research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 3-(adamantan-1-yl)-4-(2-bromo-4-fluoro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

CROSSMARK_Color_square_no_text.svg

aDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and bDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi.es

Edited by C. Massera, Università di Parma, Italy (Received 28 October 2019; accepted 6 January 2020; online 10 January 2020)

In the title compound, C18H19BrFN3S, the 1,2,4-triazole ring is nearly planar with a maximum deviation of −0.009 (3) and 0.009 (4) Å, respectively, for the S-bound C atom and the N atom bonded to the bromo­fluoro­phenyl ring. The phenyl and triazole rings are almost perpendicular to each other, forming a dihedral angle of 89.5 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯π(phen­yl) inter­actions, forming supra­molecular chains extending along the c-axis direction. The crystal packing is further consolidated by inter­molecular N—H⋯S hydrogen bonds and by weak C—H⋯S inter­actions, yielding double chains propagating along the a-axis direction. The crystal studied was refined as a racemic twin.

1. Chemical context

Adamantane derivatives are currently receiving considerable inter­est for their diverse biological activities (Liu et al., 2011[Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949-1963.]; Lamoureux & Artavia, 2010[Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967-2978.]). Numerous adamantane-based drugs have been developed as anti­viral (Davies et al., 1964[Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862-863.]; Togo et al., 1968[Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089-1094.]; Rosenthal et al., 1982[Rosenthal, K. S., Sokol, M. S., Ingram, R. L., Subramanian, R. & Fort, R. C. (1982). Antimicrob. Agents Chemother. 22, 1031-1036.]; El-Emam et al., 2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]; Burstein et al., 1999[Burstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135-144.]; Balzarini et al., 2009[Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303-311.]), anti­cancer (Sun et al., 2002[Sun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430-2436.]; Min et al., 2017[Min, J., Guillen, V. S., Sharma, A., Zhao, Y., Ziegler, Y., Gong, P., Mayne, C. G., Srinivasan, S., Kim, S. H., Carlson, K. E., Nettles, K. W., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2017). J. Med. Chem. 60, 6321-6336.]), anti­diabetic (Villhauer et al., 2003[Villhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774-2789.] & Augeri et al., 2005[Augeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025-5037.]), anti-Parkinsonian (Schwab et al., 1969[Schwab, R. S., England, A. C. Jr, Poskanzer, D. C. & Young, R. R. (1969). J. Am. Med. Assoc. 208, 1168-1170.]), anti-Alzheimer's (Bormann, 1989[Bormann, J. (1989). Eur. J. Pharmacol. 166, 591-592.]) and anti­psychotic (Abou-Gharbia et al., 1999[Abou-Gharbia, M. A., Childers, W. E. Jr, Fletcher, H., McGaughey, G., Patel, U., Webb, M. B., Yardley, J., Andree, T., Boast, C., Kucharik, R. J. Jr, Marquis, K., Morris, H., Scerni, R. & Moyer, J. A. (1999). J. Med. Chem. 42, 5077-5094.]) agents. In addition, several adamantane-based analogues have been shown to possess promising bactericidal (Protopopova et al., 2005[Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968-974.]; El-Emam et al., 2013[El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96-102.]; Kadi et al., 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]; Al-Abdullah et al.; 2014[Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505-518.]; Al-Deeb et al., 2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim.-Forsch. 56, 40-47.]) and fungicidal (Omar et al., 2010[Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426-432.]) activities. On the other hand, 1,2,4-triazole derivatives have been reported to possess significant anti-inflammatory (Navidpour et al., 2006[Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507-2517.]) and anti­bacterial activities (Almajan et al., 2009[Almajan, G. L., Barbuceanu, S.-F., Almajan, E.-R., Draghici, C. & Saramet, G. (2009). Eur. J. Med. Chem. 44, 3083-3089.]). Based on the diverse biological activities of adamantane and 1,2,4-triazole derivatives, we synthesized the title 1,2,4-triazole-adamantane hybrid derivative I as potential chemotherapeutic agent.

[Scheme 1]

2. Structural commentary

In the title mol­ecule (Fig. 1[link]), the 1,2,4-triazole ring (N1–N3/C7/C8) is nearly planar with a maximum deviation of −0.009 (3) Å for atom C7 and 0.009 (4) Å for atom N1. The phenyl ring (C1–C6) is almost perpendicular to the 1,2,4-triazole ring, forming a dihedral angle of 89.5 (2)°. The triazole ring is substituted in positions 3 and 5 with an adamantane group and a sulfur atom which deviate from the mean plane of the ring of −0.149 (4) and −0.067 (1) Å, respectively. The phenyl group is substituted at positions 2 and 4 by a bromine and a fluorine atom, which deviate by 0.001 (4) and 0.014 (2) Å, respectively, from the ring plane. The bond distances are in normal ranges for this type of compound [C4—F1 = 1.355 (4), C6—Br1 = 1.898 (3) and C7—S1 = 1.688 (3) Å]. The double-bond character of the C8=N2 bond is evidenced by its length of 1.288 (4) Å, while the other distances in the triazole ring are indicative of electronic delocalization [N2—N3, C7—N3 and C7—N1 = 1.377 (4), 1.327 (4) and 1.379 (4) Å, respectively].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labels, showing displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal (Fig. 2[link]), the mol­ecules are linked by weak inter­action of the type C–H⋯π(phen­yl), forming supra­molecular chains extending along the c-axis direction, involving the C11–H11 group of the adamantane moiety and the C1–C6 aromatic ring. The crystal packing is further consolidated by inter­molecular N3—H3N⋯S1(x − [{1\over 2}], −y + [{1\over 2}], −z + 1) hydrogen bonds, in which the triazole ring behaves both as donor and acceptor, and by weak C2—H2⋯S1(x + [{1\over 2}], −y + [{1\over 2}], −z + 1) inter­actions (Table 1[link]), yielding double chains propagating along the a-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯S1i 0.86 2.62 3.461 (3) 166
C2—H2⋯S1ii 0.93 2.8 3.683 (3) 160
C11—H11⋯Cg2iii 0.98 2.86 3.757 (4) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the packing of I along the a-axis direction. The N—H⋯S hydrogen bonds and C—H⋯S and C—H⋯π inter­actions are shown as dashed lines.

4. Hirshfeld surface analysis

In order to investigate the inter­molecular inter­actions in the structure of I in a visual manner, a Hirshfeld surface analysis was performed using the program Crystal Explorer 17.5 (Spackman et al. 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Fig. 3[link] shows the HS surfaces mapped over dnorm, shape-index and curvedness (Fig. 3[link]). In the HS plotted over dnorm, white areas on the surface indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively. Two red spots are present in close proximity to the S and N—H atoms involved in hydrogen bonding. As expected, the absence of red and blue triangles on the shape-index surface and the small, flat segments delineated by the blue line in the surface mapped over curvedness indicate the absence of ππ stacking inter­actions in the crystal structure, while the red regions over the shape-index surface are due to the presence of C—H⋯π inter­actions.

[Figure 3]
Figure 3
Hirshfeld surfaces of compound I, plotted over (a) dnorm, (b) shape-index and (c) curvedness.

The two-dimensional fingerprint maps for I provide some qu­anti­tative information about the individual contributions of the inter­molecular inter­actions in the asymmetric unit (Figs. 4[link] and 5[link]); the distinct spikes appearing in these plots help estimate the different inter­action motifs in the crystal packing. As can be seen from Fig. 4[link], no C⋯C inter­actions are present, which confirms the absence of ππ stacking in I. Globally, the highest contribution to the total Hirshfeld surface comes from the H⋯H (42.4%) and S⋯H/H⋯S (14.6%) inter­molecular contacts. This indicates that van der Waals forces have an important influence on the consolidation of the crystal structure. The other contacts contribute less to the Hirshfeld surfaces: F⋯H/H⋯F (11%), Br⋯H/H⋯Br (9.8%), H⋯C/C⋯H (8.4%), N⋯H/H⋯N (7.5%), Br⋯C/C⋯Br (3.5%), S⋯N/N⋯S (1%), Br⋯Br (0.5%) and C⋯S/S⋯C (0.5%).

[Figure 4]
Figure 4
Fingerprint plots of the major inter­actions in compound I.
[Figure 5]
Figure 5
Relative contribution of the various inter­molecular inter­actions in compound I.

5. Database survey

A search of the Cambridge Structural Database (Version 2.0.1, last update, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for adamantyl triazole-5(4H)-thione derivatives gave six hits containing a substituted triazole ring, namely: 3-(adamantan-1-yl)-4-benzyl-1H-1,2,4-triazole-5(4H)-thione (XOFLEL; Al-Omary et al., 2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o766-o767.]), with a benzyl substituent at position 4 of the 1,2,4-triazole ring; 3-(adamantan-1-yl)-4-(4-fluoro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione (JAWZUF; Al-Shehri et al., 2017[Al-Shehri, M. M., Elsaman, T., Al-Abdullah, E. S., Ghabbour, H. A. & El-Emam, A. A. (2017). Z. Kristallogr. New Cryst Struct. 232, 443-445.]), in which an F atom is the only substituent on the phenyl ring in the para position; 3-(adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole-5(4H)-thione (LANXAB; Almutairi et al., 2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]), which exhibits a propenyl group, instead of a phenyl one, at position 4 of the triazole ring; 3-(adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)-thione (ZAPJUX; El-Emam et al., 2012[El-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347.]), which has an ethyl group instead of a phenyl ring at position 4 of the triazole ring; 3-(adamantan-1-yl)-4-(4-chloro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione (WOTQUT; Al-Wabli et al., 2015[Al-Wabli, R. I., El-Emam, A. A., Alroqi, O. S., Chidan Kumar, C. S. & Fun, H.-K. (2015). Acta Cryst. E71, o115-o116.]), with a Cl atom in the para position of the phenyl ring attached to the triazole moiety; 5-(adamantan-1-yl)-4-phenyl-2,4-di­hydro-1,2,4-triazole-3-thione (WUM­PUP; Nieger et al., 2002[Nieger, M., Lehmann, J. & El-Emam, A. A. (2002). Private Communication (refcode WUMPUP). CCDC, Cambridge, England.]), comprising a phenyl ring, without any substituents, at position 4 of the triazole ring. All of the substituents at position 4 of the planar triazole ring in these compounds are almost perpendicular to that ring, similar to the orientation of the phenyl substituent of the title compound. In the structures of all these compounds, the N—H⋯S inter­actions play an important role in consolidating the crystal packing, along with C–H⋯π inter­actions, when phenyl groups are present as substituents.

6. Synthesis and crystallization

All chemicals and solvents were used as purchased without further purification. The melting point was determined using an electrothermal digital melting-point apparatus and uncorrected. The NMR spectra were recorded at room temperature in DMSO-d6 solution on a Bruker Ascend 700 NMR spectrometer. The title compound I was synthesized starting with adamantane-1-carbohydrazide A (El-Emam & Ibrahim, 1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim.-Forsch. 41, 1260-1264.]) via the reaction with 2-bromo-4-fluoro­phenyl iso­thio­cyanate B to yield the corresponding 4-(1-adamantylcarbon­yl)-1-(2-bromo-4-fluoro­phen­yl)-2-thio­semicarbazide C, which was then cyclized to the title compound I by heating in aqueous sodium hydroxide as outlined in Fig. 6[link].

[Figure 6]
Figure 6
The reaction scheme yielding compound I.

2-Bromo-4-fluoro­phenyl iso­thio­cyanate (2.32 g, 0.01 mol) was added to a solution of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), in ethanol (10 mL), and the mixture was heated under reflux with stirring for one h. Ethanol was then distilled off in vacuo and an aqueous sodium hydroxide solution (10%, 15 mL) was added to the residue and the mixture was heated under reflux for 4 h, then filtered hot. On cooling, the mixture was acidified with hydro­chloric acid (pH 1–2) and the precipitated crude product was filtered, washed with water, dried and crystallized from an aqueous medium to yield 3.06 g (75%) of the title compound (C18H19BrFN3S) as fine colourless crystals (m.p. 577–579 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in EtOH/CHCl3 (1:2, v/v) at room temperature. 1H NMR (DMSO-d6, 700.17 MHz): δ 1.47–1.71 (m, 9H, adamantane-H), 1.87–1.89 (s, 6H, adamantane-H), 7.47–7.52 (m, 1H, Ar-H), 7.69–7.71 (m, 1H, Ar-H), 7.87–7.90 (m, 1H, Ar-H), 13.86 (s, 1H, NH). 13C NMR (DMSO-d6, 176.08 MHz): δ 27.92, 36.08, 36.57, 38.49 (adamantane-C), 115.0, 121.15, 131.65, 134.16, 135.21, 161.86 (Ar-C), 159.46 (triazole C=N), 169.41 (triazole C=S).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon and nitro­gen-bound H atoms were placed in calculated positions (C—H 0.95 to 0.98 Å; N—H 0.86 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C,N). The structure was refined as a racemic twin [BASF: 0.50 (2)]. Four reflections ([\overline{4}] 12 10, [\overline{4}] 12 5, [\overline{4}] 12 6 and [\overline{4}] 12 9) were omitted from the last cycle of refinement owing to poor agreement.

Table 2
Experimental details

Crystal data
Chemical formula C18H19BrFN3S
Mr 408.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 151
a, b, c (Å) 6.8473 (1), 12.5587 (2), 19.8090 (3)
V3) 1703.44 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.56
Crystal size (mm) 0.12 × 0.11 × 0.08
 
Data collection
Diffractometer Agilent Excalibur, Ruby, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.602, 0.694
No. of measured, independent and observed [I > 2σ(I)] reflections 13191, 3572, 3244
Rint 0.046
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.05
No. of reflections 3498
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.36
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.50 (2)
Computer programs: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SCHAKAL (Keller, 1989[Keller, E. (1989). J. Appl. Cryst. 22, 19-22.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), SCHAKAL (Keller, 1989), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995), publCIF (Westrip, 2010), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

3-(Adamantan-1-yl)-4-(2-bromo-4-fluorophenyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C18H19BrFN3SF(000) = 832
Mr = 408.32Dx = 1.592 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 5537 reflections
a = 6.8473 (1) Åθ = 4.2–74.6°
b = 12.5587 (2) ŵ = 4.56 mm1
c = 19.8090 (3) ÅT = 151 K
V = 1703.44 (4) Å3Prism, colourless
Z = 40.12 × 0.11 × 0.08 mm
Data collection top
Agilent Excalibur, Ruby, Gemini
diffractometer
3572 independent reflections
Graphite monochromator3244 reflections with I > 2σ(I)
Detector resolution: 10.2673 pixels mm-1Rint = 0.046
ω scansθmax = 76.3°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlisPro; Agilent 2014)
h = 88
Tmin = 0.602, Tmax = 0.694k = 1514
13191 measured reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0337P)2 + 1.0546P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3498 reflectionsΔρmax = 0.62 e Å3
218 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983)
0 constraintsAbsolute structure parameter: 0.50 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03402 (6)0.64125 (3)0.484532 (19)0.03206 (11)
S10.01416 (12)0.31086 (6)0.43635 (4)0.02208 (17)
F10.6045 (3)0.6344 (2)0.34672 (10)0.0370 (5)
N10.1505 (4)0.4307 (2)0.53736 (13)0.0178 (6)
N30.0802 (4)0.3300 (2)0.57154 (14)0.0247 (7)
H3N0.17560.28540.5720.03*
N20.0120 (4)0.3805 (2)0.62852 (12)0.0239 (6)
C40.4956 (5)0.5857 (3)0.39470 (15)0.0251 (8)
C10.2724 (5)0.4870 (3)0.49068 (16)0.0202 (6)
C50.3203 (5)0.6311 (3)0.41180 (15)0.0240 (7)
H50.27780.69390.39170.029*
C70.0153 (4)0.3567 (2)0.51580 (14)0.0195 (6)
C80.1279 (5)0.4408 (3)0.60780 (16)0.0202 (7)
C110.2990 (5)0.5637 (3)0.77521 (16)0.0256 (8)
H110.23730.56440.81980.031*
C20.4508 (5)0.4436 (3)0.47200 (15)0.0238 (7)
H20.49430.38110.49220.029*
C170.4578 (5)0.4462 (3)0.65943 (16)0.0242 (7)
H17A0.43760.37330.67410.029*
H17B0.51970.44460.61540.029*
C30.5643 (5)0.4932 (3)0.42340 (16)0.0273 (8)
H3A0.68390.46470.41050.033*
C60.2089 (5)0.5793 (3)0.46035 (16)0.0212 (7)
C140.4279 (5)0.6766 (3)0.68164 (16)0.0260 (8)
H140.44930.74990.66630.031*
C90.2594 (5)0.5037 (3)0.65435 (16)0.0200 (7)
C120.4946 (6)0.5054 (3)0.77950 (15)0.0280 (8)
H12A0.57920.54110.81160.034*
H12B0.47390.4330.7950.034*
C160.5909 (5)0.5041 (3)0.70996 (17)0.0269 (8)
H160.71670.46710.71270.032*
C100.1647 (5)0.5061 (3)0.72489 (16)0.0254 (8)
H10A0.040.54250.72250.031*
H10B0.14140.43380.74020.031*
C130.3326 (6)0.6782 (3)0.75170 (17)0.0271 (8)
H13A0.41680.7150.78340.033*
H13B0.20910.71590.74960.033*
C180.2933 (5)0.6190 (3)0.63142 (16)0.0245 (8)
H18A0.16920.6560.62870.029*
H18B0.35230.61930.58690.029*
C150.6237 (5)0.6188 (3)0.68563 (18)0.0298 (9)
H15A0.70970.65580.71670.036*
H15B0.68520.61820.64150.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02922 (18)0.0329 (2)0.03404 (17)0.01027 (18)0.00194 (16)0.00029 (16)
S10.0243 (4)0.0216 (4)0.0204 (3)0.0005 (4)0.0022 (3)0.0017 (3)
F10.0388 (12)0.0395 (14)0.0329 (11)0.0117 (12)0.0067 (9)0.0123 (11)
N10.0206 (14)0.0149 (14)0.0178 (12)0.0008 (12)0.0001 (10)0.0009 (10)
N30.0226 (15)0.0257 (16)0.0260 (14)0.0095 (12)0.0020 (11)0.0048 (11)
N20.0234 (16)0.0259 (16)0.0225 (12)0.0050 (13)0.0030 (11)0.0077 (10)
C40.030 (2)0.0235 (17)0.0221 (14)0.0089 (16)0.0000 (14)0.0023 (12)
C10.0212 (15)0.0185 (16)0.0210 (14)0.0039 (13)0.0024 (13)0.0008 (13)
C50.0306 (18)0.0186 (18)0.0227 (15)0.0049 (17)0.0059 (13)0.0024 (14)
C70.0179 (14)0.0171 (14)0.0235 (13)0.0035 (15)0.0034 (13)0.0020 (13)
C80.0205 (16)0.0184 (18)0.0218 (15)0.0009 (14)0.0008 (12)0.0014 (13)
C110.0280 (18)0.030 (2)0.0188 (15)0.0016 (16)0.0002 (14)0.0028 (14)
C20.0253 (16)0.0234 (17)0.0226 (15)0.0003 (16)0.0038 (14)0.0003 (12)
C170.0240 (16)0.0225 (17)0.0263 (15)0.0027 (16)0.0016 (15)0.0050 (13)
C30.0251 (19)0.031 (2)0.0262 (16)0.0038 (16)0.0019 (14)0.0032 (14)
C60.0200 (16)0.0182 (17)0.0253 (15)0.0037 (14)0.0033 (13)0.0059 (13)
C140.035 (2)0.0182 (17)0.0249 (16)0.0062 (15)0.0046 (14)0.0012 (13)
C90.0212 (17)0.0181 (17)0.0207 (15)0.0021 (14)0.0007 (12)0.0029 (13)
C120.037 (2)0.0249 (18)0.0226 (14)0.0001 (17)0.0091 (15)0.0019 (12)
C160.0194 (18)0.031 (2)0.0301 (17)0.0041 (15)0.0045 (13)0.0030 (15)
C100.0231 (18)0.029 (2)0.0243 (16)0.0059 (16)0.0038 (13)0.0030 (15)
C130.0315 (19)0.023 (2)0.0266 (17)0.0010 (16)0.0042 (14)0.0079 (14)
C180.0268 (18)0.025 (2)0.0220 (15)0.0018 (15)0.0063 (13)0.0010 (13)
C150.0246 (18)0.035 (3)0.0296 (17)0.0081 (17)0.0017 (14)0.0007 (16)
Geometric parameters (Å, º) top
Br1—C61.898 (3)C17—C91.542 (5)
S1—C71.688 (3)C17—H17A0.97
F1—C41.355 (4)C17—H17B0.97
N1—C71.379 (4)C3—H3A0.93
N1—C81.410 (4)C14—C151.526 (5)
N1—C11.433 (4)C14—C131.534 (5)
N3—C71.327 (4)C14—C181.537 (5)
N3—N21.377 (4)C14—H140.98
N3—H3N0.86C9—C181.535 (5)
N2—C81.288 (4)C9—C101.541 (4)
C4—C51.371 (5)C12—C161.527 (5)
C4—C31.376 (5)C12—H12A0.97
C1—C61.377 (5)C12—H12B0.97
C1—C21.387 (5)C16—C151.536 (5)
C5—C61.389 (5)C16—H160.98
C5—H50.93C10—H10A0.97
C8—C91.512 (5)C10—H10B0.97
C11—C121.529 (5)C13—H13A0.97
C11—C131.529 (5)C13—H13B0.97
C11—C101.537 (5)C18—H18A0.97
C11—H110.98C18—H18B0.97
C2—C31.385 (5)C15—H15A0.97
C2—H20.93C15—H15B0.97
C17—C161.537 (5)
C7—N1—C8107.1 (3)C15—C14—H14109.3
C7—N1—C1121.6 (3)C13—C14—H14109.3
C8—N1—C1131.2 (3)C18—C14—H14109.3
C7—N3—N2113.5 (3)C8—C9—C18113.7 (3)
C7—N3—H3N123.3C8—C9—C10108.2 (3)
N2—N3—H3N123.3C18—C9—C10108.3 (3)
C8—N2—N3105.2 (3)C8—C9—C17108.6 (3)
F1—C4—C5117.9 (3)C18—C9—C17109.2 (3)
F1—C4—C3118.9 (3)C10—C9—C17108.7 (3)
C5—C4—C3123.2 (3)C16—C12—C11109.5 (3)
C6—C1—C2119.5 (3)C16—C12—H12A109.8
C6—C1—N1120.9 (3)C11—C12—H12A109.8
C2—C1—N1119.4 (3)C16—C12—H12B109.8
C4—C5—C6117.2 (3)C11—C12—H12B109.8
C4—C5—H5121.4H12A—C12—H12B108.2
C6—C5—H5121.4C12—C16—C15109.6 (3)
N3—C7—N1104.1 (2)C12—C16—C17109.7 (3)
N3—C7—S1129.1 (2)C15—C16—C17109.0 (3)
N1—C7—S1126.8 (2)C12—C16—H16109.5
N2—C8—N1110.1 (3)C15—C16—H16109.5
N2—C8—C9123.8 (3)C17—C16—H16109.5
N1—C8—C9125.8 (3)C11—C10—C9110.2 (3)
C12—C11—C13109.6 (3)C11—C10—H10A109.6
C12—C11—C10109.5 (3)C9—C10—H10A109.6
C13—C11—C10109.6 (3)C11—C10—H10B109.6
C12—C11—H11109.4C9—C10—H10B109.6
C13—C11—H11109.4H10A—C10—H10B108.1
C10—C11—H11109.4C11—C13—C14109.1 (3)
C3—C2—C1120.2 (3)C11—C13—H13A109.9
C3—C2—H2119.9C14—C13—H13A109.9
C1—C2—H2119.9C11—C13—H13B109.9
C16—C17—C9110.1 (3)C14—C13—H13B109.9
C16—C17—H17A109.6H13A—C13—H13B108.3
C9—C17—H17A109.6C9—C18—C14110.1 (3)
C16—C17—H17B109.6C9—C18—H18A109.6
C9—C17—H17B109.6C14—C18—H18A109.6
H17A—C17—H17B108.2C9—C18—H18B109.6
C4—C3—C2118.4 (3)C14—C18—H18B109.6
C4—C3—H3A120.8H18A—C18—H18B108.2
C2—C3—H3A120.8C14—C15—C16109.5 (3)
C1—C6—C5121.5 (3)C14—C15—H15A109.8
C1—C6—Br1120.8 (3)C16—C15—H15A109.8
C5—C6—Br1117.7 (3)C14—C15—H15B109.8
C15—C14—C13109.5 (3)C16—C15—H15B109.8
C15—C14—C18109.7 (3)H15A—C15—H15B108.2
C13—C14—C18109.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C2 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···S1i0.862.623.461 (3)166
C2—H2···S1ii0.932.83.683 (3)160
C11—H11···Cg2iii0.982.863.757 (4)152
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

Funding for this research was provided by: Financial support from the Spanish Ministerio de Economıia y Competitividad (grant No. MAT2016-78155-C2-1-R); Gobierno del Principado de Asturias (award No. GRUPIN-IDI/2018/170).

Funding information

Funding for this research was provided by: Spanish Ministerio de Economıia y Competitividad (grant No. MAT2016-78155-C2-1-R); Gobierno del Principado de Asturias (award No. GRUPIN-IDI/2018/170).

References

First citationAbou-Gharbia, M. A., Childers, W. E. Jr, Fletcher, H., McGaughey, G., Patel, U., Webb, M. B., Yardley, J., Andree, T., Boast, C., Kucharik, R. J. Jr, Marquis, K., Morris, H., Scerni, R. & Moyer, J. A. (1999). J. Med. Chem. 42, 5077–5094.  Web of Science PubMed CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAl-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505–518.  CAS Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim.-Forsch. 56, 40–47.  CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlmajan, G. L., Barbuceanu, S.-F., Almajan, E.-R., Draghici, C. & Saramet, G. (2009). Eur. J. Med. Chem. 44, 3083–3089.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o766–o767.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Shehri, M. M., Elsaman, T., Al-Abdullah, E. S., Ghabbour, H. A. & El-Emam, A. A. (2017). Z. Kristallogr. New Cryst Struct. 232, 443–445.  CAS Google Scholar
First citationAl-Wabli, R. I., El-Emam, A. A., Alroqi, O. S., Chidan Kumar, C. S. & Fun, H.-K. (2015). Acta Cryst. E71, o115–o116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAugeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025–5037.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBalzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBormann, J. (1989). Eur. J. Pharmacol. 166, 591–592.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135–144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDavies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102.  Web of Science CAS PubMed Google Scholar
First citationEl-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim.-Forsch. 41, 1260–1264.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKeller, E. (1989). J. Appl. Cryst. 22, 19–22.  CrossRef Web of Science IUCr Journals Google Scholar
First citationLamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMin, J., Guillen, V. S., Sharma, A., Zhao, Y., Ziegler, Y., Gong, P., Mayne, C. G., Srinivasan, S., Kim, S. H., Carlson, K. E., Nettles, K. W., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2017). J. Med. Chem. 60, 6321–6336.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNavidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507–2517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNieger, M., Lehmann, J. & El-Emam, A. A. (2002). Private Communication (refcode WUMPUP). CCDC, Cambridge, England.  Google Scholar
First citationOmar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426–432.  Web of Science CrossRef PubMed CAS Google Scholar
First citationProtopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRosenthal, K. S., Sokol, M. S., Ingram, R. L., Subramanian, R. & Fort, R. C. (1982). Antimicrob. Agents Chemother. 22, 1031–1036.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSchwab, R. S., England, A. C. Jr, Poskanzer, D. C. & Young, R. R. (1969). J. Am. Med. Assoc. 208, 1168–1170.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430–2436.  Web of Science PubMed CAS Google Scholar
First citationTogo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVillhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774–2789.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds