research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of ethyl 2-[(4-oxo-3-phenyl-3,4-di­hydro­quinazolin-2-yl)sulfan­yl]acetate

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, Ho Chi Minh City, 700000, Vietnam, bPhan Boi Chau High School, 70 Le Hong Phong Street, Binh Thuan Province, 77000, Vietnam, cFaculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, Ho Chi Minh City, 721337, Vietnam, dFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and eDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: congnt@hcmue.edu.vn, luc.vanmeervelt@kuleuven.be

(Received 23 March 2020; accepted 10 April 2020; online 17 April 2020)

The title compound, C18H16N2O3S, was synthesized by reaction of 2-mercapto-3-phenyl­quinazolin-4(3H)-one with ethyl chloro­acetate. The quinazoline ring forms a dihedral angle of 86.83 (5)° with the phenyl ring. The terminal methyl group is disordered by a rotation of about 60° in a 0.531 (13): 0.469 (13) ratio. In the crystal, C—H⋯O hydrogen-bonding inter­actions result in the formation of columns running in the [010] direction. Two parallel columns further inter­act by C—H⋯O hydrogen bonds. The most important contributions to the surface contacts are from H⋯H (48.4%), C⋯H/H⋯C (21.5%) and O⋯H/H⋯O (18.7%) inter­actions, as concluded from a Hirshfeld analysis.

1. Chemical context

Hybrid derivatives, where quinazolin-4-one is incorporated with different heterocycles, possess a variety of biological effects including anti­cancer (Khalil et al., 2003[Khalil, A. A., Hamide, S. G. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2003). Arch. Pharm. Med. Chem. 2, 95-103.]; Gursoy & Karal, 2003[Gursoy, A. & Karal, N. (2003). Eur. J. Med. Chem. 38, 633-643.]; Gawad et al., 2010[Gawad, N. M. A., Georgey, H. H., Youssef, R. M. & El-Sayed, N. A. (2010). Eur. J. Med. Chem. 45, 6058-6067.]; Elfekki et al., 2014[Elfekki, I. M., Hassan, W. F. M., Elshihawy, H. E. A. E., Ali, I. A. I. & Eltamany, E. H. M. (2014). Chem. Pharm. Bull. 62, 675-694.]; Alanazi et al., 2016[Alanazi, A. M., Abdel-Aziz, A. A.-M., Shawer, T. Z., Ayyad, R. R., Al-Obaid, A. M., Al-Agamy, M. H. M., Maarouf, A. R. & El-Azab, A. S. (2016). J. Enzyme Inhib. Med. Chem. 31, 721-735.]; El-Sayed et al., 2017[El-Sayed, S., Metwally, K., El-Shanawani, A. A., Abdel-Aziz, L. M., Pratsinis, H. & Kletsas, D. (2017). Chem. Cent. J. 11, 102-111.]; Nguyen et al., 2019[Nguyen, C. T., Nguyen, Q. T., Dao, P. H., Nguyen, T. L., Nguyen, P. T. & Nguyen, H. H. (2019). J. Chem., Article ID 1492316, 8 pp (https://doi. org/10.1155/2019/1492316)]), anti­convulsant (El-Azab et al., 2013[El-Azab, A. S., Abdel-Hamide, S. G., Sayed-Ahmed, M. M., Hassan, G. S., El-Hadiyah, T. M., Al-Shabanah, O. A., Al-Deeb, O. A. & El-Subbagh, H. I. (2013). Med. Chem. Res. 22, 2815-2827.]) and anti­microbial (Pandey et al., 2009[Pandey, S. K., Singh, A. & Nizamuddin, A. S. (2009). Eur. J. Med. Chem. 44, 1188-1197.]; Al-Khuzaie & Al-Majidi, 2014[Al-Khuzaie, M. G. A. & Al-Majidi, S. M. H. (2014). Iraqi J. Sci. 55, 582-593.]; Al-Majidi & Al-Khuzaie, 2015[Al-Majidi, S. M. H. & Al-Khuzaie, M. G. A. (2015). Asian J. Chem. 27, 756-762.]; Lv et al., 2018[Lv, X., Yang, L., Fan, Z. & Bao, X. (2018). J. Saudi Chem. Soc. 22, 101-109.]; Godhani et al., 2016[Godhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2016). Indian J. Chem. 55B, 734-746.]) activities. Some derivatives of 2-mercapto-3-(4-meth­oxy­phen­yl)quin­azo­lin-4(3H)-one containing the thia­zolidine-4-one moiety have been found to have good anti­tuberculosis activity (Godhani et al., 2016[Godhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2016). Indian J. Chem. 55B, 734-746.]). In addition, many amide and N-substituted hydrazide compounds derived from 2-mercapto-3-phenyl­quinazolin-4-one have been demonstrated to have valuable biological activities such as anti­tumor (Al-Suwaidan et al., 2016[Al-Suwaidan, I. A., Abdel-Aziz, A. A. M., Shawer, T. Z., Ayyad, R. R., Alanazi, A. M., El-Morsy, A. M., Mohamed, M. A., Abdel-Aziz, A. I., El-Sayed, M. A. A. & El-Azab, A. S. (2016). J. Enzyme Inhib. Med. Chem. 31, 78-89.], 2017[Al-Suwaidan, I. A., Abdel-Aziz, A. A. M., Shawer, T. Z., Ayyad, R. R., Alanazi, A. M., El-Morsy, A. M., Mohamed, M. A., Abdel-Aziz, A. I., El-Sayed, M. A. A. & El-Azab, A. S. (2017). J. Enzyme Inhib. Med. Chem. 32, 1229-1239.]; Mohamed et al., 2016[Mohamed, M. A., Ayyad, R. R., Shawer, T. Z., Abdel-Aziz, A. A. M. & El-Azab, A. S. (2016). Eur. J. Med. Chem. 112, 106-113.]), anti­convulsant (El-Helby & Wahab, 2003[El-Helby, A. G. A. & Wahab, M. H. A. (2003). Acta Pharm. 53, 127-138.]) and anti­bacterial (Lfta et al., 2016[Lfta, S. J., Ayram, N. B. & Baqer, S. M. (2016). Al-Nahrain J. Sci. 19, 1-12.]) activity. The capacity to increase the HDL cholesterol activity of some N-substituted compounds containing a quinazolin-4-one moiety has also been investigated (Deshmukh & Dhongade, 2004[Deshmukh, M. B. & Dhongade, S. (2004). E-J. Chem. 1, 17-31.]).

[Scheme 1]

Ethyl 2-[(4-oxo-3-phenyl-3,4-di­hydro­quinazolin-2-yl)sulf­an­yl]­acetate is an inter­mediate compound in the synthesis process of both N-substituted and heterocyclic compounds containing a quinazolin-4-one moiety. The synthesis and properties of ethyl 2-[(4-oxo-3-phenyl-3,4-di­hydro­quinazolin-2-yl)thio]­acetate have therefore attracted much attention.

As shown in Fig. 1[link], 2-mercapto-3-phenyl­quinazolin-4(3H)-one (3) was obtained by the reaction of anthranilic acid (1) and phenyl iso­thio­cyanate (2) (Nguyen et al., 2019[Nguyen, C. T., Nguyen, Q. T., Dao, P. H., Nguyen, T. L., Nguyen, P. T. & Nguyen, H. H. (2019). J. Chem., Article ID 1492316, 8 pp (https://doi. org/10.1155/2019/1492316)]). The IR spectrum of (3) shows the stretching vibrations of N—H (3217 and 3134 cm−1) and C=O (1659 cm−1) bonds, indicating that (3) exists in the thione form (Al-Majidi & Al-Khuzaie, 2015[Al-Majidi, S. M. H. & Al-Khuzaie, M. G. A. (2015). Asian J. Chem. 27, 756-762.]). In the 1H NMR spectrum, besides signals of nine protons in the aromatic area, there is a singlet signal with the intensity of 1H at δ 13.05 ppm attributed to the proton of the thiol group. In an alkaline medium, (3) exists in the thiol­ate form and reacts easily with ethyl chloro­acetate to yield (4). In the IR spectrum of (4), the disappearance of the NH stretching and the presence of a strong C=O absorption at 1732 cm−1 indicate the existence of an ester compound. In the 1H NMR spectrum of (4), the signal at δ 13.05 ppm disappears and three new signals in the aliphatic area [singlet signal at δ 3.99 (2H), quartet signal at δ 4.15 (2H) and triplet signal at δ 1.23 ppm (3H)] are consistent with the presence of the –CH2COOCH2CH3 moiety in (4).

[Figure 1]
Figure 1
Reaction scheme for the synthesis of the title compound (4).

As no X-ray crystallographic information is available for this ester, we have determined the crystal structure by single-crystal X-ray diffraction and a Hirshfeld surface analysis has been performed to gain further insight into the inter­molecular inter­actions.

2. Structural commentary

The title compound crystallizes in the space group P21/n with four mol­ecules in the unit cell. The asymmetric unit of the title compound is illustrated in Fig. 2[link]. The C17 methyl group is disordered over two orientations by a rotation of about 60° about the O15—C16 bond in a 0.531 (13): 0.469 (13) ratio. The quinazoline ring system is almost planar (r.m.s. deviation = 0.0207 Å). The angle between the two fused six-membered rings is 2.05 (9)°. The substituents S11, C18 and O23 deviating by −0.0951 (17), −0.140 (2) and 0.108 (2) Å, respectively, from the best plane through the quinazoline ring system. This plane makes an angle of 86.83 (5)° with the plane of the C18–C23 phenyl ring (r.m.s. deviation = 0.0052 Å). The dihedral angle between the best planes through the acetate atoms (C12, C13, O14 and O15) and the quinazoline ring system is 75.21 (5)°. A short intra­molecular C16—H16B⋯O14 contact is observed [C16—H16B = 0.97 Å, H16B⋯O14 = 2.28 Å, C16⋯O14 = 2.655 (4) Å, C16—H16B⋯O14 = 102°].

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Methyl group C17B [occupancy 0.469 (13)] is shown in green.

Theoretically, compound (3) may exist in the thione form, namely 3-phenyl-2-thioxo-2,3-di­hydro­quinazolin-4(1H)-one. Therefore, it could react with ethyl chloro­acetate to give ethyl 2-(4-oxo-3-phenyl-2-thioxo-3,4-di­hydro­quinazolin-1(2H)-yl)acetate as illustrated in Fig. 3[link]. However, our current structure determination indicates that the final product is ethyl 2-[(4-oxo-3-phenyl-3,4-di­hydro­quinazolin-2-yl)sulfanyl]­acetate (4), which proves that in the alkaline environment, (3) converts into the thiol­ate form and then reacts with ethyl chloro­acetate to yield the title compound (4).

[Figure 3]
Figure 3
Reaction scheme for the thione tautomer of (3) with ethyl chloro­acetate resulting in ethyl 2-(4-oxo-3-phenyl-2-thioxo-3,4-di­hydro­quinazolin-1(2H)-yl)acetate as reaction product.

3. Supra­molecular features and Hirshfeld surface analysis

The crystal packing is mainly characterized by C—H⋯O hydrogen-bonding inter­actions (Table 1[link], Figs. 4[link] and 5[link]). Columns running in the [010] direction are formed by C12—H12B⋯O14ii and C19—H19⋯O23ii inter­actions, which results also in a short S11⋯H23ii contact of 3.020 Å [symmetry code: (ii) x, y + 1, z]. Two parallel columns inter­act via C7—H7⋯O23i hydrogen-bonding inter­actions [symmetry code: (i) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]]. No voids, C—H⋯π inter­actions or ππ stackings are observed in the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O23i 0.93 2.59 3.452 (3) 155
C12—H12B⋯O14ii 0.97 2.42 3.311 (3) 153
C19—H19⋯O23ii 0.93 2.41 3.236 (2) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.
[Figure 4]
Figure 4
View of the crystal packing of the title compound along the [010] direction. Only the major component of the disordered C17 methyl group is shown.
[Figure 5]
Figure 5
Partial crystal packing of the title compound showing two parallel columns running in the [010] direction. Inter­molecular C—H⋯O inter­actions are shown as red dashed lines (see Table 1[link] for details), C—H⋯S inter­actions as yellow dashed lines. Only the major component of the disordered C17 methyl group is shown.

In order to gain further insight into the inter­molecular inter­actions, a Hirshfeld surface and two-dimensional fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface mapped over dnorm (Fig. 6[link]) shows the expected bright-red spots near atoms O14, O23, H7, H12B and H19 involved in the C—H⋯O hydrogen-bonding inter­actions described above. In addition, the faint-red spots near atoms S11 and O14 indicate a short S⋯O contact [3.2128 (16) Å]. Small faint-red spots appear near atoms H8 and H17E are due to a short H8⋯H17E contact (2.352 Å). The S11⋯H23 contact mentioned is only visible as a white spot, while a white region above the C18–C23 phenyl ring is present because of the proximity of atom H20. The distance between H20 and the centroid of this phenyl ring of 3.204 Å, however, is too long for a C—H⋯π inter­action. The fingerprint plots (Fig. 7[link]) illustrate that the largest contributions to the Hirshfeld surface come from H⋯H contacts (48.4%), followed by significant contributions by reciprocal C⋯H/H⋯C (21.5%) and O⋯H/H⋯O (18.7%) contacts. Smaller contributions are from S⋯H/H⋯S (4.0%), N⋯C/C⋯N (1.6%), C⋯C (1.6%), C⋯S/S⋯C (1.4%), N⋯H/H⋯N (1.3%), S⋯O/O⋯S (1.0%), N⋯S/S⋯N (1.0%) and O⋯O contacts (0.1%).

[Figure 6]
Figure 6
The Hirshfeld surface of (4) mapped over dnorm for the title compound in the range −0.2419 to 1.2857 a.u.
[Figure 7]
Figure 7
Full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) S⋯H/H⋯S and (f) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4-oxo-3,4-di­hydro­quinazoline gave 645 hits, of which 141 have a phenyl group at position N3 and 27 have a sulfur atom at position C2. A combination of both substitutions (without a link between the two) results in a set of 10 hits, which was used for further analysis. The dihedral angle between the least-squares planes through the quinazoline and phenyl rings varies between 71.99° (CSD refcode MUDGID; Saeed et al., 2014[Saeed, A., Mahmood, S. & Florke, U. (2014). Turk. J. Chem. 38, 275-287.]) and 86.46° (CSD refcode GUWDIM; Rimaz et al., 2009[Rimaz, M., Khalafy, J., Tavana, K., Slepokura, K., Lis, T., Souldozi, A., Mahyari, A. T., Shajari, N. & Ramazani, A. (2009). Z. Naturforsch. Teil B, 64, 1065-1069.]) with an average of 81.63°. The dihedral angle does not depend on eventual ortho subsitution of the phenyl ring, as illustrated by the structures MUDGID (71.99°) and MUDNAC (85.90°; Saeed et al., 2014[Saeed, A., Mahmood, S. & Florke, U. (2014). Turk. J. Chem. 38, 275-287.]), which both have an o-toluidine substituent at position N3. The almost perpendicular mutual orientation of both rings is also observed for the title compound.

5. Synthesis and crystallization

Anthranilic acid, phenyl iso­thio­cyanate and ethyl chloro­acetate were purchased from Acros and used without purification. Melting points were measured in open capillary tubes on a Gallenkamp melting point apparatus. IR spectra (ν, cm−1) were recorded on FTIR-8400S-SHIMADZU spectrometer using KBr pellets. The NMR spectra were recorded on a Bruker Avance III spectrometer (500 MHz for 1H NMR) using residual solvent DMSO-d6 signals as inter­nal reference. The spin–spin coupling constants (J) are given in Hz. Peak multiplicity is reported as s (singlet), d (doublet), dd (doublet-doublet), t (triplet), q (quartet), m (multiplet). The synthetic protocol for title compound (4) is shown in Fig. 1[link] (Nguyen et al., 2019[Nguyen, C. T., Nguyen, Q. T., Dao, P. H., Nguyen, T. L., Nguyen, P. T. & Nguyen, H. H. (2019). J. Chem., Article ID 1492316, 8 pp (https://doi. org/10.1155/2019/1492316)]).

Synthesis of 2-mercapto-3-phenyl­quinazolin-4-one (3):

Phenyl iso­thio­cyanate (2) (0.1 mol) was added to the solution of anthranilic acid (1) (0.1 mol) and tri­ethyl­amine (3.0 mL) in absolute ethanol (200 mL). The reaction mixture then was refluxed for 4 h. After cooling to room temperature, the reaction mixture was poured into cold water. The resulting solid was filtered and recrystallized from a mixture of DMF and water, then washed with cold ethanol to give the product (3). M.p. 569 K; yield 80%. IR (KBr, cm−1): 3217, 3134 (N—H), 3028 (C—H aromatic), 1659 (C=O), 1618, 1524, 1485 (C=N, C=C aromatic). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 13.05 (s, 1H, H2a), 7.96 (d, 1H, 3J = 8.0 Hz, H5), 7.80 (dd, 1H, 3J1 = 3J2 = 8.0 Hz, H7), 7.50–7.40 (m, 3H, H8,3c,3e), 7.42 (dd, 1H, 3J1 = 3J2 = 7.5 Hz, H6), 7.36 (dd, 1H, 3J1 = 3J2 = 7.5 Hz, H3d), 7.29 (d, 2H, 3J = 7.5 Hz, H3b,3f).

Synthesis of ethyl 2-[(4-oxo-3-phenyl-3,4-di­hydro­quinazolin-2-yl) sulfanyl]­acetate (4):

A mixture of (3) (20 mmol) and anhydrous potassium carbonate (20 mmol) in dry DMF (30 mL) was stirred for 30 min, ethyl chloro­acetate (20 mmol) was then added. After refluxing for 5 h, the reaction mixture was cooled to room temperature and poured into ice-cold water. The white precipitate was filtered off and recrystallized from ethanol to afford crystals of (4). Colourless crystals, m.p. 485 K, yield 65%. IR (KBr, cm−1): 3059 (C—H aromatic), 2976, 2906 (C—H aliphatic), 1732 (C=O ester), 1680 (C=O ketone), 1607, 1598, 1468 (C=N, C=C aromatic). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 8.09 (d, 1H, 3J = 8.0 Hz, H5), 7.84 (d, 1H, 3J = 7.5 Hz, H8), 7.61-7.48 (m, 7H, H6,7,3b,3c,3d,3e,3f), 4.15 (q, 2H, 3J = 7.0 Hz, H2c), 3.99 (s, 2H, H2a), 1.23 (t, 3H, 3J = 7.0 Hz, H2d).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methyl group C17 is disordered over two positions with population parameters 0.531 (13) and 0.469 (13)]. The H atoms were placed in idealized positions and included as riding contributions with Uiso(H) values of 1.2Ueq or 1.5Ueq of the parent atoms, with C—H distances of 0.93 (aromatic), 0.97 (CH2) and 0.96 Å (CH3). In the final cycles of refinement, two outliers were omitted.

Table 2
Experimental details

Crystal data
Chemical formula C18H16N2O3S
Mr 340.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 11.8865 (6), 5.1298 (3), 28.2942 (14)
β (°) 93.667 (4)
V3) 1721.72 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.5 × 0.15 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.])
Tmin, Tmax 0.715, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18522, 3533, 2875
Rint 0.024
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.08
No. of reflections 3533
No. of parameters 229
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.22
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate top
Crystal data top
C18H16N2O3SF(000) = 712
Mr = 340.39Dx = 1.313 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.8865 (6) ÅCell parameters from 7343 reflections
b = 5.1298 (3) Åθ = 2.9–26.9°
c = 28.2942 (14) ŵ = 0.21 mm1
β = 93.667 (4)°T = 293 K
V = 1721.72 (16) Å3Needle, colourless
Z = 40.5 × 0.15 × 0.15 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
3533 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2875 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 66
Tmin = 0.715, Tmax = 1.000l = 3535
18522 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.5306P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3533 reflectionsΔρmax = 0.14 e Å3
229 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.68674 (11)0.7908 (3)0.38689 (5)0.0521 (4)
C20.58088 (13)0.8340 (3)0.37790 (6)0.0453 (4)
N30.51456 (10)0.7160 (3)0.34201 (5)0.0438 (3)
C40.55985 (14)0.5351 (3)0.31132 (6)0.0456 (4)
C50.67846 (13)0.4761 (3)0.32214 (6)0.0450 (4)
C60.73246 (16)0.2867 (4)0.29607 (7)0.0577 (5)
H60.6923250.1971990.2718850.069*
C70.84377 (17)0.2334 (4)0.30609 (8)0.0702 (6)
H70.8797400.1076170.2887990.084*
C80.90293 (17)0.3672 (5)0.34210 (9)0.0794 (7)
H80.9790200.3311420.3486090.095*
C90.85182 (16)0.5518 (5)0.36837 (8)0.0709 (6)
H90.8930800.6396010.3924510.085*
C100.73754 (14)0.6078 (4)0.35893 (6)0.0489 (4)
S110.50921 (4)1.05531 (10)0.41245 (2)0.06194 (18)
C120.62397 (16)1.1534 (4)0.45253 (7)0.0564 (5)
H12A0.6861701.2091330.4343760.068*
H12B0.6004861.3018920.4707010.068*
C130.66465 (17)0.9421 (4)0.48617 (7)0.0563 (5)
O140.61472 (13)0.7513 (3)0.49620 (5)0.0728 (4)
O150.76681 (14)1.0046 (3)0.50483 (6)0.0907 (5)
C160.8156 (3)0.8266 (9)0.54064 (14)0.1386 (14)
H16A0.8562160.9247440.5655760.166*0.531 (13)
H16B0.7560860.7293190.5546140.166*0.531 (13)
H16C0.7804350.8576790.5701440.166*0.469 (13)
H16D0.7981090.6491590.5308750.166*0.469 (13)
C17A0.8872 (9)0.6589 (19)0.5203 (4)0.129 (4)0.531 (13)
H17A0.8445200.5380730.5004690.194*0.531 (13)
H17B0.9302640.5651090.5446490.194*0.531 (13)
H17C0.9373100.7555510.5016070.194*0.531 (13)
C17B0.9293 (6)0.850 (3)0.5485 (4)0.152 (7)0.469 (13)
H17D0.9649240.8200260.5195280.228*0.469 (13)
H17E0.9559080.7243810.5717720.228*0.469 (13)
H17F0.9472211.0224730.5598880.228*0.469 (13)
C180.39382 (13)0.7640 (3)0.33627 (6)0.0454 (4)
C190.35129 (17)0.9418 (4)0.30424 (7)0.0620 (5)
H190.3992661.0400130.2865890.074*
C200.23496 (18)0.9749 (5)0.29822 (9)0.0763 (6)
H200.2053521.0969170.2765280.092*
C210.16481 (17)0.8324 (5)0.32340 (9)0.0773 (6)
H210.0871680.8528700.3186490.093*
C220.20844 (17)0.6590 (6)0.35575 (11)0.0981 (9)
H220.1602100.5637330.3737810.118*
O230.50149 (10)0.4422 (3)0.27855 (5)0.0628 (4)
C230.32353 (16)0.6215 (5)0.36235 (9)0.0804 (7)
H230.3526380.5004890.3843370.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0442 (8)0.0581 (9)0.0531 (9)0.0025 (7)0.0027 (6)0.0094 (7)
C20.0450 (9)0.0470 (9)0.0436 (9)0.0019 (7)0.0000 (7)0.0009 (7)
N30.0390 (7)0.0495 (8)0.0429 (7)0.0008 (6)0.0014 (6)0.0007 (6)
C40.0448 (9)0.0500 (10)0.0426 (9)0.0079 (7)0.0059 (7)0.0003 (7)
C50.0436 (8)0.0490 (9)0.0432 (9)0.0020 (7)0.0087 (7)0.0011 (7)
C60.0592 (11)0.0621 (12)0.0530 (10)0.0015 (9)0.0133 (9)0.0057 (9)
C70.0640 (12)0.0763 (14)0.0722 (14)0.0156 (11)0.0198 (10)0.0067 (11)
C80.0448 (10)0.1025 (18)0.0911 (16)0.0192 (11)0.0054 (10)0.0125 (14)
C90.0454 (10)0.0877 (15)0.0784 (14)0.0082 (10)0.0050 (9)0.0172 (12)
C100.0415 (9)0.0551 (10)0.0503 (10)0.0012 (8)0.0051 (7)0.0006 (8)
S110.0562 (3)0.0648 (3)0.0638 (3)0.0166 (2)0.0040 (2)0.0173 (2)
C120.0662 (11)0.0442 (10)0.0583 (11)0.0019 (9)0.0007 (9)0.0083 (8)
C130.0682 (12)0.0521 (11)0.0486 (10)0.0027 (9)0.0039 (9)0.0064 (9)
O140.0954 (11)0.0510 (8)0.0736 (10)0.0013 (8)0.0189 (8)0.0009 (7)
O150.0849 (11)0.0986 (12)0.0845 (11)0.0084 (9)0.0259 (9)0.0233 (10)
C160.130 (3)0.164 (3)0.115 (3)0.017 (3)0.037 (2)0.058 (3)
C17A0.131 (7)0.112 (6)0.143 (7)0.033 (5)0.006 (5)0.020 (5)
C17B0.093 (5)0.221 (15)0.137 (9)0.000 (6)0.030 (5)0.083 (10)
C180.0390 (8)0.0472 (9)0.0495 (9)0.0018 (7)0.0019 (7)0.0005 (7)
C190.0591 (11)0.0629 (12)0.0625 (12)0.0047 (9)0.0084 (9)0.0135 (10)
C200.0663 (13)0.0759 (14)0.0830 (15)0.0141 (11)0.0229 (12)0.0171 (12)
C210.0445 (10)0.0862 (16)0.0997 (17)0.0125 (11)0.0074 (11)0.0044 (14)
C220.0431 (11)0.113 (2)0.139 (2)0.0074 (12)0.0148 (13)0.0576 (19)
O230.0525 (7)0.0796 (9)0.0558 (8)0.0115 (7)0.0002 (6)0.0174 (7)
C230.0441 (10)0.0888 (16)0.1085 (18)0.0097 (10)0.0063 (11)0.0494 (14)
Geometric parameters (Å, º) top
N1—C21.287 (2)S11—C121.7896 (19)
N1—C101.390 (2)C12—H12A0.9700
C17Aa—H17A0.9600C12—H12B0.9700
C17Aa—H17B0.9600C12—C131.502 (3)
C17Aa—H17C0.9600C13—O141.188 (2)
C17Bb—H17D0.9600C13—O151.332 (2)
C17Bb—H17E0.9600O15—C161.456 (3)
C17Bb—H17F0.9600C16—H16A0.9700
C2—N31.384 (2)C16—H16B0.9700
C2—S111.7541 (17)C16—H16C0.9700
N3—C41.402 (2)C16—H16D0.9700
N3—C181.4550 (19)C16—C17A1.363 (8)
C4—C51.455 (2)C16—C17B1.361 (9)
C4—O231.219 (2)C18—C191.360 (2)
C5—C61.400 (2)C18—C231.362 (3)
C5—C101.393 (2)C19—H190.9300
C6—H60.9300C19—C201.393 (3)
C6—C71.363 (3)C20—H200.9300
C7—H70.9300C20—C211.346 (3)
C7—C81.383 (3)C21—H210.9300
C8—H80.9300C21—C221.356 (3)
C8—C91.370 (3)C22—H220.9300
C9—H90.9300C22—C231.382 (3)
C9—C101.397 (2)C23—H230.9300
C2—N1—C10117.28 (15)H16Aa—C16—H16B108.2
N1—C2—N3124.99 (15)C17Bb—C16—H16C108.8
N1—C2—S11120.31 (13)C17Bb—C16—H16D108.8
H17Aa—C17Aa—H17B109.5H16Cb—C16—H16D107.7
H17Aa—C17Aa—H17C109.5H12A—C12—H12B107.7
N3—C2—S11114.70 (11)C13—C12—S11113.59 (13)
C2—N3—C4121.38 (13)C13—C12—H12A108.8
C2—N3—C18121.27 (13)C13—C12—H12B108.8
C4—N3—C18117.26 (13)O14—C13—C12126.89 (19)
N3—C4—C5114.37 (14)O14—C13—O15124.07 (19)
O23—C4—N3120.51 (15)O15—C13—C12109.01 (17)
H17Ba—C17Aa—H17C109.5C13—O15—C16115.9 (2)
H17Db—C17Bb—H17E109.5O15—C16—H16A109.8
H17Db—C17Bb—H17F109.5O15—C16—H16B109.8
H17Eb—C17Bb—H17F109.5O15—C16—H16C108.8
O23—C4—C5125.12 (16)O15—C16—H16D108.8
C6—C5—C4120.27 (16)C16—C17Aa—H17A109.5
C10—C5—C4119.46 (15)C19—C18—N3120.65 (16)
C10—C5—C6120.27 (16)C16—C17Aa—H17B109.5
C5—C6—H6120.0C19—C18—C23120.39 (17)
C7—C6—C5120.09 (19)C23—C18—N3118.92 (15)
C7—C6—H6120.0C16—C17Aa—H17C109.5
C6—C7—H7120.2C16—C17Bb—H17D109.5
C6—C7—C8119.64 (19)C18—C19—H19120.4
C8—C7—H7120.2C18—C19—C20119.14 (19)
C7—C8—H8119.3C16—C17Bb—H17E109.5
C9—C8—C7121.39 (19)C16—C17Bb—H17F109.5
C9—C8—H8119.3C20—C19—H19120.4
C8—C9—H9120.1C19—C20—H20119.6
C8—C9—C10119.9 (2)C21—C20—C19120.9 (2)
C10—C9—H9120.1C21—C20—H20119.6
N1—C10—C5122.43 (15)C20—C21—H21120.3
N1—C10—C9118.83 (17)C20—C21—C22119.37 (19)
C17Aa—C16—O15109.5 (5)C22—C21—H21120.3
C5—C10—C9118.73 (17)C21—C22—H22119.5
C2—S11—C1299.06 (8)C21—C22—C23121.0 (2)
C17Bb—C16—O15113.9 (5)C23—C22—H22119.5
S11—C12—H12A108.8C18—C23—C22119.24 (19)
C17Aa—C16—H16A109.8C18—C23—H23120.4
S11—C12—H12B108.8C22—C23—H23120.4
C17Aa—C16—H16B109.8
N1—C2—N3—C40.6 (3)C7—C8—C9—C100.0 (4)
N1—C2—N3—C18176.02 (16)C8—C9—C10—N1178.3 (2)
N1—C2—S11—C120.18 (17)C8—C9—C10—C51.0 (3)
C2—N1—C10—C50.7 (3)C10—N1—C2—N31.3 (3)
C2—N1—C10—C9178.59 (18)C10—N1—C2—S11178.30 (13)
C2—N3—C4—C52.9 (2)C10—C5—C6—C71.1 (3)
C2—N3—C4—O23176.56 (16)S11—C2—N3—C4179.77 (12)
C2—N3—C18—C1997.9 (2)S11—C2—N3—C183.6 (2)
C2—N3—C18—C2384.4 (2)S11—C12—C13—O1419.1 (3)
C2—S11—C12—C1368.94 (15)S11—C12—C13—O15162.70 (14)
N3—C2—S11—C12179.82 (13)C12—C13—O15—C16176.3 (3)
N3—C4—C5—C6176.06 (15)O14—C13—O15—C161.9 (4)
N3—C4—C5—C103.3 (2)C13—O15—C16—C17Bb161.5 (9)
N3—C18—C19—C20177.27 (18)C13—O15—C16—C17Aa97.7 (7)
N3—C18—C23—C22177.5 (2)C18—N3—C4—C5173.88 (14)
C4—N3—C18—C1985.4 (2)C18—N3—C4—O236.7 (2)
C4—N3—C18—C2392.4 (2)C18—C19—C20—C210.4 (4)
C4—C5—C6—C7179.52 (18)C19—C18—C23—C220.3 (4)
C4—C5—C10—N11.7 (3)C19—C20—C21—C221.5 (4)
C4—C5—C10—C9179.01 (18)C20—C21—C22—C231.7 (5)
C5—C6—C7—C80.0 (3)C21—C22—C23—C180.8 (5)
C6—C5—C10—N1177.70 (16)O23—C4—C5—C64.5 (3)
C6—C5—C10—C91.6 (3)O23—C4—C5—C10176.07 (17)
C6—C7—C8—C90.6 (4)C23—C18—C19—C200.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O23i0.932.593.452 (3)155
C12—H12B···O14ii0.972.423.311 (3)153
C19—H19···O23ii0.932.413.236 (2)148
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y+1, z.
 

Funding information

We are grateful to The Ministry of Education and Training of Vietnam for supporting this research (grant No. B2019-SPS-02). LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAlanazi, A. M., Abdel-Aziz, A. A.-M., Shawer, T. Z., Ayyad, R. R., Al-Obaid, A. M., Al-Agamy, M. H. M., Maarouf, A. R. & El-Azab, A. S. (2016). J. Enzyme Inhib. Med. Chem. 31, 721–735.  CAS PubMed Google Scholar
First citationAl-Khuzaie, M. G. A. & Al-Majidi, S. M. H. (2014). Iraqi J. Sci. 55, 582–593.  Google Scholar
First citationAl-Majidi, S. M. H. & Al-Khuzaie, M. G. A. (2015). Asian J. Chem. 27, 756–762.  CAS Google Scholar
First citationAl-Suwaidan, I. A., Abdel-Aziz, A. A. M., Shawer, T. Z., Ayyad, R. R., Alanazi, A. M., El-Morsy, A. M., Mohamed, M. A., Abdel-Aziz, A. I., El-Sayed, M. A. A. & El-Azab, A. S. (2016). J. Enzyme Inhib. Med. Chem. 31, 78–89.  CAS Google Scholar
First citationAl-Suwaidan, I. A., Abdel-Aziz, A. A. M., Shawer, T. Z., Ayyad, R. R., Alanazi, A. M., El-Morsy, A. M., Mohamed, M. A., Abdel-Aziz, A. I., El-Sayed, M. A. A. & El-Azab, A. S. (2017). J. Enzyme Inhib. Med. Chem. 32, 1229–1239.  PubMed Google Scholar
First citationDeshmukh, M. B. & Dhongade, S. (2004). E-J. Chem. 1, 17–31.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Azab, A. S., Abdel-Hamide, S. G., Sayed-Ahmed, M. M., Hassan, G. S., El-Hadiyah, T. M., Al-Shabanah, O. A., Al-Deeb, O. A. & El-Subbagh, H. I. (2013). Med. Chem. Res. 22, 2815–2827.  CAS Google Scholar
First citationElfekki, I. M., Hassan, W. F. M., Elshihawy, H. E. A. E., Ali, I. A. I. & Eltamany, E. H. M. (2014). Chem. Pharm. Bull. 62, 675–694.  CrossRef CAS PubMed Google Scholar
First citationEl-Helby, A. G. A. & Wahab, M. H. A. (2003). Acta Pharm. 53, 127–138.  PubMed CAS Google Scholar
First citationEl-Sayed, S., Metwally, K., El-Shanawani, A. A., Abdel-Aziz, L. M., Pratsinis, H. & Kletsas, D. (2017). Chem. Cent. J. 11, 102–111.  PubMed Google Scholar
First citationGawad, N. M. A., Georgey, H. H., Youssef, R. M. & El-Sayed, N. A. (2010). Eur. J. Med. Chem. 45, 6058–6067.  PubMed Google Scholar
First citationGodhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2016). Indian J. Chem. 55B, 734–746.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGursoy, A. & Karal, N. (2003). Eur. J. Med. Chem. 38, 633–643.  PubMed CAS Google Scholar
First citationKhalil, A. A., Hamide, S. G. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2003). Arch. Pharm. Med. Chem. 2, 95–103.  CrossRef Google Scholar
First citationLfta, S. J., Ayram, N. B. & Baqer, S. M. (2016). Al-Nahrain J. Sci. 19, 1–12.  Google Scholar
First citationLv, X., Yang, L., Fan, Z. & Bao, X. (2018). J. Saudi Chem. Soc. 22, 101–109.  CSD CrossRef CAS Google Scholar
First citationMohamed, M. A., Ayyad, R. R., Shawer, T. Z., Abdel-Aziz, A. A. M. & El-Azab, A. S. (2016). Eur. J. Med. Chem. 112, 106–113.  CrossRef CAS PubMed Google Scholar
First citationNguyen, C. T., Nguyen, Q. T., Dao, P. H., Nguyen, T. L., Nguyen, P. T. & Nguyen, H. H. (2019). J. Chem., Article ID 1492316, 8 pp (https://doi. org/10.1155/2019/1492316)  Google Scholar
First citationPandey, S. K., Singh, A. & Nizamuddin, A. S. (2009). Eur. J. Med. Chem. 44, 1188–1197.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationRimaz, M., Khalafy, J., Tavana, K., Slepokura, K., Lis, T., Souldozi, A., Mahyari, A. T., Shajari, N. & Ramazani, A. (2009). Z. Naturforsch. Teil B, 64, 1065–1069.  CrossRef CAS Google Scholar
First citationSaeed, A., Mahmood, S. & Florke, U. (2014). Turk. J. Chem. 38, 275–287.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds