research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-di­methyl­anilino)-N-(3,4-di­methyl­phen­yl)quinoline-3-carboxamide

CROSSMARK_Color_square_no_text.svg

aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, dCIQUP Departamento de Quιmica e Bioquιmica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal, and eDepartment of "Scienze della Vita", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
*Correspondence e-mail: jnlow111@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 1 January 2020; accepted 10 January 2020; online 17 January 2020)

The structure of the title quinoline carboxamide derivative, C26H25N3O, is described. The quinoline moiety is not planar as a result of a slight puckering of the pyridine ring. The secondary amine has a slightly pyramidal geometry, certainly not planar. Both intra- and inter­molecular hydrogen bonds are present. Hirshfeld surface analysis and lattice energies were used to investigate the inter­molecular inter­actions.

1. Chemical context

Quinoline (1-aza-naphthalene or benzo[b]pyridine) is a natural heterocyclic building block often used as a template for derivatization and generation of drug-like libraries for the discovery of novel bioactive ligands (Mugnaini et al., 2009[Mugnaini, C., Pasquini, S. & Corelli, F. (2009). Curr. Med. Chem. 16, 1746-1767.]; Musiol, 2017[Musiol, R. (2017). Exp. Opin. Drug. Discov. 12, 583-597.]). Quinoline-based compounds are well known for their anti­malarial activity (Antony & Parija, 2016[Antony, H. A. & Parija, S. C. (2016). Trop. Parasitol. 6, 30-41.]), although a large spectrum of other biological activities, such as anti­cancer, anti­microbial, anti-inflammatory, anti­oxidant, anti­hypertensive and against neurodegenerative diseases, have also been ascribed to these types of heterocyclic compounds (Nainwal et al., 2019[Nainwal, L. M., Tasneem, S., Akhtar, W., Verma, G., Khan, M. F., Parvez, S., Shaquiquzzaman, M., Akhter, M. & Alam, M. M. (2019). Eur. J. Med. Chem. 164, 121-170.]).

This work is a continuation of our investigation into the preparation, structural analysis and pharmacological properties of substituted heterocyclics including, for example, new insights in the discovery of novel h-MAO-B inhibitors obtained by the structural characterization of a series of N-phenyl-4-oxo-4H-chromene-3-carboxamide derivatives (Gomes et al., 2015a[Gomes, L. R., Low, J. N., Cagide, F., Chavarria, D. & Borges, F. (2015a). Acta Cryst. E71, 547-554.]). Other chromone and coumarin carboxamides are discussed in Gomes et al. (2015b[Gomes, L. R., Low, J. N., Cagide, F., Gaspar, A. & Borges, F. (2015b). Acta Cryst. E71, 1270-1277.], 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]).

[Scheme 1]

Here we report the synthesis and structural characterization of a quinoline-3-carboxamide derivative, 4-(3,4-di­methyl­anilino)-N-(3,4-di­methyl­phen­yl)quinoline-3-carboxamide, 1.

2. Structural commentary

An ellipsoid plot for compound 1 is shown in Fig. 1[link]. The quinoline ring system is not planar, with atoms C2 and C4 deviating from the mean plane of the quinoline ring by −0.110 (3) and 0.125 (3) Å, respectively, and C6 lying −0.100 (3) Å below the mean plane. The pyridine ring is slightly puckered with a screw-boat conformation, Q = 0.087 (3)Å, θ = 106 (2)° and φ = 25 (2)°. The mean plane of this ring makes a dihedral angle of 7.49 (13)° with the mean plane of the benzene ring of the quinoline moiety. The angles between the mean planes of the quinoline ring and the benzene rings with pivot atoms C321 and C411 are 28.99 (11) and 59.16 (11)° respectively. The dihedral angle between the mean plane of these benzene rings is 64.71 (14)°.

[Figure 1]
Figure 1
A view of the asymmetric unit of 1 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The amide group attached to C3 is coplanar with the quinoline ring system. The C—N rotamer of the amide has an anti conformation placing the quinoline ring trans in relation to the ring with pivot atom C321. The amide group atoms are essentially coplanar with the quinoline ring with deviations of −0.034 (3), (C31), −0.009 (2) (O31), 0.009 (2), (N32) and 0.145 (3) Å (C321). The geometric arrangement of the amide permits the formation of an intra­molecular hydrogen bond between the amine hydrogen atom and the carboxyl group of the amide, N41—H41⋯O31; geometric parameters are given in Table 1[link]. A further intra­molecular hydrogen bond, C326—H326⋯O31, occurs.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/C2–C4/C4A/C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N41—H41⋯O31 0.84 (4) 1.93 (3) 2.635 (3) 142 (3)
C326—H326⋯O31 0.95 2.40 2.887 (3) 112
N32—H32⋯N1i 0.90 (4) 2.07 (4) 2.891 (3) 150 (3)
C2—H2⋯N1i 0.96 (3) 2.55 (3) 3.477 (4) 163 (2)
C416—H416⋯O31ii 0.95 2.39 3.252 (4) 150
C326—H326⋯Cgiii 0.95 2.82 3.398 (3) 120
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x-1, y, z; (iii) x+1, y, z.

The secondary amine has a slightly pyramidal geometry, certainly not planar. The angles C411—N41—C4, C41—N41—H41 and C411—N41—H41 are 125.7 (2), 112 (2) and 115 (2)°, respectively, the sum of which (352.7°) is less than 360°; in addition, atom H41 lies 0.41 (3) Å out of the C4/N41/C411 mean plane, confirming the sp3 hybridization of N41. An inspection of the amine bond lengths shows that there is a slight asymmetry of the electronic distribution around it: C4—N41 = 1.364 (3) Å while N41—C411 = 1.437 (4) Å, suggesting there is higher density between the nitro­gen and the carbon atom of the quinoline ring system. However, these bonds and angles are typical for a Cquinoline–NH–C–R group, see the Database Survey below. As a consequence of the screw-boat pucker of the pyridine ring, the C4—N41 bond is displaced from the pyridine mean plane with a deviation of 0.159 (2) Å for N41; atom C411 is displaced by 0.965 (3) Å and consequently, the N41—C411 bond lies further from the mean plane.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by N32—H32⋯N1(x + [{1\over 2}], −y + [{3\over 2}], −z + 1), hydrogen bonds, forming C6 chains which run parallel to the a-axis formed by the action of the 21 screw axis at ([{1\over 2}], 0, [{3\over 4}]). This is supplemented by the weak C2—H2⋯N1(x + [{1\over 2}], −y + [{3\over 2}], −z + 1) hydrogen bond, Table 1[link] and Fig. 2[link]. The other weak hydrogen bonds, C416—H416⋯O31 and C418—H41B⋯O31, both involve atom O31 as an acceptor and link the chains described above to form a sheet which extends along the b-axis direction.

[Figure 2]
Figure 2
A view of the N32—H32⋯N1 C6 chain running along the a axis with the supplementary C2—H2⋯N1 bond. Hydrogen atoms not involved in the hydrogen bonding are omitted for clarity.

No ππ inter­actions occur but there is a possible C—H⋯π inter­action, C326—H326⋯Cg, involving the pyridine ring (Table 1[link]), which is discussed more fully below.

4. Hirshfeld surface analysis and lattice energies

Hirshfeld surfaces (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) and two-dimensional fingerprint (FP) plots provide complementary information concerning the inter­molecular inter­actions discussed above. The analyses were generated using Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The lattice energies for 1 were analysed after performing calculations as implemented in the PIXEL program (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]). The total stabilization energy of the crystal packing, Etot is −207.0 kJ mol−1, distributed as Coulombic, (Ecoul = −112.9 kJ mol−1), polarization (Epol = −52.8 kJ mol−1), dispersion (Edisp = −251.6 kJ mol−1) and repulsion (Erep = 210.4 kJ mol−1). The dispersive energy contributes the most to the total stabilization energy of the lattice, in addition to the C—H⋯O hydrogen bonds, and to the C—H⋯π inter­action. The stabilization energy comes from six sub-structural motifs made by the mol­ecule pairs I to VI that are shown in Figs. 3[link] to 8, together with the symmetry codes as well as the respective energies. They contribute a total energy of −369.4 kJ mol−1 for the lattice, half of it, −184.7 kJ mol−1 attributed to the (x, y, z) mol­ecule. That energy corresponds approximately to 88% of the total stabilization energy of the network.

[Figure 3]
Figure 3
Mol­ecule pairs Ia/Ib: x − 1, y, z (top) and x + 1, y, z (bottom). Values of energies by pair: Etot = −55.9 kJ mol−1, Ecoul = −21.4 kJ mol−1, Epol = −10.0 kJ mol−1, Edisp = −79.5 kJ mol−1 and Erep = 55.0 kJ mol−1. Inter­action energies were calculated using PIXEL3.1 (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]) based on densities computed with G09 using the mp2/6–31** level of theory.

The percentages of atom⋯atom close contacts taken from the FP plot (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) for 1 shows that, apart from the H⋯H contacts (58.4%), there are high percentages of C⋯H/H⋯C close contacts (27.0%) and of N⋯H/H⋯N close contacts (6.5%), see Table 2[link].

Table 2
Percentages for atom⋯atom close contacts

Compound H⋯H H⋯O/O⋯H H⋯C/C⋯H C⋯C O⋯C/C⋯O N⋯N H⋯N/N⋯H C⋯N/N⋯C
1 58.4 4.3 27.0 2.5 0.6 0.2 6.5 0.5

Apart from the intra­molecular hydrogen bond with N41, the carboxyl oxygen atom O31 involves its lone pairs in another two inter­molecular C—H⋯O inter­actions, O31⋯H416—C416 and O31⋯H41B—C418. The first inter­action creates chains running along the a-axis direction that are further stabilized by C—H⋯π inter­actions (C326—H326⋯Cgpyridine), as can be identified by the red spots in the Hirshfeld Surface (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) for the mol­ecule, Fig. 9[link], and they form two mol­ecule pairs, identified as sub-structures Ia/Ib in Fig. 3[link]. Each of those pairs contribute −55.9 kJ mol−1 to the stabilization of the lattice, mainly dispersion energy. The second inter­action, O31⋯H41B—C418, makes another two mol­ecule pairs, IIIa/IIIb, Fig. 5[link]. In this substructure the Coulombic energy is higher than the dispersive energy, which is indicative of the minor importance of the inter­actions involving the aromatic rings. These hydrogen bonds can also be identified as red spots in the HS, Fig. 9[link].

[Figure 9]
Figure 9
Several faces of the HS plotted over dnorm for 1 showing the red spots that indicate close contacts between atoms, which are identified in the figures.
[Figure 5]
Figure 5
Mol­ecule pairs IIIa/IIIb: (x + [{1\over 2}], −y + [{1\over 2}], z + 1 (top) and x − [{1\over 2}], −y + [{1\over 2}], z + 1 (bottom). Values of energies by pair: Etot = −30.0 kJ mol−1, Ecoul = −11.3 kJ mol−1, Epol = −4.5 kJ mol−1, Edisp = −36.0 kJ mol−1, Erep = 21.8 kJ mol−1. Inter­action energies were calculated using PIXEL3.1 (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]) based on densities computed with G09 using the mp2/6–31** level of theory.

The nitro­gen atom N32 acts as a donor for N1 (N32—H32⋯N1). N1 also acts as an acceptor for C6, making a C6—H6⋯N1 hydrogen bond, seen as a red spot in Fig. 9[link]. Those inter­actions give sub structural motifs IIa/IIb, Fig. 4[link]. The mol­ecules are linked by N32—H32⋯N1(x + [{1\over 2}], −y + [{3\over 2}], −z + 1) hydrogen bonds, forming C6 chains which run parallel to the a-axis direction, formed by the action of the 21 screw axis at ([{1\over 2}], 0, [{3\over 4}]). This is supplemented by the weak C2—H2⋯N1(x + [{1\over 2}], −y + [{3\over 2}], −z + 1) hydrogen bond, Figs. 3[link] and 4[link].

[Figure 4]
Figure 4
Mol­ecule pairs IIa/IIb: x − [{1\over 2}], –y + [{3\over 2}], −z + 1 (top) and x − [{1\over 2}], −y + [{3\over 2}], −z + [{1\over 2}], –y + [{3\over 2}], −z + 1 (bottom). Values of energies by pair: Etot = −52.3 0 kJ mol−1, Ecoul = −59.10 kJ mol−1, Epol = −26.9 0 kJ mol−1, Edisp = −41.5 0 kJ mol−1 and Erep = 75.2 0 kJ mol−1. Inter­action energies were calculated using PIXEL3.1 (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]) based on densities computed with G09 using the mp2/6–31** level of theory.

In addition, the C—H⋯π inter­action can also be identified in the HS of the mol­ecule, Fig. 9[link]. The inter­action connects the mol­ecules in zigzag chains running along the c-axis direction, as a result of the propagation of the mol­ecule pairs IVa/IVb depicted in Fig. 6[link].

[Figure 6]
Figure 6
Mol­ecule pairs IVa/IVb: −x + [{1\over 2}], −y + 1, z + [{1\over 2}] (left) and −x + [{1\over 2}], −y + 1, z − [{1\over 2}] (right). Values of energies by pair: Etot = −20.7 kJ mol−1, Ecoul = −7.4 kJ mol−1, Epol = −4.4 kJ mol−1, Edisp = −31.3 kJ mol−1, Erep = 22.5 kJ mol−1. Inter­action energies were calculated using PIXEL3.1 (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]) based on densities computed with G09 using the mp2/6–31** level of theory.

Apart from the sub-structural motifs described, there are two extra mol­ecule pairs, identified as Va/Vb and VIa/VIb, which are also illustrated in Figs. 7[link] and 8[link]: the two mol­ecules involved are at x, y, z (green-coloured mol­ecule) and −x + [{3\over 2}], −y + 1, z − [{1\over 2}]/−x + [{3\over 2}], −y + 1, z + [{1\over 2}] (black-coloured mol­ecule) for Va/Vb and x − [{3\over 2}], −y + [{3\over 2}], −z + 1/x − [{3\over 2}], −y + [{3\over 2}], −z + 1 for VIa/VIb. Although these mol­ecules do not exhibit atom⋯atom close contacts, each pair provides a significant contribution to the overall lattice stabilization energy of −14.5 and −11.3 kJ mol−1, respectively for V and VI. The grey mol­ecules drawn in this figure indicate a possible pathway for electronic delocalization within the network of mol­ecules.

[Figure 7]
Figure 7
Mol­ecule pairs Va/Vb: −x + [{3\over 2}], y + 1, z − [{1\over 2}] (left) and −x + [{3\over 2}], y + 1, z + [{1\over 2}] (right). Values of energies by pair: Etot = −14.5 kJ mol−1, Ecoul = −5.0 kJ mol−1, Epol = −2.5 kJ mol−1, Edisp = − 23.4 kJ mol−1, Erep = 16.4 kJ mol−1. Inter­action energies were calculated using PIXEL3.1 (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]) based on densities computed with G09 using the mp2/6–31** level of theory.
[Figure 8]
Figure 8
Mol­ecule pairs VIa/VIb, (x − [{3\over 2}], −y + [{3\over 2}], −z + 1 (left) and x − [{3\over 2}], −y + [{3\over 2}], −z + 1(right). Values of energies by pair: Etot = −11.3 kJ mol−1, Ecoul = −3.3 kJ mol−1, Epol = −2.2 kJ mol−1, Edisp = −15.5 kJ mol−1, Erep = 9.6 kJ mol−1. Inter­action energies were calculated using PIXEL3.1 (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]) based on densities computed with G09 using the mp2/6–31** level of theory.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3,4-disubstituted quinoline with an N—H unit attached to C4 revealed two compounds: SEZJIR (3-acetyl-4-amino­quinoline; Lokaj et al., 2007[Lokaj, J., Kettmann, V., Černuchová, P., Milata, V. & Fronc, M. (2007). Acta Cryst. E63, o1164-o1166.]) with a carbonyl group attached to C3 and an amino group attached to C4 and PABPUD {4-[3-(N,N-di­methyl­amino)­propyl­amino]-3-nitro­quinoline; Boyd et al., 1992[Boyd, M., Boyd, P. D. W., Atwell, G. J., Wilson, W. R. & Denny, W. A. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 579-585.]} with an amino group attached to C4 and a nitro group attached to C3. In both of these compounds, there is no puckering of the pyridine ring and the quinoline ring system is essentially planar. In both cases, a hydrogen atom forms an intra­molecular hydrogen bond between an amino hydrogen and the carbonyl oxygen in both independent mol­ecules of the asymmetric unit (SEZJIR) or between the amino hydrogen and a nitro group oxygen atom (PABPUD). In both structures, the C(pyridine)⋯N(amino) distances are significantly shorter than those in 1, viz. 1.325 and 1.335 Å for the two mol­ecules in the asymmetric unit of SEZJIR and 1.320 Å in PABPUD. The corresponding value in 1 is 1.364 (3) Å.

A survey of quinoline compounds, with an R factor of 10% or less with a Cquinoline–NH–Car­yl/sp3 unit attached to C4 of the quinoline moiety gave 56 hits for 63 individual mol­ecules, including 1. The Cquinoline—N distances lie in the range 1.319 to 1.438 Å with an average value of 1.360 Å.

The situation is more complex for the N—Car­yl/sp3 bond and for the Cquinoline—N—Car­yl/sp3 angle. A scatterplot of these revealed two populations, one in which the N atom is attached to a benzene ring and the other in which the connection is to an sp3 carbon. UNIKUZ [6-(t-butyl­sulfon­yl)-N-(5-fluoro-1H-indazol-3-yl)quinolin-4-amine methanol solvate; Haile et al., 2016[Haile, P. A., Votta, B. J., Marquis, R. W., Bury, M. J., Mehlmann, J. F., Singhaus, R. Jr, Charnley, A. K., Lakdawala, A. S., Convery, M. A., Lipshutz, D. B., Desai, B. M., Swift, B., Capriotti, C. A., Berger, S. B., Majahan, M. K., Reilly, M. A., Rivera, E. J., Sun, H. H., Nagilla, R., Beal, A. M., Finger, J. N., Cook, M. N., King, B. W., Ouellette, M. T., Totoritis, R. D., Pierdomenico, M., Negroni, A., Stronati, L., Cucchiara, S., Ziolkowski, B., Vossenkamper, A., MacDonald, T. T., Gough, P. J., Bertin, J. & Casillas, L. N. (2016). J. Med. Chem. 59, 4876-4880.]) is included in the first group. The Car­yl—N distances lie in the range 1.396 to 1.438 Å with an average value of 1.418 Å and an average Cquinoline—N—Car­yl/sp3 angle of 126.105°. In the second case, the Car­yl/sp3—N distances lie in the range 1.439 to 1.478 Å with an average value of 1.458 Å, with an average Cquinoline—N—Car­yl/sp3 angle of 123.98°.

As noted above, the conformation around the amino N atom is slightly pyramidal. In their paper on bond lengths in organic compounds, Allen et al. (2006[Allen, F. R., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2006). International Tables for Crystallography, Vol. C, ch. 9.5, pp. 790-811. Chester: IUCr]) discuss the planarity and pyramidality of amino compounds. They state that for planar N atoms, the mean valence angle is greater than 117.6° while for pyramidal N atoms the mean valence angle lies in the range 108 to 114°. The value for 1 is 117.56°. There are three other structures in this survey which have average valence angles close to but less than 117°. The valence angles are 116.57° in DAMIOT {2,3-bis­[(2,6-di­methyl­phen­yl)sulfan­yl]-N-phenyl­quinolin-4-amine; Florke & Egold, 2016[Florke, U. & Egold, H. (2016). Private Communication (refcode DAMIOT). CCDC, Cambridge, England.]}, 117.41° in MEQKEY (2,4-dianilino-3-ethyl­quinoline; Katritzky et al., 2000[Katritzky, A. R., Huang, T.-B., Voronkov, M. V. & Steel, P. J. (2000). J. Org. Chem. 65, 8069-8073.]) and 117.04° in OTAMOM {2-(4-meth­oxy­phen­yl)-N-[2-(2-phenyl­vin­yl)phen­yl]quinolin-4-amine; Mphahlele & Mphahlele, 2011[Mphahlele, M. J. & Mphahlele, M. M. (2011). Tetrahedron, 67, 4689-4695.]}. These four compounds are thus neither strictly planar nor pyramidal.

There are two compounds in the database which have an amide group attached to C3, GICGIL [2-chloro-N-(4-fluoro­phen­yl)-6-methyl­quinoline-3-carboxamide; Govender et al., 2018[Govender, H., Mocktar, C. & Koorbanally, N. A. (2018). J. Heterocycl. Chem. 55, 1002-1009.]] and SUZHEB (N-isopropyl-6-methyl-2-phenyl­quino­line-3-carboxamide; Benzerka et al., 2010[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o2304-o2305.]). In both these compounds, the amide group is inclined to the quinoline moiety, unlike in mol­ecule 1.

6. Synthesis and crystallization

The title quinolone derivative 1 was synthesized by a one-pot reaction between 4-oxo-1,4-di­hydro­quinoline-3-carb­oxy­lic acid and 3,4-di­methyl­aniline in the presence of POCl3 following a procedure described previously (Cagide et al., 2015[Cagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015). Chem. Commun. 51, 2832-2835.]). The title compound was obtained in 70% yield and characterized by NMR. It was re-crystallized from di­chloro­methane to yield crystals suitable for X-ray diffraction, m.p. 489–493 K.

NMR data were acquired on a Bruker AMX 400 spectrometer, recorded at room temperature in 5 mm outer-diameter tubes. The samples were prepared in deuterated di­methyl­sulfoxide (DMSO) with tetra­methyl­silane (TMS) as inter­nal reference. Chemical shifts are expressed as δ (ppm) values relative to TMS; coupling constants (J) are given in Hz. Atoms are labelled with their numerical designation as per Fig. 1[link]. See Supporting Information for spectra.

4-(3,4-Di­methyl­anilino)-N-(3,4-di­methyl­phen­yl)quinoline-3-carboxamide

1H NMR (400 MHz, DMSO): 10.16 (1H, s, CONH), 9.43 (1H, s, NH), 8.82 (1H, s, H-2), 8.14 (1H, dd, J = 1.0, 8.5 Hz, H-8), 7.95 (1H, dd, J = 0.84, 8.4 Hz, H-5), 7.73 (1H, ddd, J = 1.0, 6.9, 8.4 Hz, H-6), 7.46 (1H, ddd, J = 1.0, 6.9, 8.5 Hz, H-7), 7.18 (1H, d, J = 2.0 Hz, H-412), 7.12 (1H, dd, J = 2.1, 8.0 Hz H-326), 7.00 (1H, d, J = 8.0 Hz, H-325), 6.93 (1H, d, J = 8.0 Hz, H-415), 6.84 (1H, d, J = 2.1 Hz, H-322), 6.72 (1H, dd, J = 2.0, 8.0 Hz, H-416), 2.01 (3H, s, CH3), 2.07 (3H, s, CH3), 2.16 (6H, s, 2 × CH3).

13C NMR (100 MHz, DMSO): 165.4 (CONH), 149.9 (C-2), 149.1 (C-8A), 146.6 (C-4), 140.3 (C-411), 136.5 (C-414), 136.3 (C-321), 135.6 (C-324), 131.2 (C-413), 130.5 (C-323), 130.2 (C-6), 129.6 (C-415), 129.2 (C-5), 129.0 (C-325), 125.0 (C-7), 124.2 (C-8), 121.6 (C-412), 121.5 (C-322), 120.8 (C-4A), 117.8 (C-325), 117.7 (C-416), 114.4 (C-3), 19.5 (CH3), 19.3 (CH3), 18.7 (CH3), 18.5 (CH3).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were included in idealized positions and treated as riding atoms: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. Those attached to N and C2 [C—H = 0.96 (3) Å] were refined. The latter was refined since it is involved in a short contact with H32, which is attached to N32. Although in the riding model for H2 the H-atom position is within the highest contour on the difference map, it is not at the centre. In the refined model it is. The H⋯H distances are 1.87 and 1.93 Å for the riding and refined models, respectively. The angles around C2 are N1—C2—C3 = 125.9 (3) and 125.9°(3); N—C2—H2 = 117 and 111.9 (17)° and C3—C2—H2 = 117 and 122.2 (17)° for riding and refined H atoms, respectively. In the case of H32, the N32—H32 distance changes from 0.89 (3) to 0.90 (4) Å and the angle C31—N32—H32 changes from 120 (2) to 119 (2)° for riding to refined, respectively, which are really insignificant shifts. Hence, in this case the short contact does induce a shift in the angular position of H2 from its calculated position.

Table 3
Experimental details

Crystal data
Chemical formula C26H25N3O
Mr 395.49
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 6.2502 (3), 15.7915 (6), 20.7395 (9)
V3) 2046.99 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.05 × 0.01
 
Data collection
Diffractometer Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.487, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28997, 3754, 3390
Rint 0.089
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.094, 1.08
No. of reflections 3754
No. of parameters 287
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.20
Absolute structure Flack x determined using 1238 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: OSCAIL (McArdle et al., 2004) and SHELXT (Sheldrick, 2015a); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

4-(3,4-Dimethylanilino)-N-(3,4-dimethylphenyl)quinoline-3-carboxamide top
Crystal data top
C26H25N3ODx = 1.283 Mg m3
Mr = 395.49Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, P212121Cell parameters from 5133 reflections
a = 6.2502 (3) Åθ = 1.6–27.0°
b = 15.7915 (6) ŵ = 0.08 mm1
c = 20.7395 (9) ÅT = 100 K
V = 2046.99 (15) Å3Needle, yellow
Z = 40.30 × 0.05 × 0.01 mm
F(000) = 840
Data collection top
Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
diffractometer
3754 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+3390 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.089
Detector resolution: 10 pixels mm-1θmax = 25.4°, θmin = 1.6°
profile data from ω–scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1919
Tmin = 0.487, Tmax = 1.000l = 2424
28997 measured reflections
Refinement top
Refinement on F2Secondary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.5091P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3754 reflectionsΔρmax = 0.22 e Å3
287 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack x determined using 1238 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O310.5597 (3)0.49964 (12)0.49759 (10)0.0221 (5)
N10.0092 (4)0.69133 (14)0.44267 (11)0.0174 (5)
N320.5344 (4)0.62696 (15)0.54659 (11)0.0162 (5)
H320.470 (5)0.678 (2)0.5477 (15)0.028 (9)*
N410.2497 (4)0.44714 (15)0.42129 (13)0.0195 (5)
H410.368 (6)0.441 (2)0.4400 (16)0.026 (9)*
C20.1722 (5)0.66921 (17)0.47005 (13)0.0161 (6)
H20.233 (5)0.7147 (17)0.4948 (14)0.014 (7)*
C30.2727 (4)0.58912 (17)0.46478 (13)0.0154 (6)
C40.1727 (5)0.52774 (16)0.42608 (13)0.0158 (6)
C50.1008 (5)0.50493 (18)0.33862 (13)0.0196 (6)
H50.0373790.4521940.3276580.024*
C4A0.0119 (4)0.55400 (17)0.38887 (13)0.0161 (6)
C60.2769 (5)0.53228 (19)0.30555 (15)0.0237 (7)
H60.3326910.4991280.2712200.028*
C70.3757 (5)0.60896 (19)0.32201 (15)0.0241 (7)
H70.5040810.6255060.3009950.029*
C80.2880 (5)0.65997 (19)0.36813 (14)0.0209 (6)
H80.3529640.7128020.3779960.025*
C8A0.1007 (5)0.63448 (17)0.40134 (13)0.0160 (6)
C310.4680 (4)0.56876 (16)0.50328 (13)0.0158 (6)
C3210.7023 (4)0.61744 (16)0.59179 (13)0.0146 (6)
C3220.6840 (5)0.66241 (17)0.64919 (14)0.0173 (6)
H3220.5595810.6956260.6564080.021*
C3230.8416 (4)0.66032 (18)0.69622 (14)0.0184 (6)
C3241.0277 (5)0.61192 (18)0.68531 (13)0.0181 (6)
C3251.0432 (5)0.56727 (18)0.62795 (14)0.0191 (6)
H3251.1679210.5343970.6202540.023*
C3260.8845 (4)0.56865 (17)0.58145 (14)0.0168 (6)
H3260.8997090.5366690.5429290.020*
C3270.8115 (5)0.70814 (19)0.75834 (15)0.0250 (7)
H32A0.9342730.7456120.7654190.037*
H32B0.8003070.6679480.7941810.037*
H32C0.6803680.7419920.7558520.037*
C3281.2038 (5)0.6077 (2)0.73465 (15)0.0254 (7)
H32D1.2532510.6651280.7446330.038*
H32E1.3232210.5744130.7174580.038*
H32F1.1497860.5808410.7740120.038*
C4110.1222 (5)0.37148 (17)0.41833 (14)0.0194 (6)
C4120.2064 (5)0.30036 (17)0.38929 (13)0.0202 (7)
H4120.3463850.3025600.3715080.024*
C4130.0886 (5)0.22452 (18)0.38552 (13)0.0192 (6)
C4140.1149 (5)0.22182 (18)0.41275 (14)0.0208 (7)
C4150.1955 (5)0.29255 (18)0.44308 (14)0.0228 (7)
H4150.3335520.2900710.4621580.027*
C4160.0793 (5)0.36751 (18)0.44637 (14)0.0200 (6)
H4160.1373240.4156060.4676290.024*
C4170.1826 (5)0.14893 (18)0.35187 (16)0.0275 (7)
H41D0.0904140.1326830.3157090.041*
H41E0.1933260.1016250.3822900.041*
H41F0.3254470.1631630.3356720.041*
C4180.2461 (5)0.14148 (19)0.40803 (16)0.0281 (7)
H41A0.3847500.1501250.4290870.042*
H41B0.1697390.0950980.4293900.042*
H41C0.2687220.1271950.3625540.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O310.0180 (10)0.0128 (9)0.0356 (12)0.0031 (8)0.0017 (9)0.0058 (9)
N10.0155 (12)0.0137 (11)0.0229 (13)0.0001 (10)0.0022 (11)0.0008 (10)
N320.0136 (12)0.0114 (11)0.0236 (13)0.0014 (10)0.0003 (10)0.0012 (10)
N410.0152 (13)0.0120 (12)0.0314 (14)0.0002 (10)0.0025 (12)0.0058 (10)
C20.0173 (14)0.0107 (13)0.0202 (15)0.0031 (12)0.0028 (12)0.0018 (11)
C30.0133 (14)0.0137 (13)0.0194 (14)0.0012 (12)0.0052 (12)0.0011 (11)
C40.0152 (14)0.0139 (13)0.0184 (15)0.0010 (11)0.0042 (12)0.0010 (11)
C50.0203 (15)0.0159 (14)0.0226 (15)0.0033 (13)0.0013 (13)0.0032 (12)
C4A0.0146 (14)0.0146 (14)0.0193 (14)0.0032 (12)0.0040 (12)0.0013 (11)
C60.0273 (17)0.0212 (15)0.0224 (15)0.0067 (14)0.0068 (14)0.0013 (12)
C70.0203 (16)0.0232 (16)0.0287 (17)0.0014 (13)0.0065 (13)0.0028 (13)
C80.0195 (15)0.0171 (14)0.0260 (16)0.0008 (13)0.0010 (13)0.0024 (12)
C8A0.0164 (14)0.0138 (13)0.0179 (14)0.0031 (12)0.0048 (12)0.0003 (11)
C310.0145 (14)0.0123 (12)0.0208 (15)0.0020 (12)0.0057 (12)0.0000 (12)
C3210.0136 (14)0.0103 (13)0.0200 (14)0.0020 (11)0.0009 (12)0.0035 (11)
C3220.0163 (14)0.0118 (13)0.0238 (16)0.0002 (12)0.0036 (12)0.0004 (11)
C3230.0171 (14)0.0180 (14)0.0202 (15)0.0030 (13)0.0036 (12)0.0041 (11)
C3240.0159 (15)0.0152 (14)0.0232 (15)0.0035 (12)0.0031 (12)0.0057 (12)
C3250.0138 (14)0.0168 (14)0.0267 (16)0.0018 (12)0.0048 (12)0.0032 (12)
C3260.0151 (14)0.0148 (13)0.0205 (15)0.0018 (11)0.0034 (12)0.0011 (12)
C3270.0246 (16)0.0234 (16)0.0269 (17)0.0001 (14)0.0022 (14)0.0033 (13)
C3280.0186 (16)0.0316 (17)0.0261 (16)0.0015 (14)0.0003 (13)0.0025 (13)
C4110.0241 (16)0.0132 (13)0.0208 (15)0.0013 (12)0.0066 (13)0.0002 (12)
C4120.0225 (16)0.0174 (14)0.0209 (16)0.0005 (13)0.0013 (13)0.0001 (12)
C4130.0279 (17)0.0128 (14)0.0171 (15)0.0022 (12)0.0057 (13)0.0007 (11)
C4140.0223 (16)0.0205 (15)0.0197 (16)0.0021 (12)0.0065 (13)0.0028 (12)
C4150.0198 (15)0.0252 (16)0.0235 (16)0.0019 (13)0.0022 (13)0.0035 (12)
C4160.0206 (15)0.0150 (14)0.0245 (16)0.0005 (12)0.0025 (13)0.0018 (12)
C4170.0307 (17)0.0171 (15)0.0347 (18)0.0001 (14)0.0016 (15)0.0046 (13)
C4180.0298 (18)0.0213 (16)0.0333 (18)0.0062 (14)0.0042 (15)0.0036 (13)
Geometric parameters (Å, º) top
O31—C311.238 (3)C323—C3271.505 (4)
N1—C21.315 (4)C324—C3251.386 (4)
N1—C8A1.367 (4)C324—C3281.505 (4)
N32—C311.350 (3)C325—C3261.384 (4)
N32—C3211.416 (4)C325—H3250.9500
N32—H320.90 (4)C326—H3260.9500
N41—C41.364 (3)C327—H32A0.9800
N41—C4111.437 (4)C327—H32B0.9800
N41—H410.84 (4)C327—H32C0.9800
C2—C31.416 (4)C328—H32D0.9800
C2—H20.96 (3)C328—H32E0.9800
C3—C41.405 (4)C328—H32F0.9800
C3—C311.494 (4)C411—C4121.379 (4)
C4—C4A1.449 (4)C411—C4161.389 (4)
C5—C61.367 (4)C412—C4131.408 (4)
C5—C4A1.413 (4)C412—H4120.9500
C5—H50.9500C413—C4141.392 (4)
C4A—C8A1.411 (4)C413—C4171.503 (4)
C6—C71.401 (4)C414—C4151.377 (4)
C6—H60.9500C414—C4181.514 (4)
C7—C81.365 (4)C415—C4161.390 (4)
C7—H70.9500C415—H4150.9500
C8—C8A1.417 (4)C416—H4160.9500
C8—H80.9500C417—H41D0.9800
C321—C3221.391 (4)C417—H41E0.9800
C321—C3261.391 (4)C417—H41F0.9800
C322—C3231.387 (4)C418—H41A0.9800
C322—H3220.9500C418—H41B0.9800
C323—C3241.410 (4)C418—H41C0.9800
C2—N1—C8A117.2 (2)C326—C325—C324122.7 (3)
C31—N32—C321126.6 (2)C326—C325—H325118.7
C31—N32—H32119 (2)C324—C325—H325118.7
C321—N32—H32114 (2)C325—C326—C321119.2 (3)
C4—N41—C411125.7 (2)C325—C326—H326120.4
C4—N41—H41112 (2)C321—C326—H326120.4
C411—N41—H41115 (2)C323—C327—H32A109.5
N1—C2—C3125.9 (3)C323—C327—H32B109.5
N1—C2—H2111.9 (17)H32A—C327—H32B109.5
C3—C2—H2122.2 (17)C323—C327—H32C109.5
C4—C3—C2117.6 (3)H32A—C327—H32C109.5
C4—C3—C31121.3 (2)H32B—C327—H32C109.5
C2—C3—C31120.9 (2)C324—C328—H32D109.5
N41—C4—C3121.9 (3)C324—C328—H32E109.5
N41—C4—C4A120.6 (2)H32D—C328—H32E109.5
C3—C4—C4A117.4 (2)C324—C328—H32F109.5
C6—C5—C4A120.9 (3)H32D—C328—H32F109.5
C6—C5—H5119.5H32E—C328—H32F109.5
C4A—C5—H5119.5C412—C411—C416119.5 (3)
C8A—C4A—C5118.3 (3)C412—C411—N41119.0 (3)
C8A—C4A—C4118.3 (2)C416—C411—N41121.5 (2)
C5—C4A—C4123.3 (3)C411—C412—C413121.2 (3)
C5—C6—C7120.4 (3)C411—C412—H412119.4
C5—C6—H6119.8C413—C412—H412119.4
C7—C6—H6119.8C414—C413—C412118.8 (3)
C8—C7—C6120.3 (3)C414—C413—C417121.4 (3)
C8—C7—H7119.9C412—C413—C417119.8 (3)
C6—C7—H7119.9C415—C414—C413119.6 (3)
C7—C8—C8A120.3 (3)C415—C414—C418120.7 (3)
C7—C8—H8119.9C413—C414—C418119.6 (3)
C8A—C8—H8119.9C414—C415—C416121.5 (3)
N1—C8A—C4A122.8 (3)C414—C415—H415119.3
N1—C8A—C8117.7 (3)C416—C415—H415119.3
C4A—C8A—C8119.5 (3)C411—C416—C415119.4 (3)
O31—C31—N32121.4 (3)C411—C416—H416120.3
O31—C31—C3121.1 (2)C415—C416—H416120.3
N32—C31—C3117.4 (2)C413—C417—H41D109.5
C322—C321—C326118.8 (3)C413—C417—H41E109.5
C322—C321—N32116.8 (2)H41D—C417—H41E109.5
C326—C321—N32124.3 (2)C413—C417—H41F109.5
C323—C322—C321122.1 (3)H41D—C417—H41F109.5
C323—C322—H322119.0H41E—C417—H41F109.5
C321—C322—H322119.0C414—C418—H41A109.5
C322—C323—C324119.1 (3)C414—C418—H41B109.5
C322—C323—C327120.1 (3)H41A—C418—H41B109.5
C324—C323—C327120.8 (3)C414—C418—H41C109.5
C325—C324—C323118.1 (3)H41A—C418—H41C109.5
C325—C324—C328120.7 (3)H41B—C418—H41C109.5
C323—C324—C328121.2 (3)
C8A—N1—C2—C35.5 (4)C2—C3—C31—N325.0 (4)
N1—C2—C3—C41.1 (4)C31—N32—C321—C322150.3 (3)
N1—C2—C3—C31174.0 (3)C31—N32—C321—C32631.7 (4)
C411—N41—C4—C3141.0 (3)C326—C321—C322—C3230.2 (4)
C411—N41—C4—C4A41.6 (4)N32—C321—C322—C323177.9 (2)
C2—C3—C4—N41175.7 (3)C321—C322—C323—C3240.8 (4)
C31—C3—C4—N410.6 (4)C321—C322—C323—C327178.3 (3)
C2—C3—C4—C4A6.8 (4)C322—C323—C324—C3250.9 (4)
C31—C3—C4—C4A178.1 (2)C327—C323—C324—C325178.1 (3)
C6—C5—C4A—C8A4.1 (4)C322—C323—C324—C328179.8 (3)
C6—C5—C4A—C4179.2 (3)C327—C323—C324—C3281.2 (4)
N41—C4—C4A—C8A172.4 (3)C323—C324—C325—C3260.1 (4)
C3—C4—C4A—C8A10.1 (4)C328—C324—C325—C326179.4 (3)
N41—C4—C4A—C510.8 (4)C324—C325—C326—C3210.8 (4)
C3—C4—C4A—C5166.7 (3)C322—C321—C326—C3251.0 (4)
C4A—C5—C6—C71.5 (4)N32—C321—C326—C325176.9 (2)
C5—C6—C7—C84.7 (5)C4—N41—C411—C412155.0 (3)
C6—C7—C8—C8A2.2 (4)C4—N41—C411—C41627.8 (4)
C2—N1—C8A—C4A1.7 (4)C416—C411—C412—C4132.3 (4)
C2—N1—C8A—C8175.7 (2)N41—C411—C412—C413179.6 (3)
C5—C4A—C8A—N1170.9 (3)C411—C412—C413—C4141.1 (4)
C4—C4A—C8A—N16.0 (4)C411—C412—C413—C417178.3 (3)
C5—C4A—C8A—C86.4 (4)C412—C413—C414—C4150.5 (4)
C4—C4A—C8A—C8176.7 (2)C417—C413—C414—C415179.9 (3)
C7—C8—C8A—N1174.1 (3)C412—C413—C414—C418178.7 (3)
C7—C8—C8A—C4A3.4 (4)C417—C413—C414—C4180.6 (4)
C321—N32—C31—O313.1 (4)C413—C414—C415—C4161.0 (4)
C321—N32—C31—C3173.8 (2)C418—C414—C415—C416178.3 (3)
C4—C3—C31—O316.9 (4)C412—C411—C416—C4151.8 (4)
C2—C3—C31—O31178.1 (3)N41—C411—C416—C415179.1 (3)
C4—C3—C31—N32170.0 (3)C414—C415—C416—C4110.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C2–C4/C4A/C8A ring.
D—H···AD—HH···AD···AD—H···A
N41—H41···O310.84 (4)1.93 (3)2.635 (3)142 (3)
C326—H326···O310.952.402.887 (3)112
N32—H32···N1i0.90 (4)2.07 (4)2.891 (3)150 (3)
C2—H2···N1i0.96 (3)2.55 (3)3.477 (4)163 (2)
C416—H416···O31ii0.952.393.252 (4)150
C326—H326···Cgiii0.952.823.398 (3)120
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1, y, z; (iii) x+1, y, z.
Percentages for atom···atom close contacts top
CompoundH···HH···O/O···HH···C/C···HC···CO···C/C···ON···NH···N/N···HC···N/N···C
158.44.327.02.50.60.26.50.5
 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]).

Funding information

This work was funded by FEDER funds through the Operational Programme Competitiveness Factors – COMPETE – and national funds by the FCT – Foundation for Science and Technology –under research grants UID/QUI/00081 and PTDC/ASP-PES/28397/2017.

References

First citationAllen, F. R., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2006). International Tables for Crystallography, Vol. C, ch. 9.5, pp. 790–811. Chester: IUCr  Google Scholar
First citationAntony, H. A. & Parija, S. C. (2016). Trop. Parasitol. 6, 30–41.  CAS PubMed Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o2304–o2305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoyd, M., Boyd, P. D. W., Atwell, G. J., Wilson, W. R. & Denny, W. A. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 579–585.  CSD CrossRef Web of Science Google Scholar
First citationCagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015). Chem. Commun. 51, 2832–2835.  Web of Science CSD CrossRef CAS Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorke, U. & Egold, H. (2016). Private Communication (refcode DAMIOT). CCDC, Cambridge, England.  Google Scholar
First citationGavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353.  Web of Science CrossRef CAS Google Scholar
First citationGavezzotti, A. (2008). Mol. Phys. 106, 1473–1485.  Web of Science CrossRef CAS Google Scholar
First citationGomes, L. R., Low, J. N., Cagide, F., Chavarria, D. & Borges, F. (2015a). Acta Cryst. E71, 547–554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Cagide, F., Gaspar, A. & Borges, F. (2015b). Acta Cryst. E71, 1270–1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGovender, H., Mocktar, C. & Koorbanally, N. A. (2018). J. Heterocycl. Chem. 55, 1002–1009.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaile, P. A., Votta, B. J., Marquis, R. W., Bury, M. J., Mehlmann, J. F., Singhaus, R. Jr, Charnley, A. K., Lakdawala, A. S., Convery, M. A., Lipshutz, D. B., Desai, B. M., Swift, B., Capriotti, C. A., Berger, S. B., Majahan, M. K., Reilly, M. A., Rivera, E. J., Sun, H. H., Nagilla, R., Beal, A. M., Finger, J. N., Cook, M. N., King, B. W., Ouellette, M. T., Totoritis, R. D., Pierdomenico, M., Negroni, A., Stronati, L., Cucchiara, S., Ziolkowski, B., Vossenkamper, A., MacDonald, T. T., Gough, P. J., Bertin, J. & Casillas, L. N. (2016). J. Med. Chem. 59, 4876–4880.  Web of Science CSD CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Huang, T.-B., Voronkov, M. V. & Steel, P. J. (2000). J. Org. Chem. 65, 8069–8073.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLokaj, J., Kettmann, V., Černuchová, P., Milata, V. & Fronc, M. (2007). Acta Cryst. E63, o1164–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMphahlele, M. J. & Mphahlele, M. M. (2011). Tetrahedron, 67, 4689–4695.  Web of Science CSD CrossRef CAS Google Scholar
First citationMugnaini, C., Pasquini, S. & Corelli, F. (2009). Curr. Med. Chem. 16, 1746–1767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusiol, R. (2017). Exp. Opin. Drug. Discov. 12, 583–597.  Web of Science CrossRef CAS Google Scholar
First citationNainwal, L. M., Tasneem, S., Akhtar, W., Verma, G., Khan, M. F., Parvez, S., Shaquiquzzaman, M., Akhter, M. & Alam, M. M. (2019). Eur. J. Med. Chem. 164, 121–170.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds