research communications
Synthesis and H-1,2,4-triazole-5(4H)-thione
of 3-(adamantan-1-yl)-4-(2-bromo-4-fluorophenyl)-1aDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and bDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi.es
In the title compound, C18H19BrFN3S, the 1,2,4-triazole ring is nearly planar with a maximum deviation of −0.009 (3) and 0.009 (4) Å, respectively, for the S-bound C atom and the N atom bonded to the bromofluorophenyl ring. The phenyl and triazole rings are almost perpendicular to each other, forming a dihedral angle of 89.5 (2)°. In the crystal, the molecules are linked by weak C—H⋯π(phenyl) interactions, forming supramolecular chains extending along the c-axis direction. The crystal packing is further consolidated by intermolecular N—H⋯S hydrogen bonds and by weak C—H⋯S interactions, yielding double chains propagating along the a-axis direction. The crystal studied was refined as a racemic twin.
Keywords: crystal structure; adamantane; triazole.
CCDC reference: 1975689
1. Chemical context
Adamantane derivatives are currently receiving considerable interest for their diverse biological activities (Liu et al., 2011; Lamoureux & Artavia, 2010). Numerous adamantane-based drugs have been developed as antiviral (Davies et al., 1964; Togo et al., 1968; Rosenthal et al., 1982; El-Emam et al., 2004; Burstein et al., 1999; Balzarini et al., 2009), anticancer (Sun et al., 2002; Min et al., 2017), antidiabetic (Villhauer et al., 2003 & Augeri et al., 2005), anti-Parkinsonian (Schwab et al., 1969), anti-Alzheimer's (Bormann, 1989) and antipsychotic (Abou-Gharbia et al., 1999) agents. In addition, several adamantane-based analogues have been shown to possess promising bactericidal (Protopopova et al., 2005; El-Emam et al., 2013; Kadi et al., 2010; Al-Abdullah et al.; 2014; Al-Deeb et al., 2006) and fungicidal (Omar et al., 2010) activities. On the other hand, 1,2,4-triazole derivatives have been reported to possess significant anti-inflammatory (Navidpour et al., 2006) and antibacterial activities (Almajan et al., 2009). Based on the diverse biological activities of adamantane and 1,2,4-triazole derivatives, we synthesized the title 1,2,4-triazole-adamantane hybrid derivative I as potential chemotherapeutic agent.
2. Structural commentary
In the title molecule (Fig. 1), the 1,2,4-triazole ring (N1–N3/C7/C8) is nearly planar with a maximum deviation of −0.009 (3) Å for atom C7 and 0.009 (4) Å for atom N1. The phenyl ring (C1–C6) is almost perpendicular to the 1,2,4-triazole ring, forming a dihedral angle of 89.5 (2)°. The triazole ring is substituted in positions 3 and 5 with an adamantane group and a sulfur atom which deviate from the mean plane of the ring of −0.149 (4) and −0.067 (1) Å, respectively. The phenyl group is substituted at positions 2 and 4 by a bromine and a fluorine atom, which deviate by 0.001 (4) and 0.014 (2) Å, respectively, from the ring plane. The bond distances are in normal ranges for this type of compound [C4—F1 = 1.355 (4), C6—Br1 = 1.898 (3) and C7—S1 = 1.688 (3) Å]. The double-bond character of the C8=N2 bond is evidenced by its length of 1.288 (4) Å, while the other distances in the triazole ring are indicative of electronic delocalization [N2—N3, C7—N3 and C7—N1 = 1.377 (4), 1.327 (4) and 1.379 (4) Å, respectively].
3. Supramolecular features
In the crystal (Fig. 2), the molecules are linked by weak interaction of the type C–H⋯π(phenyl), forming supramolecular chains extending along the c-axis direction, involving the C11–H11 group of the adamantane moiety and the C1–C6 aromatic ring. The crystal packing is further consolidated by intermolecular N3—H3N⋯S1(x − , −y + , −z + 1) hydrogen bonds, in which the triazole ring behaves both as donor and acceptor, and by weak C2—H2⋯S1(x + , −y + , −z + 1) interactions (Table 1), yielding double chains propagating along the a-axis direction.
4. Hirshfeld surface analysis
In order to investigate the intermolecular interactions in the structure of I in a visual manner, a Hirshfeld surface analysis was performed using the program Crystal Explorer 17.5 (Spackman et al. 2002; Turner et al., 2017). Fig. 3 shows the HS surfaces mapped over dnorm, shape-index and curvedness (Fig. 3). In the HS plotted over dnorm, white areas on the surface indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively. Two red spots are present in close proximity to the S and N—H atoms involved in hydrogen bonding. As expected, the absence of red and blue triangles on the shape-index surface and the small, flat segments delineated by the blue line in the surface mapped over curvedness indicate the absence of π–π stacking interactions in the while the red regions over the shape-index surface are due to the presence of C—H⋯π interactions.
The two-dimensional fingerprint maps for I provide some quantitative information about the individual contributions of the intermolecular interactions in the (Figs. 4 and 5); the distinct spikes appearing in these plots help estimate the different interaction motifs in the crystal packing. As can be seen from Fig. 4, no C⋯C interactions are present, which confirms the absence of π–π stacking in I. Globally, the highest contribution to the total Hirshfeld surface comes from the H⋯H (42.4%) and S⋯H/H⋯S (14.6%) intermolecular contacts. This indicates that have an important influence on the consolidation of the The other contacts contribute less to the Hirshfeld surfaces: F⋯H/H⋯F (11%), Br⋯H/H⋯Br (9.8%), H⋯C/C⋯H (8.4%), N⋯H/H⋯N (7.5%), Br⋯C/C⋯Br (3.5%), S⋯N/N⋯S (1%), Br⋯Br (0.5%) and C⋯S/S⋯C (0.5%).
5. Database survey
A search of the Cambridge Structural Database (Version 2.0.1, last update, February 2019; Groom et al., 2016) for adamantyl triazole-5(4H)-thione derivatives gave six hits containing a substituted triazole ring, namely: 3-(adamantan-1-yl)-4-benzyl-1H-1,2,4-triazole-5(4H)-thione (XOFLEL; Al-Omary et al., 2014), with a benzyl substituent at position 4 of the 1,2,4-triazole ring; 3-(adamantan-1-yl)-4-(4-fluorophenyl)-1H-1,2,4-triazole-5(4H)-thione (JAWZUF; Al-Shehri et al., 2017), in which an F atom is the only substituent on the phenyl ring in the para position; 3-(adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole-5(4H)-thione (LANXAB; Almutairi et al., 2012), which exhibits a propenyl group, instead of a phenyl one, at position 4 of the triazole ring; 3-(adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)-thione (ZAPJUX; El-Emam et al., 2012), which has an ethyl group instead of a phenyl ring at position 4 of the triazole ring; 3-(adamantan-1-yl)-4-(4-chlorophenyl)-1H-1,2,4-triazole-5(4H)-thione (WOTQUT; Al-Wabli et al., 2015), with a Cl atom in the para position of the phenyl ring attached to the triazole moiety; 5-(adamantan-1-yl)-4-phenyl-2,4-dihydro-1,2,4-triazole-3-thione (WUMPUP; Nieger et al., 2002), comprising a phenyl ring, without any substituents, at position 4 of the triazole ring. All of the substituents at position 4 of the planar triazole ring in these compounds are almost perpendicular to that ring, similar to the orientation of the phenyl substituent of the title compound. In the structures of all these compounds, the N—H⋯S interactions play an important role in consolidating the crystal packing, along with C–H⋯π interactions, when phenyl groups are present as substituents.
6. Synthesis and crystallization
All chemicals and solvents were used as purchased without further purification. The melting point was determined using an electrothermal digital melting-point apparatus and uncorrected. The NMR spectra were recorded at room temperature in DMSO-d6 solution on a Bruker Ascend 700 NMR spectrometer. The title compound I was synthesized starting with adamantane-1-carbohydrazide A (El-Emam & Ibrahim, 1991) via the reaction with 2-bromo-4-fluorophenyl isothiocyanate B to yield the corresponding 4-(1-adamantylcarbonyl)-1-(2-bromo-4-fluorophenyl)-2-thiosemicarbazide C, which was then cyclized to the title compound I by heating in aqueous sodium hydroxide as outlined in Fig. 6.
2-Bromo-4-fluorophenyl isothiocyanate (2.32 g, 0.01 mol) was added to a solution of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), in ethanol (10 mL), and the mixture was heated under reflux with stirring for one h. Ethanol was then distilled off in vacuo and an aqueous sodium hydroxide solution (10%, 15 mL) was added to the residue and the mixture was heated under reflux for 4 h, then filtered hot. On cooling, the mixture was acidified with hydrochloric acid (pH 1–2) and the precipitated crude product was filtered, washed with water, dried and crystallized from an aqueous medium to yield 3.06 g (75%) of the title compound (C18H19BrFN3S) as fine colourless crystals (m.p. 577–579 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in EtOH/CHCl3 (1:2, v/v) at room temperature. 1H NMR (DMSO-d6, 700.17 MHz): δ 1.47–1.71 (m, 9H, adamantane-H), 1.87–1.89 (s, 6H, adamantane-H), 7.47–7.52 (m, 1H, Ar-H), 7.69–7.71 (m, 1H, Ar-H), 7.87–7.90 (m, 1H, Ar-H), 13.86 (s, 1H, NH). 13C NMR (DMSO-d6, 176.08 MHz): δ 27.92, 36.08, 36.57, 38.49 (adamantane-C), 115.0, 121.15, 131.65, 134.16, 135.21, 161.86 (Ar-C), 159.46 (triazole C=N), 169.41 (triazole C=S).
7. Refinement
Crystal data, data collection and structure . Carbon and nitrogen-bound H atoms were placed in calculated positions (C—H 0.95 to 0.98 Å; N—H 0.86 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C,N). The structure was refined as a racemic twin [BASF: 0.50 (2)]. Four reflections ( 12 10, 12 5, 12 6 and 12 9) were omitted from the last cycle of owing to poor agreement.
details are summarized in Table 2Supporting information
CCDC reference: 1975689
https://doi.org/10.1107/S2056989020000092/xi2020sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020000092/xi2020Isup2.hkl
Program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), SCHAKAL (Keller, 1989), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995), publCIF (Westrip, 2010), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).
C18H19BrFN3S | F(000) = 832 |
Mr = 408.32 | Dx = 1.592 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5537 reflections |
a = 6.8473 (1) Å | θ = 4.2–74.6° |
b = 12.5587 (2) Å | µ = 4.56 mm−1 |
c = 19.8090 (3) Å | T = 151 K |
V = 1703.44 (4) Å3 | Prism, colourless |
Z = 4 | 0.12 × 0.11 × 0.08 mm |
Agilent Excalibur, Ruby, Gemini diffractometer | 3572 independent reflections |
Graphite monochromator | 3244 reflections with I > 2σ(I) |
Detector resolution: 10.2673 pixels mm-1 | Rint = 0.046 |
ω scans | θmax = 76.3°, θmin = 4.2° |
Absorption correction: multi-scan (CrysAlisPro; Agilent 2014) | h = −8→8 |
Tmin = 0.602, Tmax = 0.694 | k = −15→14 |
13191 measured reflections | l = −23→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0337P)2 + 1.0546P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3498 reflections | Δρmax = 0.62 e Å−3 |
218 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Absolute structure: Flack (1983) |
0 constraints | Absolute structure parameter: 0.50 (2) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.03402 (6) | 0.64125 (3) | 0.484532 (19) | 0.03206 (11) | |
S1 | −0.01416 (12) | 0.31086 (6) | 0.43635 (4) | 0.02208 (17) | |
F1 | 0.6045 (3) | 0.6344 (2) | 0.34672 (10) | 0.0370 (5) | |
N1 | 0.1505 (4) | 0.4307 (2) | 0.53736 (13) | 0.0178 (6) | |
N3 | −0.0802 (4) | 0.3300 (2) | 0.57154 (14) | 0.0247 (7) | |
H3N | −0.1756 | 0.2854 | 0.572 | 0.03* | |
N2 | −0.0120 (4) | 0.3805 (2) | 0.62852 (12) | 0.0239 (6) | |
C4 | 0.4956 (5) | 0.5857 (3) | 0.39470 (15) | 0.0251 (8) | |
C1 | 0.2724 (5) | 0.4870 (3) | 0.49068 (16) | 0.0202 (6) | |
C5 | 0.3203 (5) | 0.6311 (3) | 0.41180 (15) | 0.0240 (7) | |
H5 | 0.2778 | 0.6939 | 0.3917 | 0.029* | |
C7 | 0.0153 (4) | 0.3567 (2) | 0.51580 (14) | 0.0195 (6) | |
C8 | 0.1279 (5) | 0.4408 (3) | 0.60780 (16) | 0.0202 (7) | |
C11 | 0.2990 (5) | 0.5637 (3) | 0.77521 (16) | 0.0256 (8) | |
H11 | 0.2373 | 0.5644 | 0.8198 | 0.031* | |
C2 | 0.4508 (5) | 0.4436 (3) | 0.47200 (15) | 0.0238 (7) | |
H2 | 0.4943 | 0.3811 | 0.4922 | 0.029* | |
C17 | 0.4578 (5) | 0.4462 (3) | 0.65943 (16) | 0.0242 (7) | |
H17A | 0.4376 | 0.3733 | 0.6741 | 0.029* | |
H17B | 0.5197 | 0.4446 | 0.6154 | 0.029* | |
C3 | 0.5643 (5) | 0.4932 (3) | 0.42340 (16) | 0.0273 (8) | |
H3A | 0.6839 | 0.4647 | 0.4105 | 0.033* | |
C6 | 0.2089 (5) | 0.5793 (3) | 0.46035 (16) | 0.0212 (7) | |
C14 | 0.4279 (5) | 0.6766 (3) | 0.68164 (16) | 0.0260 (8) | |
H14 | 0.4493 | 0.7499 | 0.6663 | 0.031* | |
C9 | 0.2594 (5) | 0.5037 (3) | 0.65435 (16) | 0.0200 (7) | |
C12 | 0.4946 (6) | 0.5054 (3) | 0.77950 (15) | 0.0280 (8) | |
H12A | 0.5792 | 0.5411 | 0.8116 | 0.034* | |
H12B | 0.4739 | 0.433 | 0.795 | 0.034* | |
C16 | 0.5909 (5) | 0.5041 (3) | 0.70996 (17) | 0.0269 (8) | |
H16 | 0.7167 | 0.4671 | 0.7127 | 0.032* | |
C10 | 0.1647 (5) | 0.5061 (3) | 0.72489 (16) | 0.0254 (8) | |
H10A | 0.04 | 0.5425 | 0.7225 | 0.031* | |
H10B | 0.1414 | 0.4338 | 0.7402 | 0.031* | |
C13 | 0.3326 (6) | 0.6782 (3) | 0.75170 (17) | 0.0271 (8) | |
H13A | 0.4168 | 0.715 | 0.7834 | 0.033* | |
H13B | 0.2091 | 0.7159 | 0.7496 | 0.033* | |
C18 | 0.2933 (5) | 0.6190 (3) | 0.63142 (16) | 0.0245 (8) | |
H18A | 0.1692 | 0.656 | 0.6287 | 0.029* | |
H18B | 0.3523 | 0.6193 | 0.5869 | 0.029* | |
C15 | 0.6237 (5) | 0.6188 (3) | 0.68563 (18) | 0.0298 (9) | |
H15A | 0.7097 | 0.6558 | 0.7167 | 0.036* | |
H15B | 0.6852 | 0.6182 | 0.6415 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02922 (18) | 0.0329 (2) | 0.03404 (17) | 0.01027 (18) | −0.00194 (16) | 0.00029 (16) |
S1 | 0.0243 (4) | 0.0216 (4) | 0.0204 (3) | −0.0005 (4) | −0.0022 (3) | −0.0017 (3) |
F1 | 0.0388 (12) | 0.0395 (14) | 0.0329 (11) | −0.0117 (12) | 0.0067 (9) | 0.0123 (11) |
N1 | 0.0206 (14) | 0.0149 (14) | 0.0178 (12) | −0.0008 (12) | −0.0001 (10) | −0.0009 (10) |
N3 | 0.0226 (15) | 0.0257 (16) | 0.0260 (14) | −0.0095 (12) | 0.0020 (11) | −0.0048 (11) |
N2 | 0.0234 (16) | 0.0259 (16) | 0.0225 (12) | −0.0050 (13) | 0.0030 (11) | −0.0077 (10) |
C4 | 0.030 (2) | 0.0235 (17) | 0.0221 (14) | −0.0089 (16) | 0.0000 (14) | 0.0023 (12) |
C1 | 0.0212 (15) | 0.0185 (16) | 0.0210 (14) | −0.0039 (13) | −0.0024 (13) | 0.0008 (13) |
C5 | 0.0306 (18) | 0.0186 (18) | 0.0227 (15) | −0.0049 (17) | −0.0059 (13) | 0.0024 (14) |
C7 | 0.0179 (14) | 0.0171 (14) | 0.0235 (13) | 0.0035 (15) | −0.0034 (13) | 0.0020 (13) |
C8 | 0.0205 (16) | 0.0184 (18) | 0.0218 (15) | −0.0009 (14) | −0.0008 (12) | −0.0014 (13) |
C11 | 0.0280 (18) | 0.030 (2) | 0.0188 (15) | −0.0016 (16) | 0.0002 (14) | −0.0028 (14) |
C2 | 0.0253 (16) | 0.0234 (17) | 0.0226 (15) | −0.0003 (16) | −0.0038 (14) | 0.0003 (12) |
C17 | 0.0240 (16) | 0.0225 (17) | 0.0263 (15) | 0.0027 (16) | −0.0016 (15) | −0.0050 (13) |
C3 | 0.0251 (19) | 0.031 (2) | 0.0262 (16) | −0.0038 (16) | 0.0019 (14) | −0.0032 (14) |
C6 | 0.0200 (16) | 0.0182 (17) | 0.0253 (15) | 0.0037 (14) | −0.0033 (13) | −0.0059 (13) |
C14 | 0.035 (2) | 0.0182 (17) | 0.0249 (16) | −0.0062 (15) | −0.0046 (14) | 0.0012 (13) |
C9 | 0.0212 (17) | 0.0181 (17) | 0.0207 (15) | −0.0021 (14) | 0.0007 (12) | −0.0029 (13) |
C12 | 0.037 (2) | 0.0249 (18) | 0.0226 (14) | −0.0001 (17) | −0.0091 (15) | 0.0019 (12) |
C16 | 0.0194 (18) | 0.031 (2) | 0.0301 (17) | 0.0041 (15) | −0.0045 (13) | −0.0030 (15) |
C10 | 0.0231 (18) | 0.029 (2) | 0.0243 (16) | −0.0059 (16) | 0.0038 (13) | −0.0030 (15) |
C13 | 0.0315 (19) | 0.023 (2) | 0.0266 (17) | 0.0010 (16) | −0.0042 (14) | −0.0079 (14) |
C18 | 0.0268 (18) | 0.025 (2) | 0.0220 (15) | −0.0018 (15) | −0.0063 (13) | 0.0010 (13) |
C15 | 0.0246 (18) | 0.035 (3) | 0.0296 (17) | −0.0081 (17) | −0.0017 (14) | 0.0007 (16) |
Br1—C6 | 1.898 (3) | C17—C9 | 1.542 (5) |
S1—C7 | 1.688 (3) | C17—H17A | 0.97 |
F1—C4 | 1.355 (4) | C17—H17B | 0.97 |
N1—C7 | 1.379 (4) | C3—H3A | 0.93 |
N1—C8 | 1.410 (4) | C14—C15 | 1.526 (5) |
N1—C1 | 1.433 (4) | C14—C13 | 1.534 (5) |
N3—C7 | 1.327 (4) | C14—C18 | 1.537 (5) |
N3—N2 | 1.377 (4) | C14—H14 | 0.98 |
N3—H3N | 0.86 | C9—C18 | 1.535 (5) |
N2—C8 | 1.288 (4) | C9—C10 | 1.541 (4) |
C4—C5 | 1.371 (5) | C12—C16 | 1.527 (5) |
C4—C3 | 1.376 (5) | C12—H12A | 0.97 |
C1—C6 | 1.377 (5) | C12—H12B | 0.97 |
C1—C2 | 1.387 (5) | C16—C15 | 1.536 (5) |
C5—C6 | 1.389 (5) | C16—H16 | 0.98 |
C5—H5 | 0.93 | C10—H10A | 0.97 |
C8—C9 | 1.512 (5) | C10—H10B | 0.97 |
C11—C12 | 1.529 (5) | C13—H13A | 0.97 |
C11—C13 | 1.529 (5) | C13—H13B | 0.97 |
C11—C10 | 1.537 (5) | C18—H18A | 0.97 |
C11—H11 | 0.98 | C18—H18B | 0.97 |
C2—C3 | 1.385 (5) | C15—H15A | 0.97 |
C2—H2 | 0.93 | C15—H15B | 0.97 |
C17—C16 | 1.537 (5) | ||
C7—N1—C8 | 107.1 (3) | C15—C14—H14 | 109.3 |
C7—N1—C1 | 121.6 (3) | C13—C14—H14 | 109.3 |
C8—N1—C1 | 131.2 (3) | C18—C14—H14 | 109.3 |
C7—N3—N2 | 113.5 (3) | C8—C9—C18 | 113.7 (3) |
C7—N3—H3N | 123.3 | C8—C9—C10 | 108.2 (3) |
N2—N3—H3N | 123.3 | C18—C9—C10 | 108.3 (3) |
C8—N2—N3 | 105.2 (3) | C8—C9—C17 | 108.6 (3) |
F1—C4—C5 | 117.9 (3) | C18—C9—C17 | 109.2 (3) |
F1—C4—C3 | 118.9 (3) | C10—C9—C17 | 108.7 (3) |
C5—C4—C3 | 123.2 (3) | C16—C12—C11 | 109.5 (3) |
C6—C1—C2 | 119.5 (3) | C16—C12—H12A | 109.8 |
C6—C1—N1 | 120.9 (3) | C11—C12—H12A | 109.8 |
C2—C1—N1 | 119.4 (3) | C16—C12—H12B | 109.8 |
C4—C5—C6 | 117.2 (3) | C11—C12—H12B | 109.8 |
C4—C5—H5 | 121.4 | H12A—C12—H12B | 108.2 |
C6—C5—H5 | 121.4 | C12—C16—C15 | 109.6 (3) |
N3—C7—N1 | 104.1 (2) | C12—C16—C17 | 109.7 (3) |
N3—C7—S1 | 129.1 (2) | C15—C16—C17 | 109.0 (3) |
N1—C7—S1 | 126.8 (2) | C12—C16—H16 | 109.5 |
N2—C8—N1 | 110.1 (3) | C15—C16—H16 | 109.5 |
N2—C8—C9 | 123.8 (3) | C17—C16—H16 | 109.5 |
N1—C8—C9 | 125.8 (3) | C11—C10—C9 | 110.2 (3) |
C12—C11—C13 | 109.6 (3) | C11—C10—H10A | 109.6 |
C12—C11—C10 | 109.5 (3) | C9—C10—H10A | 109.6 |
C13—C11—C10 | 109.6 (3) | C11—C10—H10B | 109.6 |
C12—C11—H11 | 109.4 | C9—C10—H10B | 109.6 |
C13—C11—H11 | 109.4 | H10A—C10—H10B | 108.1 |
C10—C11—H11 | 109.4 | C11—C13—C14 | 109.1 (3) |
C3—C2—C1 | 120.2 (3) | C11—C13—H13A | 109.9 |
C3—C2—H2 | 119.9 | C14—C13—H13A | 109.9 |
C1—C2—H2 | 119.9 | C11—C13—H13B | 109.9 |
C16—C17—C9 | 110.1 (3) | C14—C13—H13B | 109.9 |
C16—C17—H17A | 109.6 | H13A—C13—H13B | 108.3 |
C9—C17—H17A | 109.6 | C9—C18—C14 | 110.1 (3) |
C16—C17—H17B | 109.6 | C9—C18—H18A | 109.6 |
C9—C17—H17B | 109.6 | C14—C18—H18A | 109.6 |
H17A—C17—H17B | 108.2 | C9—C18—H18B | 109.6 |
C4—C3—C2 | 118.4 (3) | C14—C18—H18B | 109.6 |
C4—C3—H3A | 120.8 | H18A—C18—H18B | 108.2 |
C2—C3—H3A | 120.8 | C14—C15—C16 | 109.5 (3) |
C1—C6—C5 | 121.5 (3) | C14—C15—H15A | 109.8 |
C1—C6—Br1 | 120.8 (3) | C16—C15—H15A | 109.8 |
C5—C6—Br1 | 117.7 (3) | C14—C15—H15B | 109.8 |
C15—C14—C13 | 109.5 (3) | C16—C15—H15B | 109.8 |
C15—C14—C18 | 109.7 (3) | H15A—C15—H15B | 108.2 |
C13—C14—C18 | 109.7 (3) |
Cg2 is the centroid of the C1–C2 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···S1i | 0.86 | 2.62 | 3.461 (3) | 166 |
C2—H2···S1ii | 0.93 | 2.8 | 3.683 (3) | 160 |
C11—H11···Cg2iii | 0.98 | 2.86 | 3.757 (4) | 152 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1/2, −y+1, z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: elemam5@hotmail.com.
Acknowledgements
Funding for this research was provided by: Financial support from the Spanish Ministerio de Economıia y Competitividad (grant No. MAT2016-78155-C2-1-R); Gobierno del Principado de Asturias (award No. GRUPIN-IDI/2018/170).
Funding information
Funding for this research was provided by: Spanish Ministerio de Economıia y Competitividad (grant No. MAT2016-78155-C2-1-R); Gobierno del Principado de Asturias (award No. GRUPIN-IDI/2018/170).
References
Abou-Gharbia, M. A., Childers, W. E. Jr, Fletcher, H., McGaughey, G., Patel, U., Webb, M. B., Yardley, J., Andree, T., Boast, C., Kucharik, R. J. Jr, Marquis, K., Morris, H., Scerni, R. & Moyer, J. A. (1999). J. Med. Chem. 42, 5077–5094. Web of Science PubMed CAS Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505–518. CAS Google Scholar
Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim.-Forsch. 56, 40–47. CAS Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Almajan, G. L., Barbuceanu, S.-F., Almajan, E.-R., Draghici, C. & Saramet, G. (2009). Eur. J. Med. Chem. 44, 3083–3089. Web of Science CrossRef PubMed CAS Google Scholar
Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. CSD CrossRef IUCr Journals Google Scholar
Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o766–o767. CSD CrossRef IUCr Journals Google Scholar
Al-Shehri, M. M., Elsaman, T., Al-Abdullah, E. S., Ghabbour, H. A. & El-Emam, A. A. (2017). Z. Kristallogr. New Cryst Struct. 232, 443–445. CAS Google Scholar
Al-Wabli, R. I., El-Emam, A. A., Alroqi, O. S., Chidan Kumar, C. S. & Fun, H.-K. (2015). Acta Cryst. E71, o115–o116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Augeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025–5037. Web of Science CrossRef PubMed CAS Google Scholar
Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bormann, J. (1989). Eur. J. Pharmacol. 166, 591–592. CrossRef CAS PubMed Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135–144. Web of Science CrossRef PubMed CAS Google Scholar
Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863. CrossRef PubMed CAS Web of Science Google Scholar
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. Web of Science CrossRef PubMed CAS Google Scholar
El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102. Web of Science CAS PubMed Google Scholar
El-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347. CSD CrossRef IUCr Journals Google Scholar
El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim.-Forsch. 41, 1260–1264. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. Web of Science CrossRef CAS PubMed Google Scholar
Keller, E. (1989). J. Appl. Cryst. 22, 19–22. CrossRef Web of Science IUCr Journals Google Scholar
Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978. Web of Science CrossRef CAS PubMed Google Scholar
Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Min, J., Guillen, V. S., Sharma, A., Zhao, Y., Ziegler, Y., Gong, P., Mayne, C. G., Srinivasan, S., Kim, S. H., Carlson, K. E., Nettles, K. W., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2017). J. Med. Chem. 60, 6321–6336. Web of Science CrossRef CAS PubMed Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507–2517. Web of Science CrossRef PubMed CAS Google Scholar
Nieger, M., Lehmann, J. & El-Emam, A. A. (2002). Private Communication (refcode WUMPUP). CCDC, Cambridge, England. Google Scholar
Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426–432. Web of Science CrossRef PubMed CAS Google Scholar
Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974. Web of Science CrossRef PubMed CAS Google Scholar
Rosenthal, K. S., Sokol, M. S., Ingram, R. L., Subramanian, R. & Fort, R. C. (1982). Antimicrob. Agents Chemother. 22, 1031–1036. CrossRef CAS PubMed Web of Science Google Scholar
Schwab, R. S., England, A. C. Jr, Poskanzer, D. C. & Young, R. R. (1969). J. Am. Med. Assoc. 208, 1168–1170. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430–2436. Web of Science PubMed CAS Google Scholar
Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Villhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774–2789. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.