research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­[3-oxo-1,3-bis­­(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by M. Zeller, Purdue University, USA (Received 14 January 2020; accepted 22 January 2020; online 31 January 2020)

The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octa­hedral NiII atom coordinated to the enol form of 1,3-di­pyridyl­propane-1,3-dione (dppo) and four water mol­ecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitro­gen-containing rings are involved in hydrogen-bonding inter­actions with neighoring bromide anions. There are many additional hydrogen-bonding inter­actions involving coordinated water mol­ecules on the NiII atom, bromide anions and hydration water mol­ecules.

1. Chemical context

We chose to study 1,3-di­pyridyl­propane-1,3-dione (dppo) in our ongoing investigations of bridged dipyridyl compounds as ligands for transition metals and rare earths. Previous studies of the di-2-pyridyl ketone (dpk) ligand illustrated that it can undergo a Lewis acid assisted hydration reaction at the ketone to form a diol (Sommerer & Abboud, 1993[Sommerer, S. O. & Abboud, K. A. (1993). Acta Cryst. C49, 1152-1154.]). This hydration can also occur with Arrhenius acids; however, in the absence of a metal for coordination, the pyridyl N atoms of the resulting diol are protonated (Sommerer et al., 1994[Sommerer, S. O., Westcott, B. L., Friebe, T. L. & Abboud, K. A. (1994). Acta Cryst. C50, 2013-2015.]). For the dppo in this study, the coordination to the metal center required the presence of an Arrhenius acid (HBr). No hydration of the dione occurred, the ligand adopted the enol form where O atoms behaved as a bidentate ligand, and protonation of the pyridyl rings was observed.

[Scheme 1]

2. Structural commentary

Since the synthesis of the complex was in hydro­bromic acid in methanol, the existence of three bromide anions required a trivalent cation. Planar dppo is in its enol form allowing the O atoms to behave as Lewis bases to the nickel center; however, the pyridine rings are both protonated. The H atoms were readily found in difference maps and refined as unconstrained atoms. The organic ligand therefore has an overall +1 charge. There are also four water molecules coordinated to the NiII atom, thereby completing the octa­hedral geometry of the [Ni(C13H11N2O2)(H2O)4]+3 cation (Fig. 1[link]). During refinement, two additional waters of hydration were located. There is an angle of 19.48 (7)° between the mean plane of the dipyridinium ligand and the plane defined by the NiII atom and its four equatorial O atoms. Selected geometric parameters are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.003 (2) Ni1—O6 2.080 (3)
Ni1—O2 2.006 (2) Ni1—O5 2.088 (3)
Ni1—O3 2.031 (2) Ni1—O4 2.088 (2)
       
O1—Ni1—O2 88.75 (9) O3—Ni1—O5 93.21 (12)
O1—Ni1—O3 176.19 (9) O6—Ni1—O5 176.52 (11)
O2—Ni1—O3 87.65 (9) O1—Ni1—O4 90.82 (9)
O1—Ni1—O6 91.18 (10) O2—Ni1—O4 177.08 (11)
O2—Ni1—O6 89.88 (10) O3—Ni1—O4 92.72 (10)
O3—Ni1—O6 87.57 (12) O6—Ni1—O4 87.24 (11)
O1—Ni1—O5 88.26 (11) O5—Ni1—O4 89.34 (12)
O2—Ni1—O5 93.54 (11)    
[Figure 1]
Figure 1
A view of the the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

A packing diagram of the compound as viewed down (100) is shown in Fig. 2[link]. There are many hydrogen-bonding inter­actions. The pyridinium H atoms are involved in hydrogen bonding with one of the bromide anions. Bromide anions are also engaged in hydrogen bonding with the waters of hydration and the water molecules coordinated to the NiII atom. The waters of hydration extend the hydrogen-bonding network by also inter­acting with the water molecules coordin­ated to the NiII center. A summary of the hydrogen-bonding inter­actions is listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.86 2.94 3.774 (4) 165
N2—H2⋯Br1 0.86 3.02 3.852 (3) 165
C1—H1A⋯Br2 0.93 2.75 3.567 (3) 147
C4—H4⋯Br3i 0.93 2.47 3.330 (3) 154
C10—H10⋯Br2ii 0.93 2.48 3.305 (3) 149
O3—H3A⋯Br2ii 0.84 (2) 2.48 (4) 3.285 (3) 161 (9)
O3—H3B⋯Br3iii 0.83 (2) 2.40 (3) 3.212 (2) 165 (8)
O4—H4A⋯O7iv 0.84 (2) 2.16 (5) 2.917 (4) 150 (9)
O4—H4B⋯Br3i 0.82 (2) 2.48 (3) 3.284 (3) 167 (9)
O5—H5A⋯O7 0.84 (2) 1.99 (3) 2.808 (5) 163 (10)
O5—H5B⋯O8 0.84 (2) 2.29 (6) 3.002 (6) 142 (9)
O6—H6A⋯Br1v 0.84 (2) 2.51 (2) 3.342 (3) 175 (9)
O6—H6B⋯Br2v 0.83 (2) 2.45 (3) 3.266 (3) 165 (9)
O7—H7A⋯Br1i 0.84 (2) 2.59 (6) 3.335 (4) 149 (9)
O7—H7B⋯Br3i 0.85 (2) 2.54 (2) 3.386 (3) 173 (9)
O8—H8A⋯Br3vi 0.85 (2) 3.06 (3) 3.880 (7) 165 (9)
O8—H8B⋯Br1iii 0.84 (2) 2.65 (6) 3.393 (5) 149 (9)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z; (v) -x, -y+1, -z+1; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the unit cell along (100). Bromines and free water mol­ecules are shown as balls and sticks and hydrogen bonds as black dashed lines (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53 doi: 10.1107/S1600576719014092.]).

4. Database survey

The enol form of dppo has been used to make extended structures with cadmium (Tan et al., 2012[Tan, J.-T., Zhao, W.-J., Chen, S.-P., Li, X., Lu, Y.-L., Feng, X. & Yang, X.-W. (2012). Chem. Papers 66 47-53.]), as well as with manganese (Langley et al., 2010[Langley, S. K., Chilton, N. F., Massi, M., Moubaraki, B., Berry, K. J. & Murray, K. S. (2010). Dalton Trans. 39, 7236-7249.]). The cadmium structure is a two-dimensional chain of cadmium, chlorides, and ligands. The ligand uses both of its O atoms and pyridyl N atoms to bond to multiple Cd atoms. In Langley, several manganese clusters (with six, seven, and ten manganese atoms) were studied, all having the enol form of the ligand. The ligands vary their coordination, sometimes bonding in a bidentate fashion via the two oxygens, sometimes bidentate with a pyridine nitro­gen and enol oxygen, and sometimes even monodentate via the pyridine nitro­gen. Through its multiple modes of bonding in these clusters, the ligand can bond from two to four metal centers.

The ligand has also been shown to use its O atoms and one pyridyl N atom to form a bridging dilanthium complex (Brück et al., 2000[Brück, S., Hilder, M., Junk, P. C. & Kynast, U. H. (2000). Inorg. Chem. Commun. 3, 666-670.]) and a bridging triholmium species (Andrews et al., 2009[Andrews, P. C., Deacon, G. B., Frank, R., Fraser, B. H., Junk, P. C., MacLellan, J. G., Massi, M., Moubaraki, B., Murray, K. S. & Silberstein, M. (2009). Eur. J. Inorg. Chem. 2009, 744-751.]). Finally, the ligand has formed a simpler tris­[1,3-bis­(pyridin-2-yl)propane-1,3-dionato]iron(III) compound where the ligand simply bonds to the iron via its O atoms (Lee et al., 2017[Lee, S.-L., Hu, F.-L., Shang, X.-J., Shi, Y.-X., Tan, A. L., Mizera, J., Clegg, J. K., Zhang, W.-H., Young, D. J. & Lang, J.-P. (2017). New J. Chem. 41, 14457-14465.]). Whereas protonation of pyridyl rings on ligands are common in the literature, this structure is the first to display pyridyl protonation for this particular ligand.

5. Synthesis and crystallization

All chemicals were used as received. To 0.1458 g (0.5 mmol) of nickel bromide hydrate (Aldrich) in 35 ml of water was added 0.2424 g (1.0 mmol) of 1,3-di(2-pyridyl)-1,3-propanedione (TCI) under stirring. To this mixture, concentrated HBr (Fisher) was added dropwise until all the ligand had dissolved (pH ∼ 1). This solution was stirred at room temperature for 30 min and filtered to afford an olive-colored solution. Slow evaporation for 28 d yielded pale-red–orange crystals of the title compound. The yield of the product was 64%. The crystals decomposed when a melting-point determination was attempted. FT–IR data for the free ligand and the title compound are included as supporting information and the appearance of a broad band at 3300 cm−1 and a broad band with fine structure at 3000 cm−1 confirms the presence of water molecules and pyridinium rings.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms on sp2-hybridized C and N atoms were included in calculated positions, with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were refined applying a distance restraint of 0.84 (2) Å.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C13H11N2O2)(H2O)4]Br3·2H2O
Mr 633.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 6.8071 (6), 23.8031 (16), 13.6302 (10)
β (°) 97.476 (9)
V3) 2189.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.40
Crystal size (mm) 0.32 × 0.28 × 0.19
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.504, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26929, 7970, 5803
Rint 0.034
(sin θ/λ)max−1) 0.781
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.05
No. of reflections 7970
No. of parameters 280
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.10, −1.39
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53 doi: 10.1107/S1600576719014092.]) and OLEX2 (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Bourhis et al., 2015).

Tetraaqua[3-oxo-1,3-bis(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate top
Crystal data top
[Ni(C13H11N2O2)(H2O)4]3Br·2H2OF(000) = 1248
Mr = 633.77Dx = 1.922 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8071 (6) ÅCell parameters from 4741 reflections
b = 23.8031 (16) Åθ = 4.6–32.1°
c = 13.6302 (10) ŵ = 6.40 mm1
β = 97.476 (9)°T = 293 K
V = 2189.7 (3) Å3Block, orange
Z = 40.32 × 0.28 × 0.19 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
7970 independent reflections
Radiation source: Enhance (Mo) X-ray Source5803 reflections with I > 2σ(I)
Detector resolution: 16.1790 pixels mm-1Rint = 0.034
ω scansθmax = 33.7°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.503, Tmax = 1.000k = 3636
26929 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0561P)2 + 2.3402P]
where P = (Fo2 + 2Fc2)/3
7970 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.10 e Å3
12 restraintsΔρmin = 1.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28363 (5)0.60904 (2)0.46388 (3)0.04291 (10)
Br20.22784 (5)0.48206 (2)0.10507 (2)0.03503 (9)
Br30.80885 (8)0.76767 (2)0.39510 (3)0.05624 (13)
Ni10.15038 (6)0.37164 (2)0.81987 (3)0.02833 (10)
O10.2089 (4)0.37484 (8)0.67975 (15)0.0311 (4)
O20.2542 (4)0.45031 (9)0.83901 (15)0.0318 (5)
O30.0917 (5)0.37407 (10)0.96216 (18)0.0439 (6)
O40.0286 (4)0.29148 (10)0.79662 (19)0.0417 (6)
O50.4287 (5)0.33525 (12)0.8585 (2)0.0489 (6)
O60.1333 (4)0.40312 (11)0.77851 (19)0.0414 (5)
N10.2313 (5)0.45128 (15)0.4508 (2)0.0488 (8)
H10.24370.48620.46690.059*
N20.3028 (5)0.59168 (13)0.7459 (2)0.0473 (7)
H20.30170.58820.68310.057*
C10.2240 (6)0.43458 (18)0.3530 (2)0.0464 (9)
H1A0.23120.46150.30410.056*
C20.2062 (7)0.37877 (18)0.3273 (2)0.0480 (9)
H2A0.20290.36770.26170.058*
C30.1935 (6)0.33996 (17)0.3999 (2)0.0432 (8)
H30.18140.30200.38410.052*
C40.1984 (4)0.35680 (12)0.49387 (18)0.0241 (5)
H40.18740.32970.54200.029*
C50.2182 (4)0.41042 (12)0.52228 (19)0.0267 (5)
C60.2239 (5)0.41925 (12)0.6312 (2)0.0267 (5)
C70.2441 (5)0.47393 (12)0.6692 (2)0.0300 (6)
H70.24770.50370.62540.036*
C80.2593 (4)0.48545 (11)0.7704 (2)0.0264 (5)
C90.2832 (4)0.54534 (11)0.8042 (2)0.0246 (5)
C100.2865 (4)0.55252 (11)0.90202 (18)0.0216 (5)
H100.27010.52110.94080.026*
C110.3121 (6)0.60228 (14)0.9464 (3)0.0387 (7)
H110.31700.60511.01480.046*
C120.3313 (6)0.64942 (15)0.8900 (3)0.0469 (9)
H120.34900.68450.91980.056*
C130.3243 (6)0.64421 (14)0.7904 (3)0.0450 (8)
H130.33390.67600.75170.054*
O70.6193 (5)0.29510 (15)0.7017 (3)0.0586 (8)
O80.6929 (11)0.2404 (2)0.9388 (4)0.1057 (17)
H3A0.120 (13)0.4061 (18)0.986 (6)0.159*
H3B0.140 (12)0.349 (3)1.000 (5)0.159*
H4A0.095 (3)0.289 (4)0.791 (7)0.159*
H4B0.061 (14)0.272 (3)0.752 (5)0.159*
H5A0.489 (13)0.317 (4)0.818 (6)0.159*
H5B0.448 (15)0.304 (2)0.886 (7)0.159*
H6A0.169 (13)0.402 (4)0.7173 (18)0.159*
H6B0.178 (13)0.432 (2)0.802 (7)0.159*
H7A0.592 (15)0.319 (3)0.656 (5)0.159*
H7B0.513 (8)0.281 (4)0.673 (7)0.159*
H8A0.789 (10)0.252 (4)0.980 (6)0.159*
H8B0.658 (15)0.2068 (16)0.945 (8)0.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03826 (18)0.0478 (2)0.04137 (18)0.00130 (14)0.00006 (14)0.00498 (15)
Br20.04109 (18)0.04094 (18)0.02300 (13)0.00484 (13)0.00390 (12)0.00060 (11)
Br30.0857 (3)0.02834 (17)0.0548 (2)0.00371 (17)0.0097 (2)0.01026 (15)
Ni10.0437 (2)0.02121 (17)0.02022 (16)0.00070 (14)0.00474 (15)0.00139 (12)
O10.0497 (13)0.0228 (9)0.0210 (9)0.0008 (9)0.0051 (9)0.0011 (7)
O20.0510 (13)0.0230 (9)0.0213 (9)0.0049 (9)0.0038 (9)0.0000 (7)
O30.0761 (19)0.0318 (12)0.0258 (10)0.0031 (12)0.0139 (12)0.0026 (9)
O40.0597 (16)0.0247 (10)0.0418 (13)0.0045 (11)0.0105 (12)0.0001 (9)
O50.0583 (17)0.0447 (15)0.0407 (13)0.0133 (13)0.0053 (12)0.0019 (11)
O60.0482 (14)0.0358 (12)0.0392 (12)0.0026 (11)0.0021 (11)0.0038 (10)
N10.064 (2)0.0480 (18)0.0351 (15)0.0050 (16)0.0085 (15)0.0064 (13)
N20.064 (2)0.0373 (15)0.0405 (15)0.0065 (15)0.0061 (15)0.0003 (13)
C10.061 (2)0.055 (2)0.0230 (13)0.0033 (18)0.0076 (15)0.0093 (14)
C20.058 (2)0.066 (3)0.0200 (13)0.0027 (19)0.0057 (15)0.0077 (14)
C30.054 (2)0.0456 (19)0.0301 (15)0.0022 (16)0.0045 (15)0.0164 (14)
C40.0314 (13)0.0240 (11)0.0170 (10)0.0010 (10)0.0033 (10)0.0048 (9)
C50.0314 (14)0.0292 (13)0.0193 (10)0.0021 (11)0.0029 (10)0.0013 (10)
C60.0349 (14)0.0250 (12)0.0201 (10)0.0019 (11)0.0038 (10)0.0000 (9)
C70.0476 (17)0.0219 (12)0.0204 (11)0.0025 (11)0.0040 (12)0.0018 (9)
C80.0341 (14)0.0219 (11)0.0227 (11)0.0020 (10)0.0021 (11)0.0011 (9)
C90.0275 (12)0.0226 (12)0.0232 (11)0.0021 (10)0.0022 (10)0.0023 (9)
C100.0260 (12)0.0190 (11)0.0202 (10)0.0032 (9)0.0052 (9)0.0035 (8)
C110.0496 (19)0.0339 (16)0.0346 (15)0.0085 (14)0.0135 (15)0.0141 (13)
C120.062 (2)0.0276 (16)0.053 (2)0.0092 (15)0.0142 (18)0.0108 (14)
C130.065 (2)0.0242 (14)0.0465 (19)0.0097 (15)0.0092 (18)0.0011 (14)
O70.0591 (18)0.0536 (18)0.0612 (19)0.0006 (14)0.0002 (15)0.0041 (14)
O80.161 (5)0.071 (3)0.086 (3)0.024 (3)0.020 (3)0.020 (3)
Geometric parameters (Å, º) top
Ni1—O12.003 (2)C2—C31.365 (6)
Ni1—O22.006 (2)C2—H2A0.9300
Ni1—O32.031 (2)C3—C41.339 (4)
Ni1—O62.080 (3)C3—H30.9300
Ni1—O52.088 (3)C4—C51.336 (4)
Ni1—O42.088 (2)C4—H40.9300
O1—C61.258 (3)C5—C61.495 (4)
O2—C81.259 (3)C6—C71.401 (4)
O3—H3A0.84 (2)C7—C81.396 (4)
O3—H3B0.83 (2)C7—H70.9300
O4—H4A0.84 (2)C8—C91.501 (4)
O4—H4B0.82 (2)C9—C101.341 (3)
O5—H5A0.84 (2)C10—C111.331 (4)
O5—H5B0.84 (2)C10—H100.9300
O6—H6A0.84 (2)C11—C121.376 (5)
O6—H6B0.83 (2)C11—H110.9300
N1—C11.386 (5)C12—C131.358 (5)
N1—C51.387 (4)C12—H120.9300
N1—H10.8600C13—H130.9300
N2—C91.376 (4)O7—H7A0.84 (2)
N2—C131.389 (5)O7—H7B0.85 (2)
N2—H20.8600O8—H8A0.85 (2)
C1—C21.375 (6)O8—H8B0.84 (2)
C1—H1A0.9300
O1—Ni1—O288.75 (9)C3—C2—C1118.7 (3)
O1—Ni1—O3176.19 (9)C3—C2—H2A120.6
O2—Ni1—O387.65 (9)C1—C2—H2A120.6
O1—Ni1—O691.18 (10)C4—C3—C2119.7 (3)
O2—Ni1—O689.88 (10)C4—C3—H3120.2
O3—Ni1—O687.57 (12)C2—C3—H3120.2
O1—Ni1—O588.26 (11)C5—C4—C3123.5 (3)
O2—Ni1—O593.54 (11)C5—C4—H4118.2
O3—Ni1—O593.21 (12)C3—C4—H4118.2
O6—Ni1—O5176.52 (11)C4—C5—N1118.7 (3)
O1—Ni1—O490.82 (9)C4—C5—C6114.3 (2)
O2—Ni1—O4177.08 (11)N1—C5—C6127.1 (3)
O3—Ni1—O492.72 (10)O1—C6—C7126.6 (3)
O6—Ni1—O487.24 (11)O1—C6—C5114.3 (2)
O5—Ni1—O489.34 (12)C7—C6—C5119.1 (2)
C6—O1—Ni1124.99 (19)C8—C7—C6122.6 (3)
C8—O2—Ni1124.54 (18)C8—C7—H7118.7
Ni1—O3—H3A109 (6)C6—C7—H7118.7
Ni1—O3—H3B117 (6)O2—C8—C7126.7 (3)
H3A—O3—H3B112 (9)O2—C8—C9114.5 (2)
Ni1—O4—H4A118 (7)C7—C8—C9118.8 (2)
Ni1—O4—H4B120 (7)C10—C9—N2118.8 (3)
H4A—O4—H4B104 (8)C10—C9—C8114.5 (2)
Ni1—O5—H5A123 (7)N2—C9—C8126.8 (3)
Ni1—O5—H5B124 (7)C11—C10—C9123.3 (3)
H5A—O5—H5B77 (8)C11—C10—H10118.3
Ni1—O6—H6A114 (6)C9—C10—H10118.3
Ni1—O6—H6B125 (7)C10—C11—C12119.2 (3)
H6A—O6—H6B109 (8)C10—C11—H11120.4
C1—N1—C5118.5 (3)C12—C11—H11120.4
C1—N1—H1120.8C13—C12—C11119.4 (3)
C5—N1—H1120.8C13—C12—H12120.3
C9—N2—C13118.8 (3)C11—C12—H12120.3
C9—N2—H2120.6C12—C13—N2120.4 (3)
C13—N2—H2120.6C12—C13—H13119.8
C2—C1—N1120.9 (3)N2—C13—H13119.8
C2—C1—H1A119.5H7A—O7—H7B80 (8)
N1—C1—H1A119.5H8A—O8—H8B116 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.862.943.774 (4)165
N2—H2···Br10.863.023.852 (3)165
C1—H1A···Br20.932.753.567 (3)147
C4—H4···Br3i0.932.473.330 (3)154
C10—H10···Br2ii0.932.483.305 (3)149
O3—H3A···Br2ii0.84 (2)2.48 (4)3.285 (3)161 (9)
O3—H3B···Br3iii0.83 (2)2.40 (3)3.212 (2)165 (8)
O4—H4A···O7iv0.84 (2)2.16 (5)2.917 (4)150 (9)
O4—H4B···Br3i0.82 (2)2.48 (3)3.284 (3)167 (9)
O5—H5A···O70.84 (2)1.99 (3)2.808 (5)163 (10)
O5—H5B···O80.84 (2)2.29 (6)3.002 (6)142 (9)
O6—H6A···Br1v0.84 (2)2.51 (2)3.342 (3)175 (9)
O6—H6B···Br2v0.83 (2)2.45 (3)3.266 (3)165 (9)
O7—H7A···Br1i0.84 (2)2.59 (6)3.335 (4)149 (9)
O7—H7B···Br3i0.85 (2)2.54 (2)3.386 (3)173 (9)
O8—H8A···Br3vi0.85 (2)3.06 (3)3.880 (7)165 (9)
O8—H8B···Br1iii0.84 (2)2.65 (6)3.393 (5)149 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank CSU–AAUP for research funds.

References

First citationAndrews, P. C., Deacon, G. B., Frank, R., Fraser, B. H., Junk, P. C., MacLellan, J. G., Massi, M., Moubaraki, B., Murray, K. S. & Silberstein, M. (2009). Eur. J. Inorg. Chem. 2009, 744–751.  CrossRef Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrück, S., Hilder, M., Junk, P. C. & Kynast, U. H. (2000). Inorg. Chem. Commun. 3, 666–670.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLangley, S. K., Chilton, N. F., Massi, M., Moubaraki, B., Berry, K. J. & Murray, K. S. (2010). Dalton Trans. 39, 7236–7249.  CrossRef CAS PubMed Google Scholar
First citationLee, S.-L., Hu, F.-L., Shang, X.-J., Shi, Y.-X., Tan, A. L., Mizera, J., Clegg, J. K., Zhang, W.-H., Young, D. J. & Lang, J.-P. (2017). New J. Chem. 41, 14457–14465.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53 doi: 10.1107/S1600576719014092.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSommerer, S. O. & Abboud, K. A. (1993). Acta Cryst. C49, 1152–1154.  CrossRef CAS IUCr Journals Google Scholar
First citationSommerer, S. O., Westcott, B. L., Friebe, T. L. & Abboud, K. A. (1994). Acta Cryst. C50, 2013–2015.  CrossRef CAS IUCr Journals Google Scholar
First citationTan, J.-T., Zhao, W.-J., Chen, S.-P., Li, X., Lu, Y.-L., Feng, X. & Yang, X.-W. (2012). Chem. Papers 66 47–53.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds