK_Color_square_no_text.svg

aDivision of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand, bWisetchaichan Tantiwittayapoom School, Wisetchaichan, Angthong, 14110, Thailand, and cMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 December 2019; accepted 23 January 2020; online 31 January 2020)

Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex mol­ecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thio­cyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octa­hedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS anions in a trans axial arrangement. The tri­methyl­benzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and ππ inter­actions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to qu­antify these inter­molecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)].

1. Chemical context

Schiff bases are widely employed as ligands in the development of coordination chemistry (Liu & Hamon, 2019[Liu, X. & Hamon, J.-R. (2019). Coord. Chem. Rev. 389, 94-118.]). Among them, derivatives of the Schiff base 2-pyridyl­methanimine have been used as chelating ligands in the construction of discrete metal complexes exhibiting inter­esting luminescent properties (Basu Baul et al., 2013[Basu Baul, T. S., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Dalton Trans. 42, 1905-1920.]), magnetic spin-crossover behaviour (Létard et al., 1997[Létard, J.-F., Guionneau, P., Codjovi, E., Lavastre, O., Bravic, D., Chasseau, D. & Kahn, O. (1997). J. Am. Chem. Soc. 119, 10861-10862.]; Capes et al., 2000[Capes, L., Létard, J.-F. & Kahn, O. (2000). Chem. Eur. J. 6, 2246-2255.]), or biological and catalytic reactivities (Cozzi, 2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]; Creaven et al., 2010[Creaven, B. S., Czeglédi, E., Devereux, M., Enyedy, É. A., Foltyn-Arfa Kia, A., Karcz, D., Kellett, A., McClean, S., Nagy, N. V., Noble, A., Rockenbauer, A., Szabó-Plánka, T. & Walsh, M. (2010). Dalton Trans. 39, 10854-10865.]). These ligands are also able to generate non-covalent inter­actions such as hydrogen bonding and ππ stacking that aid in stabilizing the assembly and provide diversity to the architectures of the crystal structures. On the other hand, pseudohalides such as thio­cyanate (NCS) and seleno­cyanate (NCSe) anions are a class of rigid ligands with either a terminal or a bridging coordination behaviour. They have been employed extensively with neutral N-donor co-ligands in the development of novel functional coordination materials, particularly in the field of mol­ecular-based magnets (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]).

[Scheme 1]

In this work, we combined 2-pyridine­carboxaldehyde and 2,4,6-tri­methyl­aniline to synthesize a new bidentate Schiff base ligand with two potential N,N′-donor sites, viz. 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline (C15H16N2 or PM-TMA). Reaction of the PM-TMA ligand and M(NCS)2 precursors (M = Mn, Ni) in methano­lic solutions resulted in the formation of discrete mononuclear complexes with the formula [M(NCS)2(PM-TMA)2], M = Mn (I), Ni (II). Their mol­ecular and crystal structures as well as Hirshfeld surface analysis are reported.

2. Structural commentary

The mol­ecular structures of (I) and (II) are shown in Fig. 1[link] and 2[link]. Although the title compounds crystallize in different space groups [P[\overline{1}] for (I) and P21/n for (II)], in both cases the asymmetric unit consist of one-half of the mol­ecule, i.e. one metal(II) cation, one PM-TMA ligand and one thio­cyanate anion. Each metal(II) cation is located on a centre of inversion and adopts a distorted octa­hedral coordination environment with four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from symmetry-related NCS anions in a trans axial arrangement. The M—N bond lengths [2.174 (2) to 2.312 (2) Å for (I) and 2.027 (3) to 2.184 (2) Å for (II)] and N—M—N bond angles [74.27 (6) to 180° for (I) and 78.4 (1) to 180° for (II)] for both complexes are all in the normal range for similar Schiff base complexes with MnII (Chattopadhyay et al., 2002[Chattopadhyay, S. K., Mitra, K., Biswas, S., Lucas, C. R., Miller, D. O. & Adhikary, B. (2002). J. Coord. Chem. 55, 1409-1418.]; Lucas et al., 2005[Lucas, C. R., Mitra, K., Biswas, S., Chattopadhyay, S. K. & Adhikary, B. (2005). Transition Met. Chem. 30, 185-190.]) and NiII (Guo, 2009[Guo, Y.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 633-634.]; Layek et al., 2014[Layek, M., Ghosh, M., Fleck, M., Saha, R. & Bandyopadhyay, D. (2014). J. Coord. Chem. 67, 3371-3379.]) ions. Note that the Mn1—N1—C1 bond angle [164.3 (2)°] in (I) is somewhat more bent than the corresponding Ni1—N1—C1 bond angle [176.7 (3)°] in (II). The PM-TMA ligands are not co-planar, with the tri­methyl­benzene ring oriented to the pyridine ring at a dihedral angle of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. An overlay of the complex mol­ecules of (I) and (II) is illustrated in Fig. 3[link], showing the slight differences in orientation of the tri­methyl­benzene rings and thio­cyanate anions. This impacts significantly upon the mol­ecular packing as described in the next section.

[Figure 1]
Figure 1
Mol­ecular structures of the title complex (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structures of the title complex (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
View of the structure overlay of (I) (red) and (II) (green).

3. Supra­molecular features

The crystal packing of (I) and (II) is dominated by weak C—H⋯S, C—H⋯π, and ππ inter­actions. In the crystal structure of (I), pairs of weak C—H⋯S hydrogen bonds along with the C—H⋯π inter­actions involving the methyl H atoms (H14A and H14B) and the tri­methyl­benzene ring or the midpoint of thio­cyanate C=N group, Table 1[link], link inversion-related mol­ecules into a chain running parallel to the a axis, Fig. 4[link]. The chains are further linked into a three-dimensional supra­molecular network through weak ππ inter­actions involving the pyridine rings [centroid-to-centroid distance = 3.909 (3) Å] and additional weak C—H⋯π inter­actions between the methyl H atoms and the tri­methyl­benzene rings, Fig. 5[link] (Table 1[link]). For (II), adjacent mol­ecules are linked tog­ether into a sheet extending parallel to (101), Fig. 6[link], by weak C—H⋯S hydrogen bonds between the methine C—H groups and the thio­cyanate S atoms, Table 2[link]. On the other hand, as seen in Fig. 7[link], the packing in (II) also features weak ππ stacking inter­actions arising from the pyridine rings and the tri­methyl­benzene rings [centroid-to-centroid distance = 4.147 (3) Å, dihedral angle = 17.41 (14)°]. There is an additional C—H⋯π inter­action between the methyl H atom and the midpoint of the thio­cyanate C=N group (Table 2[link]). These inter­actions help to enhance the dimensionality into a three-dimensional supra­molecular architecture.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the mid-point of the C1=N1 group. Cg2 and Cg3 are the centroids of the N2/C2–C6 and C8–C13 rings.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S1i 0.93 3.16 3.812 (3) 129
C4—H4⋯Cg1i 0.93 2.89 3.561 (3) 129
C5—H5⋯S1ii 0.93 3.00 3.785 (3) 143
C7—H7⋯S1ii 0.93 3.07 3.871 (2) 146
C14—H14ACg1ii 0.96 2.89 3.779 (3) 153
C14—H14BCg2ii 0.96 2.68 3.556 (3) 152
C16—H16CCg3iii 0.96 3.14 3.711 (3) 145
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the mid-point of the C1=N1 group.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S1i 0.93 2.89 3.769 (4) 158
C7—H7⋯S1ii 0.93 2.83 3.680 (3) 153
C10—H10⋯S1iii 0.93 3.17 3.871 (4) 134
C10—H10⋯Cg1iii 0.93 2.73 3.655 (4) 171
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
View of chains in (I) generated through C—H⋯S and C—H⋯π inter­actions.
[Figure 5]
Figure 5
View of the three-dimensional network in (I) generated through C—H⋯π and ππ inter­actions.
[Figure 6]
Figure 6
Formation of a two-dimensional supra­molecular network in (II) generated through C—H⋯S hydrogen bonds.
[Figure 7]
Figure 7
Crystal packing of (II) viewed along the c axis with aromatic ππ stacking inter­actions bonds shown as dashed lines.

4. Hirshfeld surface analysis

The inter­molecular inter­actions between the mol­ecules in the crystal structures of (I) and (II) were qu­anti­fied by Hirshfeld surface analysis (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) generated by CrystalExplorer (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]); results are shown in Figs. 8[link] and 9[link], respectively. Major contributions to the dnorm surfaces in both cases are H⋯H contacts [48.1% for (I) and 54.9% for (II)], which represent van der Waals inter­actions. Minor contributions are due to H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)] and H⋯S/S⋯H (21.1% for (I) and 21.1% for (II)) contacts, associated with weak C—H⋯π and C—H⋯S inter­actions, respectively. These contributions are characterized as bright-red spots on the Hirshfeld surface mapped over dnorm and are observed as two sharp peaks in the two-dimensional plots. The C⋯C contacts associated with aromatic ππ stacking contribute only with a small percentage in (I) (2.6%) and about twice the amount in (II) (5.5%). H⋯N/N⋯H contacts in both cases are negligible.

[Figure 8]
Figure 8
Two-dimensional fingerprint plots of (I) and (II), showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯S/S⋯H, (e) H⋯N/N⋯H, and (f) C⋯C contacts [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].
[Figure 9]
Figure 9
Qu­anti­tative results of different inter­molecular contacts contributing to the Hirshfeld surfaces of (I) and (II).

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no match for coordination compounds with the Schiff base 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline. A general search for thio­cyanato coordination compounds involving transition metals and N-[(pyridin-2-yl)methyl­idene]aniline as the main skeleton resulted in 122 structures with different substituents on the benzyl rings. In these structures, the two bidentate Schiff base ligands and the two thio­cyanate anions are octa­hedrally arranged around the central metal cations in a cis-conformation. There is only one complex with a trans-conformation and the same skeleton as in the title complexes, viz. trans-[Cd(NCS)2(C14H14N2)2] (CSD refcode GARTAW; Malekshahian et al., 2012[Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218-m219.]). In this complex, weak C—H⋯S hydrogen bonds consolidate the crystal packing, similar to the title complexes (I) and (II).

6. Synthesis and crystallization

All reagents were of analytical grade and were used as received without further purification. The bidentate Schiff base ligand, 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline (C15H16N2 or PM-TMA) was synthesized according to a literature method (Theppitak et al., 2014[Theppitak, C., Meesangkaew, M., Chanthee, S., Sriprang, N. & Chainok, K. (2014). Acta Cryst. E70, o1094-o1095.]). A solution of PM-TMA (89.7 mg, 0.4 mmol) in methanol (5 ml) was placed in a test tube. To a solution of Mn(ClO4)2·6H2O (50.8 mg, 0.2 mmol) in methanol (5 ml) was added KNCS (39.0 mg, 0.4 mmol), and the solution was stirred at room temperature for 30 min and then filtered to remove a white precipitate of KClO4. The solution was then carefully layered on the methanol solution of PM-TMA. After slow diffusion at room temperature for 3 d, yellow block-shaped crystals of (I) were obtained in 88% yield (44.7 mg) based on the manganese(II) source. Complex (II) was prepared following the procedure described above for (I), except that Ni(ClO4)2·6H2O (58.2 mg, 0.2 mmol) and KNCS (39.0 mg, 0.4 mmol) were used. Yellow block-shaped crystal of (II) were obtained in 82% yield (47.7 mg) based on the nickel(II) source.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed in calculated positions and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [Mn(NCS)2(C15H16N2)2] [Ni(NCS)2(C15H16N2)2]
Mr 619.69 623.46
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 296 296
a, b, c (Å) 8.5597 (5), 9.0255 (5), 10.7718 (7) 9.6156 (5), 12.6786 (7), 12.9870 (7)
α, β, γ (°) 91.718 (2), 109.830 (2), 95.080 (2) 90, 101.250 (2), 90
V3) 778.16 (8) 1552.85 (14)
Z 1 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.59 0.79
Crystal size (mm) 0.28 × 0.28 × 0.22 0.34 × 0.3 × 0.3
 
Data collection
Diffractometer Bruker D8 QUEST CMOS PHOTON II Bruker D8 QUEST CMOS PHOTON II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.673, 0.745 0.607, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 7594, 3091, 2326 16977, 3037, 2486
Rint 0.043 0.032
(sin θ/λ)max−1) 0.625 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.100, 1.02 0.053, 0.104, 1.21
No. of reflections 3091 3037
No. of parameters 190 190
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.20 0.70, −0.47
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-Bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N'}manganese(II) (1) top
Crystal data top
[Mn(NCS)2(C15H16N2)2]Z = 1
Mr = 619.69F(000) = 323
Triclinic, P1Dx = 1.322 Mg m3
a = 8.5597 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0255 (5) ÅCell parameters from 2271 reflections
c = 10.7718 (7) Åθ = 2.9–25.8°
α = 91.718 (2)°µ = 0.59 mm1
β = 109.830 (2)°T = 296 K
γ = 95.080 (2)°Block, yellow
V = 778.16 (8) Å30.28 × 0.28 × 0.22 mm
Data collection top
BRUKER D8 QUEST CMOS PHOTON II
diffractometer
3091 independent reflections
Radiation source: sealed x-ray tube2326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 7.39 pixels mm-1θmax = 26.4°, θmin = 2.9°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.673, Tmax = 0.745l = 1313
7594 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.1287P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3091 reflectionsΔρmax = 0.27 e Å3
190 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.5000000.5000000.5000000.03059 (16)
S10.00476 (8)0.21358 (9)0.19246 (7)0.0556 (2)
N10.2655 (2)0.3678 (2)0.3908 (2)0.0432 (5)
N20.3816 (2)0.71929 (19)0.47958 (17)0.0305 (4)
N30.4064 (2)0.5223 (2)0.67669 (17)0.0295 (4)
C10.1524 (3)0.3041 (3)0.3083 (2)0.0352 (5)
C20.3662 (3)0.8173 (3)0.3873 (2)0.0394 (6)
H20.4036370.7957270.3178270.047*
C30.2972 (3)0.9498 (3)0.3898 (3)0.0460 (6)
H30.2861861.0143300.3223240.055*
C40.2457 (3)0.9843 (3)0.4924 (3)0.0486 (7)
H40.2006411.0736250.4966770.058*
C50.2609 (3)0.8853 (3)0.5905 (2)0.0431 (6)
H50.2267350.9068010.6616870.052*
C60.3284 (3)0.7535 (2)0.5801 (2)0.0325 (5)
C70.3369 (3)0.6414 (3)0.6780 (2)0.0340 (5)
H70.2900360.6579040.7428050.041*
C80.3925 (3)0.4146 (2)0.7695 (2)0.0301 (5)
C90.2353 (3)0.3410 (3)0.7554 (2)0.0364 (5)
C100.2266 (3)0.2367 (3)0.8455 (2)0.0415 (6)
H100.1234330.1861560.8363400.050*
C110.3663 (3)0.2049 (3)0.9487 (2)0.0403 (6)
C120.5191 (3)0.2774 (3)0.9573 (2)0.0375 (6)
H120.6141630.2553071.0245790.045*
C130.5366 (3)0.3818 (2)0.8697 (2)0.0328 (5)
C140.0778 (3)0.3699 (3)0.6467 (3)0.0531 (7)
H14A0.0416450.4620490.6679660.080*
H14B0.0077930.2899250.6379570.080*
H14C0.0989350.3761870.5649400.080*
C150.3481 (4)0.0982 (3)1.0500 (3)0.0573 (8)
H15A0.4564300.0739521.1036450.086*
H15B0.2804740.0088351.0054640.086*
H15C0.2959250.1441971.1050620.086*
C160.7065 (3)0.4597 (3)0.8867 (2)0.0441 (6)
H16A0.7332500.4400090.8085180.066*
H16B0.7886220.4235600.9614420.066*
H16C0.7057570.5651040.9008400.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0319 (3)0.0273 (3)0.0335 (3)0.0076 (2)0.0113 (2)0.0037 (2)
S10.0379 (4)0.0659 (5)0.0543 (4)0.0008 (3)0.0070 (3)0.0082 (4)
N10.0384 (11)0.0424 (13)0.0473 (12)0.0020 (10)0.0131 (10)0.0040 (10)
N20.0318 (10)0.0278 (10)0.0316 (10)0.0050 (8)0.0096 (8)0.0048 (8)
N30.0300 (9)0.0285 (10)0.0294 (10)0.0065 (8)0.0084 (8)0.0067 (8)
C10.0328 (12)0.0352 (13)0.0415 (14)0.0094 (11)0.0161 (11)0.0071 (11)
C20.0447 (14)0.0362 (14)0.0399 (14)0.0049 (11)0.0170 (11)0.0080 (11)
C30.0515 (15)0.0363 (14)0.0521 (16)0.0106 (12)0.0177 (13)0.0171 (12)
C40.0556 (16)0.0325 (14)0.0646 (18)0.0183 (12)0.0251 (14)0.0150 (12)
C50.0514 (15)0.0372 (14)0.0469 (15)0.0149 (12)0.0223 (12)0.0058 (11)
C60.0329 (12)0.0285 (12)0.0348 (13)0.0062 (10)0.0091 (10)0.0043 (10)
C70.0373 (12)0.0367 (14)0.0290 (12)0.0084 (11)0.0115 (10)0.0022 (10)
C80.0360 (12)0.0274 (12)0.0291 (12)0.0082 (10)0.0126 (10)0.0046 (9)
C90.0372 (12)0.0377 (14)0.0358 (13)0.0097 (11)0.0129 (10)0.0060 (10)
C100.0425 (14)0.0372 (14)0.0498 (15)0.0043 (11)0.0220 (12)0.0078 (12)
C110.0583 (16)0.0299 (13)0.0399 (14)0.0116 (12)0.0240 (12)0.0072 (10)
C120.0465 (14)0.0355 (13)0.0299 (12)0.0156 (12)0.0095 (11)0.0063 (10)
C130.0390 (12)0.0299 (12)0.0288 (12)0.0088 (10)0.0096 (10)0.0015 (9)
C140.0353 (13)0.0594 (18)0.0598 (18)0.0039 (13)0.0092 (13)0.0166 (14)
C150.078 (2)0.0481 (17)0.0577 (18)0.0182 (15)0.0347 (16)0.0215 (14)
C160.0401 (13)0.0474 (16)0.0401 (14)0.0053 (12)0.0071 (11)0.0077 (12)
Geometric parameters (Å, º) top
Mn1—N1i2.174 (2)C7—H70.9300
Mn1—N12.174 (2)C8—C91.404 (3)
Mn1—N2i2.2856 (17)C8—C131.398 (3)
Mn1—N22.2855 (17)C9—C101.388 (3)
Mn1—N32.3118 (17)C9—C141.505 (3)
Mn1—N3i2.3117 (17)C10—H100.9300
S1—C11.624 (3)C10—C111.387 (3)
N1—C11.160 (3)C11—C121.382 (3)
N2—C21.332 (3)C11—C151.514 (3)
N2—C61.346 (3)C12—H120.9300
N3—C71.276 (3)C12—C131.387 (3)
N3—C81.441 (3)C13—C161.508 (3)
C2—H20.9300C14—H14A0.9600
C2—C31.383 (3)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C3—C41.359 (4)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C4—C51.384 (3)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C5—C61.386 (3)C16—H16B0.9600
C6—C71.471 (3)C16—H16C0.9600
N1i—Mn1—N1180.0N3—C7—H7119.0
N1—Mn1—N293.63 (7)C6—C7—H7119.0
N1—Mn1—N2i86.37 (7)C9—C8—N3119.49 (19)
N1i—Mn1—N286.37 (7)C13—C8—N3119.39 (19)
N1i—Mn1—N2i93.63 (7)C13—C8—C9121.1 (2)
N1—Mn1—N3i91.50 (7)C8—C9—C14122.8 (2)
N1—Mn1—N388.50 (7)C10—C9—C8118.0 (2)
N1i—Mn1—N391.50 (7)C10—C9—C14119.2 (2)
N1i—Mn1—N3i88.50 (7)C9—C10—H10118.8
N2—Mn1—N2i180.0C11—C10—C9122.4 (2)
N2i—Mn1—N3i74.26 (6)C11—C10—H10118.8
N2i—Mn1—N3105.74 (6)C10—C11—C15120.3 (2)
N2—Mn1—N374.26 (6)C12—C11—C10117.7 (2)
N2—Mn1—N3i105.74 (6)C12—C11—C15122.0 (2)
N3i—Mn1—N3180.00 (7)C11—C12—H12118.6
C1—N1—Mn1164.27 (19)C11—C12—C13122.8 (2)
C2—N2—Mn1129.08 (15)C13—C12—H12118.6
C2—N2—C6117.55 (19)C8—C13—C16121.9 (2)
C6—N2—Mn1113.30 (14)C12—C13—C8118.0 (2)
C7—N3—Mn1112.59 (15)C12—C13—C16120.1 (2)
C7—N3—C8116.82 (19)C9—C14—H14A109.5
C8—N3—Mn1129.81 (13)C9—C14—H14B109.5
N1—C1—S1179.4 (2)C9—C14—H14C109.5
N2—C2—H2118.5H14A—C14—H14B109.5
N2—C2—C3123.1 (2)H14A—C14—H14C109.5
C3—C2—H2118.5H14B—C14—H14C109.5
C2—C3—H3120.5C11—C15—H15A109.5
C4—C3—C2119.0 (2)C11—C15—H15B109.5
C4—C3—H3120.5C11—C15—H15C109.5
C3—C4—H4120.3H15A—C15—H15B109.5
C3—C4—C5119.4 (2)H15A—C15—H15C109.5
C5—C4—H4120.3H15B—C15—H15C109.5
C4—C5—H5120.8C13—C16—H16A109.5
C4—C5—C6118.4 (2)C13—C16—H16B109.5
C6—C5—H5120.8C13—C16—H16C109.5
N2—C6—C5122.6 (2)H16A—C16—H16B109.5
N2—C6—C7117.45 (19)H16A—C16—H16C109.5
C5—C6—C7119.9 (2)H16B—C16—H16C109.5
N3—C7—C6122.1 (2)
Mn1—N2—C2—C3177.25 (17)C5—C6—C7—N3175.9 (2)
Mn1—N2—C6—C5176.51 (18)C6—N2—C2—C30.8 (3)
Mn1—N2—C6—C76.3 (2)C7—N3—C8—C966.4 (3)
Mn1—N3—C7—C63.2 (3)C7—N3—C8—C13115.6 (2)
Mn1—N3—C8—C9102.6 (2)C8—N3—C7—C6174.13 (19)
Mn1—N3—C8—C1375.4 (2)C8—C9—C10—C110.9 (4)
N2—C2—C3—C41.6 (4)C9—C8—C13—C121.9 (3)
N2—C6—C7—N36.8 (3)C9—C8—C13—C16179.9 (2)
N3—C8—C9—C10179.25 (19)C9—C10—C11—C122.3 (4)
N3—C8—C9—C140.3 (3)C9—C10—C11—C15175.6 (2)
N3—C8—C13—C12179.89 (19)C10—C11—C12—C131.7 (4)
N3—C8—C13—C162.1 (3)C11—C12—C13—C80.4 (3)
C2—N2—C6—C50.5 (3)C11—C12—C13—C16178.4 (2)
C2—N2—C6—C7176.70 (19)C13—C8—C9—C101.2 (3)
C2—C3—C4—C51.0 (4)C13—C8—C9—C14178.3 (2)
C3—C4—C5—C60.1 (4)C14—C9—C10—C11179.5 (2)
C4—C5—C6—N21.0 (4)C15—C11—C12—C13176.3 (2)
C4—C5—C6—C7176.2 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the mid-point of the C1N1 group. Cg2 and Cg3 are the centroids of the N2/C2–C6 and C8–C13 rings.
D—H···AD—HH···AD···AD—H···A
C3—H3···S1ii0.933.163.812 (3)129
C4—H4···Cg1ii0.932.893.561 (3)129
C5—H5···S1iii0.933.003.785 (3)143
C7—H7···S1iii0.933.073.871 (2)146
C14—H14A···Cg1iii0.962.893.779 (3)153
C14—H14B···Cg2iii0.962.683.556 (3)152
C16—H16C···Cg3iv0.963.143.711 (3)145
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+2.
trans-Bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N'}nickel(II) (2) top
Crystal data top
[Ni(NCS)2(C15H16N2)2]F(000) = 652
Mr = 623.46Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6156 (5) ÅCell parameters from 9899 reflections
b = 12.6786 (7) Åθ = 2.9–26.0°
c = 12.9870 (7) ŵ = 0.79 mm1
β = 101.250 (2)°T = 296 K
V = 1552.85 (14) Å3Block, yellow
Z = 20.34 × 0.3 × 0.3 mm
Data collection top
BRUKER D8 QUEST CMOS PHOTON II
diffractometer
3037 independent reflections
Radiation source: sealed x-ray tube2486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 7.39 pixels mm-1θmax = 26.1°, θmin = 2.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.607, Tmax = 0.745l = 1615
16977 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + 2.7087P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
3037 reflectionsΔρmax = 0.70 e Å3
190 parametersΔρmin = 0.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.03174 (15)
S10.30833 (12)0.80667 (8)0.64005 (9)0.0656 (3)
N10.4244 (3)0.6312 (2)0.5593 (2)0.0407 (6)
N20.7069 (3)0.5629 (2)0.5334 (2)0.0376 (6)
N30.5103 (3)0.58125 (19)0.35336 (19)0.0351 (6)
C10.3753 (3)0.7033 (3)0.5927 (2)0.0380 (7)
C20.8053 (4)0.5554 (3)0.6204 (3)0.0533 (9)
H20.7830800.5199730.6778020.064*
C30.9390 (4)0.5978 (4)0.6293 (3)0.0729 (13)
H31.0055160.5900340.6912050.087*
C40.9733 (4)0.6514 (4)0.5467 (4)0.0819 (15)
H41.0625680.6813770.5516110.098*
C50.8729 (4)0.6600 (4)0.4559 (3)0.0678 (12)
H50.8933970.6954330.3980170.081*
C60.7414 (3)0.6153 (3)0.4521 (3)0.0437 (8)
C70.6315 (3)0.6226 (3)0.3574 (3)0.0444 (8)
H70.6505450.6581440.2990910.053*
C80.4138 (3)0.5878 (2)0.2529 (2)0.0372 (7)
C90.3021 (4)0.6589 (3)0.2392 (3)0.0462 (8)
C100.2091 (4)0.6604 (3)0.1422 (3)0.0545 (9)
H100.1348140.7086290.1315430.065*
C110.2232 (4)0.5933 (3)0.0619 (3)0.0517 (9)
C120.3352 (4)0.5232 (3)0.0780 (3)0.0538 (9)
H120.3455210.4770300.0244060.065*
C130.4330 (4)0.5197 (3)0.1723 (3)0.0451 (8)
C140.2780 (5)0.7328 (4)0.3238 (3)0.0732 (13)
H14A0.2500550.6933360.3795170.110*
H14B0.2045580.7819950.2955630.110*
H14C0.3640350.7704980.3507510.110*
C150.1202 (5)0.5975 (4)0.0417 (3)0.0734 (12)
H15A0.0296270.6215830.0304830.110*
H15B0.1102030.5284110.0724510.110*
H15C0.1550370.6452910.0881410.110*
C160.5547 (5)0.4432 (3)0.1826 (3)0.0675 (12)
H16A0.6427090.4809960.1996150.101*
H16B0.5500870.4063020.1174620.101*
H16C0.5489910.3934160.2373540.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0322 (3)0.0306 (3)0.0340 (3)0.0017 (2)0.0105 (2)0.0011 (2)
S10.0730 (7)0.0543 (6)0.0761 (7)0.0125 (5)0.0307 (6)0.0150 (5)
N10.0474 (15)0.0369 (15)0.0401 (15)0.0012 (12)0.0139 (12)0.0028 (12)
N20.0351 (13)0.0347 (14)0.0434 (15)0.0050 (11)0.0087 (11)0.0019 (11)
N30.0400 (14)0.0316 (13)0.0355 (13)0.0054 (11)0.0117 (11)0.0039 (11)
C10.0377 (16)0.0437 (19)0.0340 (16)0.0035 (14)0.0105 (13)0.0018 (14)
C20.048 (2)0.062 (2)0.047 (2)0.0088 (18)0.0038 (16)0.0006 (18)
C30.046 (2)0.102 (4)0.064 (3)0.016 (2)0.0051 (19)0.004 (3)
C40.043 (2)0.112 (4)0.089 (3)0.030 (2)0.008 (2)0.005 (3)
C50.050 (2)0.083 (3)0.073 (3)0.023 (2)0.017 (2)0.011 (2)
C60.0392 (17)0.0463 (19)0.0479 (19)0.0060 (15)0.0142 (15)0.0020 (15)
C70.0480 (19)0.0442 (19)0.0441 (18)0.0028 (15)0.0169 (15)0.0078 (15)
C80.0398 (16)0.0388 (17)0.0338 (16)0.0008 (13)0.0093 (13)0.0053 (13)
C90.0468 (19)0.047 (2)0.0453 (19)0.0090 (16)0.0105 (15)0.0071 (16)
C100.049 (2)0.057 (2)0.057 (2)0.0144 (17)0.0078 (17)0.0106 (18)
C110.056 (2)0.050 (2)0.046 (2)0.0018 (17)0.0022 (16)0.0097 (17)
C120.072 (2)0.050 (2)0.0376 (18)0.0048 (18)0.0062 (17)0.0020 (15)
C130.056 (2)0.0425 (19)0.0383 (17)0.0090 (15)0.0121 (15)0.0079 (14)
C140.085 (3)0.073 (3)0.059 (2)0.033 (2)0.008 (2)0.006 (2)
C150.073 (3)0.078 (3)0.061 (3)0.002 (2)0.008 (2)0.007 (2)
C160.089 (3)0.072 (3)0.043 (2)0.036 (2)0.016 (2)0.0029 (19)
Geometric parameters (Å, º) top
Ni1—N12.027 (3)C7—H70.9300
Ni1—N1i2.027 (3)C8—C91.387 (4)
Ni1—N2i2.108 (2)C8—C131.398 (4)
Ni1—N22.108 (2)C9—C101.395 (5)
Ni1—N32.184 (2)C9—C141.496 (5)
Ni1—N3i2.184 (2)C10—H100.9300
S1—C11.632 (3)C10—C111.373 (5)
N1—C11.152 (4)C11—C121.380 (5)
N2—C21.329 (4)C11—C151.508 (5)
N2—C61.343 (4)C12—H120.9300
N3—C71.269 (4)C12—C131.391 (5)
N3—C81.448 (4)C13—C161.506 (5)
C2—H20.9300C14—H14A0.9600
C2—C31.378 (5)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C3—C41.363 (6)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C4—C51.374 (6)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C5—C61.377 (5)C16—H16B0.9600
C6—C71.459 (5)C16—H16C0.9600
N1—Ni1—N1i180.00 (14)N3—C7—H7119.4
N1i—Ni1—N289.71 (10)C6—C7—H7119.4
N1i—Ni1—N2i90.29 (10)C9—C8—N3119.8 (3)
N1—Ni1—N290.29 (10)C9—C8—C13121.2 (3)
N1—Ni1—N2i89.71 (10)C13—C8—N3118.9 (3)
N1i—Ni1—N3i91.41 (10)C8—C9—C10117.9 (3)
N1i—Ni1—N388.59 (10)C8—C9—C14122.6 (3)
N1—Ni1—N391.41 (10)C10—C9—C14119.4 (3)
N1—Ni1—N3i88.59 (10)C9—C10—H10118.8
N2—Ni1—N2i180.0C11—C10—C9122.5 (3)
N2i—Ni1—N3i78.43 (10)C11—C10—H10118.8
N2i—Ni1—N3101.57 (10)C10—C11—C12118.2 (3)
N2—Ni1—N378.43 (10)C10—C11—C15120.7 (4)
N2—Ni1—N3i101.57 (10)C12—C11—C15121.1 (4)
N3i—Ni1—N3180.00 (13)C11—C12—H12119.1
C1—N1—Ni1176.7 (3)C11—C12—C13121.9 (3)
C2—N2—Ni1129.4 (2)C13—C12—H12119.1
C2—N2—C6117.4 (3)C8—C13—C16123.1 (3)
C6—N2—Ni1113.2 (2)C12—C13—C8118.3 (3)
C7—N3—Ni1110.9 (2)C12—C13—C16118.7 (3)
C7—N3—C8115.8 (3)C9—C14—H14A109.5
C8—N3—Ni1133.02 (19)C9—C14—H14B109.5
N1—C1—S1179.0 (3)C9—C14—H14C109.5
N2—C2—H2118.6H14A—C14—H14B109.5
N2—C2—C3122.8 (4)H14A—C14—H14C109.5
C3—C2—H2118.6H14B—C14—H14C109.5
C2—C3—H3120.2C11—C15—H15A109.5
C4—C3—C2119.6 (4)C11—C15—H15B109.5
C4—C3—H3120.2C11—C15—H15C109.5
C3—C4—H4120.7H15A—C15—H15B109.5
C3—C4—C5118.5 (4)H15A—C15—H15C109.5
C5—C4—H4120.7H15B—C15—H15C109.5
C4—C5—H5120.5C13—C16—H16A109.5
C4—C5—C6119.0 (4)C13—C16—H16B109.5
C6—C5—H5120.5C13—C16—H16C109.5
N2—C6—C5122.7 (3)H16A—C16—H16B109.5
N2—C6—C7116.4 (3)H16A—C16—H16C109.5
C5—C6—C7120.9 (3)H16B—C16—H16C109.5
N3—C7—C6121.1 (3)
Ni1—N2—C2—C3177.4 (3)C5—C6—C7—N3179.8 (4)
Ni1—N2—C6—C5178.0 (3)C6—N2—C2—C30.6 (6)
Ni1—N2—C6—C71.7 (4)C7—N3—C8—C9105.0 (3)
Ni1—N3—C7—C61.6 (4)C7—N3—C8—C1376.9 (4)
Ni1—N3—C8—C982.2 (4)C8—N3—C7—C6176.0 (3)
Ni1—N3—C8—C1396.0 (3)C8—C9—C10—C111.2 (5)
N2—C2—C3—C40.9 (7)C9—C8—C13—C121.4 (5)
N2—C6—C7—N30.0 (5)C9—C8—C13—C16178.4 (3)
N3—C8—C9—C10178.1 (3)C9—C10—C11—C121.0 (6)
N3—C8—C9—C141.7 (5)C9—C10—C11—C15179.9 (4)
N3—C8—C13—C12176.8 (3)C10—C11—C12—C130.4 (6)
N3—C8—C13—C163.5 (5)C11—C12—C13—C81.6 (5)
C2—N2—C6—C50.3 (5)C11—C12—C13—C16178.2 (4)
C2—N2—C6—C7179.9 (3)C13—C8—C9—C100.0 (5)
C2—C3—C4—C50.9 (8)C13—C8—C9—C14179.8 (4)
C3—C4—C5—C60.6 (8)C14—C9—C10—C11178.6 (4)
C4—C5—C6—N20.3 (7)C15—C11—C12—C13178.6 (4)
C4—C5—C6—C7179.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the mid-point of the C1N1 group.
D—H···AD—HH···AD···AD—H···A
C4—H4···S1ii0.932.893.769 (4)158
C7—H7···S1iii0.932.833.680 (3)153
C10—H10···S1iv0.933.173.871 (4)134
C10—H10···Cg1iv0.932.733.655 (4)171
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+3/2, z1/2; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: The NSTDA STEM Workforce (scholarship No. SCA-CO-2561-6015-TH to S. Jittirattanakun); The National Research Council of Thailand (contract No. 09/2562 to S. Jittirattanakun).

References

First citationBasu Baul, T. S., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Dalton Trans. 42, 1905–1920.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapes, L., Létard, J.-F. & Kahn, O. (2000). Chem. Eur. J. 6, 2246–2255.  CrossRef PubMed CAS Google Scholar
First citationChattopadhyay, S. K., Mitra, K., Biswas, S., Lucas, C. R., Miller, D. O. & Adhikary, B. (2002). J. Coord. Chem. 55, 1409–1418.  CrossRef CAS Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCreaven, B. S., Czeglédi, E., Devereux, M., Enyedy, É. A., Foltyn-Arfa Kia, A., Karcz, D., Kellett, A., McClean, S., Nagy, N. V., Noble, A., Rockenbauer, A., Szabó-Plánka, T. & Walsh, M. (2010). Dalton Trans. 39, 10854–10865.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, Y.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 633–634.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLayek, M., Ghosh, M., Fleck, M., Saha, R. & Bandyopadhyay, D. (2014). J. Coord. Chem. 67, 3371–3379.  CrossRef CAS Google Scholar
First citationLétard, J.-F., Guionneau, P., Codjovi, E., Lavastre, O., Bravic, D., Chasseau, D. & Kahn, O. (1997). J. Am. Chem. Soc. 119, 10861–10862.  Google Scholar
First citationLiu, X. & Hamon, J.-R. (2019). Coord. Chem. Rev. 389, 94–118.  CrossRef CAS Google Scholar
First citationLucas, C. R., Mitra, K., Biswas, S., Chattopadhyay, S. K. & Adhikary, B. (2005). Transition Met. Chem. 30, 185–190.  CrossRef CAS Google Scholar
First citationMalekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTheppitak, C., Meesangkaew, M., Chanthee, S., Sriprang, N. & Chainok, K. (2014). Acta Cryst. E70, o1094–o1095.  CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds