research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cis versus trans arrangement of di­thio­carbazate ligands in bis-chelated Ni and Cu complexes

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, bDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, cDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, Gofuku, Toyama 3190, Japan, dCenter for Environmental Conservation and Research Safety, University of Toyama, Gofuku, Toyama 3190, Japan, and eDepartment of Chemical and Pharmaceutical Science, via Giorgieri 1/34127, Trieste, Italy
*Correspondence e-mail: china@sust.edu

Edited by A. M. Chippindale, University of Reading, England (Received 6 March 2020; accepted 9 April 2020; online 21 April 2020)

The structures are described of two bis-chelated metal complexes of nickel(II) and copper(II) with S-n-hexyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate Schiff bases in a cis configuration, namely, bis­[S-n-hexyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato-κ2N3,S]nickel(II), [Ni(C15H21N2S2)2], and bis­[S-n-hexyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato-κ2N3,S]copper(II), [Cu(C15H21N2S2)2]. In both complexes, the metals have distorted square-planar geometries. A search in the Cambridge Structural Database [Groom et al. (2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Acta Cryst. B72, 171–179] for bis-chelated nickel(II) and copper(II) complexes with similar Schiff bases retrieved 55 and 36 hits for the two metals, respectively. An analysis of the geometrical parameters of complexes showing cis and trans configurations is reported and the values compared with those for the complexes described in this work.

1. Chemical context

Thio­semicarbazones, semicarbazones, hydrazide/hydrazones and di­thio­carbazate Schiff bases and their complexes have been widely studied for their significant bioactivities and pharmacological properties (Beraldo et al. 2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]; Altıntop et al., 2016[Altıntop, M. D., Temel, H. E., Sever, B., Akalın Çiftçi, G. & Kaplancıklı, Z. A. (2016). Molecules, 21, 1598.]). The presence of hard nitro­gen and soft sulfur atoms enable these ligands to react with both transition and main-group metals (Arion, 2019[Arion, V. B. (2019). Coord. Chem. Rev. 387, 348-397.]) and transition-metal complexes derived from these N,S Schiff bases occupy a central role in the area of coordination chemistry. The nature of the long alkyl substituent chains, when present, may play a role in determining the liquid crystalline behavior of the complexes and thus their mesomorphic potential (Tomma et al., 2018[Tomma, H. J., Ghali, S. T. & Al-Dujaili, H. A. (2018). Mol. Cryst. Liq. Cryst. 664, 85-94.]; Lai et al., 1998[Lai, C. K., Tsai, C. & Pang, Y. (1998). J. Mater. Chem. 8, 1355-1360.]).

[Scheme 1]

Therefore, considering the above facts and in a continuation of our inter­est in this field (Zangrando et al., 2017[Zangrando, E., Begum, M. S., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M., Hasnat, M. A., Halim, M. A., Ahmed, S., Rahman, M. N. & Ghosh, A. (2017). Arabian J. Chem. 10, 172-184.]), the present work reports a study on the synthesis and structural characterization of NiII and CuII complexes 1 and 2 with the Schiff base derived from S-n-hexyl­dithio­carbazate and aceto­phenone (HL). The single crystal X-ray structures of these distorted square-planar complexes of nickel and copper, NiL2 and CuL2, show cis configurations of the ligands. Since similar complexes can show both cis and trans configurations, we report herein a comparison with the geometry of structurally characterized complexes retrieved from the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

2. Structural commentary

2.1. Structure of complex 1

In the NiL2 complex, the nickel atom is located on a crystallographic twofold axis and exhibits a distorted square-planar geometry. An ORTEP drawing of the complex is depicted in Fig. 1[link] and selected geometrical data are reported in Table 1[link]. The two Schiff bases, in their deprotonated imino thiol­ate form, are coordinated through the β-nitro­gen atom, N1, and the thiol­ate sulfur atom, S1, donors to the metal center in a cis-planar configuration. The Ni—S and Ni—N bond distances are 2.1600 (4) and 1.9295 (10) Å, respectively, with an S—Ni—N chelating angle of 85.68 (3)°.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Ni1—N1 1.9295 (10) Ni1—S1 2.1600 (4)
       
S1—Ni1—S1i 93.12 (2) N1—Ni1—S1i 163.99 (3)
N1—Ni1—S1 85.68 (3) N1—Ni1—N1i 99.79 (6)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
ORTEP view (50% probability ellipsoids) of the nickel(II) complex (1) with the labeling scheme for the asymmetric unit. (Primed atoms are related by the symmetry operationx + 1, y, −z + [{3\over 2}]).

The square-planar geometry is tetra­hedrally distorted and the dihedral angle formed by the mean planes through the two five-membered rings is 19.46 (5)°. The distortion from a planar arrangement is effected in order to circumvent steric clashes between the phenyl rings due to the cis configuration of the ligands.

2.2. Structure of complex 2

In CuL2, the whole copper(II) complex is crystallographically independent although it exhibits pseudo twofold symmetry. An ORTEP view is shown in Fig. 2[link], and selected geometrical data are reported in Table 2[link]. The arrangement of the ligands is similar to that of the nickel derivative, but a different conformation of the two alkyl chains leads to a lack of symmetry. Here the Cu—S and Cu—N bond distances are 2.2299 (9) and 2.2414 (9) Å, and 2.023 (3) and 2.020 (3) Å, respectively, while the chelating angles are similar at 85.43 (8) and 85.37 (8)°. The square-planar geometry shows a more significant tetra­hedral distortion than is found in complex 1, having a dihedral angle between the two five-membered rings of 40.41 (12)°. It is worth noting that compared to similar ligands in their uncoordinated state (see for example Begum et al., 2015[Begum, M. S., Howlader, M. B. H., Miyatake, R., Zangrando, E. & Sheikh, M. C. (2015). Acta Cryst. E71, o199.]), a rotation about the C9—N2 by 180° is observed in the metal complexes in order to allow the N,S chelating behavior towards the metal.

Table 2
Selected geometric parameters (Å, °) for 2[link]

Cu1—N1 2.023 (3) Cu1—S1 2.2299 (9)
Cu1—N3 2.020 (3) Cu1—S3 2.2414 (9)
       
S1—Cu1—S3 98.53 (4) N1—Cu1—S3 152.51 (8)
N1—Cu1—S1 85.43 (8) N3—Cu1—S3 85.37 (8)
N3—Cu1—S1 149.66 (8) N1—Cu1—N3 104.90 (11)
[Figure 2]
Figure 2
ORTEP view (50% probability ellipsoids) of the copper(II) complex (2).

The configuration assumed by the ligands in each complex leads the phenyl hydrogen atoms to sit above and below the metal centres with a separation of ∼2.6 Å, indicating the presence of M⋯H intra­molecular inter­actions.

3. Supra­molecular features

Figs. 3[link] and 4[link] display the crystal packing of the two complexes. The slightly shorter distance between the nickel ions in 1 (8.337 Å) compared to that of the copper atoms in 2 (8.518 Å) is likely the result of the different conformations of the alkyl chains. In both structures no significant ππ inter­actions involving phenyl rings are detected. C—H⋯π inter­actions are observed in 1 (Table 3[link]) but no such inter­actions are observed in 2.

Table 3
C—H⋯π interation (Å, °) in 1[link]

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACgii 0.99 2.75 3.5892 (18) 143
Symmetry code: (ii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
The crystal packing of the Ni complex viewed down the b axis (H atoms are not shown for clarity).
[Figure 4]
Figure 4
The crystal packing of the Cu complex viewed down the b axis (H atoms are not shown for clarity).

4. Database survey

Table 3[link] reports the mean values of the coordination bond lengths and angles of nickel(II) and copper(II) complexes bis-chelated by di­thio­carbazate ligands, as retrieved from the CSD (version 5.40, update of August 2019; Groom et al., 2016[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). Whereas the number of trans-configured nickel complexes is higher than the number of cis complexes, for copper, the numbers of trans- and cis-planar complexes are almost equal. The Ni—N, Cu—N and Cu—S bond distances are comparable in the cis and trans isomers, while for the Ni–S bond distances, a slight shorter distance is observed for the cis isomers than for the trans isomers [2.157 (8) vs 2.174 (8) Å]. More significant is the dihedral angle between the five-membered rings of the chelating ligands, which has a value close to 0° in both the trans-configured Ni and Cu complexes, while in the cis-Ni complexes the angle does not exceed 31°, and in the cis-Cu complexes, the smallest value observed is 32.27°, indicating a propensity for copper(II) to assume a tetra­hedral configuration. In fact, in some of the cis copper complexes in Table 4[link], the metal is present in effectively a tetra­hedral geometry with a dihedral angle between the five-membered rings of ca 80° (Mondal et al., 2014[Mondal, G., Bera, P., Santra, A., Jana, S., Mandal, T. N., Mondal, A., Seok, S. I. & Bera, P. (2014). New J. Chem. 38, 4774-4782.]; Santra et al., 2016[Santra, A., Mondal, G., Acharjya, M., Bera, P., Panja, A., Mandal, T. K., Mitra, P. & Bera, P. (2016). Polyhedron, 113, 5-15.]; Tarafder et al., 2008[Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416-m417.]). Another feature is a slight difference between the N—Ni—N and S—Ni—S angles in the cis complexes (100.39 and 92.30°, respectively), while the N—Cu—N and S—Cu—S angles are comparable (ca 106°) in the cis-Cu complexes.

Table 4
Coordination bond lengths and angles (Å, °) in the di­thio­carbazate nickel and copper complexes with trans and cis configurations retrieved from the CSD

α is the dihedral angle between the five-membered rings of the chelating ligands.

  trans-NiL2 cis-NiL2 trans-CuL2 cis-CuL2
No. of structures 32 23 19 17
M—N mean 1.920 (13) 1.924 (20) 1.996 (37) 2.013 (22)
M—N range 1.878–1.952 1.851–1.995 1.923–2.043 1.986–2.066
M—S mean 2.174 (8) 2.157 (8) 2.244 (37) 2.240 (17)
M—S range 2.145–2.195 2.141–2.177 2.166–2.281 2.215–2.287
N—M—N mean 179.21 100.39 179.34 105.76
S—M—S mean 178.39 92.30 179.01 106.28
α mean 1.75 21.25 0.80 50.25
α range 0.00–19.41 10.24–30.10 0.00–10.93 32.27–81.61

Overall, it is difficult to assess what drives particular complexes to assume either a cis or a trans configuration upon crystallization and the most plausible reason may arise from crystal-packing requirements. Similar derivatives having thienyl­methyl­ene instead of the phenyl­ethyl­idene fragments crystallize with a trans configuration (Begum et al., 2016[Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56-61.]).

5. Synthesis of the Schiff base ligand

Hydrazine hydrate (2.50 g, 0.05 mol, 99%) was added to an ethano­lic solution (30 ml) of KOH (2.81 g, 0.05 mol) and the mixture was stirred at 273 K for 45 min. To this solution, carbon di­sulfide (3.81 g, 0.05 mol) was added dropwise under constant stirring for one h. Then 1-bromo­hexane (8.25 g, 0.05 mol) was added dropwise at 273 K under vigorous stirring for another hour. Finally, aceto­phenone (6.00 g, 0.05 mol) in ethanol (2.0 ml) was added and the mixture refluxed for 30 minutes. The hot mixture was filtered and then the filtrate cooled to 273 K to give a precipitate of the Schiff base product, which was recrystallized from ethanol at room temperature and dried in a vacuum desiccator over anhydrous CaCl2.

5.1. Synthesis of the Ni complex, 1

A solution of nickel(II) acetate tetra­hydrate (0.06 g, 0.25 mmol, 7 mL methanol) was added to a solution of the ligand, (0.147 g, 0.5 mmol, 10 mL methanol). The resulting mixture was stirred at room temperature for five h. An olive green precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of chloro­form and toluene (5:1). Yield 85%. ESI-MS (FAB) calcd. m/z for C30H42N4S4Ni + H+: 644.1646 amu, found 645.1724 amu. M.p. 374 K.

5.2. Synthesis of the Cu complex, 2

The copper complex was prepared by a similar method to that used for nickel in the presence of Cu(CH3COO)2·H2O. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of chloro­form and aceto­nitrile (4:1). Yield 83%. ESI-MS (FAB) calcd. m/z for C30H42N4S4Cu + H+: 649.1588 amu, found 650.1665 amu. M.p. 418 K.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The hydrogen atoms were included as riding contributions with fixed isotropic displacement parameters in idealized positions [C—H = 0.95–0.99 Å; Uiso(H) = 1.2 or 1.5Ueq(C)]. The structure of 2 was refined as an inversion twin.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Ni(C15H21N2S2)2] [Cu(C15H21N2S2)2]
Mr 645.62 650.45
Crystal system, space group Monoclinic, C2/c Monoclinic, Cc
Temperature (K) 173 173
a, b, c (Å) 23.9721 (5), 8.3967 (2), 16.6739 (3) 22.7441 (7), 8.8636 (3), 17.0117 (6)
β (°) 101.046 (1) 109.158 (1)
V3) 3294.05 (12) 3239.53 (19)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.87 0.96
Crystal size (mm) 0.38 × 0.30 × 0.07 0.23 × 0.10 × 0.03
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.684, 0.941 0.772, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 15965, 3768, 3589 7274, 7274, 6505
Rint 0.025 0.025
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.081, 1.15 0.031, 0.074, 1.04
No. of reflections 3768 7274
No. of parameters 179 357
No. of restraints 0 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.33 0.70, −0.22
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.482 (10)
Computer programs: RAPID-AUTO and CrystalStructure (Rigaku, 2010[Rigaku (2010). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For both structures, data collection: RAPID-AUTO (Rigaku, 2010); cell refinement: RAPID-AUTO (Rigaku, 2010); data reduction: RAPID-AUTO (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015) for (I); SHELXL2014/7 (Sheldrick, 2015) for (II). For both structures, molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) top
Crystal data top
[Ni(C15H21N2S2)2]F(000) = 1368
Mr = 645.62Dx = 1.302 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 23.9721 (5) ÅCell parameters from 4789 reflections
b = 8.3967 (2) Åθ = 3.3–27.5°
c = 16.6739 (3) ŵ = 0.87 mm1
β = 101.046 (1)°T = 173 K
V = 3294.05 (12) Å3Prism, purple
Z = 40.38 × 0.30 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3589 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.025
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 3030
Tmin = 0.684, Tmax = 0.941k = 1010
15965 measured reflectionsl = 2121
3768 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.5849P]
where P = (Fo2 + 2Fc2)/3
3768 reflections(Δ/σ)max = 0.002
179 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00787 (2)0.75000.02259 (8)
S10.47077 (2)1.18475 (4)0.65741 (2)0.03381 (10)
S20.39340 (2)1.11935 (4)0.50136 (2)0.03696 (11)
N10.49459 (4)0.85983 (12)0.66033 (6)0.0216 (2)
N20.45428 (5)0.89369 (13)0.58858 (6)0.0260 (2)
C10.60886 (5)0.81446 (16)0.75593 (8)0.0270 (3)
H10.60200.92070.73710.032*
C20.65594 (6)0.78033 (19)0.81594 (8)0.0344 (3)
H20.68140.86310.83760.041*
C30.66588 (6)0.6262 (2)0.84440 (9)0.0379 (3)
H30.69810.60340.88570.046*
C40.62895 (7)0.50520 (18)0.81276 (10)0.0363 (3)
H40.63540.39980.83310.044*
C50.58238 (6)0.53742 (16)0.75130 (8)0.0283 (3)
H50.55790.45340.72840.034*
C60.57150 (5)0.69294 (15)0.72306 (7)0.0230 (2)
C70.52256 (5)0.72868 (14)0.65686 (7)0.0220 (2)
C80.50807 (6)0.61449 (16)0.58659 (8)0.0304 (3)
H8A0.47000.57090.58510.046*
H8B0.53580.52750.59350.046*
H8C0.50900.67060.53530.046*
C90.44213 (6)1.04365 (16)0.58425 (8)0.0269 (3)
C100.38023 (7)0.9506 (2)0.43216 (8)0.0369 (3)
H10A0.36170.99000.37760.044*
H10B0.41730.90420.42670.044*
C110.34357 (6)0.81914 (19)0.45734 (8)0.0347 (3)
H11A0.30700.86490.46540.042*
H11B0.36300.77330.51010.042*
C120.33199 (7)0.6872 (2)0.39342 (9)0.0406 (3)
H12A0.30930.73150.34250.049*
H12B0.36870.65020.38110.049*
C130.30051 (6)0.5448 (2)0.41990 (9)0.0359 (3)
H13A0.32420.49610.46890.043*
H13B0.26490.58240.43540.043*
C140.28614 (7)0.4183 (2)0.35383 (10)0.0437 (4)
H14A0.32190.37610.34080.052*
H14B0.26450.46860.30370.052*
C150.25158 (8)0.2802 (2)0.37790 (12)0.0532 (4)
H15A0.27210.23200.42860.080*
H15B0.24580.20020.33430.080*
H15C0.21460.31950.38630.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02882 (14)0.01537 (12)0.02345 (13)0.0000.00467 (9)0.000
S10.0469 (2)0.01795 (16)0.03453 (18)0.00174 (13)0.00255 (15)0.00438 (12)
S20.0389 (2)0.03350 (19)0.03533 (19)0.00545 (14)0.00088 (15)0.01283 (14)
N10.0239 (5)0.0193 (5)0.0213 (5)0.0007 (4)0.0033 (4)0.0022 (4)
N20.0268 (5)0.0271 (5)0.0226 (5)0.0012 (4)0.0012 (4)0.0033 (4)
C10.0269 (6)0.0278 (6)0.0272 (6)0.0019 (5)0.0077 (5)0.0024 (5)
C20.0265 (6)0.0456 (8)0.0306 (6)0.0044 (6)0.0043 (5)0.0074 (6)
C30.0269 (7)0.0561 (9)0.0294 (6)0.0087 (6)0.0021 (5)0.0032 (6)
C40.0313 (7)0.0396 (8)0.0386 (8)0.0105 (5)0.0078 (6)0.0116 (6)
C50.0268 (6)0.0244 (6)0.0344 (7)0.0033 (5)0.0077 (5)0.0024 (5)
C60.0222 (6)0.0250 (6)0.0231 (5)0.0017 (4)0.0071 (4)0.0004 (5)
C70.0243 (6)0.0191 (5)0.0231 (5)0.0020 (4)0.0057 (4)0.0005 (4)
C80.0367 (7)0.0246 (6)0.0291 (6)0.0000 (5)0.0039 (5)0.0056 (5)
C90.0282 (6)0.0249 (6)0.0274 (6)0.0010 (5)0.0052 (5)0.0061 (5)
C100.0378 (8)0.0472 (8)0.0250 (6)0.0008 (7)0.0040 (5)0.0060 (6)
C110.0303 (7)0.0472 (8)0.0263 (6)0.0003 (6)0.0048 (5)0.0002 (6)
C120.0391 (8)0.0529 (9)0.0310 (7)0.0024 (7)0.0100 (6)0.0052 (7)
C130.0292 (7)0.0482 (8)0.0296 (7)0.0020 (6)0.0039 (5)0.0044 (6)
C140.0380 (8)0.0549 (10)0.0398 (8)0.0032 (7)0.0116 (6)0.0123 (7)
C150.0461 (10)0.0583 (11)0.0551 (10)0.0091 (8)0.0095 (8)0.0104 (9)
Geometric parameters (Å, º) top
Ni1—N1i1.9295 (10)C7—C81.5023 (17)
Ni1—N11.9295 (10)C8—H8A0.9800
Ni1—S1i2.1600 (4)C8—H8B0.9800
Ni1—S12.1600 (4)C8—H8C0.9800
S1—C91.7443 (14)C10—C111.519 (2)
S2—C91.7493 (13)C10—H10A0.9900
S2—C101.8163 (17)C10—H10B0.9900
N1—C71.2963 (16)C11—C121.526 (2)
N1—N21.4151 (14)C11—H11A0.9900
N2—C91.2913 (17)C11—H11B0.9900
C1—C21.3872 (19)C12—C131.524 (2)
C1—C61.3984 (17)C12—H12A0.9900
C1—H10.9500C12—H12B0.9900
C2—C31.383 (2)C13—C141.521 (2)
C2—H20.9500C13—H13A0.9900
C3—C41.384 (2)C13—H13B0.9900
C3—H30.9500C14—C151.523 (3)
C4—C51.390 (2)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C5—C61.3956 (18)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C71.4794 (17)C15—H15C0.9800
S1—Ni1—S1i93.12 (2)N2—C9—S1124.67 (10)
N1—Ni1—S185.68 (3)N2—C9—S2120.52 (11)
N1—Ni1—S1i163.99 (3)S1—C9—S2114.81 (8)
N1—Ni1—N1i99.79 (6)C11—C10—S2115.51 (10)
N1i—Ni1—S1i85.68 (3)C11—C10—H10A108.4
N1i—Ni1—S1163.99 (3)S2—C10—H10A108.4
C9—S1—Ni193.62 (4)C11—C10—H10B108.4
C9—S2—C10103.11 (7)S2—C10—H10B108.4
C7—N1—N2114.09 (10)H10A—C10—H10B107.5
C7—N1—Ni1128.55 (9)C10—C11—C12111.85 (12)
N2—N1—Ni1117.34 (8)C10—C11—H11A109.2
C9—N2—N1110.70 (10)C12—C11—H11A109.2
C2—C1—C6120.22 (13)C10—C11—H11B109.2
C2—C1—H1119.9C12—C11—H11B109.2
C6—C1—H1119.9H11A—C11—H11B107.9
C3—C2—C1120.23 (13)C13—C12—C11113.67 (12)
C3—C2—H2119.9C13—C12—H12A108.8
C1—C2—H2119.9C11—C12—H12A108.8
C2—C3—C4120.03 (13)C13—C12—H12B108.8
C2—C3—H3120.0C11—C12—H12B108.8
C4—C3—H3120.0H12A—C12—H12B107.7
C3—C4—C5120.20 (13)C14—C13—C12113.20 (13)
C3—C4—H4119.9C14—C13—H13A108.9
C5—C4—H4119.9C12—C13—H13A108.9
C4—C5—C6120.18 (13)C14—C13—H13B108.9
C4—C5—H5119.9C12—C13—H13B108.9
C6—C5—H5119.9H13A—C13—H13B107.8
C5—C6—C1119.09 (12)C13—C14—C15113.56 (14)
C5—C6—C7120.78 (11)C13—C14—H14A108.9
C1—C6—C7120.07 (11)C15—C14—H14A108.9
N1—C7—C6118.82 (11)C13—C14—H14B108.9
N1—C7—C8122.19 (11)C15—C14—H14B108.9
C6—C7—C8118.96 (11)H14A—C14—H14B107.7
C7—C8—H8A109.5C14—C15—H15A109.5
C7—C8—H8B109.5C14—C15—H15B109.5
H8A—C8—H8B109.5H15A—C15—H15B109.5
C7—C8—H8C109.5C14—C15—H15C109.5
H8A—C8—H8C109.5H15A—C15—H15C109.5
H8B—C8—H8C109.5H15B—C15—H15C109.5
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cgii0.992.753.5892 (18)143
Symmetry code: (ii) x+1, y+1, z+1.
Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II) (II) top
Crystal data top
[Cu(C15H21N2S2)2]F(000) = 1372
Mr = 650.45Dx = 1.334 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
a = 22.7441 (7) ÅCell parameters from 4858 reflections
b = 8.8636 (3) Åθ = 3.3–27.4°
c = 17.0117 (6) ŵ = 0.96 mm1
β = 109.158 (1)°T = 173 K
V = 3239.53 (19) Å3Platelet, brown
Z = 40.23 × 0.10 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6505 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.025
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 2929
Tmin = 0.772, Tmax = 0.976k = 1111
7274 measured reflectionsl = 2222
7274 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
7274 reflectionsΔρmax = 0.70 e Å3
357 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.482 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76372 (2)0.47483 (4)0.64581 (2)0.02901 (10)
S10.72319 (5)0.66910 (10)0.56233 (6)0.0427 (2)
S20.65326 (5)0.65000 (14)0.38556 (6)0.0541 (3)
S30.80973 (4)0.60386 (9)0.76328 (5)0.0377 (2)
S40.87369 (5)0.46750 (11)0.92560 (6)0.0422 (2)
N10.76458 (13)0.3684 (3)0.54100 (16)0.0298 (6)
N20.72530 (14)0.4255 (4)0.46522 (18)0.0372 (7)
N30.75419 (12)0.3083 (3)0.72177 (16)0.0283 (6)
N40.79439 (13)0.3123 (3)0.80456 (16)0.0320 (6)
C10.83534 (16)0.1791 (4)0.6128 (2)0.0328 (7)
C20.83552 (19)0.0237 (4)0.6288 (3)0.0449 (9)
H20.80920.04220.58840.054*
C30.8741 (2)0.0326 (5)0.7033 (3)0.0593 (13)
H30.87320.13740.71440.071*
C40.9139 (2)0.0595 (6)0.7618 (3)0.0577 (12)
H40.94010.01850.81290.069*
C50.91577 (18)0.2123 (5)0.7460 (3)0.0498 (9)
H50.94360.27630.78600.060*
C60.87702 (16)0.2717 (4)0.6720 (2)0.0366 (8)
H60.87870.37640.66110.044*
C70.79159 (15)0.2419 (4)0.5351 (2)0.0339 (7)
C80.7800 (2)0.1604 (5)0.4547 (2)0.0489 (10)
H8A0.73540.13950.42990.073*
H8B0.80310.06510.46480.073*
H8C0.79380.22300.41660.073*
C90.70540 (17)0.5602 (5)0.4723 (2)0.0389 (8)
C100.6477 (2)0.5274 (5)0.2988 (3)0.0504 (10)
H10A0.62930.58550.24680.061*
H10B0.69040.49830.30160.061*
C110.6101 (2)0.3855 (6)0.2931 (3)0.0636 (13)
H11A0.57000.41100.30100.076*
H11B0.63290.31580.33830.076*
C120.5971 (2)0.3049 (5)0.2076 (3)0.0570 (11)
H12A0.63460.31240.19060.068*
H12B0.58920.19650.21430.068*
C130.54203 (19)0.3702 (5)0.1394 (2)0.0470 (9)
H13A0.55090.47720.13080.056*
H13B0.50510.36770.15780.056*
C140.5267 (2)0.2878 (5)0.0568 (3)0.0598 (11)
H14A0.52210.17880.06610.072*
H14B0.56180.29970.03500.072*
C150.4673 (2)0.3451 (5)0.0081 (3)0.0626 (12)
H15A0.43260.33660.01370.094*
H15B0.45840.28450.05890.094*
H15C0.47280.45090.02090.094*
C160.67196 (15)0.1824 (4)0.6188 (2)0.0299 (7)
C170.65939 (18)0.0441 (4)0.5760 (2)0.0390 (8)
H170.68010.04510.60160.047*
C180.6168 (2)0.0384 (4)0.4966 (3)0.0469 (10)
H180.60900.05430.46700.056*
C190.58533 (18)0.1674 (5)0.4601 (2)0.0453 (9)
H190.55620.16280.40530.054*
C200.59591 (16)0.3024 (4)0.5024 (2)0.0395 (8)
H200.57360.39020.47730.047*
C210.63895 (15)0.3099 (4)0.5813 (2)0.0316 (7)
H210.64610.40330.61040.038*
C220.71886 (15)0.1898 (4)0.7031 (2)0.0299 (7)
C230.72371 (19)0.0637 (4)0.7638 (2)0.0434 (9)
H23A0.76620.02340.78220.065*
H23B0.69440.01650.73680.065*
H23C0.71370.10190.81200.065*
C240.82018 (17)0.4433 (4)0.8252 (2)0.0338 (8)
C250.87310 (19)0.2823 (4)0.9736 (2)0.0451 (9)
H25A0.83900.27820.99780.054*
H25B0.86590.20220.93090.054*
C260.93557 (19)0.2566 (5)1.0418 (2)0.0471 (9)
H26A0.93640.15231.06300.057*
H26B0.96910.26501.01670.057*
C270.94983 (18)0.3651 (5)1.1151 (2)0.0408 (8)
H27A0.94670.47001.09410.049*
H27B0.91830.35191.14320.049*
C281.01432 (18)0.3406 (5)1.1781 (2)0.0501 (10)
H28A1.02000.23151.19090.060*
H28B1.04580.37091.15240.060*
C291.02664 (18)0.4269 (5)1.2592 (2)0.0477 (9)
H29A1.07190.42481.29010.057*
H29B1.01430.53351.24620.057*
C300.99290 (19)0.3655 (5)1.3133 (2)0.0534 (10)
H30A0.94800.37161.28420.080*
H30B1.00360.42451.36480.080*
H30C1.00480.26001.32660.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03446 (19)0.02179 (16)0.03268 (19)0.00067 (18)0.01359 (15)0.00063 (18)
S10.0537 (6)0.0254 (4)0.0478 (5)0.0061 (4)0.0151 (4)0.0052 (4)
S20.0525 (6)0.0622 (7)0.0448 (5)0.0179 (5)0.0124 (4)0.0183 (5)
S30.0465 (5)0.0260 (4)0.0391 (5)0.0078 (4)0.0120 (4)0.0041 (3)
S40.0466 (5)0.0408 (5)0.0335 (5)0.0107 (4)0.0054 (4)0.0032 (4)
N10.0329 (13)0.0283 (13)0.0301 (13)0.0021 (11)0.0129 (11)0.0022 (11)
N20.0380 (16)0.0435 (17)0.0314 (14)0.0007 (14)0.0129 (12)0.0036 (13)
N30.0305 (14)0.0255 (13)0.0300 (13)0.0037 (11)0.0115 (11)0.0044 (11)
N40.0349 (14)0.0304 (14)0.0312 (14)0.0054 (12)0.0115 (11)0.0032 (11)
C10.0354 (18)0.0269 (16)0.0435 (19)0.0024 (14)0.0227 (15)0.0011 (15)
C20.051 (2)0.0243 (16)0.066 (3)0.0055 (16)0.027 (2)0.0049 (18)
C30.064 (3)0.039 (2)0.085 (3)0.012 (2)0.039 (3)0.020 (2)
C40.052 (2)0.062 (3)0.062 (3)0.025 (2)0.024 (2)0.025 (2)
C50.038 (2)0.060 (2)0.051 (2)0.0027 (19)0.0147 (17)0.001 (2)
C60.0342 (17)0.0313 (16)0.049 (2)0.0042 (15)0.0195 (15)0.0038 (16)
C70.0374 (17)0.0298 (16)0.0390 (18)0.0010 (15)0.0189 (14)0.0029 (14)
C80.059 (2)0.045 (2)0.044 (2)0.0051 (19)0.0178 (19)0.0100 (18)
C90.0375 (19)0.0437 (19)0.0378 (19)0.0053 (17)0.0155 (16)0.0115 (17)
C100.041 (2)0.067 (3)0.043 (2)0.0022 (19)0.0135 (17)0.0181 (19)
C110.053 (2)0.082 (3)0.053 (3)0.010 (2)0.014 (2)0.027 (2)
C120.056 (3)0.049 (2)0.067 (3)0.002 (2)0.022 (2)0.013 (2)
C130.046 (2)0.049 (2)0.053 (2)0.0027 (19)0.0261 (18)0.0005 (19)
C140.069 (3)0.047 (2)0.072 (3)0.002 (2)0.034 (2)0.008 (2)
C150.078 (3)0.055 (3)0.055 (3)0.009 (2)0.024 (2)0.014 (2)
C160.0310 (16)0.0278 (15)0.0340 (16)0.0067 (13)0.0149 (13)0.0032 (13)
C170.045 (2)0.0290 (18)0.044 (2)0.0014 (16)0.0158 (16)0.0034 (16)
C180.052 (2)0.041 (2)0.046 (2)0.0160 (19)0.0134 (18)0.0131 (18)
C190.043 (2)0.053 (2)0.0363 (19)0.0130 (18)0.0079 (16)0.0038 (17)
C200.0335 (17)0.043 (2)0.0417 (19)0.0036 (16)0.0125 (15)0.0017 (17)
C210.0328 (16)0.0302 (16)0.0348 (17)0.0050 (14)0.0150 (13)0.0046 (14)
C220.0339 (17)0.0264 (15)0.0333 (16)0.0009 (13)0.0163 (13)0.0024 (13)
C230.051 (2)0.0363 (18)0.042 (2)0.0107 (18)0.0138 (17)0.0035 (17)
C240.0337 (18)0.0371 (19)0.0301 (17)0.0023 (15)0.0098 (14)0.0044 (15)
C250.055 (2)0.0394 (19)0.0387 (19)0.0092 (18)0.0131 (17)0.0028 (16)
C260.054 (2)0.048 (2)0.0388 (19)0.0107 (19)0.0141 (17)0.0030 (18)
C270.044 (2)0.041 (2)0.0378 (18)0.0061 (17)0.0138 (16)0.0044 (16)
C280.042 (2)0.061 (3)0.044 (2)0.0095 (19)0.0111 (17)0.0032 (19)
C290.039 (2)0.050 (2)0.046 (2)0.0037 (18)0.0040 (16)0.0035 (19)
C300.047 (2)0.065 (3)0.045 (2)0.010 (2)0.0096 (17)0.008 (2)
Geometric parameters (Å, º) top
Cu1—N12.023 (3)C13—H13A0.9900
Cu1—N32.020 (3)C13—H13B0.9900
Cu1—S12.2299 (9)C14—C151.524 (7)
Cu1—S32.2414 (9)C14—H14A0.9900
S1—C91.742 (4)C14—H14B0.9900
S2—C91.752 (4)C15—H15A0.9800
S2—C101.804 (5)C15—H15B0.9800
S3—C241.740 (4)C15—H15C0.9800
S4—C241.755 (4)C16—C211.391 (5)
S4—C251.835 (4)C16—C171.406 (5)
N1—C71.298 (4)C16—C221.481 (4)
N1—N21.400 (4)C17—C181.381 (5)
N2—C91.296 (5)C17—H170.9500
N3—C221.297 (4)C18—C191.383 (6)
N3—N41.406 (4)C18—H180.9500
N4—C241.296 (5)C19—C201.376 (5)
C1—C61.399 (5)C19—H190.9500
C1—C21.404 (5)C20—C211.380 (5)
C1—C71.478 (5)C20—H200.9500
C2—C31.377 (7)C21—H210.9500
C2—H20.9500C22—C231.501 (5)
C3—C41.373 (7)C23—H23A0.9800
C3—H30.9500C23—H23B0.9800
C4—C51.384 (7)C23—H23C0.9800
C4—H40.9500C25—C261.528 (5)
C5—C61.383 (5)C25—H25A0.9900
C5—H50.9500C25—H25B0.9900
C6—H60.9500C26—C271.523 (5)
C7—C81.491 (5)C26—H26A0.9900
C8—H8A0.9800C26—H26B0.9900
C8—H8B0.9800C27—C281.522 (5)
C8—H8C0.9800C27—H27A0.9900
C10—C111.506 (6)C27—H27B0.9900
C10—H10A0.9900C28—C291.521 (6)
C10—H10B0.9900C28—H28A0.9900
C11—C121.559 (7)C28—H28B0.9900
C11—H11A0.9900C29—C301.481 (6)
C11—H11B0.9900C29—H29A0.9900
C12—C131.515 (6)C29—H29B0.9900
C12—H12A0.9900C30—H30A0.9800
C12—H12B0.9900C30—H30B0.9800
C13—C141.519 (6)C30—H30C0.9800
S1—Cu1—S398.53 (4)C13—C14—H14B109.0
N1—Cu1—S185.43 (8)C15—C14—H14B109.0
N3—Cu1—S1149.66 (8)H14A—C14—H14B107.8
N1—Cu1—S3152.51 (8)C14—C15—H15A109.5
N3—Cu1—S385.37 (8)C14—C15—H15B109.5
N1—Cu1—N3104.90 (11)H15A—C15—H15B109.5
C9—S1—Cu193.45 (13)C14—C15—H15C109.5
C9—S2—C10105.16 (19)H15A—C15—H15C109.5
C24—S3—Cu193.07 (12)H15B—C15—H15C109.5
C24—S4—C25102.70 (18)C21—C16—C17118.9 (3)
C7—N1—N2114.6 (3)C21—C16—C22121.1 (3)
C7—N1—Cu1127.8 (2)C17—C16—C22120.0 (3)
N2—N1—Cu1117.1 (2)C18—C17—C16119.8 (3)
C9—N2—N1112.6 (3)C18—C17—H17120.1
C22—N3—N4114.4 (3)C16—C17—H17120.1
C22—N3—Cu1128.5 (2)C17—C18—C19120.2 (3)
N4—N3—Cu1116.84 (18)C17—C18—H18119.9
C24—N4—N3112.5 (3)C19—C18—H18119.9
C6—C1—C2118.6 (3)C20—C19—C18120.5 (3)
C6—C1—C7121.4 (3)C20—C19—H19119.7
C2—C1—C7120.0 (3)C18—C19—H19119.7
C3—C2—C1119.6 (4)C19—C20—C21119.9 (3)
C3—C2—H2120.2C19—C20—H20120.1
C1—C2—H2120.2C21—C20—H20120.1
C4—C3—C2121.4 (4)C20—C21—C16120.7 (3)
C4—C3—H3119.3C20—C21—H21119.7
C2—C3—H3119.3C16—C21—H21119.7
C3—C4—C5119.8 (4)N3—C22—C16117.7 (3)
C3—C4—H4120.1N3—C22—C23122.3 (3)
C5—C4—H4120.1C16—C22—C23120.0 (3)
C6—C5—C4119.9 (4)C22—C23—H23A109.5
C6—C5—H5120.1C22—C23—H23B109.5
C4—C5—H5120.1H23A—C23—H23B109.5
C5—C6—C1120.7 (3)C22—C23—H23C109.5
C5—C6—H6119.6H23A—C23—H23C109.5
C1—C6—H6119.6H23B—C23—H23C109.5
N1—C7—C1116.9 (3)N4—C24—S3127.5 (3)
N1—C7—C8122.9 (3)N4—C24—S4118.7 (3)
C1—C7—C8120.2 (3)S3—C24—S4113.7 (2)
C7—C8—H8A109.5C26—C25—S4109.3 (3)
C7—C8—H8B109.5C26—C25—H25A109.8
H8A—C8—H8B109.5S4—C25—H25A109.8
C7—C8—H8C109.5C26—C25—H25B109.8
H8A—C8—H8C109.5S4—C25—H25B109.8
H8B—C8—H8C109.5H25A—C25—H25B108.3
N2—C9—S1127.2 (3)C27—C26—C25115.0 (3)
N2—C9—S2120.1 (3)C27—C26—H26A108.5
S1—C9—S2112.7 (2)C25—C26—H26A108.5
C11—C10—S2116.2 (3)C27—C26—H26B108.5
C11—C10—H10A108.2C25—C26—H26B108.5
S2—C10—H10A108.2H26A—C26—H26B107.5
C11—C10—H10B108.2C28—C27—C26112.6 (3)
S2—C10—H10B108.2C28—C27—H27A109.1
H10A—C10—H10B107.4C26—C27—H27A109.1
C10—C11—C12111.9 (4)C28—C27—H27B109.1
C10—C11—H11A109.2C26—C27—H27B109.1
C12—C11—H11A109.2H27A—C27—H27B107.8
C10—C11—H11B109.2C29—C28—C27114.5 (3)
C12—C11—H11B109.2C29—C28—H28A108.6
H11A—C11—H11B107.9C27—C28—H28A108.6
C13—C12—C11113.3 (4)C29—C28—H28B108.6
C13—C12—H12A108.9C27—C28—H28B108.6
C11—C12—H12A108.9H28A—C28—H28B107.6
C13—C12—H12B108.9C30—C29—C28113.6 (4)
C11—C12—H12B108.9C30—C29—H29A108.8
H12A—C12—H12B107.7C28—C29—H29A108.8
C12—C13—C14113.9 (4)C30—C29—H29B108.8
C12—C13—H13A108.8C28—C29—H29B108.8
C14—C13—H13A108.8H29A—C29—H29B107.7
C12—C13—H13B108.8C29—C30—H30A109.5
C14—C13—H13B108.8C29—C30—H30B109.5
H13A—C13—H13B107.7H30A—C30—H30B109.5
C13—C14—C15112.9 (4)C29—C30—H30C109.5
C13—C14—H14A109.0H30A—C30—H30C109.5
C15—C14—H14A109.0H30B—C30—H30C109.5
Coordination bond lengths and angles (Å, °) in the dithiocarbazate nickel and copper complexes with trans and cis configurations retrieved from the CSD top
α is the dihedral angle between the five-membered rings of the chelating ligands.
trans-NiL2cis-NiL2trans-CuL2cis-CuL2
No. of structures32231917
M—N mean1.920 (13)1.924 (20)1.996 (37)2.013 (22)
M—N range1.878–1.9521.851–1.9951.923–2.0431.986–2.066
M—S mean2.174 (8)2.157 (8)2.244 (37)2.240 (17)
M—S range2.145–2.1952.141–2.1772.166–2.2812.215–2.287
N—M—N mean179.21100.39179.34105.76
S—M—S mean178.3992.30179.01106.28
α mean1.7521.250.8050.25
α range0.00–19.4110.24–30.100.00–10-9332.27–81.61
 

Acknowledgements

KB and SB are grateful to the Department of Chemistry, Shahjalal University of Science and Technology, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for the single-crystal X-ray analysis.

References

First citationAltıntop, M. D., Temel, H. E., Sever, B., Akalın Çiftçi, G. & Kaplancıklı, Z. A. (2016). Molecules, 21, 1598.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArion, V. B. (2019). Coord. Chem. Rev. 387, 348–397.  CrossRef CAS Google Scholar
First citationBegum, M. S., Howlader, M. B. H., Miyatake, R., Zangrando, E. & Sheikh, M. C. (2015). Acta Cryst. E71, o199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBegum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56–61.  CSD CrossRef CAS Google Scholar
First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLai, C. K., Tsai, C. & Pang, Y. (1998). J. Mater. Chem. 8, 1355–1360.  CrossRef CAS Google Scholar
First citationMondal, G., Bera, P., Santra, A., Jana, S., Mandal, T. N., Mondal, A., Seok, S. I. & Bera, P. (2014). New J. Chem. 38, 4774–4782.  CSD CrossRef CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSantra, A., Mondal, G., Acharjya, M., Bera, P., Panja, A., Mandal, T. K., Mitra, P. & Bera, P. (2016). Polyhedron, 113, 5–15.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTomma, H. J., Ghali, S. T. & Al-Dujaili, H. A. (2018). Mol. Cryst. Liq. Cryst. 664, 85–94.  CrossRef CAS Google Scholar
First citationZangrando, E., Begum, M. S., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M., Hasnat, M. A., Halim, M. A., Ahmed, S., Rahman, M. N. & Ghosh, A. (2017). Arabian J. Chem. 10, 172–184.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds