research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′-[4-(di­methyl­amino)­benzyl­­idene]furan-2-carbohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and bUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
*Correspondence e-mail: i6thiam@yahoo.fr

Edited by L. Fabian, University of East Anglia, England (Received 22 January 2020; accepted 3 April 2020; online 9 April 2020)

The condensation of 2-furoic hydrazide and 4-dimethyl amino­benzaldehyde in ethanol yielded a yellow solid formulated as the title compound, C14H15N3O2·H2O. The crystal packing is stabilized by inter­molecular O(water)—H⋯O,N(carbohydrazide) and N—H⋯O(water) hydrogen bonds, which form a two-dimensional network along the bc plane. Additional C—H⋯O inter­actions link the mol­ecules into a three-dimensional network. The dihedral angle between the mean planes of the benzene and the furan ring is 34.47 (6)°. The carbohydrazide moiety, i.e., the C=N—N—C=O fragment and the benzene ring are almost coplanar, with an angle of 6.75 (9)° between their mean planes.

1. Chemical context

Furan is a colorless toxic chemical produced in various food items during heat processing and in some industrial processes (Delatour et al., 2020[Delatour, T., Huertas-Pérez, J. F., Dubois, M., Theurillat, X., Desmarchelier, A., Ernest, M. & Stadler, R. H. (2020). Food Chem. 303, 125406.]; Rehman et al., 2019[Rehman, H., Jahan, S., Ullah, I. & Winberg, S. (2019). Chemosphere, 230, 327-336.]; Morehouse et al., 2018[Morehouse, K. M., Perez, G. & McNeal, T. P. (2018). Radiat. Phys. Chem. 152, 81-88.]; Sirot et al., 2019[Sirot, V., Rivière, G., Leconte, S., Vin, K., Traore, T., Jean, J., Carne, G., Gorecki, S., Veyrand, B., Marchand, P., Le Bizec, B., Jean-Pierre, C., Feidt, C., Vasseur, P., Lambert, M., Inthavong, C., Guérin, T. & Hulin, M. (2019). Food Chem. Toxicol. 130, 308-316.]). It has been reported that furan can induce oxidative stress, endocrine disruption and toxic effects on the reproductive system of male rats (Rehman et al., 2019[Rehman, H., Jahan, S., Ullah, I. & Winberg, S. (2019). Chemosphere, 230, 327-336.]). However, other studies have shown its ability to inhibit tyrosinase, which is an enzyme responsible for many skin disorders and diseases (Barros et al., 2019[Barros, M. R., Menezes, T. M., da Silva, L. P., Pires, D. S., Princival, J. L., Seabra, G. & Neves, J. L. (2019). Int. J. Biol. Macromol. 136, 1034-1041.]). Furan derivatives, such as hydrazides, are precursors for a large variety of compounds. For example, receptors for carboxyl­ates were prepared from furoic acid hydrazide (de la Torre et al., 1997[Torre, M. F. de la, González, S., Campos, E. G., Mussons, M. L., Morán, J. R. & Caballero, M. C. (1997). Tetrahedron Lett. 38, 8591-8594.]). The biological activities of various furoic acid hydrazones have been evaluated against Mycobacterium tuberculosis (Sriram et al., 2010[Sriram, D., Yogeeswari, P., Vyas, D. R. K., Senthilkumar, P., Bhat, P. & Srividya, M. (2010). Bioorg. Med. Chem. Lett. 20, 4313-4316.]), myelogenous leukemia cells (Silva et al., 2014[Silva, P. P., Guerra, W., Dos Santos, G. C., Fernandes, N. G., Silveira, J. N., da Costa Ferreira, A. M., Bortolotto, T., Terenzi, H., Bortoluzzi, A. J., Neves, A. & Pereira-Maia, E. C. (2014). J. Inorg. Biochem. 132, 67-76.]) and for tyrosinase inhibition (Dige et al., 2019[Dige, N. C., Mahajan, P. G., Raza, H., Hassan, M., Vanjare, B. D., Hong, H., Hwan Lee, K., Latip, J. & Seo, S.-Y. (2019). Bioorg. Chem. 92, 103201.]). Hydrazones of this type have also been used in the study of inter­actions of DNA with small organic or metal–organic mol­ecules to help the development of new drugs. Indeed, the elucidation of the mechanisms involved in the inter­action of DNA with these small mol­ecules makes it possible to develop models (Sathyadevi et al., 2012[Sathyadevi, P., Krishnamoorthy, P., Jayanthi, E., Butorac, R. R., Cowley, A. H. & Dharmaraj, N. (2012). Inorg. Chim. Acta, 384, 83-96.]; Sennappan et al., 2019[Sennappan, M., Krishna, P. M. & Krishna, R. H. (2019). J. Mol. Struct. 1178, 333-340.]). In this paper, we report the synthesis and the characterization of the title compound, obtained from the condensation reaction between furoic acid hydrazide and 4-amino­benzaldehyde.

2. Structural commentary

The mol­ecular structure of the title compound (I) with the atomic-labeling scheme is shown in Fig. 1[link]. The asymmetric unit of I contains one mol­ecule of the Schiff base ligand and one water mol­ecule. The mol­ecule adopts an E configuration with respect to the C9=N2 bond. The carbohydrazide moiety, C9=N2—N3—C10=O, is almost coplanar with the benzene ring, with an angle of 6.75 (9)° between their mean planes. The C10=O1 bond length [1.2392 (16) Å], which has double-bond character, shows that the compound did not undergo enolization as observed in some furoic hydrazide derivatives (Rodríguez-Argüelles et al., 2009[Rodríguez-Argüelles, M. C., Cao, R., García-Deibe, A. M., Pelizzi, C., Sanmartín-Matalobos, J. & Zani, F. (2009). Polyhedron, 28, 2187-2195.]). It exists only in the keto form. This form of the Schiff base is further confirmed by the N3—C10 [1.3383 (17) Å] and N2—N3 [1.3846 (14) Å] bond distances, which indicate that these are single bonds and by N2=C9 [1.2832 (17) Å], which is a double bond.

[Scheme 1]
[Figure 1]
Figure 1
An ORTEP view of the title compound, showing the atom-numbering scheme and intra­molecular contacts. Displacement ellipsoids are plotted at the 50% probability level.

The O1 and N2 atoms are in a syn conformation with respect to the C10—N3 link [O1—C10—N3—N2 = −1.2 (2)°]. The dihedral angle between the benzene and the furan rings is 34.47 (6)°. The presence of the lattice water mol­ecule differentiates the title compound I from that reported by Li & Meng (2010[Li, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2696.]). In our compound, the oxygen atom of the furan ring and the oxygen atom of the carbonyl group are in a syn orientation with respect to the C10—C11 bond [O1—C10—C11—O2 = −26.44 (19)°], similar to what was observed for the compound (E)-N'-(2-hy­droxy­benzyl­idene)furan-2-carbohydrazide by Bikas et al. (2010[Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.]). This is in contrast with most hydrazones from furan-2-carbohydrazide, including the anhydrous form of the title compound, which assume an anti conformation with respect to the link between the carbonyl atom and the Cipso atom of the furan ring (Jiang, 2010[Jiang, J.-H. (2010). Acta Cryst. E66, o627.]; Li & Jian, 2010a[Li, Y.-F. & Jian, F.-F. (2010a). Acta Cryst. E66, o2157.],b[Li, Y.-F. & Jian, F.-F. (2010b). Acta Cryst. E66, o2061.],c[Li, Y.-F. & Jian, F.-F. (2010c). Acta Cryst. E66, o1670.]; Li & Meng, 2010[Li, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2696.]).

3. Supra­molecular features

In the crystal, each independent water mol­ecule donates hydrogen bonds to the carbonyl oxygen atom of two ligand mol­ecules, forming a tetra­mer with R42(8) rings (Fig. 2[link], Table 1[link]). One of the hydrogen bonds donated by water is bifurcated between two acceptors, O1 and N2. The structure is built up further around the water mol­ecules by N—H⋯Owater hydrogen bonds, thus producing layers parallel to the bc plane. Additional C—H⋯O inter­actions inter­connect the layers and consolidate the structure into a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.87 1.92 2.7844 (15) 170
O3—H3B⋯O1 0.87 2.12 2.9033 (12) 150
O3—H3B⋯N2 0.87 2.48 3.1681 (14) 137
N3—H3⋯O3ii 0.88 1.95 2.7996 (14) 162
C9—H9⋯O3ii 0.95 2.59 3.3724 (15) 140
C12—H12⋯O1iii 0.95 2.43 3.3687 (16) 170
C7—H7⋯O3 0.95 2.71 3.6295 (16) 164
C1—H1A⋯O3iv 0.98 2.55 3.4057 (17) 146
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Rings and connections formed by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds (dashed lines).
[Figure 3]
Figure 3
Crystal packing of the title compound, viewed along the b axis.

4. Database survey

Reflecting the inter­est in compounds similar to I, no fewer than 43 associated structures are included in the Cambridge Structural Database (CSD version 5.40, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Of these, KABNOS (Li & Meng, 2010[Li, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2696.]) has the most similar structure to the title compound, the only differences being the presence of the water mol­ecule and the rotation of the furan ring around the link between the carbonyl C atom and the Cipso atom of the furan ring in the title compound (see Structural commentary). Several hydrazones hits are found with the fragment furan-2-carbohydrazide. The difference between them is the substitution of the aromatic ring by a variety of groups, such as NO2 for AZILOM (Wang & Tai, 2016[Wang, L.-H. & Tai, X.-S. (2016). Crystals, 6, 57-63.]), hydroxyl for CEDZIX (Mohanraj et al., 2016[Mohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). J. Coord. Chem. 69, 3545-3559.]) and DUSZEX (Bikas et al., 2010[Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.]), a CH3 group for DUTJOS (Li & Jian, 2010b[Li, Y.-F. & Jian, F.-F. (2010b). Acta Cryst. E66, o2061.]), a meth­oxy group for EMOMUP (Cui et al., 2010[Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576-5584.]) or a halogen atom for GAQKEQ (Bikas et al., 2012[Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o413-o414.]). These kinds of Schiff bases were used for preparing complexes with transition-metal or lanthanide ions. The ligand acts in a bidentate or tridentate fashion, as reported in the literature [ABUKIU (Singh et al., 2017[Singh, Y. P., Patel, R. N., Singh, Y., Butcher, R. J., Vishakarma, P. K. & Singh, R. K. B. (2017). Polyhedron, 122, 1-15.]), DAZMEX (Haba et al., 2005[Haba, P. M., Diouf, O., Gaye, M., Sall, A. S., Barry, A. H., Weller, R. & Chahrazed, B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 421-422.]), FIGMEO (Maurya et al., 2005[Maurya, M. R., Agarwal, S., Bader, C., Ebel, M. & Rehder, D. (2005). Dalton Trans. pp. 537-544.]), and VIVGOY (Alagesan et al., 2014[Alagesan, M., Bhuvanesh, N. S. P. & Dharmaraj, N. (2014). Dalton Trans. 43, 6087-6099.])]. One organometallic palladium complex was found containing a metal–carbon bond in a six-membered ring (TAPXEQ; Qian et al., 2017[Qian, H., Zhang, T., Song, L., Yu, S., Yuan, Q., Sun, L., Zhang, D., Yin, Z. & Dai, Y. (2017). Eur. J. Org. Chem. 2017, 1337-1342.]). One hit corresponds to a calcium complex, in which only the carbonyl oxygen atom is coordinated to the calcium ion (YEDCIW; Tai & Wang, 2017[Tai, X.-S. & Wang, X. (2017). Crystallogr. Rep. 62, 242-245.]).

5. Synthesis and crystallization

All purchased chemicals and solvents were of reagent grade and were used without further purification. The melting point was determined with a Büchi 570 melting-point apparatus and is uncorrected. To a mixture of 0.5 g (3.96 mmol) of 2-furoic hydrazide and 25 ml of ethanol were added a few drops of glacial acetic acid. A solution of 0.59 g (3.96 mmol) of 4-dimethyl amino­benzaldehyde in 25 ml of ethanol was added dropwise. The resulting mixture was stirred at 323 K for 24 h. On cooling in an ice bath, a yellow solid appeared after a few minutes. The compound was filtered off, washed with water and diethyl ether, and dried at room temperature; 0.42 g of solid was obtained (yield: 37.96%). A small qu­antity was purified by recrystallization from a di­methyl­formamide solution and yellow single crystals suitable for XRD grew within a few weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms of the ligand were located by HFIX, positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å (CarH), 0.98 Å (CH3) or 0.88 Å (NH). Both H atoms of the water mol­ecule were located in a difference-Fourier map, positioned geometrically and refined as a free rotating group with idealized geometry.

Table 2
Experimental details

Crystal data
Chemical formula C14H15N3O2·H2O
Mr 275.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.9328 (5), 11.2551 (4), 9.8092 (3)
β (°) 106.245 (4)
V3) 1370.82 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.20 × 0.06 × 0.06
 
Data collection
Diffractometer XtaLAB AFC12 (RCD3)
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.536, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14982, 3102, 2649
Rint 0.059
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.06
No. of reflections 3102
No. of parameters 186
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N'-[4-(Dimethylamino)benzylidene]furan-2-carbohydrazide monohydrate top
Crystal data top
C14H15N3O2·H2OF(000) = 584
Mr = 275.30Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 12.9328 (5) ÅCell parameters from 7776 reflections
b = 11.2551 (4) Åθ = 2.4–31.3°
c = 9.8092 (3) ŵ = 0.10 mm1
β = 106.245 (4)°T = 100 K
V = 1370.82 (9) Å3Block, yellow
Z = 40.20 × 0.06 × 0.06 mm
Data collection top
XtaLAB AFC12 (RCD3)
diffractometer
3102 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source2649 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.059
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1615
Absorption correction: gaussian
(CrysAlis Pro; Rigaku OD, 2019)
k = 1214
Tmin = 0.536, Tmax = 1.000l = 1212
14982 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.3872P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3102 reflectionsΔρmax = 0.37 e Å3
186 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94791 (8)0.57248 (8)0.63770 (9)0.0190 (2)
O30.86017 (8)0.55049 (8)0.33216 (9)0.0176 (2)
H3A0.9157160.5046550.3400150.026*
H3B0.8670140.5758360.4179530.026*
O21.06257 (9)0.57949 (9)0.92208 (10)0.0229 (3)
N20.81295 (9)0.75421 (10)0.52944 (11)0.0157 (3)
N30.88775 (9)0.75945 (10)0.66155 (11)0.0159 (3)
H30.8930050.8231750.7150430.019*
N10.39936 (10)0.87858 (10)0.00561 (12)0.0199 (3)
C90.74829 (11)0.84311 (11)0.50238 (13)0.0159 (3)
H90.7580000.9059310.5694700.019*
C111.02928 (11)0.68189 (11)0.84694 (13)0.0154 (3)
C121.07767 (11)0.77766 (12)0.92134 (14)0.0178 (3)
H121.0688400.8584040.8921680.021*
C60.66077 (11)0.85061 (11)0.37235 (13)0.0151 (3)
C30.48293 (11)0.86842 (11)0.12594 (13)0.0148 (3)
C70.63960 (11)0.76157 (11)0.26809 (13)0.0153 (3)
H70.6858170.6944460.2801130.018*
C100.95190 (11)0.66568 (11)0.70625 (13)0.0152 (3)
C80.55339 (11)0.76949 (11)0.14894 (13)0.0153 (3)
H80.5408040.7074020.0806630.018*
C40.50366 (11)0.95729 (12)0.23173 (13)0.0173 (3)
H40.4573581.0242560.2209670.021*
C50.59054 (11)0.94761 (11)0.35049 (13)0.0174 (3)
H50.6031171.0089000.4197860.021*
C131.14452 (12)0.73294 (13)1.05223 (14)0.0213 (3)
H131.1891780.7780641.1279000.026*
C10.32241 (11)0.97532 (13)0.00914 (14)0.0213 (3)
H1A0.2905560.9734840.0704970.032*
H1B0.2654960.9663330.0985680.032*
H1C0.3593551.0513310.0092680.032*
C141.13200 (12)0.61440 (13)1.04763 (14)0.0240 (3)
H141.1669210.5618221.1220470.029*
C20.37893 (12)0.78798 (13)0.10364 (14)0.0227 (3)
H2A0.4469860.7646970.1215040.034*
H2B0.3298830.8194230.1911930.034*
H2C0.3460960.7185290.0721040.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0221 (6)0.0142 (5)0.0170 (5)0.0019 (4)0.0008 (4)0.0029 (3)
O30.0184 (5)0.0183 (5)0.0142 (4)0.0004 (4)0.0014 (4)0.0006 (3)
O20.0303 (6)0.0168 (5)0.0160 (5)0.0017 (4)0.0030 (4)0.0030 (3)
N20.0145 (6)0.0170 (5)0.0120 (5)0.0006 (4)0.0022 (4)0.0007 (4)
N30.0162 (6)0.0155 (5)0.0122 (5)0.0013 (4)0.0022 (4)0.0032 (4)
N10.0179 (6)0.0215 (6)0.0159 (5)0.0059 (4)0.0023 (4)0.0005 (4)
C90.0165 (7)0.0154 (6)0.0142 (6)0.0014 (5)0.0015 (5)0.0011 (4)
C110.0145 (7)0.0169 (6)0.0136 (6)0.0032 (5)0.0016 (5)0.0022 (4)
C120.0169 (7)0.0157 (6)0.0179 (6)0.0029 (5)0.0002 (5)0.0004 (5)
C60.0151 (7)0.0150 (6)0.0136 (6)0.0006 (5)0.0016 (5)0.0019 (4)
C30.0134 (7)0.0169 (6)0.0131 (6)0.0002 (5)0.0023 (5)0.0028 (4)
C70.0161 (7)0.0135 (6)0.0154 (6)0.0017 (5)0.0029 (5)0.0024 (4)
C100.0153 (7)0.0155 (6)0.0137 (6)0.0014 (5)0.0023 (5)0.0004 (4)
C80.0169 (7)0.0144 (6)0.0138 (6)0.0004 (5)0.0031 (5)0.0011 (4)
C40.0176 (7)0.0145 (6)0.0187 (6)0.0037 (5)0.0031 (5)0.0023 (5)
C50.0196 (7)0.0140 (6)0.0167 (6)0.0004 (5)0.0018 (5)0.0019 (4)
C130.0187 (7)0.0247 (7)0.0167 (6)0.0029 (5)0.0017 (5)0.0025 (5)
C10.0168 (7)0.0230 (7)0.0213 (7)0.0059 (5)0.0009 (5)0.0033 (5)
C140.0274 (8)0.0249 (7)0.0143 (6)0.0045 (6)0.0028 (5)0.0025 (5)
C20.0210 (8)0.0241 (7)0.0181 (6)0.0018 (5)0.0026 (5)0.0015 (5)
Geometric parameters (Å, º) top
O1—C101.2392 (16)C6—C51.3979 (18)
O3—H3A0.8701C3—C81.4163 (18)
O3—H3B0.8694C3—C41.4120 (18)
O2—C111.3709 (15)C7—H70.9500
O2—C141.3633 (16)C7—C81.3740 (17)
N2—N31.3846 (14)C8—H80.9500
N2—C91.2832 (17)C4—H40.9500
N3—H30.8800C4—C51.3780 (18)
N3—C101.3383 (17)C5—H50.9500
N1—C31.3641 (16)C13—H130.9500
N1—C11.4547 (17)C13—C141.343 (2)
N1—C21.4491 (17)C1—H1A0.9800
C9—H90.9500C1—H1B0.9800
C9—C61.4517 (17)C1—H1C0.9800
C11—C121.3530 (18)C14—H140.9500
C11—C101.4720 (17)C2—H2A0.9800
C12—H120.9500C2—H2B0.9800
C12—C131.4242 (18)C2—H2C0.9800
C6—C71.4030 (18)
H3A—O3—H3B104.5N3—C10—C11113.95 (11)
C14—O2—C11105.77 (10)C3—C8—H8119.4
C9—N2—N3113.86 (10)C7—C8—C3121.29 (11)
N2—N3—H3120.7C7—C8—H8119.4
C10—N3—N2118.67 (10)C3—C4—H4119.7
C10—N3—H3120.7C5—C4—C3120.50 (12)
C3—N1—C1120.22 (11)C5—C4—H4119.7
C3—N1—C2121.15 (11)C6—C5—H5118.9
C2—N1—C1118.37 (11)C4—C5—C6122.18 (12)
N2—C9—H9119.0C4—C5—H5118.9
N2—C9—C6121.99 (11)C12—C13—H13126.8
C6—C9—H9119.0C14—C13—C12106.48 (12)
O2—C11—C10115.39 (11)C14—C13—H13126.8
C12—C11—O2110.58 (11)N1—C1—H1A109.5
C12—C11—C10134.03 (11)N1—C1—H1B109.5
C11—C12—H12127.0N1—C1—H1C109.5
C11—C12—C13106.10 (12)H1A—C1—H1B109.5
C13—C12—H12127.0H1A—C1—H1C109.5
C7—C6—C9122.97 (12)H1B—C1—H1C109.5
C5—C6—C9119.58 (11)O2—C14—H14124.5
C5—C6—C7117.39 (12)C13—C14—O2111.06 (12)
N1—C3—C8121.51 (11)C13—C14—H14124.5
N1—C3—C4121.20 (12)N1—C2—H2A109.5
C4—C3—C8117.28 (12)N1—C2—H2B109.5
C6—C7—H7119.3N1—C2—H2C109.5
C8—C7—C6121.34 (12)H2A—C2—H2B109.5
C8—C7—H7119.3H2A—C2—H2C109.5
O1—C10—N3124.19 (12)H2B—C2—H2C109.5
O1—C10—C11121.86 (11)
O2—C11—C12—C130.78 (16)C12—C11—C10—N327.5 (2)
O2—C11—C10—O126.44 (19)C12—C13—C14—O20.68 (18)
O2—C11—C10—N3153.34 (12)C6—C7—C8—C30.6 (2)
N2—N3—C10—O11.2 (2)C3—C4—C5—C60.5 (2)
N2—N3—C10—C11179.07 (11)C7—C6—C5—C40.2 (2)
N2—C9—C6—C70.7 (2)C10—C11—C12—C13179.99 (15)
N2—C9—C6—C5177.86 (13)C8—C3—C4—C51.20 (19)
N3—N2—C9—C6176.75 (11)C4—C3—C8—C71.24 (19)
N1—C3—C8—C7177.79 (12)C5—C6—C7—C80.16 (19)
N1—C3—C4—C5177.83 (12)C1—N1—C3—C8174.21 (12)
C9—N2—N3—C10173.35 (12)C1—N1—C3—C46.80 (19)
C9—C6—C7—C8177.35 (12)C14—O2—C11—C121.18 (16)
C9—C6—C5—C4177.48 (12)C14—O2—C11—C10179.43 (12)
C11—O2—C14—C131.14 (17)C2—N1—C3—C80.3 (2)
C11—C12—C13—C140.07 (17)C2—N1—C3—C4179.28 (13)
C12—C11—C10—O1152.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.871.922.7844 (15)170
O3—H3B···O10.872.122.9033 (12)150
O3—H3B···N20.872.483.1681 (14)137
N3—H3···O3ii0.881.952.7996 (14)162
C9—H9···O3ii0.952.593.3724 (15)140
C12—H12···O1iii0.952.433.3687 (16)170
C7—H7···O30.952.713.6295 (16)164
C1—H1A···O3iv0.982.553.4057 (17)146
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1/2, z+3/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Sonatel Foundation for financial support.

References

First citationAlagesan, M., Bhuvanesh, N. S. P. & Dharmaraj, N. (2014). Dalton Trans. 43, 6087–6099.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBarros, M. R., Menezes, T. M., da Silva, L. P., Pires, D. S., Princival, J. L., Seabra, G. & Neves, J. L. (2019). Int. J. Biol. Macromol. 136, 1034–1041.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o413–o414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDelatour, T., Huertas-Pérez, J. F., Dubois, M., Theurillat, X., Desmarchelier, A., Ernest, M. & Stadler, R. H. (2020). Food Chem. 303, 125406.  Web of Science CrossRef PubMed Google Scholar
First citationDige, N. C., Mahajan, P. G., Raza, H., Hassan, M., Vanjare, B. D., Hong, H., Hwan Lee, K., Latip, J. & Seo, S.-Y. (2019). Bioorg. Chem. 92, 103201.  Web of Science CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaba, P. M., Diouf, O., Gaye, M., Sall, A. S., Barry, A. H., Weller, R. & Chahrazed, B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 421–422.  Google Scholar
First citationJiang, J.-H. (2010). Acta Cryst. E66, o627.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010a). Acta Cryst. E66, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010b). Acta Cryst. E66, o2061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010c). Acta Cryst. E66, o1670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaurya, M. R., Agarwal, S., Bader, C., Ebel, M. & Rehder, D. (2005). Dalton Trans. pp. 537–544.  Web of Science CSD CrossRef Google Scholar
First citationMohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). J. Coord. Chem. 69, 3545–3559.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorehouse, K. M., Perez, G. & McNeal, T. P. (2018). Radiat. Phys. Chem. 152, 81–88.  Web of Science CrossRef CAS Google Scholar
First citationQian, H., Zhang, T., Song, L., Yu, S., Yuan, Q., Sun, L., Zhang, D., Yin, Z. & Dai, Y. (2017). Eur. J. Org. Chem. 2017, 1337–1342.  Web of Science CSD CrossRef CAS Google Scholar
First citationRehman, H., Jahan, S., Ullah, I. & Winberg, S. (2019). Chemosphere, 230, 327–336.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRodríguez-Argüelles, M. C., Cao, R., García-Deibe, A. M., Pelizzi, C., Sanmartín-Matalobos, J. & Zani, F. (2009). Polyhedron, 28, 2187–2195.  Google Scholar
First citationSathyadevi, P., Krishnamoorthy, P., Jayanthi, E., Butorac, R. R., Cowley, A. H. & Dharmaraj, N. (2012). Inorg. Chim. Acta, 384, 83–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationSennappan, M., Krishna, P. M. & Krishna, R. H. (2019). J. Mol. Struct. 1178, 333–340.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, P. P., Guerra, W., Dos Santos, G. C., Fernandes, N. G., Silveira, J. N., da Costa Ferreira, A. M., Bortolotto, T., Terenzi, H., Bortoluzzi, A. J., Neves, A. & Pereira-Maia, E. C. (2014). J. Inorg. Biochem. 132, 67–76.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSingh, Y. P., Patel, R. N., Singh, Y., Butcher, R. J., Vishakarma, P. K. & Singh, R. K. B. (2017). Polyhedron, 122, 1–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationSirot, V., Rivière, G., Leconte, S., Vin, K., Traore, T., Jean, J., Carne, G., Gorecki, S., Veyrand, B., Marchand, P., Le Bizec, B., Jean-Pierre, C., Feidt, C., Vasseur, P., Lambert, M., Inthavong, C., Guérin, T. & Hulin, M. (2019). Food Chem. Toxicol. 130, 308–316.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSriram, D., Yogeeswari, P., Vyas, D. R. K., Senthilkumar, P., Bhat, P. & Srividya, M. (2010). Bioorg. Med. Chem. Lett. 20, 4313–4316.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTai, X.-S. & Wang, X. (2017). Crystallogr. Rep. 62, 242–245.  Web of Science CSD CrossRef CAS Google Scholar
First citationTorre, M. F. de la, González, S., Campos, E. G., Mussons, M. L., Morán, J. R. & Caballero, M. C. (1997). Tetrahedron Lett. 38, 8591–8594.  Google Scholar
First citationWang, L.-H. & Tai, X.-S. (2016). Crystals, 6, 57–63.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds