research communications
Crystal structures and Hirshfeld surface analysis of trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N′}manganese(II) and trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N′}nickel(II))
aDivision of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand, bWisetchaichan Tantiwittayapoom School, Wisetchaichan, Angthong, 14110, Thailand, and cMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
*Correspondence e-mail: kc@tu.ac.th
Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex molecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thiocyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octahedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The trimethylbenzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify these intermolecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)].
1. Chemical context
). Among them, derivatives of the Schiff base 2-pyridylmethanimine have been used as chelating ligands in the construction of discrete metal complexes exhibiting interesting luminescent properties (Basu Baul et al., 2013), magnetic spin-crossover behaviour (Létard et al., 1997; Capes et al., 2000), or biological and catalytic reactivities (Cozzi, 2004; Creaven et al., 2010). These ligands are also able to generate non-covalent interactions such as hydrogen bonding and π–π stacking that aid in stabilizing the assembly and provide diversity to the architectures of the crystal structures. On the other hand, pseudohalides such as thiocyanate (NCS−) and selenocyanate (NCSe−) anions are a class of rigid ligands with either a terminal or a bridging coordination behaviour. They have been employed extensively with neutral N-donor co-ligands in the development of novel functional coordination materials, particularly in the field of molecular-based magnets (Suckert et al., 2016).
are widely employed as ligands in the development of coordination chemistry (Liu & Hamon, 2019In this work, we combined 2-pyridinecarboxaldehyde and 2,4,6-trimethylaniline to synthesize a new bidentate Schiff base ligand with two potential N,N′-donor sites, viz. 2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline (C15H16N2 or PM-TMA). Reaction of the PM-TMA ligand and M(NCS)2 precursors (M = Mn, Ni) in methanolic solutions resulted in the formation of discrete mononuclear complexes with the formula [M(NCS)2(PM-TMA)2], M = Mn (I), Ni (II). Their molecular and crystal structures as well as Hirshfeld surface analysis are reported.
2. Structural commentary
The molecular structures of (I) and (II) are shown in Fig. 1 and 2. Although the title compounds crystallize in different space groups [P for (I) and P21/n for (II)], in both cases the consist of one-half of the molecule, i.e. one metal(II) cation, one PM-TMA ligand and one thiocyanate anion. Each metal(II) cation is located on a centre of inversion and adopts a distorted octahedral coordination environment with four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from symmetry-related NCS− anions in a trans axial arrangement. The M—N bond lengths [2.174 (2) to 2.312 (2) Å for (I) and 2.027 (3) to 2.184 (2) Å for (II)] and N—M—N bond angles [74.27 (6) to 180° for (I) and 78.4 (1) to 180° for (II)] for both complexes are all in the normal range for similar Schiff base complexes with MnII (Chattopadhyay et al., 2002; Lucas et al., 2005) and NiII (Guo, 2009; Layek et al., 2014) ions. Note that the Mn1—N1—C1 bond angle [164.3 (2)°] in (I) is somewhat more bent than the corresponding Ni1—N1—C1 bond angle [176.7 (3)°] in (II). The PM-TMA ligands are not co-planar, with the trimethylbenzene ring oriented to the pyridine ring at a dihedral angle of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. An overlay of the complex molecules of (I) and (II) is illustrated in Fig. 3, showing the slight differences in orientation of the trimethylbenzene rings and thiocyanate anions. This impacts significantly upon the molecular packing as described in the next section.
3. Supramolecular features
The crystal packing of (I) and (II) is dominated by weak C—H⋯S, C—H⋯π, and π–π interactions. In the of (I), pairs of weak C—H⋯S hydrogen bonds along with the C—H⋯π interactions involving the methyl H atoms (H14A and H14B) and the trimethylbenzene ring or the midpoint of thiocyanate C=N group, Table 1, link inversion-related molecules into a chain running parallel to the a axis, Fig. 4. The chains are further linked into a three-dimensional supramolecular network through weak π–π interactions involving the pyridine rings [centroid-to-centroid distance = 3.909 (3) Å] and additional weak C—H⋯π interactions between the methyl H atoms and the trimethylbenzene rings, Fig. 5 (Table 1). For (II), adjacent molecules are linked together into a sheet extending parallel to (101), Fig. 6, by weak C—H⋯S hydrogen bonds between the methine C—H groups and the thiocyanate S atoms, Table 2. On the other hand, as seen in Fig. 7, the packing in (II) also features weak π–π stacking interactions arising from the pyridine rings and the trimethylbenzene rings [centroid-to-centroid distance = 4.147 (3) Å, dihedral angle = 17.41 (14)°]. There is an additional C—H⋯π interaction between the methyl H atom and the midpoint of the thiocyanate C=N group (Table 2). These interactions help to enhance the dimensionality into a three-dimensional supramolecular architecture.
4. Hirshfeld surface analysis
The intermolecular interactions between the molecules in the crystal structures of (I) and (II) were quantified by Hirshfeld surface analysis (McKinnon et al., 2007) and two-dimensional fingerprint plots (Spackman & McKinnon, 2002) generated by CrystalExplorer (Turner et al., 2017); results are shown in Figs. 8 and 9, respectively. Major contributions to the dnorm surfaces in both cases are H⋯H contacts [48.1% for (I) and 54.9% for (II)], which represent van der Waals interactions. Minor contributions are due to H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)] and H⋯S/S⋯H (21.1% for (I) and 21.1% for (II)) contacts, associated with weak C—H⋯π and C—H⋯S interactions, respectively. These contributions are characterized as bright-red spots on the Hirshfeld surface mapped over dnorm and are observed as two sharp peaks in the two-dimensional plots. The C⋯C contacts associated with aromatic π—π stacking contribute only with a small percentage in (I) (2.6%) and about twice the amount in (II) (5.5%). H⋯N/N⋯H contacts in both cases are negligible.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, last update August 2019; Groom et al., 2016) revealed no match for coordination compounds with the Schiff base 2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline. A general search for thiocyanato coordination compounds involving transition metals and N-[(pyridin-2-yl)methylidene]aniline as the main skeleton resulted in 122 structures with different substituents on the benzyl rings. In these structures, the two bidentate Schiff base ligands and the two thiocyanate anions are octahedrally arranged around the central metal cations in a cis-conformation. There is only one complex with a trans-conformation and the same skeleton as in the title complexes, viz. trans-[Cd(NCS)2(C14H14N2)2] (CSD refcode GARTAW; Malekshahian et al., 2012). In this complex, weak C—H⋯S hydrogen bonds consolidate the crystal packing, similar to the title complexes (I) and (II).
6. Synthesis and crystallization
All reagents were of analytical grade and were used as received without further purification. The bidentate Schiff base ligand, 2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline (C15H16N2 or PM-TMA) was synthesized according to a literature method (Theppitak et al., 2014). A solution of PM-TMA (89.7 mg, 0.4 mmol) in methanol (5 ml) was placed in a test tube. To a solution of Mn(ClO4)2·6H2O (50.8 mg, 0.2 mmol) in methanol (5 ml) was added KNCS (39.0 mg, 0.4 mmol), and the solution was stirred at room temperature for 30 min and then filtered to remove a white precipitate of KClO4. The solution was then carefully layered on the methanol solution of PM-TMA. After slow diffusion at room temperature for 3 d, yellow block-shaped crystals of (I) were obtained in 88% yield (44.7 mg) based on the manganese(II) source. Complex (II) was prepared following the procedure described above for (I), except that Ni(ClO4)2·6H2O (58.2 mg, 0.2 mmol) and KNCS (39.0 mg, 0.4 mmol) were used. Yellow block-shaped crystal of (II) were obtained in 82% yield (47.7 mg) based on the nickel(II) source.
7. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in calculated positions and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989020000870/wm5536sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989020000870/wm55361sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989020000870/wm55362sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020000870/wm55361sup4.cdx
For both structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Mn(NCS)2(C15H16N2)2] | Z = 1 |
Mr = 619.69 | F(000) = 323 |
Triclinic, P1 | Dx = 1.322 Mg m−3 |
a = 8.5597 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.0255 (5) Å | Cell parameters from 2271 reflections |
c = 10.7718 (7) Å | θ = 2.9–25.8° |
α = 91.718 (2)° | µ = 0.59 mm−1 |
β = 109.830 (2)° | T = 296 K |
γ = 95.080 (2)° | Block, yellow |
V = 778.16 (8) Å3 | 0.28 × 0.28 × 0.22 mm |
BRUKER D8 QUEST CMOS PHOTON II diffractometer | 3091 independent reflections |
Radiation source: sealed x-ray tube | 2326 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 7.39 pixels mm-1 | θmax = 26.4°, θmin = 2.9° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→11 |
Tmin = 0.673, Tmax = 0.745 | l = −13→13 |
7594 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0454P)2 + 0.1287P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3091 reflections | Δρmax = 0.27 e Å−3 |
190 parameters | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.500000 | 0.500000 | 0.500000 | 0.03059 (16) | |
S1 | −0.00476 (8) | 0.21358 (9) | 0.19246 (7) | 0.0556 (2) | |
N1 | 0.2655 (2) | 0.3678 (2) | 0.3908 (2) | 0.0432 (5) | |
N2 | 0.3816 (2) | 0.71929 (19) | 0.47958 (17) | 0.0305 (4) | |
N3 | 0.4064 (2) | 0.5223 (2) | 0.67669 (17) | 0.0295 (4) | |
C1 | 0.1524 (3) | 0.3041 (3) | 0.3083 (2) | 0.0352 (5) | |
C2 | 0.3662 (3) | 0.8173 (3) | 0.3873 (2) | 0.0394 (6) | |
H2 | 0.403637 | 0.795727 | 0.317827 | 0.047* | |
C3 | 0.2972 (3) | 0.9498 (3) | 0.3898 (3) | 0.0460 (6) | |
H3 | 0.286186 | 1.014330 | 0.322324 | 0.055* | |
C4 | 0.2457 (3) | 0.9843 (3) | 0.4924 (3) | 0.0486 (7) | |
H4 | 0.200641 | 1.073625 | 0.496677 | 0.058* | |
C5 | 0.2609 (3) | 0.8853 (3) | 0.5905 (2) | 0.0431 (6) | |
H5 | 0.226735 | 0.906801 | 0.661687 | 0.052* | |
C6 | 0.3284 (3) | 0.7535 (2) | 0.5801 (2) | 0.0325 (5) | |
C7 | 0.3369 (3) | 0.6414 (3) | 0.6780 (2) | 0.0340 (5) | |
H7 | 0.290036 | 0.657904 | 0.742805 | 0.041* | |
C8 | 0.3925 (3) | 0.4146 (2) | 0.7695 (2) | 0.0301 (5) | |
C9 | 0.2353 (3) | 0.3410 (3) | 0.7554 (2) | 0.0364 (5) | |
C10 | 0.2266 (3) | 0.2367 (3) | 0.8455 (2) | 0.0415 (6) | |
H10 | 0.123433 | 0.186156 | 0.836340 | 0.050* | |
C11 | 0.3663 (3) | 0.2049 (3) | 0.9487 (2) | 0.0403 (6) | |
C12 | 0.5191 (3) | 0.2774 (3) | 0.9573 (2) | 0.0375 (6) | |
H12 | 0.614163 | 0.255307 | 1.024579 | 0.045* | |
C13 | 0.5366 (3) | 0.3818 (2) | 0.8697 (2) | 0.0328 (5) | |
C14 | 0.0778 (3) | 0.3699 (3) | 0.6467 (3) | 0.0531 (7) | |
H14A | 0.041645 | 0.462049 | 0.667966 | 0.080* | |
H14B | −0.007793 | 0.289925 | 0.637957 | 0.080* | |
H14C | 0.098935 | 0.376187 | 0.564940 | 0.080* | |
C15 | 0.3481 (4) | 0.0982 (3) | 1.0500 (3) | 0.0573 (8) | |
H15A | 0.456430 | 0.073952 | 1.103645 | 0.086* | |
H15B | 0.280474 | 0.008835 | 1.005464 | 0.086* | |
H15C | 0.295925 | 0.144197 | 1.105062 | 0.086* | |
C16 | 0.7065 (3) | 0.4597 (3) | 0.8867 (2) | 0.0441 (6) | |
H16A | 0.733250 | 0.440009 | 0.808518 | 0.066* | |
H16B | 0.788622 | 0.423560 | 0.961442 | 0.066* | |
H16C | 0.705757 | 0.565104 | 0.900840 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0319 (3) | 0.0273 (3) | 0.0335 (3) | 0.0076 (2) | 0.0113 (2) | 0.0037 (2) |
S1 | 0.0379 (4) | 0.0659 (5) | 0.0543 (4) | −0.0008 (3) | 0.0070 (3) | −0.0082 (4) |
N1 | 0.0384 (11) | 0.0424 (13) | 0.0473 (12) | 0.0020 (10) | 0.0131 (10) | 0.0040 (10) |
N2 | 0.0318 (10) | 0.0278 (10) | 0.0316 (10) | 0.0050 (8) | 0.0096 (8) | 0.0048 (8) |
N3 | 0.0300 (9) | 0.0285 (10) | 0.0294 (10) | 0.0065 (8) | 0.0084 (8) | 0.0067 (8) |
C1 | 0.0328 (12) | 0.0352 (13) | 0.0415 (14) | 0.0094 (11) | 0.0161 (11) | 0.0071 (11) |
C2 | 0.0447 (14) | 0.0362 (14) | 0.0399 (14) | 0.0049 (11) | 0.0170 (11) | 0.0080 (11) |
C3 | 0.0515 (15) | 0.0363 (14) | 0.0521 (16) | 0.0106 (12) | 0.0177 (13) | 0.0171 (12) |
C4 | 0.0556 (16) | 0.0325 (14) | 0.0646 (18) | 0.0183 (12) | 0.0251 (14) | 0.0150 (12) |
C5 | 0.0514 (15) | 0.0372 (14) | 0.0469 (15) | 0.0149 (12) | 0.0223 (12) | 0.0058 (11) |
C6 | 0.0329 (12) | 0.0285 (12) | 0.0348 (13) | 0.0062 (10) | 0.0091 (10) | 0.0043 (10) |
C7 | 0.0373 (12) | 0.0367 (14) | 0.0290 (12) | 0.0084 (11) | 0.0115 (10) | 0.0022 (10) |
C8 | 0.0360 (12) | 0.0274 (12) | 0.0291 (12) | 0.0082 (10) | 0.0126 (10) | 0.0046 (9) |
C9 | 0.0372 (12) | 0.0377 (14) | 0.0358 (13) | 0.0097 (11) | 0.0129 (10) | 0.0060 (10) |
C10 | 0.0425 (14) | 0.0372 (14) | 0.0498 (15) | 0.0043 (11) | 0.0220 (12) | 0.0078 (12) |
C11 | 0.0583 (16) | 0.0299 (13) | 0.0399 (14) | 0.0116 (12) | 0.0240 (12) | 0.0072 (10) |
C12 | 0.0465 (14) | 0.0355 (13) | 0.0299 (12) | 0.0156 (12) | 0.0095 (11) | 0.0063 (10) |
C13 | 0.0390 (12) | 0.0299 (12) | 0.0288 (12) | 0.0088 (10) | 0.0096 (10) | 0.0015 (9) |
C14 | 0.0353 (13) | 0.0594 (18) | 0.0598 (18) | 0.0039 (13) | 0.0092 (13) | 0.0166 (14) |
C15 | 0.078 (2) | 0.0481 (17) | 0.0577 (18) | 0.0182 (15) | 0.0347 (16) | 0.0215 (14) |
C16 | 0.0401 (13) | 0.0474 (16) | 0.0401 (14) | 0.0053 (12) | 0.0071 (11) | 0.0077 (12) |
Mn1—N1i | 2.174 (2) | C7—H7 | 0.9300 |
Mn1—N1 | 2.174 (2) | C8—C9 | 1.404 (3) |
Mn1—N2i | 2.2856 (17) | C8—C13 | 1.398 (3) |
Mn1—N2 | 2.2855 (17) | C9—C10 | 1.388 (3) |
Mn1—N3 | 2.3118 (17) | C9—C14 | 1.505 (3) |
Mn1—N3i | 2.3117 (17) | C10—H10 | 0.9300 |
S1—C1 | 1.624 (3) | C10—C11 | 1.387 (3) |
N1—C1 | 1.160 (3) | C11—C12 | 1.382 (3) |
N2—C2 | 1.332 (3) | C11—C15 | 1.514 (3) |
N2—C6 | 1.346 (3) | C12—H12 | 0.9300 |
N3—C7 | 1.276 (3) | C12—C13 | 1.387 (3) |
N3—C8 | 1.441 (3) | C13—C16 | 1.508 (3) |
C2—H2 | 0.9300 | C14—H14A | 0.9600 |
C2—C3 | 1.383 (3) | C14—H14B | 0.9600 |
C3—H3 | 0.9300 | C14—H14C | 0.9600 |
C3—C4 | 1.359 (4) | C15—H15A | 0.9600 |
C4—H4 | 0.9300 | C15—H15B | 0.9600 |
C4—C5 | 1.384 (3) | C15—H15C | 0.9600 |
C5—H5 | 0.9300 | C16—H16A | 0.9600 |
C5—C6 | 1.386 (3) | C16—H16B | 0.9600 |
C6—C7 | 1.471 (3) | C16—H16C | 0.9600 |
N1i—Mn1—N1 | 180.0 | N3—C7—H7 | 119.0 |
N1—Mn1—N2 | 93.63 (7) | C6—C7—H7 | 119.0 |
N1—Mn1—N2i | 86.37 (7) | C9—C8—N3 | 119.49 (19) |
N1i—Mn1—N2 | 86.37 (7) | C13—C8—N3 | 119.39 (19) |
N1i—Mn1—N2i | 93.63 (7) | C13—C8—C9 | 121.1 (2) |
N1—Mn1—N3i | 91.50 (7) | C8—C9—C14 | 122.8 (2) |
N1—Mn1—N3 | 88.50 (7) | C10—C9—C8 | 118.0 (2) |
N1i—Mn1—N3 | 91.50 (7) | C10—C9—C14 | 119.2 (2) |
N1i—Mn1—N3i | 88.50 (7) | C9—C10—H10 | 118.8 |
N2—Mn1—N2i | 180.0 | C11—C10—C9 | 122.4 (2) |
N2i—Mn1—N3i | 74.26 (6) | C11—C10—H10 | 118.8 |
N2i—Mn1—N3 | 105.74 (6) | C10—C11—C15 | 120.3 (2) |
N2—Mn1—N3 | 74.26 (6) | C12—C11—C10 | 117.7 (2) |
N2—Mn1—N3i | 105.74 (6) | C12—C11—C15 | 122.0 (2) |
N3i—Mn1—N3 | 180.00 (7) | C11—C12—H12 | 118.6 |
C1—N1—Mn1 | 164.27 (19) | C11—C12—C13 | 122.8 (2) |
C2—N2—Mn1 | 129.08 (15) | C13—C12—H12 | 118.6 |
C2—N2—C6 | 117.55 (19) | C8—C13—C16 | 121.9 (2) |
C6—N2—Mn1 | 113.30 (14) | C12—C13—C8 | 118.0 (2) |
C7—N3—Mn1 | 112.59 (15) | C12—C13—C16 | 120.1 (2) |
C7—N3—C8 | 116.82 (19) | C9—C14—H14A | 109.5 |
C8—N3—Mn1 | 129.81 (13) | C9—C14—H14B | 109.5 |
N1—C1—S1 | 179.4 (2) | C9—C14—H14C | 109.5 |
N2—C2—H2 | 118.5 | H14A—C14—H14B | 109.5 |
N2—C2—C3 | 123.1 (2) | H14A—C14—H14C | 109.5 |
C3—C2—H2 | 118.5 | H14B—C14—H14C | 109.5 |
C2—C3—H3 | 120.5 | C11—C15—H15A | 109.5 |
C4—C3—C2 | 119.0 (2) | C11—C15—H15B | 109.5 |
C4—C3—H3 | 120.5 | C11—C15—H15C | 109.5 |
C3—C4—H4 | 120.3 | H15A—C15—H15B | 109.5 |
C3—C4—C5 | 119.4 (2) | H15A—C15—H15C | 109.5 |
C5—C4—H4 | 120.3 | H15B—C15—H15C | 109.5 |
C4—C5—H5 | 120.8 | C13—C16—H16A | 109.5 |
C4—C5—C6 | 118.4 (2) | C13—C16—H16B | 109.5 |
C6—C5—H5 | 120.8 | C13—C16—H16C | 109.5 |
N2—C6—C5 | 122.6 (2) | H16A—C16—H16B | 109.5 |
N2—C6—C7 | 117.45 (19) | H16A—C16—H16C | 109.5 |
C5—C6—C7 | 119.9 (2) | H16B—C16—H16C | 109.5 |
N3—C7—C6 | 122.1 (2) | ||
Mn1—N2—C2—C3 | −177.25 (17) | C5—C6—C7—N3 | −175.9 (2) |
Mn1—N2—C6—C5 | 176.51 (18) | C6—N2—C2—C3 | −0.8 (3) |
Mn1—N2—C6—C7 | −6.3 (2) | C7—N3—C8—C9 | 66.4 (3) |
Mn1—N3—C7—C6 | −3.2 (3) | C7—N3—C8—C13 | −115.6 (2) |
Mn1—N3—C8—C9 | −102.6 (2) | C8—N3—C7—C6 | −174.13 (19) |
Mn1—N3—C8—C13 | 75.4 (2) | C8—C9—C10—C11 | 0.9 (4) |
N2—C2—C3—C4 | 1.6 (4) | C9—C8—C13—C12 | −1.9 (3) |
N2—C6—C7—N3 | 6.8 (3) | C9—C8—C13—C16 | −179.9 (2) |
N3—C8—C9—C10 | 179.25 (19) | C9—C10—C11—C12 | −2.3 (4) |
N3—C8—C9—C14 | −0.3 (3) | C9—C10—C11—C15 | 175.6 (2) |
N3—C8—C13—C12 | −179.89 (19) | C10—C11—C12—C13 | 1.7 (4) |
N3—C8—C13—C16 | 2.1 (3) | C11—C12—C13—C8 | 0.4 (3) |
C2—N2—C6—C5 | −0.5 (3) | C11—C12—C13—C16 | 178.4 (2) |
C2—N2—C6—C7 | 176.70 (19) | C13—C8—C9—C10 | 1.2 (3) |
C2—C3—C4—C5 | −1.0 (4) | C13—C8—C9—C14 | −178.3 (2) |
C3—C4—C5—C6 | −0.1 (4) | C14—C9—C10—C11 | −179.5 (2) |
C4—C5—C6—N2 | 1.0 (4) | C15—C11—C12—C13 | −176.3 (2) |
C4—C5—C6—C7 | −176.2 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg1 is the mid-point of the C1═N1 group. Cg2 and Cg3 are the centroids of the N2/C2–C6 and C8–C13 rings. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···S1ii | 0.93 | 3.16 | 3.812 (3) | 129 |
C4—H4···Cg1ii | 0.93 | 2.89 | 3.561 (3) | 129 |
C5—H5···S1iii | 0.93 | 3.00 | 3.785 (3) | 143 |
C7—H7···S1iii | 0.93 | 3.07 | 3.871 (2) | 146 |
C14—H14A···Cg1iii | 0.96 | 2.89 | 3.779 (3) | 153 |
C14—H14B···Cg2iii | 0.96 | 2.68 | 3.556 (3) | 152 |
C16—H16C···Cg3iv | 0.96 | 3.14 | 3.711 (3) | 145 |
Symmetry codes: (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+2. |
[Ni(NCS)2(C15H16N2)2] | F(000) = 652 |
Mr = 623.46 | Dx = 1.333 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6156 (5) Å | Cell parameters from 9899 reflections |
b = 12.6786 (7) Å | θ = 2.9–26.0° |
c = 12.9870 (7) Å | µ = 0.79 mm−1 |
β = 101.250 (2)° | T = 296 K |
V = 1552.85 (14) Å3 | Block, yellow |
Z = 2 | 0.34 × 0.3 × 0.3 mm |
BRUKER D8 QUEST CMOS PHOTON II diffractometer | 3037 independent reflections |
Radiation source: sealed x-ray tube | 2486 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 7.39 pixels mm-1 | θmax = 26.1°, θmin = 2.9° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→15 |
Tmin = 0.607, Tmax = 0.745 | l = −16→15 |
16977 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + 2.7087P] where P = (Fo2 + 2Fc2)/3 |
S = 1.21 | (Δ/σ)max < 0.001 |
3037 reflections | Δρmax = 0.70 e Å−3 |
190 parameters | Δρmin = −0.46 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.500000 | 0.500000 | 0.03174 (15) | |
S1 | 0.30833 (12) | 0.80667 (8) | 0.64005 (9) | 0.0656 (3) | |
N1 | 0.4244 (3) | 0.6312 (2) | 0.5593 (2) | 0.0407 (6) | |
N2 | 0.7069 (3) | 0.5629 (2) | 0.5334 (2) | 0.0376 (6) | |
N3 | 0.5103 (3) | 0.58125 (19) | 0.35336 (19) | 0.0351 (6) | |
C1 | 0.3753 (3) | 0.7033 (3) | 0.5927 (2) | 0.0380 (7) | |
C2 | 0.8053 (4) | 0.5554 (3) | 0.6204 (3) | 0.0533 (9) | |
H2 | 0.783080 | 0.519973 | 0.677802 | 0.064* | |
C3 | 0.9390 (4) | 0.5978 (4) | 0.6293 (3) | 0.0729 (13) | |
H3 | 1.005516 | 0.590034 | 0.691205 | 0.087* | |
C4 | 0.9733 (4) | 0.6514 (4) | 0.5467 (4) | 0.0819 (15) | |
H4 | 1.062568 | 0.681377 | 0.551611 | 0.098* | |
C5 | 0.8729 (4) | 0.6600 (4) | 0.4559 (3) | 0.0678 (12) | |
H5 | 0.893397 | 0.695433 | 0.398017 | 0.081* | |
C6 | 0.7414 (3) | 0.6153 (3) | 0.4521 (3) | 0.0437 (8) | |
C7 | 0.6315 (3) | 0.6226 (3) | 0.3574 (3) | 0.0444 (8) | |
H7 | 0.650545 | 0.658144 | 0.299091 | 0.053* | |
C8 | 0.4138 (3) | 0.5878 (2) | 0.2529 (2) | 0.0372 (7) | |
C9 | 0.3021 (4) | 0.6589 (3) | 0.2392 (3) | 0.0462 (8) | |
C10 | 0.2091 (4) | 0.6604 (3) | 0.1422 (3) | 0.0545 (9) | |
H10 | 0.134814 | 0.708629 | 0.131543 | 0.065* | |
C11 | 0.2232 (4) | 0.5933 (3) | 0.0619 (3) | 0.0517 (9) | |
C12 | 0.3352 (4) | 0.5232 (3) | 0.0780 (3) | 0.0538 (9) | |
H12 | 0.345521 | 0.477030 | 0.024406 | 0.065* | |
C13 | 0.4330 (4) | 0.5197 (3) | 0.1723 (3) | 0.0451 (8) | |
C14 | 0.2780 (5) | 0.7328 (4) | 0.3238 (3) | 0.0732 (13) | |
H14A | 0.250055 | 0.693336 | 0.379517 | 0.110* | |
H14B | 0.204558 | 0.781995 | 0.295563 | 0.110* | |
H14C | 0.364035 | 0.770498 | 0.350751 | 0.110* | |
C15 | 0.1202 (5) | 0.5975 (4) | −0.0417 (3) | 0.0734 (12) | |
H15A | 0.029627 | 0.621583 | −0.030483 | 0.110* | |
H15B | 0.110203 | 0.528411 | −0.072451 | 0.110* | |
H15C | 0.155037 | 0.645291 | −0.088141 | 0.110* | |
C16 | 0.5547 (5) | 0.4432 (3) | 0.1826 (3) | 0.0675 (12) | |
H16A | 0.642709 | 0.480996 | 0.199615 | 0.101* | |
H16B | 0.550087 | 0.406302 | 0.117462 | 0.101* | |
H16C | 0.548991 | 0.393416 | 0.237354 | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0322 (3) | 0.0306 (3) | 0.0340 (3) | −0.0017 (2) | 0.0105 (2) | −0.0011 (2) |
S1 | 0.0730 (7) | 0.0543 (6) | 0.0761 (7) | 0.0125 (5) | 0.0307 (6) | −0.0150 (5) |
N1 | 0.0474 (15) | 0.0369 (15) | 0.0401 (15) | 0.0012 (12) | 0.0139 (12) | −0.0028 (12) |
N2 | 0.0351 (13) | 0.0347 (14) | 0.0434 (15) | −0.0050 (11) | 0.0087 (11) | −0.0019 (11) |
N3 | 0.0400 (14) | 0.0316 (13) | 0.0355 (13) | 0.0054 (11) | 0.0117 (11) | 0.0039 (11) |
C1 | 0.0377 (16) | 0.0437 (19) | 0.0340 (16) | −0.0035 (14) | 0.0105 (13) | 0.0018 (14) |
C2 | 0.048 (2) | 0.062 (2) | 0.047 (2) | −0.0088 (18) | 0.0038 (16) | −0.0006 (18) |
C3 | 0.046 (2) | 0.102 (4) | 0.064 (3) | −0.016 (2) | −0.0051 (19) | −0.004 (3) |
C4 | 0.043 (2) | 0.112 (4) | 0.089 (3) | −0.030 (2) | 0.008 (2) | 0.005 (3) |
C5 | 0.050 (2) | 0.083 (3) | 0.073 (3) | −0.023 (2) | 0.017 (2) | 0.011 (2) |
C6 | 0.0392 (17) | 0.0463 (19) | 0.0479 (19) | −0.0060 (15) | 0.0142 (15) | 0.0020 (15) |
C7 | 0.0480 (19) | 0.0442 (19) | 0.0441 (18) | −0.0028 (15) | 0.0169 (15) | 0.0078 (15) |
C8 | 0.0398 (16) | 0.0388 (17) | 0.0338 (16) | 0.0008 (13) | 0.0093 (13) | 0.0053 (13) |
C9 | 0.0468 (19) | 0.047 (2) | 0.0453 (19) | 0.0090 (16) | 0.0105 (15) | 0.0071 (16) |
C10 | 0.049 (2) | 0.057 (2) | 0.057 (2) | 0.0144 (17) | 0.0078 (17) | 0.0106 (18) |
C11 | 0.056 (2) | 0.050 (2) | 0.046 (2) | −0.0018 (17) | 0.0022 (16) | 0.0097 (17) |
C12 | 0.072 (2) | 0.050 (2) | 0.0376 (18) | 0.0048 (18) | 0.0062 (17) | 0.0020 (15) |
C13 | 0.056 (2) | 0.0425 (19) | 0.0383 (17) | 0.0090 (15) | 0.0121 (15) | 0.0079 (14) |
C14 | 0.085 (3) | 0.073 (3) | 0.059 (2) | 0.033 (2) | 0.008 (2) | −0.006 (2) |
C15 | 0.073 (3) | 0.078 (3) | 0.061 (3) | 0.002 (2) | −0.008 (2) | 0.007 (2) |
C16 | 0.089 (3) | 0.072 (3) | 0.043 (2) | 0.036 (2) | 0.016 (2) | 0.0029 (19) |
Ni1—N1 | 2.027 (3) | C7—H7 | 0.9300 |
Ni1—N1i | 2.027 (3) | C8—C9 | 1.387 (4) |
Ni1—N2i | 2.108 (2) | C8—C13 | 1.398 (4) |
Ni1—N2 | 2.108 (2) | C9—C10 | 1.395 (5) |
Ni1—N3 | 2.184 (2) | C9—C14 | 1.496 (5) |
Ni1—N3i | 2.184 (2) | C10—H10 | 0.9300 |
S1—C1 | 1.632 (3) | C10—C11 | 1.373 (5) |
N1—C1 | 1.152 (4) | C11—C12 | 1.380 (5) |
N2—C2 | 1.329 (4) | C11—C15 | 1.508 (5) |
N2—C6 | 1.343 (4) | C12—H12 | 0.9300 |
N3—C7 | 1.269 (4) | C12—C13 | 1.391 (5) |
N3—C8 | 1.448 (4) | C13—C16 | 1.506 (5) |
C2—H2 | 0.9300 | C14—H14A | 0.9600 |
C2—C3 | 1.378 (5) | C14—H14B | 0.9600 |
C3—H3 | 0.9300 | C14—H14C | 0.9600 |
C3—C4 | 1.363 (6) | C15—H15A | 0.9600 |
C4—H4 | 0.9300 | C15—H15B | 0.9600 |
C4—C5 | 1.374 (6) | C15—H15C | 0.9600 |
C5—H5 | 0.9300 | C16—H16A | 0.9600 |
C5—C6 | 1.377 (5) | C16—H16B | 0.9600 |
C6—C7 | 1.459 (5) | C16—H16C | 0.9600 |
N1—Ni1—N1i | 180.00 (14) | N3—C7—H7 | 119.4 |
N1i—Ni1—N2 | 89.71 (10) | C6—C7—H7 | 119.4 |
N1i—Ni1—N2i | 90.29 (10) | C9—C8—N3 | 119.8 (3) |
N1—Ni1—N2 | 90.29 (10) | C9—C8—C13 | 121.2 (3) |
N1—Ni1—N2i | 89.71 (10) | C13—C8—N3 | 118.9 (3) |
N1i—Ni1—N3i | 91.41 (10) | C8—C9—C10 | 117.9 (3) |
N1i—Ni1—N3 | 88.59 (10) | C8—C9—C14 | 122.6 (3) |
N1—Ni1—N3 | 91.41 (10) | C10—C9—C14 | 119.4 (3) |
N1—Ni1—N3i | 88.59 (10) | C9—C10—H10 | 118.8 |
N2—Ni1—N2i | 180.0 | C11—C10—C9 | 122.5 (3) |
N2i—Ni1—N3i | 78.43 (10) | C11—C10—H10 | 118.8 |
N2i—Ni1—N3 | 101.57 (10) | C10—C11—C12 | 118.2 (3) |
N2—Ni1—N3 | 78.43 (10) | C10—C11—C15 | 120.7 (4) |
N2—Ni1—N3i | 101.57 (10) | C12—C11—C15 | 121.1 (4) |
N3i—Ni1—N3 | 180.00 (13) | C11—C12—H12 | 119.1 |
C1—N1—Ni1 | 176.7 (3) | C11—C12—C13 | 121.9 (3) |
C2—N2—Ni1 | 129.4 (2) | C13—C12—H12 | 119.1 |
C2—N2—C6 | 117.4 (3) | C8—C13—C16 | 123.1 (3) |
C6—N2—Ni1 | 113.2 (2) | C12—C13—C8 | 118.3 (3) |
C7—N3—Ni1 | 110.9 (2) | C12—C13—C16 | 118.7 (3) |
C7—N3—C8 | 115.8 (3) | C9—C14—H14A | 109.5 |
C8—N3—Ni1 | 133.02 (19) | C9—C14—H14B | 109.5 |
N1—C1—S1 | 179.0 (3) | C9—C14—H14C | 109.5 |
N2—C2—H2 | 118.6 | H14A—C14—H14B | 109.5 |
N2—C2—C3 | 122.8 (4) | H14A—C14—H14C | 109.5 |
C3—C2—H2 | 118.6 | H14B—C14—H14C | 109.5 |
C2—C3—H3 | 120.2 | C11—C15—H15A | 109.5 |
C4—C3—C2 | 119.6 (4) | C11—C15—H15B | 109.5 |
C4—C3—H3 | 120.2 | C11—C15—H15C | 109.5 |
C3—C4—H4 | 120.7 | H15A—C15—H15B | 109.5 |
C3—C4—C5 | 118.5 (4) | H15A—C15—H15C | 109.5 |
C5—C4—H4 | 120.7 | H15B—C15—H15C | 109.5 |
C4—C5—H5 | 120.5 | C13—C16—H16A | 109.5 |
C4—C5—C6 | 119.0 (4) | C13—C16—H16B | 109.5 |
C6—C5—H5 | 120.5 | C13—C16—H16C | 109.5 |
N2—C6—C5 | 122.7 (3) | H16A—C16—H16B | 109.5 |
N2—C6—C7 | 116.4 (3) | H16A—C16—H16C | 109.5 |
C5—C6—C7 | 120.9 (3) | H16B—C16—H16C | 109.5 |
N3—C7—C6 | 121.1 (3) | ||
Ni1—N2—C2—C3 | 177.4 (3) | C5—C6—C7—N3 | 179.8 (4) |
Ni1—N2—C6—C5 | −178.0 (3) | C6—N2—C2—C3 | −0.6 (6) |
Ni1—N2—C6—C7 | 1.7 (4) | C7—N3—C8—C9 | −105.0 (3) |
Ni1—N3—C7—C6 | −1.6 (4) | C7—N3—C8—C13 | 76.9 (4) |
Ni1—N3—C8—C9 | 82.2 (4) | C8—N3—C7—C6 | −176.0 (3) |
Ni1—N3—C8—C13 | −96.0 (3) | C8—C9—C10—C11 | 1.2 (5) |
N2—C2—C3—C4 | 0.9 (7) | C9—C8—C13—C12 | −1.4 (5) |
N2—C6—C7—N3 | 0.0 (5) | C9—C8—C13—C16 | 178.4 (3) |
N3—C8—C9—C10 | −178.1 (3) | C9—C10—C11—C12 | −1.0 (6) |
N3—C8—C9—C14 | 1.7 (5) | C9—C10—C11—C15 | 179.9 (4) |
N3—C8—C13—C12 | 176.8 (3) | C10—C11—C12—C13 | −0.4 (6) |
N3—C8—C13—C16 | −3.5 (5) | C11—C12—C13—C8 | 1.6 (5) |
C2—N2—C6—C5 | 0.3 (5) | C11—C12—C13—C16 | −178.2 (4) |
C2—N2—C6—C7 | −179.9 (3) | C13—C8—C9—C10 | 0.0 (5) |
C2—C3—C4—C5 | −0.9 (8) | C13—C8—C9—C14 | 179.8 (4) |
C3—C4—C5—C6 | 0.6 (8) | C14—C9—C10—C11 | −178.6 (4) |
C4—C5—C6—N2 | −0.3 (7) | C15—C11—C12—C13 | 178.6 (4) |
C4—C5—C6—C7 | 179.9 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg1 is the mid-point of the C1═N1 group. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···S1ii | 0.93 | 2.89 | 3.769 (4) | 158 |
C7—H7···S1iii | 0.93 | 2.83 | 3.680 (3) | 153 |
C10—H10···S1iv | 0.93 | 3.17 | 3.871 (4) | 134 |
C10—H10···Cg1iv | 0.93 | 2.73 | 3.655 (4) | 171 |
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, −y+3/2, z−1/2; (iv) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.
Funding information
Funding for this research was provided by: The NSTDA STEM Workforce (scholarship No. SCA-CO-2561-6015-TH to S. Jittirattanakun); The National Research Council of Thailand (contract No. 09/2562 to S. Jittirattanakun).
References
Basu Baul, T. S., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Dalton Trans. 42, 1905–1920. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX3and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Capes, L., Létard, J.-F. & Kahn, O. (2000). Chem. Eur. J. 6, 2246–2255. CrossRef PubMed CAS Google Scholar
Chattopadhyay, S. K., Mitra, K., Biswas, S., Lucas, C. R., Miller, D. O. & Adhikary, B. (2002). J. Coord. Chem. 55, 1409–1418. CrossRef CAS Google Scholar
Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421. Web of Science CrossRef PubMed CAS Google Scholar
Creaven, B. S., Czeglédi, E., Devereux, M., Enyedy, É. A., Foltyn-Arfa Kia, A., Karcz, D., Kellett, A., McClean, S., Nagy, N. V., Noble, A., Rockenbauer, A., Szabó-Plánka, T. & Walsh, M. (2010). Dalton Trans. 39, 10854–10865. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, Y.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 633–634. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Layek, M., Ghosh, M., Fleck, M., Saha, R. & Bandyopadhyay, D. (2014). J. Coord. Chem. 67, 3371–3379. CrossRef CAS Google Scholar
Létard, J.-F., Guionneau, P., Codjovi, E., Lavastre, O., Bravic, D., Chasseau, D. & Kahn, O. (1997). J. Am. Chem. Soc. 119, 10861–10862. Google Scholar
Liu, X. & Hamon, J.-R. (2019). Coord. Chem. Rev. 389, 94–118. CrossRef CAS Google Scholar
Lucas, C. R., Mitra, K., Biswas, S., Chattopadhyay, S. K. & Adhikary, B. (2005). Transition Met. Chem. 30, 185–190. CrossRef CAS Google Scholar
Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201. Web of Science CSD CrossRef CAS PubMed Google Scholar
Theppitak, C., Meesangkaew, M., Chanthee, S., Sriprang, N. & Chainok, K. (2014). Acta Cryst. E70, o1094–o1095. CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.