research communications
Tetraaqua[3-oxo-1,3-bis(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate
aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu
The 13H11N2O2)(H2O)4]Br3·2H2O, contains an octahedral NiII atom coordinated to the enol form of 1,3-dipyridylpropane-1,3-dione (dppo) and four water molecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitrogen-containing rings are involved in hydrogen-bonding interactions with neighoring bromide anions. There are many additional hydrogen-bonding interactions involving coordinated water molecules on the NiII atom, bromide anions and hydration water molecules.
of the title compound, [Ni(CKeywords: crystal structure; dipyridylpropanedione; pyridinium; nickel.
CCDC reference: 1979583
1. Chemical context
We chose to study 1,3-dipyridylpropane-1,3-dione (dppo) in our ongoing investigations of bridged dipyridyl compounds as ligands for transition metals and rare earths. Previous studies of the di-2-pyridyl ketone (dpk) ligand illustrated that it can undergo a ). This hydration can also occur with Arrhenius acids; however, in the absence of a metal for coordination, the pyridyl N atoms of the resulting diol are protonated (Sommerer et al., 1994). For the dppo in this study, the coordination to the metal center required the presence of an Arrhenius acid (HBr). No hydration of the dione occurred, the ligand adopted the enol form where O atoms behaved as a bidentate ligand, and protonation of the pyridyl rings was observed.
assisted hydration reaction at the ketone to form a diol (Sommerer & Abboud, 19932. Structural commentary
Since the synthesis of the complex was in hydrobromic acid in methanol, the existence of three bromide anions required a trivalent cation. Planar dppo is in its enol form allowing the O atoms to behave as Lewis bases to the nickel center; however, the pyridine rings are both protonated. The H atoms were readily found in difference maps and refined as unconstrained atoms. The organic ligand therefore has an overall +1 charge. There are also four water molecules coordinated to the NiII atom, thereby completing the octahedral geometry of the [Ni(C13H11N2O2)(H2O)4]+3 cation (Fig. 1). During two additional waters of hydration were located. There is an angle of 19.48 (7)° between the mean plane of the dipyridinium ligand and the plane defined by the NiII atom and its four equatorial O atoms. Selected geometric parameters are listed in Table 1.
|
3. Supramolecular features
A packing diagram of the compound as viewed down (100) is shown in Fig. 2. There are many hydrogen-bonding interactions. The pyridinium H atoms are involved in hydrogen bonding with one of the bromide anions. Bromide anions are also engaged in hydrogen bonding with the waters of hydration and the water molecules coordinated to the NiII atom. The waters of hydration extend the hydrogen-bonding network by also interacting with the water molecules coordinated to the NiII center. A summary of the hydrogen-bonding interactions is listed in Table 2.
4. Database survey
The enol form of dppo has been used to make extended structures with cadmium (Tan et al., 2012), as well as with manganese (Langley et al., 2010). The cadmium structure is a two-dimensional chain of cadmium, chlorides, and ligands. The ligand uses both of its O atoms and pyridyl N atoms to bond to multiple Cd atoms. In Langley, several manganese clusters (with six, seven, and ten manganese atoms) were studied, all having the enol form of the ligand. The ligands vary their coordination, sometimes bonding in a bidentate fashion via the two oxygens, sometimes bidentate with a pyridine nitrogen and enol oxygen, and sometimes even monodentate via the pyridine nitrogen. Through its multiple modes of bonding in these clusters, the ligand can bond from two to four metal centers.
The ligand has also been shown to use its O atoms and one pyridyl N atom to form a bridging dilanthium complex (Brück et al., 2000) and a bridging triholmium species (Andrews et al., 2009). Finally, the ligand has formed a simpler tris[1,3-bis(pyridin-2-yl)propane-1,3-dionato]iron(III) compound where the ligand simply bonds to the iron via its O atoms (Lee et al., 2017). Whereas protonation of pyridyl rings on ligands are common in the literature, this structure is the first to display pyridyl protonation for this particular ligand.
5. Synthesis and crystallization
All chemicals were used as received. To 0.1458 g (0.5 mmol) of nickel bromide hydrate (Aldrich) in 35 ml of water was added 0.2424 g (1.0 mmol) of 1,3-di(2-pyridyl)-1,3-propanedione (TCI) under stirring. To this mixture, concentrated HBr (Fisher) was added dropwise until all the ligand had dissolved (pH ∼ 1). This solution was stirred at room temperature for 30 min and filtered to afford an olive-colored solution. Slow evaporation for 28 d yielded pale-red–orange crystals of the title compound. The yield of the product was 64%. The crystals decomposed when a melting-point determination was attempted. FT–IR data for the free ligand and the title compound are included as supporting information and the appearance of a broad band at 3300 cm−1 and a broad band with fine structure at 3000 cm−1 confirms the presence of water molecules and pyridinium rings.
6. Refinement
Crystal data, data collection and structure . H atoms on sp2-hybridized C and N atoms were included in calculated positions, with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were refined applying a distance restraint of 0.84 (2) Å.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1979583
https://doi.org/10.1107/S205698902000081X/zl2768sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902000081X/zl2768Isup2.hkl
IR spectrum of NI(dppo). DOI: https://doi.org/10.1107/S205698902000081X/zl2768sup3.pdf
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Bourhis et al., 2015).[Ni(C13H11N2O2)(H2O)4]3Br·2H2O | F(000) = 1248 |
Mr = 633.77 | Dx = 1.922 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8071 (6) Å | Cell parameters from 4741 reflections |
b = 23.8031 (16) Å | θ = 4.6–32.1° |
c = 13.6302 (10) Å | µ = 6.40 mm−1 |
β = 97.476 (9)° | T = 293 K |
V = 2189.7 (3) Å3 | Block, orange |
Z = 4 | 0.32 × 0.28 × 0.19 mm |
Agilent Xcalibur Sapphire3 diffractometer | 7970 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5803 reflections with I > 2σ(I) |
Detector resolution: 16.1790 pixels mm-1 | Rint = 0.034 |
ω scans | θmax = 33.7°, θmin = 4.3° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −10→10 |
Tmin = 0.503, Tmax = 1.000 | k = −36→36 |
26929 measured reflections | l = −20→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: mixed |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0561P)2 + 2.3402P] where P = (Fo2 + 2Fc2)/3 |
7970 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 1.10 e Å−3 |
12 restraints | Δρmin = −1.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.28363 (5) | 0.60904 (2) | 0.46388 (3) | 0.04291 (10) | |
Br2 | 0.22784 (5) | 0.48206 (2) | 0.10507 (2) | 0.03503 (9) | |
Br3 | 0.80885 (8) | 0.76767 (2) | 0.39510 (3) | 0.05624 (13) | |
Ni1 | 0.15038 (6) | 0.37164 (2) | 0.81987 (3) | 0.02833 (10) | |
O1 | 0.2089 (4) | 0.37484 (8) | 0.67975 (15) | 0.0311 (4) | |
O2 | 0.2542 (4) | 0.45031 (9) | 0.83901 (15) | 0.0318 (5) | |
O3 | 0.0917 (5) | 0.37407 (10) | 0.96216 (18) | 0.0439 (6) | |
O4 | 0.0286 (4) | 0.29148 (10) | 0.79662 (19) | 0.0417 (6) | |
O5 | 0.4287 (5) | 0.33525 (12) | 0.8585 (2) | 0.0489 (6) | |
O6 | −0.1333 (4) | 0.40312 (11) | 0.77851 (19) | 0.0414 (5) | |
N1 | 0.2313 (5) | 0.45128 (15) | 0.4508 (2) | 0.0488 (8) | |
H1 | 0.2437 | 0.4862 | 0.4669 | 0.059* | |
N2 | 0.3028 (5) | 0.59168 (13) | 0.7459 (2) | 0.0473 (7) | |
H2 | 0.3017 | 0.5882 | 0.6831 | 0.057* | |
C1 | 0.2240 (6) | 0.43458 (18) | 0.3530 (2) | 0.0464 (9) | |
H1A | 0.2312 | 0.4615 | 0.3041 | 0.056* | |
C2 | 0.2062 (7) | 0.37877 (18) | 0.3273 (2) | 0.0480 (9) | |
H2A | 0.2029 | 0.3677 | 0.2617 | 0.058* | |
C3 | 0.1935 (6) | 0.33996 (17) | 0.3999 (2) | 0.0432 (8) | |
H3 | 0.1814 | 0.3020 | 0.3841 | 0.052* | |
C4 | 0.1984 (4) | 0.35680 (12) | 0.49387 (18) | 0.0241 (5) | |
H4 | 0.1874 | 0.3297 | 0.5420 | 0.029* | |
C5 | 0.2182 (4) | 0.41042 (12) | 0.52228 (19) | 0.0267 (5) | |
C6 | 0.2239 (5) | 0.41925 (12) | 0.6312 (2) | 0.0267 (5) | |
C7 | 0.2441 (5) | 0.47393 (12) | 0.6692 (2) | 0.0300 (6) | |
H7 | 0.2477 | 0.5037 | 0.6254 | 0.036* | |
C8 | 0.2593 (4) | 0.48545 (11) | 0.7704 (2) | 0.0264 (5) | |
C9 | 0.2832 (4) | 0.54534 (11) | 0.8042 (2) | 0.0246 (5) | |
C10 | 0.2865 (4) | 0.55252 (11) | 0.90202 (18) | 0.0216 (5) | |
H10 | 0.2701 | 0.5211 | 0.9408 | 0.026* | |
C11 | 0.3121 (6) | 0.60228 (14) | 0.9464 (3) | 0.0387 (7) | |
H11 | 0.3170 | 0.6051 | 1.0148 | 0.046* | |
C12 | 0.3313 (6) | 0.64942 (15) | 0.8900 (3) | 0.0469 (9) | |
H12 | 0.3490 | 0.6845 | 0.9198 | 0.056* | |
C13 | 0.3243 (6) | 0.64421 (14) | 0.7904 (3) | 0.0450 (8) | |
H13 | 0.3339 | 0.6760 | 0.7517 | 0.054* | |
O7 | 0.6193 (5) | 0.29510 (15) | 0.7017 (3) | 0.0586 (8) | |
O8 | 0.6929 (11) | 0.2404 (2) | 0.9388 (4) | 0.1057 (17) | |
H3A | 0.120 (13) | 0.4061 (18) | 0.986 (6) | 0.159* | |
H3B | 0.140 (12) | 0.349 (3) | 1.000 (5) | 0.159* | |
H4A | −0.095 (3) | 0.289 (4) | 0.791 (7) | 0.159* | |
H4B | 0.061 (14) | 0.272 (3) | 0.752 (5) | 0.159* | |
H5A | 0.489 (13) | 0.317 (4) | 0.818 (6) | 0.159* | |
H5B | 0.448 (15) | 0.304 (2) | 0.886 (7) | 0.159* | |
H6A | −0.169 (13) | 0.402 (4) | 0.7173 (18) | 0.159* | |
H6B | −0.178 (13) | 0.432 (2) | 0.802 (7) | 0.159* | |
H7A | 0.592 (15) | 0.319 (3) | 0.656 (5) | 0.159* | |
H7B | 0.513 (8) | 0.281 (4) | 0.673 (7) | 0.159* | |
H8A | 0.789 (10) | 0.252 (4) | 0.980 (6) | 0.159* | |
H8B | 0.658 (15) | 0.2068 (16) | 0.945 (8) | 0.159* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03826 (18) | 0.0478 (2) | 0.04137 (18) | −0.00130 (14) | 0.00006 (14) | 0.00498 (15) |
Br2 | 0.04109 (18) | 0.04094 (18) | 0.02300 (13) | 0.00484 (13) | 0.00390 (12) | −0.00060 (11) |
Br3 | 0.0857 (3) | 0.02834 (17) | 0.0548 (2) | −0.00371 (17) | 0.0097 (2) | −0.01026 (15) |
Ni1 | 0.0437 (2) | 0.02121 (17) | 0.02022 (16) | −0.00070 (14) | 0.00474 (15) | 0.00139 (12) |
O1 | 0.0497 (13) | 0.0228 (9) | 0.0210 (9) | 0.0008 (9) | 0.0051 (9) | 0.0011 (7) |
O2 | 0.0510 (13) | 0.0230 (9) | 0.0213 (9) | −0.0049 (9) | 0.0038 (9) | 0.0000 (7) |
O3 | 0.0761 (19) | 0.0318 (12) | 0.0258 (10) | −0.0031 (12) | 0.0139 (12) | 0.0026 (9) |
O4 | 0.0597 (16) | 0.0247 (10) | 0.0418 (13) | −0.0045 (11) | 0.0105 (12) | −0.0001 (9) |
O5 | 0.0583 (17) | 0.0447 (15) | 0.0407 (13) | 0.0133 (13) | −0.0053 (12) | 0.0019 (11) |
O6 | 0.0482 (14) | 0.0358 (12) | 0.0392 (12) | 0.0026 (11) | 0.0021 (11) | −0.0038 (10) |
N1 | 0.064 (2) | 0.0480 (18) | 0.0351 (15) | 0.0050 (16) | 0.0085 (15) | 0.0064 (13) |
N2 | 0.064 (2) | 0.0373 (15) | 0.0405 (15) | −0.0065 (15) | 0.0061 (15) | −0.0003 (13) |
C1 | 0.061 (2) | 0.055 (2) | 0.0230 (13) | 0.0033 (18) | 0.0076 (15) | 0.0093 (14) |
C2 | 0.058 (2) | 0.066 (3) | 0.0200 (13) | 0.0027 (19) | 0.0057 (15) | −0.0077 (14) |
C3 | 0.054 (2) | 0.0456 (19) | 0.0301 (15) | −0.0022 (16) | 0.0045 (15) | −0.0164 (14) |
C4 | 0.0314 (13) | 0.0240 (11) | 0.0170 (10) | −0.0010 (10) | 0.0033 (10) | −0.0048 (9) |
C5 | 0.0314 (14) | 0.0292 (13) | 0.0193 (10) | 0.0021 (11) | 0.0029 (10) | −0.0013 (10) |
C6 | 0.0349 (14) | 0.0250 (12) | 0.0201 (10) | 0.0019 (11) | 0.0038 (10) | 0.0000 (9) |
C7 | 0.0476 (17) | 0.0219 (12) | 0.0204 (11) | −0.0025 (11) | 0.0040 (12) | 0.0018 (9) |
C8 | 0.0341 (14) | 0.0219 (11) | 0.0227 (11) | −0.0020 (10) | 0.0021 (11) | −0.0011 (9) |
C9 | 0.0275 (12) | 0.0226 (12) | 0.0232 (11) | −0.0021 (10) | 0.0022 (10) | −0.0023 (9) |
C10 | 0.0260 (12) | 0.0190 (11) | 0.0202 (10) | −0.0032 (9) | 0.0052 (9) | −0.0035 (8) |
C11 | 0.0496 (19) | 0.0339 (16) | 0.0346 (15) | −0.0085 (14) | 0.0135 (15) | −0.0141 (13) |
C12 | 0.062 (2) | 0.0276 (16) | 0.053 (2) | −0.0092 (15) | 0.0142 (18) | −0.0108 (14) |
C13 | 0.065 (2) | 0.0242 (14) | 0.0465 (19) | −0.0097 (15) | 0.0092 (18) | 0.0011 (14) |
O7 | 0.0591 (18) | 0.0536 (18) | 0.0612 (19) | 0.0006 (14) | 0.0002 (15) | 0.0041 (14) |
O8 | 0.161 (5) | 0.071 (3) | 0.086 (3) | 0.024 (3) | 0.020 (3) | 0.020 (3) |
Ni1—O1 | 2.003 (2) | C2—C3 | 1.365 (6) |
Ni1—O2 | 2.006 (2) | C2—H2A | 0.9300 |
Ni1—O3 | 2.031 (2) | C3—C4 | 1.339 (4) |
Ni1—O6 | 2.080 (3) | C3—H3 | 0.9300 |
Ni1—O5 | 2.088 (3) | C4—C5 | 1.336 (4) |
Ni1—O4 | 2.088 (2) | C4—H4 | 0.9300 |
O1—C6 | 1.258 (3) | C5—C6 | 1.495 (4) |
O2—C8 | 1.259 (3) | C6—C7 | 1.401 (4) |
O3—H3A | 0.84 (2) | C7—C8 | 1.396 (4) |
O3—H3B | 0.83 (2) | C7—H7 | 0.9300 |
O4—H4A | 0.84 (2) | C8—C9 | 1.501 (4) |
O4—H4B | 0.82 (2) | C9—C10 | 1.341 (3) |
O5—H5A | 0.84 (2) | C10—C11 | 1.331 (4) |
O5—H5B | 0.84 (2) | C10—H10 | 0.9300 |
O6—H6A | 0.84 (2) | C11—C12 | 1.376 (5) |
O6—H6B | 0.83 (2) | C11—H11 | 0.9300 |
N1—C1 | 1.386 (5) | C12—C13 | 1.358 (5) |
N1—C5 | 1.387 (4) | C12—H12 | 0.9300 |
N1—H1 | 0.8600 | C13—H13 | 0.9300 |
N2—C9 | 1.376 (4) | O7—H7A | 0.84 (2) |
N2—C13 | 1.389 (5) | O7—H7B | 0.85 (2) |
N2—H2 | 0.8600 | O8—H8A | 0.85 (2) |
C1—C2 | 1.375 (6) | O8—H8B | 0.84 (2) |
C1—H1A | 0.9300 | ||
O1—Ni1—O2 | 88.75 (9) | C3—C2—C1 | 118.7 (3) |
O1—Ni1—O3 | 176.19 (9) | C3—C2—H2A | 120.6 |
O2—Ni1—O3 | 87.65 (9) | C1—C2—H2A | 120.6 |
O1—Ni1—O6 | 91.18 (10) | C4—C3—C2 | 119.7 (3) |
O2—Ni1—O6 | 89.88 (10) | C4—C3—H3 | 120.2 |
O3—Ni1—O6 | 87.57 (12) | C2—C3—H3 | 120.2 |
O1—Ni1—O5 | 88.26 (11) | C5—C4—C3 | 123.5 (3) |
O2—Ni1—O5 | 93.54 (11) | C5—C4—H4 | 118.2 |
O3—Ni1—O5 | 93.21 (12) | C3—C4—H4 | 118.2 |
O6—Ni1—O5 | 176.52 (11) | C4—C5—N1 | 118.7 (3) |
O1—Ni1—O4 | 90.82 (9) | C4—C5—C6 | 114.3 (2) |
O2—Ni1—O4 | 177.08 (11) | N1—C5—C6 | 127.1 (3) |
O3—Ni1—O4 | 92.72 (10) | O1—C6—C7 | 126.6 (3) |
O6—Ni1—O4 | 87.24 (11) | O1—C6—C5 | 114.3 (2) |
O5—Ni1—O4 | 89.34 (12) | C7—C6—C5 | 119.1 (2) |
C6—O1—Ni1 | 124.99 (19) | C8—C7—C6 | 122.6 (3) |
C8—O2—Ni1 | 124.54 (18) | C8—C7—H7 | 118.7 |
Ni1—O3—H3A | 109 (6) | C6—C7—H7 | 118.7 |
Ni1—O3—H3B | 117 (6) | O2—C8—C7 | 126.7 (3) |
H3A—O3—H3B | 112 (9) | O2—C8—C9 | 114.5 (2) |
Ni1—O4—H4A | 118 (7) | C7—C8—C9 | 118.8 (2) |
Ni1—O4—H4B | 120 (7) | C10—C9—N2 | 118.8 (3) |
H4A—O4—H4B | 104 (8) | C10—C9—C8 | 114.5 (2) |
Ni1—O5—H5A | 123 (7) | N2—C9—C8 | 126.8 (3) |
Ni1—O5—H5B | 124 (7) | C11—C10—C9 | 123.3 (3) |
H5A—O5—H5B | 77 (8) | C11—C10—H10 | 118.3 |
Ni1—O6—H6A | 114 (6) | C9—C10—H10 | 118.3 |
Ni1—O6—H6B | 125 (7) | C10—C11—C12 | 119.2 (3) |
H6A—O6—H6B | 109 (8) | C10—C11—H11 | 120.4 |
C1—N1—C5 | 118.5 (3) | C12—C11—H11 | 120.4 |
C1—N1—H1 | 120.8 | C13—C12—C11 | 119.4 (3) |
C5—N1—H1 | 120.8 | C13—C12—H12 | 120.3 |
C9—N2—C13 | 118.8 (3) | C11—C12—H12 | 120.3 |
C9—N2—H2 | 120.6 | C12—C13—N2 | 120.4 (3) |
C13—N2—H2 | 120.6 | C12—C13—H13 | 119.8 |
C2—C1—N1 | 120.9 (3) | N2—C13—H13 | 119.8 |
C2—C1—H1A | 119.5 | H7A—O7—H7B | 80 (8) |
N1—C1—H1A | 119.5 | H8A—O8—H8B | 116 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br1 | 0.86 | 2.94 | 3.774 (4) | 165 |
N2—H2···Br1 | 0.86 | 3.02 | 3.852 (3) | 165 |
C1—H1A···Br2 | 0.93 | 2.75 | 3.567 (3) | 147 |
C4—H4···Br3i | 0.93 | 2.47 | 3.330 (3) | 154 |
C10—H10···Br2ii | 0.93 | 2.48 | 3.305 (3) | 149 |
O3—H3A···Br2ii | 0.84 (2) | 2.48 (4) | 3.285 (3) | 161 (9) |
O3—H3B···Br3iii | 0.83 (2) | 2.40 (3) | 3.212 (2) | 165 (8) |
O4—H4A···O7iv | 0.84 (2) | 2.16 (5) | 2.917 (4) | 150 (9) |
O4—H4B···Br3i | 0.82 (2) | 2.48 (3) | 3.284 (3) | 167 (9) |
O5—H5A···O7 | 0.84 (2) | 1.99 (3) | 2.808 (5) | 163 (10) |
O5—H5B···O8 | 0.84 (2) | 2.29 (6) | 3.002 (6) | 142 (9) |
O6—H6A···Br1v | 0.84 (2) | 2.51 (2) | 3.342 (3) | 175 (9) |
O6—H6B···Br2v | 0.83 (2) | 2.45 (3) | 3.266 (3) | 165 (9) |
O7—H7A···Br1i | 0.84 (2) | 2.59 (6) | 3.335 (4) | 149 (9) |
O7—H7B···Br3i | 0.85 (2) | 2.54 (2) | 3.386 (3) | 173 (9) |
O8—H8A···Br3vi | 0.85 (2) | 3.06 (3) | 3.880 (7) | 165 (9) |
O8—H8B···Br1iii | 0.84 (2) | 2.65 (6) | 3.393 (5) | 149 (9) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1, y, z; (v) −x, −y+1, −z+1; (vi) −x+2, y−1/2, −z+3/2. |
Acknowledgements
The authors thank CSU–AAUP for research funds.
References
Andrews, P. C., Deacon, G. B., Frank, R., Fraser, B. H., Junk, P. C., MacLellan, J. G., Massi, M., Moubaraki, B., Murray, K. S. & Silberstein, M. (2009). Eur. J. Inorg. Chem. 2009, 744–751. CrossRef Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brück, S., Hilder, M., Junk, P. C. & Kynast, U. H. (2000). Inorg. Chem. Commun. 3, 666–670. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Langley, S. K., Chilton, N. F., Massi, M., Moubaraki, B., Berry, K. J. & Murray, K. S. (2010). Dalton Trans. 39, 7236–7249. CrossRef CAS PubMed Google Scholar
Lee, S.-L., Hu, F.-L., Shang, X.-J., Shi, Y.-X., Tan, A. L., Mizera, J., Clegg, J. K., Zhang, W.-H., Young, D. J. & Lang, J.-P. (2017). New J. Chem. 41, 14457–14465. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53 doi: 10.1107/S1600576719014092. Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sommerer, S. O. & Abboud, K. A. (1993). Acta Cryst. C49, 1152–1154. CrossRef CAS IUCr Journals Google Scholar
Sommerer, S. O., Westcott, B. L., Friebe, T. L. & Abboud, K. A. (1994). Acta Cryst. C50, 2013–2015. CrossRef CAS IUCr Journals Google Scholar
Tan, J.-T., Zhao, W.-J., Chen, S.-P., Li, X., Lu, Y.-L., Feng, X. & Yang, X.-W. (2012). Chem. Papers 66 47–53. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.