research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of {1,1,1-tris­­[(salicylaldimino)­meth­yl]ethane}­gallium as both a pyridine solvate and an aceto­nitrile 0.75-solvate and {1,1,1-tris­[(salicylaldimino)­meth­yl]ethane}­indium di­chloro­methane solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA, bDepartment of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, USA, and cDepartment of Chemistry, Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
*Correspondence e-mail: venturad@dyc.edu

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 22 February 2020; accepted 30 March 2020; online 3 April 2020)

The sexa­dentate ligand 1,1,1-tris­[(salicyl­idene­amino)­meth­yl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with main-group elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis­{[(2-oxido­benzyl­idene)amino-κ2N,O]meth­yl}prop­yl)imino]­meth­yl}phenololato-κ2N,O)gallium(III) pyridine monosolvate, [Ga(C26H24N3O3)]·C5H5N, the aceto­nitrile 0.75-solvate, [Ga(C26H24N3O3)]·0.75C2H3N, and ({[(2,2-bis­{[(2-oxido­benzyl­idene)amino-κ2N,O]meth­yl}prop­yl)imino]­meth­yl}phenololato-κ2N,O)indium(III) di­chloro­methane monosolvate, [In(C26H24N3O3)]·CH2Cl2. All three metal complexes are pseudo-octa­hedral and each structure contains multiple weak C—H⋯O and/or C—H⋯N inter­molecular hydrogen-bonding inter­actions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and 1H and 13C NMR spectra are also reported.

1. Chemical context

The synthesis of the sexadentate ligand, 1,1,1-tris­[(salicyl­idene­amino)­meth­yl]ethane, H3(sal)3tame (Fig. 1[link]) was first reported nearly fifty years ago (Johnston, 1974[Johnston, T. E. (1974). (E. I. du Pont de Nemours & Co., Wilmington, Delaware, USA). Metal-Deactivated Organic Compositions and Process Therefor. US Patent 3,843,536, Oct. 22, 1974.]), although its structure was published recently (Yamaguchi et al., 2008b[Yamaguchi, T., Sunatsuki, Y., Ishida, H., Kojima, M., Akashi, H., Re, N., Matsumoto, N., Pochaba, A. & Mroziński, J. (2008b). Inorg. Chem. 47, 5736-5745.]). Complexes of the triply deprotonated ligand, (sal)3tame, have been reported with transition metals and lanthanides (Sunatsuki et al., 2008[Sunatsuki, Y., Kobayashi, T., Harada, K., Yamaguchi, T., Nonoyama, M. & Kojima, M. (2008). Bull. Chem. Soc. Jpn, 81, 716-725.]; Yamaguchi et al., 2004[Yamaguchi, T., Sunatsuki, Y., Kojima, M., Akashi, H., Tsuchimoto, M., Re, N., Osa, S. & Matsumoto, N. (2004). Chem. Commun. pp. 1048-1049.], 2008a[Yamaguchi, T., Sunatsuki, Y., Ishida, H., Kojima, M., Akashi, H., Re, N., Matsumoto, N., Pochaba, A. & Mroziński, J. (2008a). Bull. Chem. Soc. Jpn, 81, 598-605.],b[Yamaguchi, T., Sunatsuki, Y., Ishida, H., Kojima, M., Akashi, H., Re, N., Matsumoto, N., Pochaba, A. & Mroziński, J. (2008b). Inorg. Chem. 47, 5736-5745.]; Yokoyama et al., 2010[Yokoyama, T., Okano, M., Yoshise, M., Toda, M., Akashi, H. & Zenki, M. (2010). X-ray Struct. Anal. Online, 26, 37-38.]; Kojima, 2000[Kojima, M. (2000). Mol. Cryst. Liq. Cryst. 342, 39-44.]; Kobayashi et al., 2006[Kobayashi, T., Yamaguchi, T., Ohta, H., Sunatsuki, Y., Kojima, M., Re, N., Nonoyama, M. & Matsumoto, N. (2006). Chem. Commun. pp. 1950-1952.]; Urushigawa et al., 1977[Urushigawa, Y., Yuki, M., Ishikita, H., Inazu, T. & Yoshino, T. (1977). Memoirs of the Faculty Science, Kyishu University, Ser. C. 10, 125-131.]), but have received little attention to date with main-group elements (Katsuta et al., 2012[Katsuta, S., Shimizu, Y., Takahashi, R., Kanaya, N., Imoto, T. & Takeda, Y. (2012). New J. Chem. 36, 1445-1448.]; Kojima et al., 2000[Kojima, M., Azuma, S., Hirotsu, M., Nakajima, K., Nonoyama, M. & Yoshikawa, Y. (2000). Chem. Lett. 29, 482-483.]). The H3(sal)3tame ligand has already been used to synthesize potential technetium radiopharmaceuticals (Marmion et al., 1996[Marmion, M. E., Woulfe, S. R., Newmann, W. L., Pilcher, G. & Nosco, D. L. (1996). Nucl. Med. Biol. 23, 567-584.]). There has also been inter­est in polydentate ligands in indium and gallium complexes to be used in radiopharmaceuticals, positron emission tomography, and fluorescence imaging (Liu et al., 1993a[Liu, S., Wong, E., Karunaratne, V., Rettig, S. J. & Orvig, C. (1993a). Inorg. Chem. 32, 1756-1765.],b[Liu, S., Wong, E., Rettig, S. J. & Orvig, C. (1993b). Inorg. Chem. 32, 4268-4276.]; Green et al., 1984[Green, M. A., Welch, M. J. & Huffman, J. C. (1984). J. Am. Chem. Soc. 106, 3689-3691.]; Liu et al., 1992[Liu, S., Rettig, S. J. & Orvig, C. (1992). Inorg. Chem. 31, 5400-5407.]; Moerlein & Welch, 1981[Moerlein, S. M. & Welch, M. J. (1981). Int. J. Nucl. Med. Biol. 8, 277-287.]; Evans & Jakubovic, 1988[Evans, D. F. & Jakubovic, D. A. (1988). J. Chem. Soc. Dalton Trans. pp. 2927.]; Zhang et al., 1992[Zhang, Z., Lyster, D. M., Webb, G. A. & Orvig, C. (1992). Nucl. Med. Biol. 19, 327-335.]; Gut & Holland, 2019[Gut, M. & Holland, J. P. (2019). Inorg. Chem. 58, 12302-12310.]; Arrowsmith et al., 2011[Arrowsmith, R. L., Waghorn, P. A., Jones, M. W., Bauman, A., Brayshaw, S. K., Hu, Z., Kociok-Köhn, G., Mindt, T. L., Tyrrell, R. M., Botchway, S. W., Dilworth, J. R. & Pascu, S. I. (2011). Dalton Trans. 40, 6238-6252.]). Herein we report of the syntheses of the title compounds in good yields along with their respective crystal structures.

[Scheme 1]
[Scheme 2]
[Figure 1]
Figure 1
Drawing of 1,1,1-tris­((salicyl­idene­amino)­meth­yl)ethane, H3(sal)3tame. Deprotonation at the three hydroxyl sites allows for a trianionic, sexadentate ligand.

2. Structural commentary

The asymmetric unit of 1a (Fig. 2[link]) contains the gallium center, the (sal)3tame ligand, and one co-crystallized pyridine solvent mol­ecule, all in general positions. The geometry is pseudo-octa­hedral, with the smaller angles ranging from 82.13 (6) to 95.97 (6)° (Table 1[link]). The average Ga—N and Ga–O bond lengths are 2.071 (3) and 1.924 (2) Å, respectively, similar to those found in the the structure of the analogous Ga mol­ecule with a (sal)3tame-O-iso-Bu ligand [2.080 (5) and 1.916 (3) Å; Green et al., 1993[Green, M. A., Mathias, C. J., Neumann, W. L., Fanwick, P. E., Janik, M. & Deutsch, E. A. (1993). J. Nucl. Med. 34, 228-233.]]. The asymmetric unit of 1b (Fig. 3[link]) contains two independent [(sal)3tame]gallium complexes and one co-crystallized aceto­nitrile solvent mol­ecule in general positions and one-half of a co-crystallized acetonitile solvent mol­ecule on a crystallographic inversion center. Analogous bond lengths and angles of the two metal complexes of 1b are nearly identical with each other (Table 2[link]) and to those of 1a. The geometry is also pseudo-octa­hedral with the smaller angles ranging from 82.74 (6) to 95.36 (6)° and 82.12 (7) to 97.10 (6)° for the two mol­ecules. The indium analog 2 (Fig. 4[link]) has the metal center, one (sal)3tame ligand, and one co-crystallized di­chloro­methane solvent mol­ecule in general positions in its asymmetric unit. The geometry is more distorted from octa­hedral (Table 3[link]) than found in mol­ecules 1a and 1b with angles ranging from 82.19 (5) to 105.02 (5)°, but consistent with those found in known mol­ecules of indium with (sal)3tame ligands that are substituted at the second ethane carbon atom (Gottschaldt et al., 2009[Gottschaldt, M., Bohlender, C., Pospiech, A., Görls, H., Walther, M., Müller, D., Klette, I., Baum, R. P. & Schubert, U. S. (2009). Eur. J. Inorg. Chem. pp. 4298-4307.]), likely due to the larger effective ionic radius of six-coordinate indium(III) (0.94 Å) versus gallium(III) (0.76 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

Table 1
Selected geometric parameters (Å, °) for 1a[link]

Ga1—O2 1.9177 (13) Ga1—N1 2.0500 (16)
Ga1—O1 1.9201 (13) Ga1—N2 2.0700 (16)
Ga1—O3 1.9331 (13) Ga1—N3 2.0923 (16)
       
O2—Ga1—O1 90.08 (6) O3—Ga1—N2 168.56 (6)
O2—Ga1—O3 90.59 (6) N1—Ga1—N2 86.39 (6)
O1—Ga1—O3 95.47 (6) O2—Ga1—N3 95.21 (6)
O2—Ga1—N1 175.18 (6) O1—Ga1—N3 174.34 (6)
O1—Ga1—N1 88.81 (6) O3—Ga1—N3 86.51 (6)
O3—Ga1—N1 94.19 (6) N1—Ga1—N3 85.75 (6)
O2—Ga1—N2 89.06 (6) N2—Ga1—N3 82.13 (6)
O1—Ga1—N2 95.97 (6)    

Table 2
Selected geometric parameters (Å, °) for 1b[link]

Ga1—O3 1.9175 (13) Ga2—O6 1.9238 (14)
Ga1—O1 1.9215 (13) Ga2—O5 1.9239 (14)
Ga1—O2 1.9302 (13) Ga2—O4 1.9296 (13)
Ga1—N1 2.0668 (16) Ga2—N4 2.0583 (16)
Ga1—N3 2.0719 (16) Ga2—N5 2.0897 (18)
Ga1—N2 2.0976 (16) Ga2—N6 2.0984 (16)
       
O3—Ga1—O1 92.70 (6) O6—Ga2—O5 91.00 (6)
O3—Ga1—O2 94.28 (6) O6—Ga2—O4 93.51 (6)
O1—Ga1—O2 91.39 (6) O5—Ga2—O4 91.22 (6)
O3—Ga1—N1 95.36 (6) O6—Ga2—N4 96.64 (6)
O1—Ga1—N1 89.77 (6) O5—Ga2—N4 172.32 (7)
O2—Ga1—N1 170.22 (6) O4—Ga2—N4 89.15 (6)
O3—Ga1—N3 89.22 (6) O6—Ga2—N5 169.36 (6)
O1—Ga1—N3 174.65 (6) O5—Ga2—N5 87.99 (6)
O2—Ga1—N3 93.44 (6) O4—Ga2—N5 97.10 (6)
N1—Ga1—N3 85.08 (6) N4—Ga2—N5 84.35 (7)
O3—Ga1—N2 174.19 (6) O6—Ga2—N6 87.38 (6)
O1—Ga1—N2 92.79 (6) O5—Ga2—N6 93.86 (6)
O2—Ga1—N2 87.50 (6) O4—Ga2—N6 174.83 (6)
N1—Ga1—N2 82.74 (6) N4—Ga2—N6 85.69 (6)
N3—Ga1—N2 85.15 (6) N5—Ga2—N6 82.12 (7)

Table 3
Selected geometric parameters (Å, °) for 2[link]

In1—O1 2.1027 (11) In1—N1 2.2365 (14)
In1—O2 2.0935 (11) In1—N2 2.2458 (13)
In1—O3 2.1020 (11) In1—N3 2.2453 (13)
       
O1—In1—N1 84.46 (5) O3—In1—O1 89.18 (4)
O1—In1—N2 105.02 (5) O3—In1—N1 102.84 (5)
O1—In1—N3 162.70 (5) O3—In1—N2 165.28 (5)
O2—In1—O1 92.35 (5) O3—In1—N3 84.66 (5)
O2—In1—O3 91.97 (5) N1—In1—N2 82.75 (5)
O2—In1—N1 164.77 (5) N1—In1—N3 81.19 (5)
O2—In1—N2 83.71 (5) N3—In1—N2 82.75 (5)
O2—In1—N3 103.97 (5)    
[Figure 2]
Figure 2
Anisotropic displacement ellipsoid plot of 1a drawn at the 50% probability level with hydrogen atoms omitted.
[Figure 3]
Figure 3
Anisotropic displacement ellipsoid plot of 1b drawn at the 50% probability level with hydrogen atoms omitted. Only one position of the solvent mol­ecule N8–C55–C56 is shown. The other position is generated by the inversion-symmetry operation −x, 1 − y, 1 − z.
[Figure 4]
Figure 4
Anisotropic displacement ellipsoid plot of 2 drawn at the 50% probability level with hydrogen atoms omitted.

3. Supra­molecular features

All three structures have multiple weak C—H⋯O and/or C—H⋯N hydrogen bonds. These are listed in Tables 4[link]–6[link][link], respectively, for the three structures. The ring systems were also examined for possible ππ inter­actions. In 1a, the phenyl ring C21–C26 is adjacent to the pyridine solvent mol­ecule, with atom C24 being at a distance of 3.429 (3) Å from the pyridine ring plane; however, the angle between their planes of 26.09 (9)° directs the π orbitals away from the other ring. There is a partial overlap of parallel rings in 1b. Atoms C24 and C25 overlap their inversion-symmetry equivalents (1 − x, −y, −z) at a plane–plane distance of approximately 3.3 Å (Fig. 5[link]).

Table 4
Hydrogen-bond geometry (Å, °) for 1a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.95 2.96 3.540 (2) 121
C16—H16⋯O1i 0.95 2.83 3.462 (2) 125
C20—H20⋯O1ii 0.95 2.78 3.552 (2) 139
C22—H22⋯O1ii 0.95 2.70 3.391 (2) 130
C20—H20⋯O3ii 0.95 2.36 3.233 (2) 153
C8—H8⋯O2iii 0.95 2.58 3.502 (2) 164
C22—H22⋯O2ii 0.95 2.87 3.812 (2) 172
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z.

Table 5
Hydrogen-bond geometry (Å, °) for 1b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯O1 0.95 2.51 3.333 (2) 146
C34—H34⋯O1 0.95 2.88 3.574 (2) 131
C15—H15⋯O1i 0.95 2.65 3.499 (2) 149
C24—H24⋯O2ii 0.95 2.83 3.610 (2) 140
C54—H54B⋯O2iii 0.98 2.31 3.282 (3) 171
C27—H27A⋯O3 0.99 2.89 3.697 (2) 140
C6—H6⋯O4iv 0.95 2.68 3.557 (2) 153
C8—H8⋯O4iv 0.95 2.84 3.642 (3) 143
C8—H8⋯O5iv 0.95 2.91 3.806 (3) 157
C48—H48⋯O5v 0.95 2.55 3.413 (3) 151
C6—H6⋯O6iv 0.95 2.54 3.325 (2) 140
C22—H22⋯O6ii 0.95 2.56 3.502 (2) 173
C28—H28A⋯N7 0.99 2.91 3.680 (4) 135
C29—H29B⋯N7 0.99 2.72 3.554 (4) 143
C31—H31C⋯N7 0.98 2.85 3.703 (4) 146
C10—H10⋯N8vi 0.95 2.63 3.508 (7) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z; (iii) x, y+1, z; (iv) x-1, y, z; (v) -x+2, -y+1, -z; (vi) -x+1, -y+1, -z+1.

Table 6
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.65 3.3596 (19) 134
C8—H8⋯O2i 0.93 2.63 3.394 (2) 139
C27—H27B⋯O1 0.97 2.26 3.193 (2) 160
C27—H27B⋯O2 0.97 2.82 3.253 (2) 108
C27—H27B⋯O3 0.97 2.73 3.411 (2) 127
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Anisotropic displacement ellipsoid plot of one Ga mol­ecule of 1b and its inversion-symmetry equivalent (1 − x, −y, −z) drawn at the 50% probability level. Only one edge of the featured rings are overlapped, with a plane separation of approximately 3.3 Å.

4. Database survey

There are two instances of the unsubstituted (sal)3tame ligand coordinated to a single metal center in a sexadentate manner found in the Cambridge Structural Database (CSD, Version 5.41, November 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). One is a manganese cation (refcode YUKCOW; Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]) and the other is a neutral iron complex (refcode NOZJER; Deeney et al., 1998[Deeney, F. A., Harding, C. J., Morgan, G. G., McKee, V., Nelson, J., Teat, S. J. & Clegg, W. (1998). J. Chem. Soc. Dalton Trans. pp. 1837-1844.]). If substitution is allowed at the second carbon of the ethane moiety, there are six additional structures, two of which contain the main-group elements Ga and In as mentioned above (see Structural commentary). If substitution is allowed on the phenyl rings, ten additional structures are found, including one with Ga (refcode CIWXIP; Green et al., 1984[Green, M. A., Welch, M. J. & Huffman, J. C. (1984). J. Am. Chem. Soc. 106, 3689-3691.]). With bridging allowed at the oxygen sites, 24 additional multimetallic structures are found, but none are with main-group metals.

5. Synthesis and crystallization

The H3(sal)3tame ligand was synthesized via literature procedures [Liu et al., 1993a[Liu, S., Wong, E., Karunaratne, V., Rettig, S. J. & Orvig, C. (1993a). Inorg. Chem. 32, 1756-1765.]; Kojima et al., 2000[Kojima, M., Azuma, S., Hirotsu, M., Nakajima, K., Nonoyama, M. & Yoshikawa, Y. (2000). Chem. Lett. 29, 482-483.]; Robards & Patsalides, 1999[Robards, K. & Patsalides, E. (1999). J. Chromatogr. A, 844, 181-190.]; Marmion et al., 1996[Marmion, M. E., Woulfe, S. R., Newmann, W. L., Pilcher, G. & Nosco, D. L. (1996). Nucl. Med. Biol. 23, 567-584.] (1H NMR spectra); Ohta et al., 2001[Ohta, H., Harada, K., Irie, K., Kashino, S., Kambe, T., Sakane, G., Shibahara, T., Takamizawa, S., Mori, W., Nonoyama, M., Hirotsu, M. & Kojima, M. (2001). Chem. Lett. 30, 842-843.]].

[(Sal)3tame]gallium(III), 1. 0.050 g of H3(sal)3tame ligand (0.12 mmol) were stirred in 10 mL of methanol under an N2(g) atmosphere. 0.030 g of gallium(III) nitrate hydrate (0.12 mmol) in 10 mL of degassed methanol was added dropwise to the ligand solution along with 0.5 mL of tri­ethyl­amine. This was stirred at room temperature under N2 for 45 minutes. The white solid was filtered and washed with water and methanol. Yield: 0.034 g (61%). M.p. 613–618 K (dec.). IR (neat), ν (cm−1): 2907, 1643, 1621, 1598, 1536, 1468, 1445, 1394, 1336, 1308, 1198, 1146, 1024, 893, 761. 1H NMR (400 MHz, DMSO-d6, δ, ppm): 1.09 (s, 3H), 3.46 (d, 3H, J = 14.0 Hz), 4.06 (d, 3H, J = 13.6 Hz), 6.47 (d, 3H, J = 8.0 Hz), 6.55 (t, 3H, J = 7.6 Hz), 7.15–7.23 (m, 6H), 8.29 (s, 3H). 13C NMR (100 MHz, DMSO-d6, δ, ppm): 23.1, 34.9, 65.8, 114.6, 119.2, 122.3, 134.4, 134.6, 168.7, 169.9. Calculated for C26H24N3O3GaNa: 518.10. Found: 518.10. The solid material was dissolved in pyridine (1a) or aceto­nitrile (1b), and hexa­nes were diffused into the solution to give light-yellow single crystalline blocks.

[(Sal)3tame]indium(III), 2. 0.037 g of H3(sal)3tame ligand (0.09 mmol) were stirred in 10 mL of methanol under an N2(g) atmosphere. 0.019 g of indium chloride (0.09 mmol) in 10 mL of degassed methanol was added dropwise to the ligand solution along with 0.5 mL of tri­ethyl­amine. This was stirred at room temperature under N2 for 45 minutes and allowed to sit overnight. The light-yellow solid was filtered and washed with water and methanol. Yield: 0.0322 g (69%). M.p. 658–663 K. IR (neat), ν (cm−1): 2914, 1617, 1537, 1465, 1441, 1398, 1347, 1306, 1191, 1019, 893, 761. 1H NMR (400 MHz, DMSO-d6, δ, ppm): 1.09 (s, 3H), 3.83 (s, 6H), 6.56 (t, 3H, J = 8.0 Hz), 6.62 (d, 3H, J = 10.5 Hz), 7.19–7.23 (m, 6H), 8.37 (s, 3H). 13C NMR (100 MHz, DMSO-d6, δ, ppm): 24.5, 36.6, 67.4, 114.8, 119.1, 123.1, 134.5, 135.9, 170.6, 173.3. Calculated for C26H24N3O3InNa: 564.07. Found: 564.08. The solid material was dissolved in di­chloro­methane, and hexa­nes were diffused into the solution to give colorless single crystalline blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Aceto­nitrile mol­ecule N8–C55–C56 in 1b was modeled as disordered over a crystallographic inversion center (0.50:0.50). Analogous bond lengths of the disordered solvent mol­ecule were restrained to be similar to those of the ordered solvent mol­ecule (N7–C53–C54). Anisotropic displacement parameters were heavily restrained toward the expected, realistic thermal motion of each atom along the solvent mol­ecule (SHELXL hard restraint `RIGU'; Thorn et al., 2012[Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448-451.]).

Table 7
Experimental details

  1a 1b 2
Crystal data
Chemical formula [Ga(C26H24N3O3)]·C5H5N [Ga(C26H24N3O3)]·0.75C2H3N [In(C26H24N3O3)]·CH2Cl2
Mr 575.30 526.99 626.23
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 173 100
a, b, c (Å) 13.359 (2), 20.413 (3), 9.7470 (15) 10.9053 (6), 14.1157 (8), 16.2324 (9) 10.0704 (2), 16.2514 (4), 16.1749 (4)
α, β, γ (°) 90, 98.326 (3), 90 93.915 (1), 103.120 (1), 97.600 (1) 90, 99.130 (2), 90
V3) 2629.9 (7) 2399.6 (2) 2613.62 (11)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.09 1.18 1.14
Crystal size (mm) 0.24 × 0.12 × 0.10 0.24 × 0.24 × 0.20 0.34 × 0.14 × 0.07
 
Data collection
Diffractometer Bruker SMART APEXII CCD platform Bruker SMART APEXII CCD platform XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.645, 0.748 0.666, 0.748 0.676, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 60216, 12727, 7432 52020, 20841, 12632 31229, 8621, 7401
Rint 0.108 0.056 0.037
(sin θ/λ)max−1) 0.833 0.806 0.768
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.00 0.048, 0.119, 1.00 0.029, 0.064, 1.06
No. of reflections 12727 20841 8621
No. of parameters 353 653 326
No. of restraints 0 12 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.60 0.62, −0.55 0.62, −0.53
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

All H atoms were refined using riding models. In 1a and 1b: aromatic and sp2 C—H = 0.95 Å, methyl­ene C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C), and methyl C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C). In 2: aromatic and sp2 C—H = 0.93 Å, methyl­ene C—H = 0.97 Å, with Uiso(H) = 1.2Ueq(C), and methyl C—H = 0.96 Å, with Uiso(H) = 1.5Ueq(C).

In 1a the maximum residual peak of 0.63 e Å−3 and the deepest hole of −0.59 e Å−3 are found 0.94 and 0.65 Å from atoms O2 and Ga1, respectively.

In 1b the maximum residual peak of 0.62 e Å−3 and the deepest hole of −0.55 e Å−3 are found 0.83 and 0.58 Å from atoms C54 and Ga2, respectively.

In 2 the maximum residual peak of 0.62 e Å−3 and the deepest hole of −0.53 e Å−3 are found 0.73 and 0.56 Å, respectively, from atom Cl2.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011) for (1a), (1b); CrysAlis PRO (Rigaku OD, 2019) for (2). Cell refinement: SAINT (Bruker, 2009) for (1a), (1b); CrysAlis PRO (Rigaku OD, 2019) for (2). Data reduction: SAINT (Bruker, 2009) for (1a), (1b); CrysAlis PRO (Rigaku OD, 2019) for (2). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (1a), (1b); ShelXT (Sheldrick, 2015a) for (2). Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b) for (1a), (1b); SHELXL (Sheldrick, 2015b) for (2). Molecular graphics: SHELXTL (Sheldrick, 2015a) for (1a), (1b); OLEX2 (Dolomanov et al., 2009) for (2). Software used to prepare material for publication: SHELXTL (Sheldrick, 2015a) for (1a), (1b); OLEX2 (Dolomanov et al., 2009) for (2).

({[(2,2-Bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)gallium(III) pyridine monosolvate (1a) top
Crystal data top
[Ga(C26H24N3O3)]·C5H5NF(000) = 1192
Mr = 575.30Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.359 (2) ÅCell parameters from 4038 reflections
b = 20.413 (3) Åθ = 2.5–29.3°
c = 9.7470 (15) ŵ = 1.09 mm1
β = 98.326 (3)°T = 100 K
V = 2629.9 (7) Å3Block, light yellow-red
Z = 40.24 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
12727 independent reflections
Radiation source: fine-focus sealed tube7432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
ω scansθmax = 36.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.645, Tmax = 0.748k = 3433
60216 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
12727 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.77587 (2)0.11922 (2)0.10318 (2)0.01430 (5)
O10.65211 (9)0.16149 (6)0.02567 (13)0.0164 (3)
O20.76170 (10)0.05883 (6)0.04912 (14)0.0176 (3)
O30.86274 (9)0.17434 (6)0.01029 (14)0.0165 (2)
N10.78187 (11)0.17932 (7)0.27268 (16)0.0156 (3)
N20.70942 (11)0.05079 (7)0.21825 (16)0.0164 (3)
N30.90865 (12)0.07722 (7)0.20645 (16)0.0168 (3)
C10.84162 (14)0.15801 (9)0.40364 (19)0.0179 (3)
H1A0.8174730.1809600.4821200.021*
H1B0.9135520.1696870.4036990.021*
C20.72347 (14)0.06027 (10)0.36926 (19)0.0186 (4)
H2A0.7098640.0185850.4150920.022*
H2B0.6747140.0933840.3932620.022*
C30.90770 (14)0.04766 (9)0.3439 (2)0.0193 (4)
H3A0.9762580.0502830.3980170.023*
H3B0.8888970.0008410.3329890.023*
C40.83209 (14)0.08310 (9)0.42247 (19)0.0172 (3)
C50.85760 (15)0.06699 (10)0.5761 (2)0.0220 (4)
H5A0.9254900.0833050.6111040.033*
H5B0.8555770.0194210.5889210.033*
H5C0.8081430.0878870.6270540.033*
C60.98866 (14)0.07028 (9)0.1487 (2)0.0198 (4)
H61.0409970.0430830.1939980.024*
C71.00473 (14)0.10078 (9)0.0203 (2)0.0180 (4)
C81.08968 (14)0.08049 (9)0.0384 (2)0.0209 (4)
H81.1309450.0461280.0042450.025*
C91.11419 (15)0.10946 (10)0.1567 (2)0.0237 (4)
H91.1708910.0947790.1968280.028*
C101.05410 (15)0.16086 (10)0.2165 (2)0.0219 (4)
H101.0708290.1814520.2975690.026*
C110.97104 (14)0.18234 (9)0.1603 (2)0.0192 (4)
H110.9323650.2179330.2025360.023*
C120.94230 (13)0.15249 (9)0.04132 (19)0.0158 (3)
C130.65794 (13)0.00093 (9)0.1673 (2)0.0169 (3)
H130.6289660.0262500.2302090.020*
C140.64051 (13)0.01719 (9)0.02280 (19)0.0166 (3)
C150.57195 (14)0.06808 (9)0.0174 (2)0.0191 (4)
H150.5402610.0895110.0513520.023*
C160.54908 (15)0.08796 (10)0.1531 (2)0.0219 (4)
H160.5026910.1227010.1780950.026*
C170.59570 (16)0.05586 (10)0.2530 (2)0.0228 (4)
H170.5796230.0682090.3475980.027*
C180.66476 (16)0.00649 (10)0.2167 (2)0.0225 (4)
H180.6956690.0142410.2870570.027*
C190.69088 (14)0.01416 (9)0.0783 (2)0.0162 (3)
C200.73714 (13)0.23531 (9)0.27275 (19)0.0165 (3)
H200.7525610.2618000.3531700.020*
C210.66561 (13)0.26093 (9)0.16062 (19)0.0156 (3)
C220.62965 (15)0.32520 (9)0.1758 (2)0.0189 (4)
H220.6594860.3514380.2513180.023*
C230.55173 (15)0.35035 (10)0.0823 (2)0.0215 (4)
H230.5291020.3940320.0916080.026*
C240.50667 (15)0.31089 (10)0.0259 (2)0.0215 (4)
H240.4515580.3275410.0887460.026*
C250.54059 (14)0.24816 (10)0.0433 (2)0.0195 (4)
H250.5083550.2223340.1179860.023*
C260.62226 (13)0.22143 (9)0.04754 (19)0.0154 (3)
N40.27776 (15)0.38182 (10)0.0834 (2)0.0345 (5)
C270.31372 (18)0.33322 (12)0.1663 (3)0.0339 (5)
H270.3568860.3439280.2494570.041*
C280.29220 (19)0.26779 (12)0.1390 (3)0.0364 (5)
H280.3206030.2346710.2012130.044*
C310.21756 (19)0.36497 (12)0.0326 (3)0.0350 (5)
H310.1919920.3988270.0948170.042*
C300.1903 (2)0.30137 (13)0.0673 (3)0.0411 (6)
H300.1457120.2919110.1499970.049*
C290.2291 (2)0.25190 (13)0.0203 (3)0.0439 (7)
H290.2123610.2074780.0011980.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.01435 (9)0.01324 (9)0.01559 (9)0.00030 (8)0.00307 (6)0.00056 (8)
O10.0160 (6)0.0155 (6)0.0177 (6)0.0013 (5)0.0023 (5)0.0019 (5)
O20.0178 (6)0.0160 (6)0.0199 (7)0.0024 (5)0.0053 (5)0.0026 (5)
O30.0151 (6)0.0151 (6)0.0199 (6)0.0016 (5)0.0045 (5)0.0002 (5)
N10.0162 (7)0.0150 (7)0.0158 (7)0.0006 (5)0.0026 (6)0.0005 (6)
N20.0161 (7)0.0159 (7)0.0171 (7)0.0004 (6)0.0019 (6)0.0008 (6)
N30.0177 (7)0.0143 (7)0.0183 (8)0.0005 (6)0.0020 (6)0.0001 (6)
C10.0199 (8)0.0174 (8)0.0152 (8)0.0003 (7)0.0010 (7)0.0008 (7)
C20.0207 (9)0.0196 (8)0.0160 (9)0.0012 (7)0.0039 (7)0.0010 (7)
C30.0197 (9)0.0191 (9)0.0187 (9)0.0026 (7)0.0014 (7)0.0027 (7)
C40.0197 (8)0.0162 (8)0.0153 (8)0.0000 (7)0.0008 (7)0.0013 (7)
C50.0248 (10)0.0222 (9)0.0177 (9)0.0000 (8)0.0010 (7)0.0022 (7)
C60.0167 (8)0.0176 (8)0.0244 (10)0.0034 (7)0.0011 (7)0.0008 (7)
C70.0175 (8)0.0153 (8)0.0220 (9)0.0003 (6)0.0056 (7)0.0028 (7)
C80.0173 (8)0.0176 (8)0.0285 (10)0.0018 (7)0.0061 (7)0.0032 (8)
C90.0191 (9)0.0232 (10)0.0308 (11)0.0009 (7)0.0102 (8)0.0084 (8)
C100.0222 (9)0.0231 (9)0.0219 (10)0.0062 (8)0.0076 (7)0.0050 (8)
C110.0203 (9)0.0165 (8)0.0210 (9)0.0002 (7)0.0041 (7)0.0012 (7)
C120.0153 (8)0.0134 (7)0.0191 (9)0.0016 (6)0.0034 (6)0.0039 (6)
C130.0146 (8)0.0158 (8)0.0200 (9)0.0003 (6)0.0022 (7)0.0026 (7)
C140.0155 (8)0.0147 (8)0.0194 (9)0.0006 (6)0.0017 (7)0.0007 (7)
C150.0170 (8)0.0182 (8)0.0222 (9)0.0007 (7)0.0030 (7)0.0006 (7)
C160.0209 (9)0.0178 (9)0.0264 (10)0.0040 (7)0.0017 (8)0.0046 (8)
C170.0277 (10)0.0210 (9)0.0198 (9)0.0038 (8)0.0041 (8)0.0068 (7)
C180.0289 (10)0.0196 (9)0.0199 (9)0.0033 (8)0.0071 (8)0.0037 (7)
C190.0156 (8)0.0132 (7)0.0201 (9)0.0013 (6)0.0037 (7)0.0009 (6)
C200.0176 (8)0.0159 (8)0.0171 (8)0.0019 (6)0.0058 (7)0.0017 (7)
C210.0165 (8)0.0142 (7)0.0168 (8)0.0013 (6)0.0049 (6)0.0003 (6)
C220.0224 (9)0.0172 (8)0.0178 (9)0.0003 (7)0.0055 (7)0.0001 (7)
C230.0257 (10)0.0169 (8)0.0229 (10)0.0052 (7)0.0072 (8)0.0025 (7)
C240.0223 (9)0.0226 (9)0.0198 (9)0.0063 (7)0.0039 (7)0.0051 (7)
C250.0188 (8)0.0221 (9)0.0176 (9)0.0004 (7)0.0026 (7)0.0011 (7)
C260.0147 (7)0.0168 (8)0.0156 (8)0.0008 (6)0.0052 (6)0.0018 (6)
N40.0336 (10)0.0283 (9)0.0424 (12)0.0019 (9)0.0080 (9)0.0097 (9)
C270.0279 (11)0.0397 (13)0.0345 (13)0.0025 (10)0.0057 (10)0.0124 (11)
C280.0398 (14)0.0325 (12)0.0385 (14)0.0027 (10)0.0113 (11)0.0008 (10)
C310.0390 (13)0.0315 (12)0.0352 (13)0.0004 (10)0.0074 (10)0.0033 (10)
C300.0490 (15)0.0442 (15)0.0303 (13)0.0139 (13)0.0061 (11)0.0122 (11)
C290.0610 (18)0.0294 (13)0.0419 (15)0.0146 (12)0.0100 (13)0.0088 (11)
Geometric parameters (Å, º) top
Ga1—O21.9177 (13)C11—C121.412 (3)
Ga1—O11.9201 (13)C11—H110.9500
Ga1—O31.9331 (13)C13—C141.442 (3)
Ga1—N12.0500 (16)C13—H130.9500
Ga1—N22.0700 (16)C14—C151.403 (3)
Ga1—N32.0923 (16)C14—C191.423 (3)
O1—C261.314 (2)C15—C161.375 (3)
O2—C191.315 (2)C15—H150.9500
O3—C121.318 (2)C16—C171.393 (3)
N1—C201.290 (2)C16—H160.9500
N1—C11.470 (2)C17—C181.378 (3)
N2—C131.287 (2)C17—H170.9500
N2—C21.469 (2)C18—C191.408 (3)
N3—C61.286 (2)C18—H180.9500
N3—C31.471 (2)C20—C211.442 (3)
C1—C41.547 (3)C20—H200.9500
C1—H1A0.9900C21—C221.412 (3)
C1—H1B0.9900C21—C261.420 (3)
C2—C41.541 (3)C22—C231.379 (3)
C2—H2A0.9900C22—H220.9500
C2—H2B0.9900C23—C241.393 (3)
C3—C41.534 (3)C23—H230.9500
C3—H3A0.9900C24—C251.377 (3)
C3—H3B0.9900C24—H240.9500
C4—C51.523 (3)C25—C261.411 (3)
C5—H5A0.9800C25—H250.9500
C5—H5B0.9800N4—C271.325 (3)
C5—H5C0.9800N4—C311.334 (3)
C6—C71.442 (3)C27—C281.384 (3)
C6—H60.9500C27—H270.9500
C7—C81.406 (3)C28—C291.368 (4)
C7—C121.423 (3)C28—H280.9500
C8—C91.376 (3)C31—C301.377 (3)
C8—H80.9500C31—H310.9500
C9—C101.396 (3)C30—C291.374 (4)
C9—H90.9500C30—H300.9500
C10—C111.378 (3)C29—H290.9500
C10—H100.9500
O2—Ga1—O190.08 (6)C10—C9—H9120.6
O2—Ga1—O390.59 (6)C11—C10—C9121.38 (19)
O1—Ga1—O395.47 (6)C11—C10—H10119.3
O2—Ga1—N1175.18 (6)C9—C10—H10119.3
O1—Ga1—N188.81 (6)C10—C11—C12121.29 (18)
O3—Ga1—N194.19 (6)C10—C11—H11119.4
O2—Ga1—N289.06 (6)C12—C11—H11119.4
O1—Ga1—N295.97 (6)O3—C12—C11119.86 (17)
O3—Ga1—N2168.56 (6)O3—C12—C7123.07 (17)
N1—Ga1—N286.39 (6)C11—C12—C7117.03 (17)
O2—Ga1—N395.21 (6)N2—C13—C14125.55 (17)
O1—Ga1—N3174.34 (6)N2—C13—H13117.2
O3—Ga1—N386.51 (6)C14—C13—H13117.2
N1—Ga1—N385.75 (6)C15—C14—C19119.62 (17)
N2—Ga1—N382.13 (6)C15—C14—C13118.01 (17)
C26—O1—Ga1128.24 (12)C19—C14—C13122.37 (16)
C19—O2—Ga1126.91 (12)C16—C15—C14122.20 (18)
C12—O3—Ga1123.63 (11)C16—C15—H15118.9
C20—N1—C1117.07 (16)C14—C15—H15118.9
C20—N1—Ga1124.52 (13)C15—C16—C17118.28 (18)
C1—N1—Ga1118.41 (12)C15—C16—H16120.9
C13—N2—C2118.31 (16)C17—C16—H16120.9
C13—N2—Ga1124.86 (13)C18—C17—C16120.99 (19)
C2—N2—Ga1116.83 (12)C18—C17—H17119.5
C6—N3—C3118.08 (16)C16—C17—H17119.5
C6—N3—Ga1122.36 (13)C17—C18—C19121.96 (19)
C3—N3—Ga1119.18 (12)C17—C18—H18119.0
N1—C1—C4110.59 (15)C19—C18—H18119.0
N1—C1—H1A109.5O2—C19—C18119.07 (17)
C4—C1—H1A109.5O2—C19—C14124.00 (17)
N1—C1—H1B109.5C18—C19—C14116.89 (17)
C4—C1—H1B109.5N1—C20—C21125.27 (17)
H1A—C1—H1B108.1N1—C20—H20117.4
N2—C2—C4110.76 (15)C21—C20—H20117.4
N2—C2—H2A109.5C22—C21—C26120.15 (17)
C4—C2—H2A109.5C22—C21—C20117.11 (17)
N2—C2—H2B109.5C26—C21—C20122.24 (16)
C4—C2—H2B109.5C23—C22—C21120.80 (18)
H2A—C2—H2B108.1C23—C22—H22119.6
N3—C3—C4110.75 (15)C21—C22—H22119.6
N3—C3—H3A109.5C22—C23—C24119.15 (18)
C4—C3—H3A109.5C22—C23—H23120.4
N3—C3—H3B109.5C24—C23—H23120.4
C4—C3—H3B109.5C25—C24—C23121.16 (18)
H3A—C3—H3B108.1C25—C24—H24119.4
C5—C4—C3108.61 (15)C23—C24—H24119.4
C5—C4—C2109.35 (16)C24—C25—C26121.36 (18)
C3—C4—C2110.20 (15)C24—C25—H25119.3
C5—C4—C1108.63 (15)C26—C25—H25119.3
C3—C4—C1109.59 (15)O1—C26—C25118.91 (17)
C2—C4—C1110.41 (15)O1—C26—C21123.76 (16)
C4—C5—H5A109.5C25—C26—C21117.31 (17)
C4—C5—H5B109.5C27—N4—C31116.4 (2)
H5A—C5—H5B109.5N4—C27—C28124.0 (2)
C4—C5—H5C109.5N4—C27—H27118.0
H5A—C5—H5C109.5C28—C27—H27118.0
H5B—C5—H5C109.5C29—C28—C27118.5 (3)
N3—C6—C7124.76 (17)C29—C28—H28120.8
N3—C6—H6117.6C27—C28—H28120.8
C7—C6—H6117.6N4—C31—C30123.8 (3)
C8—C7—C12120.33 (18)N4—C31—H31118.1
C8—C7—C6117.20 (17)C30—C31—H31118.1
C12—C7—C6122.34 (17)C29—C30—C31118.5 (2)
C9—C8—C7121.23 (19)C29—C30—H30120.7
C9—C8—H8119.4C31—C30—H30120.7
C7—C8—H8119.4C28—C29—C30118.8 (2)
C8—C9—C10118.71 (18)C28—C29—H29120.6
C8—C9—H9120.6C30—C29—H29120.6
C20—N1—C1—C4143.42 (16)C19—C14—C15—C161.8 (3)
Ga1—N1—C1—C437.03 (19)C13—C14—C15—C16178.80 (18)
C13—N2—C2—C4139.46 (17)C14—C15—C16—C170.3 (3)
Ga1—N2—C2—C440.07 (19)C15—C16—C17—C181.5 (3)
C6—N3—C3—C4155.81 (17)C16—C17—C18—C190.5 (3)
Ga1—N3—C3—C431.1 (2)Ga1—O2—C19—C18153.46 (14)
N3—C3—C4—C5161.58 (15)Ga1—O2—C19—C1429.1 (2)
N3—C3—C4—C278.64 (19)C17—C18—C19—O2175.99 (18)
N3—C3—C4—C143.0 (2)C17—C18—C19—C141.6 (3)
N2—C2—C4—C5157.84 (15)C15—C14—C19—O2174.77 (17)
N2—C2—C4—C338.5 (2)C13—C14—C19—O24.6 (3)
N2—C2—C4—C182.69 (19)C15—C14—C19—C182.7 (3)
N1—C1—C4—C5157.85 (15)C13—C14—C19—C18177.91 (17)
N1—C1—C4—C383.63 (18)C1—N1—C20—C21171.93 (17)
N1—C1—C4—C237.9 (2)Ga1—N1—C20—C218.6 (3)
C3—N3—C6—C7174.51 (18)N1—C20—C21—C22175.78 (17)
Ga1—N3—C6—C712.6 (3)N1—C20—C21—C2612.3 (3)
N3—C6—C7—C8170.91 (19)C26—C21—C22—C230.5 (3)
N3—C6—C7—C1213.3 (3)C20—C21—C22—C23171.58 (17)
C12—C7—C8—C90.5 (3)C21—C22—C23—C241.7 (3)
C6—C7—C8—C9176.32 (19)C22—C23—C24—C252.0 (3)
C7—C8—C9—C101.4 (3)C23—C24—C25—C260.1 (3)
C8—C9—C10—C110.6 (3)Ga1—O1—C26—C25165.16 (13)
C9—C10—C11—C121.1 (3)Ga1—O1—C26—C2116.8 (2)
Ga1—O3—C12—C11148.16 (14)C24—C25—C26—O1179.51 (17)
Ga1—O3—C12—C734.2 (2)C24—C25—C26—C212.3 (3)
C10—C11—C12—O3179.70 (17)C22—C21—C26—O1179.38 (16)
C10—C11—C12—C72.0 (3)C20—C21—C26—O18.9 (3)
C8—C7—C12—O3178.84 (17)C22—C21—C26—C252.5 (3)
C6—C7—C12—O33.2 (3)C20—C21—C26—C25169.20 (17)
C8—C7—C12—C111.2 (3)C31—N4—C27—C280.1 (4)
C6—C7—C12—C11174.44 (17)N4—C27—C28—C290.8 (4)
C2—N2—C13—C14177.24 (17)C27—N4—C31—C301.4 (4)
Ga1—N2—C13—C142.2 (3)N4—C31—C30—C291.7 (4)
N2—C13—C14—C15171.93 (17)C27—C28—C29—C300.5 (4)
N2—C13—C14—C198.7 (3)C31—C30—C29—C280.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.963.540 (2)121
C16—H16···O1i0.952.833.462 (2)125
C20—H20···O1ii0.952.783.552 (2)139
C22—H22···O1ii0.952.703.391 (2)130
C20—H20···O3ii0.952.363.233 (2)153
C8—H8···O2iii0.952.583.502 (2)164
C22—H22···O2ii0.952.873.812 (2)172
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+2, y, z.
({[(2,2-Bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)gallium(III) acetonitrile 0.75-solvate (1b) top
Crystal data top
[Ga(C26H24N3O3)]·0.75C2H3NZ = 4
Mr = 526.99F(000) = 1090
Triclinic, P1Dx = 1.459 Mg m3
a = 10.9053 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.1157 (8) ÅCell parameters from 3787 reflections
c = 16.2324 (9) Åθ = 2.3–31.6°
α = 93.915 (1)°µ = 1.18 mm1
β = 103.120 (1)°T = 173 K
γ = 97.600 (1)°Block, colorless
V = 2399.6 (2) Å30.24 × 0.24 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
20841 independent reflections
Radiation source: fine-focus sealed tube12632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.666, Tmax = 0.748k = 2222
52020 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
20841 reflections(Δ/σ)max = 0.001
653 parametersΔρmax = 0.62 e Å3
12 restraintsΔρmin = 0.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One cocrystallized acetonitrile solvent molecule is modeled as disordered over a crystallographic inversion center (50:50). Analogous bond lengths of the disordered solvent molecule were restrained to be similar to those of the ordered solvent molecule. Anisotropic displacement parameters were restrained toward the expected thermal motion of each atom along the solvent molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ga10.33445 (2)0.03781 (2)0.24211 (2)0.01860 (5)
O10.44828 (12)0.13910 (10)0.31777 (8)0.0220 (3)
O20.46507 (12)0.04363 (10)0.25420 (8)0.0218 (3)
O30.37262 (13)0.08983 (10)0.14315 (8)0.0241 (3)
N10.18433 (15)0.11232 (12)0.24496 (10)0.0212 (3)
N20.27584 (14)0.02693 (12)0.34216 (10)0.0209 (3)
N30.19786 (15)0.06598 (12)0.16370 (10)0.0217 (3)
C10.05468 (18)0.05719 (15)0.21985 (13)0.0255 (4)
H1A0.0266180.0461210.1570900.031*
H1B0.0054050.0939240.2407570.031*
C20.14316 (17)0.02575 (15)0.34819 (12)0.0246 (4)
H2A0.1359760.0364350.3774380.030*
H2B0.1176280.0776220.3817600.030*
C30.09945 (18)0.11402 (15)0.20160 (12)0.0245 (4)
H3A0.1342050.1638180.2361440.029*
H3B0.0261980.1459810.1559980.029*
C40.05462 (18)0.04032 (15)0.25812 (12)0.0238 (4)
C50.08040 (19)0.08028 (17)0.26360 (15)0.0329 (5)
H5A0.0828780.1465960.2782860.049*
H5B0.1398270.0790090.2085850.049*
H5C0.1049860.0408450.3074520.049*
C60.19550 (19)0.20191 (15)0.27144 (12)0.0237 (4)
H60.1197660.2300780.2635990.028*
C70.31410 (19)0.26305 (14)0.31215 (12)0.0232 (4)
C80.3057 (2)0.35909 (16)0.33702 (15)0.0331 (5)
H80.2265240.3819420.3200750.040*
C90.4093 (2)0.42044 (17)0.38521 (16)0.0387 (5)
H90.4025510.4852960.4008410.046*
C100.5245 (2)0.38591 (16)0.41078 (14)0.0336 (5)
H100.5963920.4275160.4448690.040*
C110.5359 (2)0.29228 (15)0.38738 (12)0.0266 (4)
H110.6154730.2705280.4058270.032*
C120.43154 (18)0.22808 (14)0.33655 (11)0.0219 (4)
C130.34944 (18)0.06416 (14)0.40040 (11)0.0218 (4)
H130.3203580.0771900.4499690.026*
C140.47214 (18)0.08761 (14)0.39642 (12)0.0219 (4)
C150.53730 (19)0.13112 (16)0.46534 (13)0.0277 (4)
H150.5060730.1328920.5153770.033*
C160.6443 (2)0.17097 (18)0.46246 (14)0.0339 (5)
H160.6877200.1991440.5099350.041*
C170.6879 (2)0.16919 (17)0.38805 (14)0.0329 (5)
H170.7602880.1985190.3842910.039*
C180.62782 (18)0.12554 (15)0.31982 (13)0.0260 (4)
H180.6604320.1247750.2703030.031*
C190.51916 (17)0.08206 (13)0.32185 (12)0.0204 (4)
C200.18695 (18)0.08578 (14)0.08384 (12)0.0228 (4)
H200.1222730.1368730.0554350.027*
C210.26351 (18)0.03783 (14)0.03338 (11)0.0220 (4)
C220.2445 (2)0.07568 (15)0.05216 (12)0.0272 (4)
H220.1877170.1338880.0723120.033*
C230.3057 (2)0.03073 (16)0.10647 (13)0.0296 (4)
H230.2931340.0577840.1635140.036*
C240.3869 (2)0.05560 (16)0.07693 (13)0.0290 (4)
H240.4296150.0875880.1144330.035*
C250.4062 (2)0.09529 (15)0.00563 (12)0.0271 (4)
H250.4599230.1552560.0235100.033*
C260.34797 (18)0.04897 (14)0.06428 (11)0.0208 (4)
Ga20.88779 (2)0.37876 (2)0.20703 (2)0.02138 (5)
O40.96341 (13)0.33951 (10)0.31629 (8)0.0252 (3)
O51.03345 (14)0.47499 (10)0.21460 (9)0.0274 (3)
O60.95907 (14)0.28754 (10)0.14551 (8)0.0253 (3)
N40.72159 (16)0.29010 (12)0.20611 (10)0.0234 (3)
N50.79794 (16)0.48650 (12)0.25177 (10)0.0257 (3)
N60.79023 (16)0.41376 (12)0.08876 (10)0.0258 (4)
C270.60495 (19)0.30705 (15)0.14703 (14)0.0301 (5)
H27A0.5297060.2752370.1644500.036*
H27B0.6025410.2786570.0891030.036*
C280.6574 (2)0.46920 (16)0.23465 (14)0.0304 (4)
H28A0.6253240.5313800.2383600.037*
H28B0.6309430.4307830.2781800.037*
C290.6718 (2)0.45548 (16)0.08224 (13)0.0314 (5)
H29A0.6174760.4399760.0238300.038*
H29B0.6925410.5262620.0938440.038*
C300.5993 (2)0.41555 (16)0.14597 (13)0.0298 (4)
C310.4592 (2)0.4286 (2)0.11911 (17)0.0435 (6)
H31A0.4157140.4088860.1631950.065*
H31B0.4185230.3890500.0654370.065*
H31C0.4535120.4963290.1115120.065*
C320.70962 (18)0.22489 (14)0.25667 (12)0.0224 (4)
H320.6275490.1882830.2491860.027*
C330.80972 (18)0.20277 (14)0.32341 (12)0.0213 (4)
C340.7804 (2)0.12148 (15)0.36508 (13)0.0261 (4)
H340.6980880.0841870.3474720.031*
C350.8688 (2)0.09528 (15)0.43072 (13)0.0292 (4)
H350.8489650.0395620.4577140.035*
C360.9883 (2)0.15185 (16)0.45706 (13)0.0296 (4)
H361.0500900.1340680.5023200.036*
C371.0184 (2)0.23275 (15)0.41893 (12)0.0266 (4)
H371.0999800.2705220.4391960.032*
C380.93063 (18)0.26111 (14)0.35021 (12)0.0219 (4)
C390.8561 (2)0.56736 (16)0.29109 (13)0.0302 (4)
H390.8055550.6110470.3086920.036*
C400.9918 (2)0.59753 (15)0.31083 (13)0.0298 (5)
C411.0425 (3)0.67730 (16)0.37092 (15)0.0387 (5)
H410.9866990.7097210.3957520.046*
C421.1712 (3)0.70961 (18)0.39470 (17)0.0466 (7)
H421.2046420.7619360.4373710.056*
C431.2517 (3)0.66453 (17)0.35532 (17)0.0455 (7)
H431.3406370.6872300.3706690.055*
C441.2049 (2)0.58765 (16)0.29454 (15)0.0370 (5)
H441.2615870.5595500.2671230.044*
C451.0733 (2)0.54965 (14)0.27215 (13)0.0273 (4)
C460.8377 (2)0.40946 (15)0.02332 (12)0.0290 (4)
H460.7981460.4389580.0245320.035*
C470.9459 (2)0.36367 (15)0.01634 (13)0.0284 (4)
C480.9925 (2)0.37474 (16)0.05753 (13)0.0341 (5)
H480.9541080.4135890.0984940.041*
C491.0913 (2)0.33087 (17)0.07124 (14)0.0376 (6)
H491.1227120.3402260.1205470.045*
C501.1456 (2)0.27204 (17)0.01189 (14)0.0368 (5)
H501.2140050.2408700.0213360.044*
C511.1014 (2)0.25852 (17)0.06031 (13)0.0318 (5)
H511.1392120.2175120.0994170.038*
C521.00143 (19)0.30438 (14)0.07704 (12)0.0254 (4)
N70.5915 (4)0.6858 (2)0.1290 (2)0.0948 (12)
C530.5005 (4)0.71106 (19)0.13652 (19)0.0567 (8)
C540.3847 (3)0.7435 (2)0.1459 (2)0.0725 (10)
H54A0.3264860.7409880.0898180.109*
H54B0.4039000.8097460.1728980.109*
H54C0.3445800.7019750.1814320.109*
N80.1723 (7)0.4753 (6)0.5239 (4)0.108 (3)0.5
C550.0695 (12)0.4891 (11)0.5101 (7)0.068 (3)0.5
C560.0654 (12)0.4986 (14)0.4977 (10)0.092 (4)0.5
H56A0.0801150.5594780.4745220.137*0.5
H56B0.0891160.4974160.5524250.137*0.5
H56C0.1172650.4451060.4579920.137*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.01759 (10)0.02105 (11)0.01673 (9)0.00134 (8)0.00448 (7)0.00080 (7)
O10.0196 (6)0.0242 (7)0.0205 (6)0.0034 (5)0.0025 (5)0.0019 (5)
O20.0220 (6)0.0265 (7)0.0182 (6)0.0061 (5)0.0062 (5)0.0024 (5)
O30.0292 (7)0.0235 (7)0.0176 (6)0.0033 (6)0.0064 (5)0.0012 (5)
N10.0190 (7)0.0245 (8)0.0196 (7)0.0031 (6)0.0031 (6)0.0032 (6)
N20.0185 (7)0.0250 (8)0.0203 (7)0.0032 (6)0.0071 (6)0.0008 (6)
N30.0214 (8)0.0226 (8)0.0209 (7)0.0011 (6)0.0061 (6)0.0008 (6)
C10.0182 (9)0.0300 (11)0.0267 (10)0.0034 (8)0.0024 (7)0.0024 (8)
C20.0193 (9)0.0319 (11)0.0244 (9)0.0044 (8)0.0086 (7)0.0033 (8)
C30.0221 (9)0.0255 (10)0.0250 (9)0.0026 (7)0.0075 (7)0.0020 (8)
C40.0182 (8)0.0285 (10)0.0250 (9)0.0022 (7)0.0064 (7)0.0022 (8)
C50.0209 (9)0.0396 (13)0.0391 (12)0.0005 (9)0.0112 (9)0.0043 (10)
C60.0243 (9)0.0269 (10)0.0219 (9)0.0073 (8)0.0065 (7)0.0052 (7)
C70.0257 (9)0.0226 (10)0.0227 (9)0.0045 (7)0.0080 (7)0.0028 (7)
C80.0350 (12)0.0249 (11)0.0407 (12)0.0078 (9)0.0098 (10)0.0027 (9)
C90.0454 (14)0.0228 (11)0.0465 (14)0.0013 (10)0.0127 (11)0.0057 (10)
C100.0362 (12)0.0288 (11)0.0326 (11)0.0050 (9)0.0103 (9)0.0065 (9)
C110.0256 (10)0.0309 (11)0.0219 (9)0.0005 (8)0.0070 (8)0.0029 (8)
C120.0245 (9)0.0259 (10)0.0163 (8)0.0017 (7)0.0082 (7)0.0021 (7)
C130.0241 (9)0.0233 (9)0.0177 (8)0.0004 (7)0.0066 (7)0.0009 (7)
C140.0207 (9)0.0237 (10)0.0197 (8)0.0001 (7)0.0040 (7)0.0004 (7)
C150.0259 (10)0.0340 (12)0.0222 (9)0.0043 (9)0.0034 (8)0.0039 (8)
C160.0268 (10)0.0434 (13)0.0320 (11)0.0124 (10)0.0014 (9)0.0119 (10)
C170.0223 (10)0.0388 (13)0.0381 (12)0.0098 (9)0.0048 (9)0.0055 (10)
C180.0196 (9)0.0305 (11)0.0271 (10)0.0020 (8)0.0055 (8)0.0000 (8)
C190.0182 (8)0.0193 (9)0.0220 (9)0.0001 (7)0.0032 (7)0.0003 (7)
C200.0220 (9)0.0193 (9)0.0248 (9)0.0006 (7)0.0040 (7)0.0011 (7)
C210.0226 (9)0.0236 (10)0.0182 (8)0.0030 (7)0.0028 (7)0.0000 (7)
C220.0302 (10)0.0260 (10)0.0216 (9)0.0009 (8)0.0035 (8)0.0050 (8)
C230.0355 (11)0.0342 (12)0.0181 (9)0.0033 (9)0.0068 (8)0.0019 (8)
C240.0360 (11)0.0303 (11)0.0230 (9)0.0027 (9)0.0125 (8)0.0054 (8)
C250.0299 (10)0.0269 (10)0.0227 (9)0.0019 (8)0.0067 (8)0.0011 (8)
C260.0229 (9)0.0222 (9)0.0169 (8)0.0042 (7)0.0040 (7)0.0005 (7)
Ga20.02359 (11)0.02028 (11)0.01746 (10)0.00167 (8)0.00174 (8)0.00285 (8)
O40.0273 (7)0.0247 (7)0.0197 (6)0.0027 (6)0.0010 (5)0.0043 (5)
O50.0307 (7)0.0243 (7)0.0240 (7)0.0059 (6)0.0065 (6)0.0007 (6)
O60.0330 (8)0.0219 (7)0.0208 (7)0.0010 (6)0.0070 (6)0.0041 (5)
N40.0243 (8)0.0221 (8)0.0205 (7)0.0007 (6)0.0005 (6)0.0039 (6)
N50.0269 (8)0.0253 (9)0.0225 (8)0.0005 (7)0.0025 (7)0.0041 (7)
N60.0309 (9)0.0219 (8)0.0203 (8)0.0020 (7)0.0002 (7)0.0043 (6)
C270.0245 (10)0.0294 (11)0.0304 (10)0.0034 (8)0.0029 (8)0.0078 (9)
C280.0272 (10)0.0314 (11)0.0333 (11)0.0072 (9)0.0058 (9)0.0068 (9)
C290.0354 (11)0.0289 (11)0.0256 (10)0.0034 (9)0.0020 (9)0.0082 (8)
C300.0277 (10)0.0297 (11)0.0287 (10)0.0020 (8)0.0002 (8)0.0074 (8)
C310.0287 (12)0.0487 (16)0.0496 (15)0.0070 (11)0.0021 (11)0.0179 (12)
C320.0217 (9)0.0208 (9)0.0243 (9)0.0010 (7)0.0065 (7)0.0007 (7)
C330.0240 (9)0.0217 (9)0.0204 (8)0.0048 (7)0.0085 (7)0.0039 (7)
C340.0299 (10)0.0233 (10)0.0282 (10)0.0048 (8)0.0117 (8)0.0056 (8)
C350.0429 (12)0.0231 (10)0.0262 (10)0.0100 (9)0.0130 (9)0.0087 (8)
C360.0377 (12)0.0313 (11)0.0217 (9)0.0137 (9)0.0053 (8)0.0051 (8)
C370.0276 (10)0.0310 (11)0.0206 (9)0.0058 (8)0.0039 (8)0.0017 (8)
C380.0249 (9)0.0236 (10)0.0188 (8)0.0053 (8)0.0075 (7)0.0028 (7)
C390.0377 (12)0.0262 (11)0.0253 (10)0.0050 (9)0.0049 (9)0.0014 (8)
C400.0383 (12)0.0210 (10)0.0246 (10)0.0021 (9)0.0002 (9)0.0025 (8)
C410.0516 (15)0.0249 (11)0.0337 (12)0.0029 (10)0.0020 (11)0.0040 (9)
C420.0551 (16)0.0261 (12)0.0451 (14)0.0064 (11)0.0065 (12)0.0036 (11)
C430.0412 (14)0.0308 (13)0.0498 (15)0.0109 (11)0.0094 (12)0.0030 (11)
C440.0336 (12)0.0290 (12)0.0423 (13)0.0062 (9)0.0021 (10)0.0055 (10)
C450.0339 (11)0.0192 (9)0.0238 (9)0.0036 (8)0.0002 (8)0.0055 (7)
C460.0391 (12)0.0243 (10)0.0189 (9)0.0030 (9)0.0008 (8)0.0051 (7)
C470.0372 (11)0.0229 (10)0.0217 (9)0.0053 (8)0.0061 (8)0.0016 (7)
C480.0473 (13)0.0290 (11)0.0219 (10)0.0088 (10)0.0083 (9)0.0032 (8)
C490.0495 (14)0.0363 (13)0.0243 (10)0.0124 (11)0.0156 (10)0.0017 (9)
C500.0356 (12)0.0390 (13)0.0325 (12)0.0082 (10)0.0120 (10)0.0054 (10)
C510.0319 (11)0.0347 (12)0.0261 (10)0.0011 (9)0.0058 (9)0.0001 (9)
C520.0298 (10)0.0220 (10)0.0190 (9)0.0084 (8)0.0031 (7)0.0032 (7)
N70.123 (3)0.0493 (18)0.141 (3)0.0348 (19)0.077 (3)0.0124 (19)
C530.090 (2)0.0246 (13)0.0566 (18)0.0070 (15)0.0214 (17)0.0010 (12)
C540.064 (2)0.0500 (19)0.092 (3)0.0034 (16)0.0055 (19)0.0236 (18)
N80.085 (4)0.156 (8)0.067 (4)0.042 (5)0.024 (4)0.003 (4)
C550.101 (5)0.062 (6)0.031 (4)0.032 (5)0.025 (5)0.005 (4)
C560.096 (6)0.083 (9)0.076 (7)0.000 (7)0.021 (6)0.044 (6)
Geometric parameters (Å, º) top
Ga1—O31.9175 (13)Ga2—N62.0984 (16)
Ga1—O11.9215 (13)O4—C381.313 (2)
Ga1—O21.9302 (13)O5—C451.316 (2)
Ga1—N12.0668 (16)O6—C521.321 (2)
Ga1—N32.0719 (16)N4—C321.288 (2)
Ga1—N22.0976 (16)N4—C271.467 (2)
O1—C121.318 (2)N5—C391.280 (3)
O2—C191.312 (2)N5—C281.478 (3)
O3—C261.321 (2)N6—C461.284 (3)
N1—C61.288 (2)N6—C291.474 (3)
N1—C11.475 (2)C27—C301.542 (3)
N2—C131.284 (2)C27—H27A0.9900
N2—C21.474 (2)C27—H27B0.9900
N3—C201.282 (2)C28—C301.535 (3)
N3—C31.468 (2)C28—H28A0.9900
C1—C41.548 (3)C28—H28B0.9900
C1—H1A0.9900C29—C301.531 (3)
C1—H1B0.9900C29—H29A0.9900
C2—C41.542 (3)C29—H29B0.9900
C2—H2A0.9900C30—C311.531 (3)
C2—H2B0.9900C31—H31A0.9800
C3—C41.540 (3)C31—H31B0.9800
C3—H3A0.9900C31—H31C0.9800
C3—H3B0.9900C32—C331.436 (3)
C4—C51.530 (3)C32—H320.9500
C5—H5A0.9800C33—C341.408 (3)
C5—H5B0.9800C33—C381.418 (3)
C5—H5C0.9800C34—C351.372 (3)
C6—C71.447 (3)C34—H340.9500
C6—H60.9500C35—C361.394 (3)
C7—C81.409 (3)C35—H350.9500
C7—C121.416 (3)C36—C371.373 (3)
C8—C91.373 (3)C36—H360.9500
C8—H80.9500C37—C381.413 (3)
C9—C101.393 (3)C37—H370.9500
C9—H90.9500C39—C401.440 (3)
C10—C111.379 (3)C39—H390.9500
C10—H100.9500C40—C411.402 (3)
C11—C121.413 (3)C40—C451.413 (3)
C11—H110.9500C41—C421.374 (4)
C13—C141.434 (3)C41—H410.9500
C13—H130.9500C42—C431.390 (4)
C14—C151.408 (3)C42—H420.9500
C14—C191.421 (3)C43—C441.375 (3)
C15—C161.369 (3)C43—H430.9500
C15—H150.9500C44—C451.419 (3)
C16—C171.396 (3)C44—H440.9500
C16—H160.9500C46—C471.441 (3)
C17—C181.381 (3)C46—H460.9500
C17—H170.9500C47—C481.414 (3)
C18—C191.410 (3)C47—C521.419 (3)
C18—H180.9500C48—C491.364 (3)
C20—C211.436 (3)C48—H480.9500
C20—H200.9500C49—C501.396 (3)
C21—C221.413 (3)C49—H490.9500
C21—C261.417 (3)C50—C511.380 (3)
C22—C231.362 (3)C50—H500.9500
C22—H220.9500C51—C521.407 (3)
C23—C241.393 (3)C51—H510.9500
C23—H230.9500N7—C531.126 (4)
C24—C251.376 (3)C53—C541.435 (4)
C24—H240.9500C54—H54A0.9800
C25—C261.409 (3)C54—H54B0.9800
C25—H250.9500C54—H54C0.9800
Ga2—O61.9238 (14)N8—C551.138 (9)
Ga2—O51.9239 (14)C55—C561.464 (7)
Ga2—O41.9296 (13)C56—H56A0.9800
Ga2—N42.0583 (16)C56—H56B0.9800
Ga2—N52.0897 (18)C56—H56C0.9800
O3—Ga1—O192.70 (6)O5—Ga2—N587.99 (6)
O3—Ga1—O294.28 (6)O4—Ga2—N597.10 (6)
O1—Ga1—O291.39 (6)N4—Ga2—N584.35 (7)
O3—Ga1—N195.36 (6)O6—Ga2—N687.38 (6)
O1—Ga1—N189.77 (6)O5—Ga2—N693.86 (6)
O2—Ga1—N1170.22 (6)O4—Ga2—N6174.83 (6)
O3—Ga1—N389.22 (6)N4—Ga2—N685.69 (6)
O1—Ga1—N3174.65 (6)N5—Ga2—N682.12 (7)
O2—Ga1—N393.44 (6)C38—O4—Ga2128.73 (12)
N1—Ga1—N385.08 (6)C45—O5—Ga2126.13 (13)
O3—Ga1—N2174.19 (6)C52—O6—Ga2124.41 (13)
O1—Ga1—N292.79 (6)C32—N4—C27116.98 (17)
O2—Ga1—N287.50 (6)C32—N4—Ga2125.53 (13)
N1—Ga1—N282.74 (6)C27—N4—Ga2117.33 (12)
N3—Ga1—N285.15 (6)C39—N5—C28117.77 (19)
C12—O1—Ga1129.23 (12)C39—N5—Ga2124.47 (15)
C19—O2—Ga1128.71 (12)C28—N5—Ga2117.73 (13)
C26—O3—Ga1129.25 (12)C46—N6—C29118.37 (18)
C6—N1—C1117.43 (17)C46—N6—Ga2121.62 (15)
C6—N1—Ga1125.09 (13)C29—N6—Ga2119.60 (13)
C1—N1—Ga1117.36 (13)N4—C27—C30110.78 (16)
C13—N2—C2117.85 (16)N4—C27—H27A109.5
C13—N2—Ga1124.19 (13)C30—C27—H27A109.5
C2—N2—Ga1117.90 (12)N4—C27—H27B109.5
C20—N3—C3117.81 (16)C30—C27—H27B109.5
C20—N3—Ga1125.21 (14)H27A—C27—H27B108.1
C3—N3—Ga1116.74 (12)N5—C28—C30110.71 (17)
N1—C1—C4109.32 (15)N5—C28—H28A109.5
N1—C1—H1A109.8C30—C28—H28A109.5
C4—C1—H1A109.8N5—C28—H28B109.5
N1—C1—H1B109.8C30—C28—H28B109.5
C4—C1—H1B109.8H28A—C28—H28B108.1
H1A—C1—H1B108.3N6—C29—C30110.29 (17)
N2—C2—C4109.46 (15)N6—C29—H29A109.6
N2—C2—H2A109.8C30—C29—H29A109.6
C4—C2—H2A109.8N6—C29—H29B109.6
N2—C2—H2B109.8C30—C29—H29B109.6
C4—C2—H2B109.8H29A—C29—H29B108.1
H2A—C2—H2B108.2C31—C30—C29110.19 (18)
N3—C3—C4110.14 (16)C31—C30—C28108.7 (2)
N3—C3—H3A109.6C29—C30—C28109.88 (17)
C4—C3—H3A109.6C31—C30—C27107.98 (18)
N3—C3—H3B109.6C29—C30—C27109.15 (19)
C4—C3—H3B109.6C28—C30—C27110.96 (17)
H3A—C3—H3B108.1C30—C31—H31A109.5
C5—C4—C3107.96 (17)C30—C31—H31B109.5
C5—C4—C2109.08 (16)H31A—C31—H31B109.5
C3—C4—C2109.90 (16)C30—C31—H31C109.5
C5—C4—C1109.85 (17)H31A—C31—H31C109.5
C3—C4—C1110.62 (16)H31B—C31—H31C109.5
C2—C4—C1109.40 (16)N4—C32—C33125.58 (18)
C4—C5—H5A109.5N4—C32—H32117.2
C4—C5—H5B109.5C33—C32—H32117.2
H5A—C5—H5B109.5C34—C33—C38120.46 (18)
C4—C5—H5C109.5C34—C33—C32116.57 (18)
H5A—C5—H5C109.5C38—C33—C32122.89 (17)
H5B—C5—H5C109.5C35—C34—C33121.1 (2)
N1—C6—C7125.26 (18)C35—C34—H34119.5
N1—C6—H6117.4C33—C34—H34119.5
C7—C6—H6117.4C34—C35—C36118.82 (19)
C8—C7—C12119.92 (19)C34—C35—H35120.6
C8—C7—C6116.42 (18)C36—C35—H35120.6
C12—C7—C6123.18 (18)C37—C36—C35121.33 (19)
C9—C8—C7121.5 (2)C37—C36—H36119.3
C9—C8—H8119.3C35—C36—H36119.3
C7—C8—H8119.3C36—C37—C38121.5 (2)
C8—C9—C10118.9 (2)C36—C37—H37119.3
C8—C9—H9120.6C38—C37—H37119.3
C10—C9—H9120.6O4—C38—C37119.25 (18)
C11—C10—C9121.1 (2)O4—C38—C33123.93 (17)
C11—C10—H10119.5C37—C38—C33116.80 (18)
C9—C10—H10119.5N5—C39—C40125.3 (2)
C10—C11—C12121.3 (2)N5—C39—H39117.3
C10—C11—H11119.3C40—C39—H39117.3
C12—C11—H11119.3C41—C40—C45119.9 (2)
O1—C12—C11118.23 (18)C41—C40—C39117.7 (2)
O1—C12—C7124.37 (17)C45—C40—C39122.34 (19)
C11—C12—C7117.34 (18)C42—C41—C40121.5 (2)
N2—C13—C14125.08 (17)C42—C41—H41119.3
N2—C13—H13117.5C40—C41—H41119.3
C14—C13—H13117.5C41—C42—C43118.9 (2)
C15—C14—C19119.84 (18)C41—C42—H42120.5
C15—C14—C13116.94 (17)C43—C42—H42120.5
C19—C14—C13122.51 (17)C44—C43—C42121.2 (2)
C16—C15—C14122.03 (19)C44—C43—H43119.4
C16—C15—H15119.0C42—C43—H43119.4
C14—C15—H15119.0C43—C44—C45121.0 (2)
C15—C16—C17118.4 (2)C43—C44—H44119.5
C15—C16—H16120.8C45—C44—H44119.5
C17—C16—H16120.8O5—C45—C40123.83 (19)
C18—C17—C16121.2 (2)O5—C45—C44118.7 (2)
C18—C17—H17119.4C40—C45—C44117.4 (2)
C16—C17—H17119.4N6—C46—C47125.52 (19)
C17—C18—C19121.59 (19)N6—C46—H46117.2
C17—C18—H18119.2C47—C46—H46117.2
C19—C18—H18119.2C48—C47—C52119.5 (2)
O2—C19—C18118.49 (17)C48—C47—C46117.3 (2)
O2—C19—C14124.48 (17)C52—C47—C46123.03 (19)
C18—C19—C14116.94 (18)C49—C48—C47121.5 (2)
N3—C20—C21126.00 (18)C49—C48—H48119.3
N3—C20—H20117.0C47—C48—H48119.3
C21—C20—H20117.0C48—C49—C50119.2 (2)
C22—C21—C26119.79 (18)C48—C49—H49120.4
C22—C21—C20117.58 (17)C50—C49—H49120.4
C26—C21—C20122.42 (17)C51—C50—C49120.9 (2)
C23—C22—C21121.60 (19)C51—C50—H50119.5
C23—C22—H22119.2C49—C50—H50119.5
C21—C22—H22119.2C50—C51—C52121.2 (2)
C22—C23—C24118.88 (18)C50—C51—H51119.4
C22—C23—H23120.6C52—C51—H51119.4
C24—C23—H23120.6O6—C52—C51119.52 (19)
C25—C24—C23121.10 (19)O6—C52—C47122.7 (2)
C25—C24—H24119.5C51—C52—C47117.70 (19)
C23—C24—H24119.5N7—C53—C54179.8 (4)
C24—C25—C26121.47 (19)C53—C54—H54A109.5
C24—C25—H25119.3C53—C54—H54B109.5
C26—C25—H25119.3H54A—C54—H54B109.5
O3—C26—C25118.51 (17)C53—C54—H54C109.5
O3—C26—C21124.38 (17)H54A—C54—H54C109.5
C25—C26—C21117.09 (17)H54B—C54—H54C109.5
O6—Ga2—O591.00 (6)N8—C55—C56173.9 (10)
O6—Ga2—O493.51 (6)C55—C56—H56A109.5
O5—Ga2—O491.22 (6)C55—C56—H56B109.5
O6—Ga2—N496.64 (6)H56A—C56—H56B109.5
O5—Ga2—N4172.32 (7)C55—C56—H56C109.5
O4—Ga2—N489.15 (6)H56A—C56—H56C109.5
O6—Ga2—N5169.36 (6)H56B—C56—H56C109.5
C6—N1—C1—C4134.82 (18)C32—N4—C27—C30134.21 (19)
Ga1—N1—C1—C441.39 (19)Ga2—N4—C27—C3041.6 (2)
C13—N2—C2—C4144.97 (18)C39—N5—C28—C30140.67 (19)
Ga1—N2—C2—C437.7 (2)Ga2—N5—C28—C3037.6 (2)
C20—N3—C3—C4132.89 (18)C46—N6—C29—C30154.60 (18)
Ga1—N3—C3—C441.7 (2)Ga2—N6—C29—C3032.7 (2)
N3—C3—C4—C5155.31 (17)N6—C29—C30—C31159.72 (19)
N3—C3—C4—C285.82 (19)N6—C29—C30—C2880.6 (2)
N3—C3—C4—C135.1 (2)N6—C29—C30—C2741.3 (2)
N2—C2—C4—C5156.62 (17)N5—C28—C30—C31161.28 (18)
N2—C2—C4—C338.4 (2)N5—C28—C30—C2940.7 (2)
N2—C2—C4—C183.20 (19)N5—C28—C30—C2780.2 (2)
N1—C1—C4—C5157.89 (17)N4—C27—C30—C31154.34 (19)
N1—C1—C4—C383.03 (19)N4—C27—C30—C2985.9 (2)
N1—C1—C4—C238.2 (2)N4—C27—C30—C2835.4 (2)
C1—N1—C6—C7168.79 (18)C27—N4—C32—C33174.73 (19)
Ga1—N1—C6—C77.1 (3)Ga2—N4—C32—C330.6 (3)
N1—C6—C7—C8179.54 (19)N4—C32—C33—C34172.83 (19)
N1—C6—C7—C127.5 (3)N4—C32—C33—C3810.3 (3)
C12—C7—C8—C90.3 (3)C38—C33—C34—C351.9 (3)
C6—C7—C8—C9172.0 (2)C32—C33—C34—C35178.84 (19)
C7—C8—C9—C100.9 (4)C33—C34—C35—C361.4 (3)
C8—C9—C10—C111.0 (4)C34—C35—C36—C370.2 (3)
C9—C10—C11—C120.2 (3)C35—C36—C37—C381.3 (3)
Ga1—O1—C12—C11173.14 (13)Ga2—O4—C38—C37162.04 (14)
Ga1—O1—C12—C79.6 (3)Ga2—O4—C38—C3319.5 (3)
C10—C11—C12—O1178.80 (18)C36—C37—C38—O4179.43 (18)
C10—C11—C12—C71.4 (3)C36—C37—C38—C330.8 (3)
C8—C7—C12—O1178.68 (18)C34—C33—C38—O4177.79 (18)
C6—C7—C12—O16.9 (3)C32—C33—C38—O41.0 (3)
C8—C7—C12—C111.4 (3)C34—C33—C38—C370.7 (3)
C6—C7—C12—C11170.34 (17)C32—C33—C38—C37177.52 (18)
C2—N2—C13—C14167.67 (18)C28—N5—C39—C40178.1 (2)
Ga1—N2—C13—C1415.2 (3)Ga2—N5—C39—C400.1 (3)
N2—C13—C14—C15177.88 (19)N5—C39—C40—C41165.2 (2)
N2—C13—C14—C197.6 (3)N5—C39—C40—C4514.7 (3)
C19—C14—C15—C161.6 (3)C45—C40—C41—C421.2 (3)
C13—C14—C15—C16169.0 (2)C39—C40—C41—C42178.7 (2)
C14—C15—C16—C171.0 (3)C40—C41—C42—C432.9 (4)
C15—C16—C17—C182.2 (3)C41—C42—C43—C441.2 (4)
C16—C17—C18—C190.8 (3)C42—C43—C44—C452.2 (4)
Ga1—O2—C19—C18169.20 (13)Ga2—O5—C45—C4031.3 (3)
Ga1—O2—C19—C1414.2 (3)Ga2—O5—C45—C44151.55 (16)
C17—C18—C19—O2178.59 (19)C41—C40—C45—O5179.26 (19)
C17—C18—C19—C141.7 (3)C39—C40—C45—O50.9 (3)
C15—C14—C19—O2179.53 (18)C41—C40—C45—C442.1 (3)
C13—C14—C19—O29.5 (3)C39—C40—C45—C44178.0 (2)
C15—C14—C19—C182.9 (3)C43—C44—C45—O5178.9 (2)
C13—C14—C19—C18167.11 (18)C43—C44—C45—C403.8 (3)
C3—N3—C20—C21171.62 (19)C29—N6—C46—C47174.31 (19)
Ga1—N3—C20—C212.5 (3)Ga2—N6—C46—C4713.2 (3)
N3—C20—C21—C22174.4 (2)N6—C46—C47—C48173.7 (2)
N3—C20—C21—C2610.9 (3)N6—C46—C47—C5210.2 (3)
C26—C21—C22—C230.0 (3)C52—C47—C48—C491.1 (3)
C20—C21—C22—C23174.9 (2)C46—C47—C48—C49177.4 (2)
C21—C22—C23—C241.3 (3)C47—C48—C49—C501.5 (3)
C22—C23—C24—C250.3 (3)C48—C49—C50—C510.5 (3)
C23—C24—C25—C262.0 (3)C49—C50—C51—C520.8 (3)
Ga1—O3—C26—C25168.30 (14)Ga2—O6—C52—C51149.73 (15)
Ga1—O3—C26—C2113.5 (3)Ga2—O6—C52—C4733.5 (2)
C24—C25—C26—O3178.51 (19)C50—C51—C52—O6178.01 (18)
C24—C25—C26—C213.2 (3)C50—C51—C52—C471.1 (3)
C22—C21—C26—O3179.63 (18)C48—C47—C52—O6176.98 (18)
C20—C21—C26—O35.8 (3)C46—C47—C52—O60.9 (3)
C22—C21—C26—C252.2 (3)C48—C47—C52—C510.2 (3)
C20—C21—C26—C25172.45 (19)C46—C47—C52—C51175.84 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···O10.952.513.333 (2)146
C34—H34···O10.952.883.574 (2)131
C15—H15···O1i0.952.653.499 (2)149
C24—H24···O2ii0.952.833.610 (2)140
C54—H54B···O2iii0.982.313.282 (3)171
C27—H27A···O30.992.893.697 (2)140
C6—H6···O4iv0.952.683.557 (2)153
C8—H8···O4iv0.952.843.642 (3)143
C8—H8···O5iv0.952.913.806 (3)157
C48—H48···O5v0.952.553.413 (3)151
C6—H6···O6iv0.952.543.325 (2)140
C22—H22···O6ii0.952.563.502 (2)173
C28—H28A···N70.992.913.680 (4)135
C29—H29B···N70.992.723.554 (4)143
C31—H31C···N70.982.853.703 (4)146
C10—H10···N8vi0.952.633.508 (7)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x1, y, z; (v) x+2, y+1, z; (vi) x+1, y+1, z+1.
({[(2,2-Bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)indium(III) dichloromethane monosolvate (2) top
Crystal data top
[In(C26H24N3O3)]·CH2Cl2F(000) = 1264
Mr = 626.23Dx = 1.591 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0704 (2) ÅCell parameters from 17154 reflections
b = 16.2514 (4) Åθ = 2.4–32.9°
c = 16.1749 (4) ŵ = 1.14 mm1
β = 99.130 (2)°T = 100 K
V = 2613.62 (11) Å3Needle, colourless
Z = 40.34 × 0.14 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
8621 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source7401 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 33.1°, θmin = 2.5°
ω scansh = 1513
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 2124
Tmin = 0.676, Tmax = 1.000l = 2224
31229 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0232P)2 + 0.8708P]
where P = (Fo2 + 2Fc2)/3
8621 reflections(Δ/σ)max = 0.003
326 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.44234 (2)0.76734 (2)0.60863 (2)0.01380 (4)
O10.30272 (11)0.85701 (7)0.63247 (7)0.0179 (2)
O20.40058 (12)0.78742 (7)0.47927 (7)0.0192 (2)
O30.29061 (11)0.67774 (7)0.60288 (8)0.0194 (2)
N10.51813 (14)0.77671 (8)0.74596 (8)0.0165 (3)
N20.63141 (13)0.83756 (8)0.59915 (8)0.0168 (3)
N30.58328 (13)0.65939 (8)0.62197 (8)0.0161 (3)
C10.65051 (17)0.73976 (10)0.77773 (10)0.0196 (3)
H1A0.6384330.6820440.7899040.024*
H1B0.6886370.7667530.8295720.024*
C20.73966 (16)0.83319 (10)0.67196 (10)0.0196 (3)
H2A0.7236030.8743880.7126240.024*
H2B0.8247590.8459330.6539840.024*
C30.72684 (15)0.67764 (10)0.64906 (11)0.0195 (3)
H3A0.7669640.6930950.6006120.023*
H3B0.7718810.6283270.6728690.023*
C40.74959 (16)0.74748 (10)0.71434 (11)0.0183 (3)
C50.89334 (18)0.73819 (11)0.76248 (12)0.0250 (4)
H5A0.9556790.7350060.7234260.038*
H5B0.8991580.6888890.7955560.038*
H5C0.9148760.7848630.7984840.038*
C60.44813 (16)0.80394 (10)0.79995 (10)0.0174 (3)
H60.4835280.7955090.8559900.021*
C70.31986 (16)0.84640 (10)0.78311 (10)0.0168 (3)
C80.26184 (17)0.86798 (11)0.85429 (11)0.0228 (3)
H80.3016620.8494110.9067860.027*
C90.14814 (18)0.91570 (12)0.84762 (12)0.0282 (4)
H90.1122930.9299650.8952140.034*
C100.08675 (18)0.94264 (12)0.76874 (12)0.0274 (4)
H100.0099230.9751650.7639550.033*
C110.13927 (17)0.92134 (11)0.69770 (11)0.0225 (3)
H110.0965530.9394580.6456800.027*
C120.25668 (16)0.87255 (10)0.70252 (10)0.0173 (3)
C130.64839 (16)0.88497 (10)0.53775 (10)0.0179 (3)
H130.7291590.9137200.5432840.021*
C140.55527 (16)0.89815 (10)0.46131 (10)0.0170 (3)
C150.58775 (17)0.96171 (10)0.40835 (10)0.0208 (3)
H150.6665160.9916070.4238080.025*
C160.50515 (18)0.98046 (10)0.33410 (10)0.0223 (3)
H160.5280511.0224980.2999720.027*
C170.38735 (18)0.93571 (11)0.31103 (10)0.0219 (3)
H170.3308290.9483940.2614400.026*
C180.35340 (17)0.87253 (10)0.36106 (10)0.0193 (3)
H180.2743140.8433220.3442300.023*
C190.43559 (15)0.85131 (10)0.43689 (9)0.0159 (3)
C200.54875 (15)0.58334 (10)0.61401 (10)0.0160 (3)
H200.6179960.5449070.6226220.019*
C210.41363 (15)0.55107 (10)0.59307 (9)0.0151 (3)
C220.40479 (16)0.46536 (10)0.57930 (10)0.0190 (3)
H220.4836260.4352410.5806110.023*
C230.28335 (17)0.42487 (10)0.56399 (11)0.0219 (3)
H230.2796040.3685470.5537330.026*
C240.16602 (16)0.47043 (11)0.56423 (10)0.0208 (3)
H240.0832320.4438130.5550890.025*
C250.17059 (16)0.55445 (10)0.57782 (10)0.0191 (3)
H250.0907310.5830860.5781820.023*
C260.29404 (15)0.59796 (10)0.59120 (9)0.0154 (3)
Cl10.03175 (6)0.90823 (3)0.44842 (3)0.03845 (12)
Cl20.06104 (5)0.74882 (3)0.49805 (4)0.03799 (12)
C270.07878 (16)0.80653 (11)0.47822 (12)0.0239 (4)
H27A0.1180920.7803530.4339280.029*
H27B0.1462590.8076330.5281800.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.01471 (6)0.01451 (6)0.01177 (5)0.00124 (4)0.00086 (4)0.00034 (4)
O10.0219 (5)0.0169 (5)0.0149 (5)0.0031 (4)0.0029 (4)0.0005 (4)
O20.0230 (6)0.0218 (6)0.0123 (5)0.0078 (5)0.0012 (4)0.0006 (4)
O30.0149 (5)0.0168 (6)0.0264 (6)0.0005 (4)0.0030 (4)0.0010 (5)
N10.0185 (6)0.0164 (6)0.0140 (6)0.0020 (5)0.0012 (5)0.0012 (5)
N20.0182 (6)0.0156 (6)0.0154 (6)0.0023 (5)0.0002 (5)0.0012 (5)
N30.0138 (6)0.0177 (6)0.0170 (6)0.0022 (5)0.0030 (5)0.0025 (5)
C10.0215 (8)0.0204 (8)0.0150 (7)0.0015 (6)0.0027 (6)0.0019 (6)
C20.0189 (7)0.0198 (8)0.0184 (8)0.0044 (6)0.0023 (6)0.0000 (6)
C30.0122 (7)0.0207 (8)0.0253 (8)0.0018 (6)0.0016 (6)0.0007 (6)
C40.0164 (7)0.0179 (7)0.0190 (8)0.0021 (6)0.0022 (6)0.0004 (6)
C50.0200 (8)0.0253 (9)0.0270 (9)0.0036 (7)0.0049 (7)0.0019 (7)
C60.0232 (8)0.0159 (7)0.0126 (7)0.0067 (6)0.0012 (6)0.0010 (6)
C70.0188 (7)0.0161 (7)0.0156 (7)0.0059 (6)0.0036 (6)0.0006 (6)
C80.0222 (8)0.0287 (9)0.0180 (8)0.0089 (7)0.0051 (6)0.0019 (7)
C90.0229 (8)0.0380 (11)0.0263 (9)0.0056 (8)0.0117 (7)0.0083 (8)
C100.0190 (8)0.0322 (10)0.0317 (10)0.0003 (7)0.0064 (7)0.0065 (8)
C110.0215 (8)0.0232 (8)0.0228 (8)0.0006 (7)0.0031 (7)0.0015 (7)
C120.0195 (7)0.0138 (7)0.0188 (8)0.0043 (6)0.0035 (6)0.0011 (6)
C130.0177 (7)0.0159 (7)0.0205 (8)0.0028 (6)0.0045 (6)0.0024 (6)
C140.0204 (7)0.0153 (7)0.0158 (7)0.0001 (6)0.0043 (6)0.0014 (6)
C150.0249 (8)0.0172 (8)0.0205 (8)0.0037 (6)0.0039 (6)0.0011 (6)
C160.0333 (9)0.0165 (8)0.0179 (8)0.0006 (7)0.0060 (7)0.0027 (6)
C170.0298 (9)0.0218 (8)0.0140 (7)0.0040 (7)0.0036 (6)0.0004 (6)
C180.0210 (8)0.0220 (8)0.0147 (7)0.0011 (6)0.0024 (6)0.0034 (6)
C190.0194 (7)0.0160 (7)0.0133 (7)0.0011 (6)0.0053 (6)0.0026 (5)
C200.0154 (7)0.0167 (7)0.0163 (7)0.0008 (6)0.0031 (6)0.0004 (6)
C210.0167 (7)0.0163 (7)0.0122 (7)0.0024 (6)0.0024 (5)0.0010 (5)
C220.0190 (7)0.0177 (8)0.0195 (8)0.0005 (6)0.0007 (6)0.0005 (6)
C230.0253 (8)0.0159 (8)0.0235 (8)0.0057 (7)0.0010 (7)0.0017 (6)
C240.0179 (7)0.0229 (8)0.0206 (8)0.0070 (6)0.0006 (6)0.0030 (6)
C250.0153 (7)0.0224 (8)0.0193 (8)0.0022 (6)0.0020 (6)0.0018 (6)
C260.0167 (7)0.0180 (7)0.0114 (7)0.0028 (6)0.0023 (5)0.0017 (5)
Cl10.0511 (3)0.0208 (2)0.0417 (3)0.0032 (2)0.0019 (2)0.00014 (19)
Cl20.0281 (2)0.0428 (3)0.0453 (3)0.0093 (2)0.0126 (2)0.0067 (2)
C270.0167 (7)0.0207 (8)0.0340 (10)0.0018 (6)0.0030 (7)0.0023 (7)
Geometric parameters (Å, º) top
In1—O12.1027 (11)C9—H90.9300
In1—O22.0935 (11)C9—C101.397 (3)
In1—O32.1020 (11)C10—H100.9300
In1—N12.2365 (14)C10—C111.383 (2)
In1—N22.2458 (13)C11—H110.9300
In1—N32.2453 (13)C11—C121.416 (2)
O1—C121.3151 (19)C13—H130.9300
O2—C191.3224 (19)C13—C141.444 (2)
O3—C261.3116 (19)C14—C151.413 (2)
N1—C11.478 (2)C14—C191.427 (2)
N1—C61.285 (2)C15—H150.9300
N2—C21.474 (2)C15—C161.382 (2)
N2—C131.290 (2)C16—H160.9300
N3—C31.473 (2)C16—C171.391 (3)
N3—C201.285 (2)C17—H170.9300
C1—H1A0.9700C17—C181.383 (2)
C1—H1B0.9700C18—H180.9300
C1—C41.545 (2)C18—C191.409 (2)
C2—H2A0.9700C20—H200.9300
C2—H2B0.9700C20—C211.447 (2)
C2—C41.549 (2)C21—C221.411 (2)
C3—H3A0.9700C21—C261.421 (2)
C3—H3B0.9700C22—H220.9300
C3—C41.542 (2)C22—C231.376 (2)
C4—C51.538 (2)C23—H230.9300
C5—H5A0.9600C23—C241.395 (2)
C5—H5B0.9600C24—H240.9300
C5—H5C0.9600C24—C251.383 (2)
C6—H60.9300C25—H250.9300
C6—C71.452 (2)C25—C261.417 (2)
C7—C81.415 (2)Cl1—C271.7651 (18)
C7—C121.422 (2)Cl2—C271.7631 (17)
C8—H80.9300C27—H27A0.9700
C8—C91.373 (3)C27—H27B0.9700
O1—In1—N184.46 (5)C7—C8—H8119.2
O1—In1—N2105.02 (5)C9—C8—C7121.52 (17)
O1—In1—N3162.70 (5)C9—C8—H8119.2
O2—In1—O192.35 (5)C8—C9—H9120.3
O2—In1—O391.97 (5)C8—C9—C10119.44 (16)
O2—In1—N1164.77 (5)C10—C9—H9120.3
O2—In1—N283.71 (5)C9—C10—H10119.7
O2—In1—N3103.97 (5)C11—C10—C9120.54 (17)
O3—In1—O189.18 (4)C11—C10—H10119.7
O3—In1—N1102.84 (5)C10—C11—H11119.3
O3—In1—N2165.28 (5)C10—C11—C12121.38 (17)
O3—In1—N384.66 (5)C12—C11—H11119.3
N1—In1—N282.75 (5)O1—C12—C7124.40 (15)
N1—In1—N381.19 (5)O1—C12—C11117.76 (15)
N3—In1—N282.75 (5)C11—C12—C7117.79 (15)
C12—O1—In1128.94 (10)N2—C13—H13116.5
C19—O2—In1127.79 (10)N2—C13—C14126.90 (15)
C26—O3—In1130.97 (10)C14—C13—H13116.5
C1—N1—In1117.67 (10)C15—C14—C13116.49 (15)
C6—N1—In1124.12 (11)C15—C14—C19119.25 (15)
C6—N1—C1117.74 (14)C19—C14—C13124.26 (14)
C2—N2—In1116.64 (10)C14—C15—H15119.2
C13—N2—In1125.01 (11)C16—C15—C14121.52 (16)
C13—N2—C2118.19 (13)C16—C15—H15119.2
C3—N3—In1116.55 (10)C15—C16—H16120.4
C20—N3—In1125.81 (11)C15—C16—C17119.20 (15)
C20—N3—C3117.44 (14)C17—C16—H16120.4
N1—C1—H1A109.2C16—C17—H17119.7
N1—C1—H1B109.2C18—C17—C16120.70 (16)
N1—C1—C4112.22 (13)C18—C17—H17119.7
H1A—C1—H1B107.9C17—C18—H18119.2
C4—C1—H1A109.2C17—C18—C19121.68 (16)
C4—C1—H1B109.2C19—C18—H18119.2
N2—C2—H2A109.1O2—C19—C14123.92 (14)
N2—C2—H2B109.1O2—C19—C18118.37 (14)
N2—C2—C4112.62 (13)C18—C19—C14117.64 (14)
H2A—C2—H2B107.8N3—C20—H20116.5
C4—C2—H2A109.1N3—C20—C21126.97 (15)
C4—C2—H2B109.1C21—C20—H20116.5
N3—C3—H3A109.1C22—C21—C20115.34 (14)
N3—C3—H3B109.1C22—C21—C26119.59 (14)
N3—C3—C4112.59 (13)C26—C21—C20124.93 (14)
H3A—C3—H3B107.8C21—C22—H22118.9
C4—C3—H3A109.1C23—C22—C21122.16 (16)
C4—C3—H3B109.1C23—C22—H22118.9
C1—C4—C2111.33 (14)C22—C23—H23120.8
C3—C4—C1110.68 (13)C22—C23—C24118.34 (16)
C3—C4—C2111.51 (14)C24—C23—H23120.8
C5—C4—C1108.12 (14)C23—C24—H24119.4
C5—C4—C2107.57 (13)C25—C24—C23121.18 (15)
C5—C4—C3107.45 (14)C25—C24—H24119.4
C4—C5—H5A109.5C24—C25—H25119.2
C4—C5—H5B109.5C24—C25—C26121.57 (15)
C4—C5—H5C109.5C26—C25—H25119.2
H5A—C5—H5B109.5O3—C26—C21124.64 (14)
H5A—C5—H5C109.5O3—C26—C25118.23 (14)
H5B—C5—H5C109.5C25—C26—C21117.11 (14)
N1—C6—H6116.4Cl1—C27—H27A109.4
N1—C6—C7127.16 (15)Cl1—C27—H27B109.4
C7—C6—H6116.4Cl2—C27—Cl1111.12 (9)
C8—C7—C6115.79 (15)Cl2—C27—H27A109.4
C8—C7—C12119.30 (15)Cl2—C27—H27B109.4
C12—C7—C6124.71 (14)H27A—C27—H27B108.0
In1—O1—C12—C718.4 (2)C6—C7—C12—C11173.00 (15)
In1—O1—C12—C11164.25 (11)C7—C8—C9—C101.0 (3)
In1—O2—C19—C1431.0 (2)C8—C7—C12—O1179.02 (15)
In1—O2—C19—C18152.00 (11)C8—C7—C12—C111.6 (2)
In1—O3—C26—C2111.0 (2)C8—C9—C10—C110.3 (3)
In1—O3—C26—C25170.70 (11)C9—C10—C11—C120.6 (3)
In1—N1—C1—C434.62 (17)C10—C11—C12—O1177.97 (16)
In1—N1—C6—C711.7 (2)C10—C11—C12—C70.4 (2)
In1—N2—C2—C436.43 (16)C12—C7—C8—C92.0 (2)
In1—N2—C13—C144.6 (2)C13—N2—C2—C4147.93 (15)
In1—N3—C3—C437.20 (17)C13—C14—C15—C16179.20 (15)
In1—N3—C20—C211.6 (2)C13—C14—C19—O24.1 (2)
N1—C1—C4—C241.27 (18)C13—C14—C19—C18178.85 (15)
N1—C1—C4—C383.35 (17)C14—C15—C16—C170.0 (3)
N1—C1—C4—C5159.22 (14)C15—C14—C19—O2175.61 (14)
N1—C6—C7—C8178.28 (16)C15—C14—C19—C181.5 (2)
N1—C6—C7—C126.9 (3)C15—C16—C17—C180.7 (3)
N2—C2—C4—C184.71 (17)C16—C17—C18—C190.3 (3)
N2—C2—C4—C339.44 (18)C17—C18—C19—O2176.42 (15)
N2—C2—C4—C5157.01 (14)C17—C18—C19—C140.8 (2)
N2—C13—C14—C15171.32 (16)C19—C14—C15—C161.1 (2)
N2—C13—C14—C199.0 (3)C20—N3—C3—C4137.89 (15)
N3—C3—C4—C140.04 (19)C20—C21—C22—C23175.90 (15)
N3—C3—C4—C284.47 (17)C20—C21—C26—O34.7 (2)
N3—C3—C4—C5157.89 (14)C20—C21—C26—C25173.64 (14)
N3—C20—C21—C22173.34 (16)C21—C22—C23—C241.6 (3)
N3—C20—C21—C2611.0 (3)C22—C21—C26—O3179.78 (15)
C1—N1—C6—C7176.28 (15)C22—C21—C26—C251.9 (2)
C2—N2—C13—C14179.82 (15)C22—C23—C24—C251.3 (3)
C3—N3—C20—C21176.14 (15)C23—C24—C25—C260.6 (3)
C6—N1—C1—C4152.81 (14)C24—C25—C26—O3179.35 (15)
C6—C7—C8—C9173.12 (16)C24—C25—C26—C212.2 (2)
C6—C7—C12—O14.4 (3)C26—C21—C22—C230.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.653.3596 (19)134
C8—H8···O2i0.932.633.394 (2)139
C27—H27B···O10.972.263.193 (2)160
C27—H27B···O20.972.823.253 (2)108
C27—H27B···O30.972.733.411 (2)127
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the X-ray Crystallographic Facility at the University of Rochester, the Department of Chemistry at Buffalo State College, and the Department of Chemistry at D'Youville College for the funding of this project. We would also like to thank the Chemistry Instrumentation Center at the University at Buffalo for their HRMS service.

Funding information

Funding for this research was provided by: NSF (grant No. CHE-1725028).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArrowsmith, R. L., Waghorn, P. A., Jones, M. W., Bauman, A., Brayshaw, S. K., Hu, Z., Kociok-Köhn, G., Mindt, T. L., Tyrrell, R. M., Botchway, S. W., Dilworth, J. R. & Pascu, S. I. (2011). Dalton Trans. 40, 6238–6252.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeeney, F. A., Harding, C. J., Morgan, G. G., McKee, V., Nelson, J., Teat, S. J. & Clegg, W. (1998). J. Chem. Soc. Dalton Trans. pp. 1837–1844.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationEvans, D. F. & Jakubovic, D. A. (1988). J. Chem. Soc. Dalton Trans. pp. 2927.  Google Scholar
First citationGottschaldt, M., Bohlender, C., Pospiech, A., Görls, H., Walther, M., Müller, D., Klette, I., Baum, R. P. & Schubert, U. S. (2009). Eur. J. Inorg. Chem. pp. 4298–4307.  Web of Science CSD CrossRef Google Scholar
First citationGreen, M. A., Mathias, C. J., Neumann, W. L., Fanwick, P. E., Janik, M. & Deutsch, E. A. (1993). J. Nucl. Med. 34, 228–233.  CAS PubMed Web of Science Google Scholar
First citationGreen, M. A., Welch, M. J. & Huffman, J. C. (1984). J. Am. Chem. Soc. 106, 3689–3691.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGut, M. & Holland, J. P. (2019). Inorg. Chem. 58, 12302–12310.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJohnston, T. E. (1974). (E. I. du Pont de Nemours & Co., Wilmington, Delaware, USA). Metal-Deactivated Organic Compositions and Process Therefor. US Patent 3,843,536, Oct. 22, 1974.  Google Scholar
First citationKatsuta, S., Shimizu, Y., Takahashi, R., Kanaya, N., Imoto, T. & Takeda, Y. (2012). New J. Chem. 36, 1445–1448.  Web of Science CrossRef CAS Google Scholar
First citationKobayashi, T., Yamaguchi, T., Ohta, H., Sunatsuki, Y., Kojima, M., Re, N., Nonoyama, M. & Matsumoto, N. (2006). Chem. Commun. pp. 1950–1952.  Web of Science CrossRef Google Scholar
First citationKojima, M. (2000). Mol. Cryst. Liq. Cryst. 342, 39–44.  Web of Science CrossRef CAS Google Scholar
First citationKojima, M., Azuma, S., Hirotsu, M., Nakajima, K., Nonoyama, M. & Yoshikawa, Y. (2000). Chem. Lett. 29, 482–483.  Web of Science CSD CrossRef Google Scholar
First citationLiu, S., Rettig, S. J. & Orvig, C. (1992). Inorg. Chem. 31, 5400–5407.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, S., Wong, E., Karunaratne, V., Rettig, S. J. & Orvig, C. (1993a). Inorg. Chem. 32, 1756–1765.  CSD CrossRef CAS Google Scholar
First citationLiu, S., Wong, E., Rettig, S. J. & Orvig, C. (1993b). Inorg. Chem. 32, 4268–4276.  CSD CrossRef CAS Google Scholar
First citationMarmion, M. E., Woulfe, S. R., Newmann, W. L., Pilcher, G. & Nosco, D. L. (1996). Nucl. Med. Biol. 23, 567–584.  CrossRef CAS PubMed Google Scholar
First citationMoerlein, S. M. & Welch, M. J. (1981). Int. J. Nucl. Med. Biol. 8, 277–287.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOhta, H., Harada, K., Irie, K., Kashino, S., Kambe, T., Sakane, G., Shibahara, T., Takamizawa, S., Mori, W., Nonoyama, M., Hirotsu, M. & Kojima, M. (2001). Chem. Lett. 30, 842–843.  CSD CrossRef Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRobards, K. & Patsalides, E. (1999). J. Chromatogr. A, 844, 181–190.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSunatsuki, Y., Kobayashi, T., Harada, K., Yamaguchi, T., Nonoyama, M. & Kojima, M. (2008). Bull. Chem. Soc. Jpn, 81, 716–725.  CSD CrossRef CAS Google Scholar
First citationThorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrushigawa, Y., Yuki, M., Ishikita, H., Inazu, T. & Yoshino, T. (1977). Memoirs of the Faculty Science, Kyishu University, Ser. C. 10, 125–131.  Google Scholar
First citationYamaguchi, T., Sunatsuki, Y., Ishida, H., Kojima, M., Akashi, H., Re, N., Matsumoto, N., Pochaba, A. & Mroziński, J. (2008a). Bull. Chem. Soc. Jpn, 81, 598–605.  CSD CrossRef CAS Google Scholar
First citationYamaguchi, T., Sunatsuki, Y., Ishida, H., Kojima, M., Akashi, H., Re, N., Matsumoto, N., Pochaba, A. & Mroziński, J. (2008b). Inorg. Chem. 47, 5736–5745.  CSD CrossRef PubMed CAS Google Scholar
First citationYamaguchi, T., Sunatsuki, Y., Kojima, M., Akashi, H., Tsuchimoto, M., Re, N., Osa, S. & Matsumoto, N. (2004). Chem. Commun. pp. 1048–1049.  CSD CrossRef Google Scholar
First citationYokoyama, T., Okano, M., Yoshise, M., Toda, M., Akashi, H. & Zenki, M. (2010). X-ray Struct. Anal. Online, 26, 37–38.  CSD CrossRef CAS Google Scholar
First citationZhang, Z., Lyster, D. M., Webb, G. A. & Orvig, C. (1992). Nucl. Med. Biol. 19, 327–335.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds