research communications
N′-[4-(dimethylamino)benzylidene]furan-2-carbohydrazide monohydrate
ofaDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and bUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
*Correspondence e-mail: i6thiam@yahoo.fr
The condensation of 2-furoic hydrazide and 4-dimethyl aminobenzaldehyde in ethanol yielded a yellow solid formulated as the title compound, C14H15N3O2·H2O. The crystal packing is stabilized by intermolecular O(water)—H⋯O,N(carbohydrazide) and N—H⋯O(water) hydrogen bonds, which form a two-dimensional network along the bc plane. Additional C—H⋯O interactions link the molecules into a three-dimensional network. The dihedral angle between the mean planes of the benzene and the furan ring is 34.47 (6)°. The carbohydrazide moiety, i.e., the C=N—N—C=O fragment and the benzene ring are almost coplanar, with an angle of 6.75 (9)° between their mean planes.
Keywords: crystal structure; hydrazide; hydrazone; furoic acid.
CCDC reference: 1994610
1. Chemical context
Furan is a colorless toxic chemical produced in various food items during heat processing and in some industrial processes (Delatour et al., 2020; Rehman et al., 2019; Morehouse et al., 2018; Sirot et al., 2019). It has been reported that furan can induce oxidative stress, endocrine disruption and toxic effects on the reproductive system of male rats (Rehman et al., 2019). However, other studies have shown its ability to inhibit tyrosinase, which is an enzyme responsible for many skin disorders and diseases (Barros et al., 2019). Furan derivatives, such as are precursors for a large variety of compounds. For example, receptors for carboxylates were prepared from furoic acid hydrazide (de la Torre et al., 1997). The biological activities of various furoic acid have been evaluated against Mycobacterium tuberculosis (Sriram et al., 2010), myelogenous leukemia cells (Silva et al., 2014) and for tyrosinase inhibition (Dige et al., 2019). of this type have also been used in the study of interactions of DNA with small organic or metal–organic molecules to help the development of new drugs. Indeed, the elucidation of the mechanisms involved in the interaction of DNA with these small molecules makes it possible to develop models (Sathyadevi et al., 2012; Sennappan et al., 2019). In this paper, we report the synthesis and the characterization of the title compound, obtained from the condensation reaction between furoic acid hydrazide and 4-aminobenzaldehyde.
2. Structural commentary
The molecular structure of the title compound (I) with the atomic-labeling scheme is shown in Fig. 1. The of I contains one molecule of the Schiff base ligand and one water molecule. The molecule adopts an E configuration with respect to the C9=N2 bond. The carbohydrazide moiety, C9=N2—N3—C10=O, is almost coplanar with the benzene ring, with an angle of 6.75 (9)° between their mean planes. The C10=O1 bond length [1.2392 (16) Å], which has double-bond character, shows that the compound did not undergo enolization as observed in some furoic hydrazide derivatives (Rodríguez-Argüelles et al., 2009). It exists only in the keto form. This form of the Schiff base is further confirmed by the N3—C10 [1.3383 (17) Å] and N2—N3 [1.3846 (14) Å] bond distances, which indicate that these are single bonds and by N2=C9 [1.2832 (17) Å], which is a double bond.
The O1 and N2 atoms are in a syn conformation with respect to the C10—N3 link [O1—C10—N3—N2 = −1.2 (2)°]. The dihedral angle between the benzene and the furan rings is 34.47 (6)°. The presence of the lattice water molecule differentiates the title compound I from that reported by Li & Meng (2010). In our compound, the oxygen atom of the furan ring and the oxygen atom of the carbonyl group are in a syn orientation with respect to the C10—C11 bond [O1—C10—C11—O2 = −26.44 (19)°], similar to what was observed for the compound (E)-N'-(2-hydroxybenzylidene)furan-2-carbohydrazide by Bikas et al. (2010). This is in contrast with most from furan-2-carbohydrazide, including the anhydrous form of the title compound, which assume an anti conformation with respect to the link between the carbonyl atom and the Cipso atom of the furan ring (Jiang, 2010; Li & Jian, 2010a,b,c; Li & Meng, 2010).
3. Supramolecular features
In the crystal, each independent water molecule donates hydrogen bonds to the carbonyl oxygen atom of two ligand molecules, forming a tetramer with R42(8) rings (Fig. 2, Table 1). One of the hydrogen bonds donated by water is bifurcated between two acceptors, O1 and N2. The structure is built up further around the water molecules by N—H⋯Owater hydrogen bonds, thus producing layers parallel to the bc plane. Additional C—H⋯O interactions interconnect the layers and consolidate the structure into a three-dimensional network (Fig. 3).
4. Database survey
Reflecting the interest in compounds similar to I, no fewer than 43 associated structures are included in the Cambridge Structural Database (CSD version 5.40, last update November 2018; Groom et al., 2016). Of these, KABNOS (Li & Meng, 2010) has the most similar structure to the title compound, the only differences being the presence of the water molecule and the rotation of the furan ring around the link between the carbonyl C atom and the Cipso atom of the furan ring in the title compound (see Structural commentary). Several hits are found with the fragment furan-2-carbohydrazide. The difference between them is the substitution of the aromatic ring by a variety of groups, such as NO2 for AZILOM (Wang & Tai, 2016), hydroxyl for CEDZIX (Mohanraj et al., 2016) and DUSZEX (Bikas et al., 2010), a CH3 group for DUTJOS (Li & Jian, 2010b), a methoxy group for EMOMUP (Cui et al., 2010) or a halogen atom for GAQKEQ (Bikas et al., 2012). These kinds of were used for preparing complexes with transition-metal or lanthanide ions. The ligand acts in a bidentate or tridentate fashion, as reported in the literature [ABUKIU (Singh et al., 2017), DAZMEX (Haba et al., 2005), FIGMEO (Maurya et al., 2005), and VIVGOY (Alagesan et al., 2014)]. One organometallic palladium complex was found containing a metal–carbon bond in a six-membered ring (TAPXEQ; Qian et al., 2017). One hit corresponds to a calcium complex, in which only the carbonyl oxygen atom is coordinated to the calcium ion (YEDCIW; Tai & Wang, 2017).
5. Synthesis and crystallization
All purchased chemicals and solvents were of reagent grade and were used without further purification. The melting point was determined with a Büchi 570 melting-point apparatus and is uncorrected. To a mixture of 0.5 g (3.96 mmol) of 2-furoic hydrazide and 25 ml of ethanol were added a few drops of glacial acetic acid. A solution of 0.59 g (3.96 mmol) of 4-dimethyl aminobenzaldehyde in 25 ml of ethanol was added dropwise. The resulting mixture was stirred at 323 K for 24 h. On cooling in an ice bath, a yellow solid appeared after a few minutes. The compound was filtered off, washed with water and diethyl ether, and dried at room temperature; 0.42 g of solid was obtained (yield: 37.96%). A small quantity was purified by recrystallization from a dimethylformamide solution and yellow single crystals suitable for XRD grew within a few weeks.
6. Refinement
Crystal data, data collection and structure . All H atoms of the ligand were located by HFIX, positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å (CarH), 0.98 Å (CH3) or 0.88 Å (NH). Both H atoms of the water molecule were located in a difference-Fourier map, positioned geometrically and refined as a free rotating group with idealized geometry.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1994610
https://doi.org/10.1107/S205698902000465X/fy2143sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902000465X/fy2143Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902000465X/fy2143Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C14H15N3O2·H2O | F(000) = 584 |
Mr = 275.30 | Dx = 1.334 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 12.9328 (5) Å | Cell parameters from 7776 reflections |
b = 11.2551 (4) Å | θ = 2.4–31.3° |
c = 9.8092 (3) Å | µ = 0.10 mm−1 |
β = 106.245 (4)° | T = 100 K |
V = 1370.82 (9) Å3 | Block, yellow |
Z = 4 | 0.20 × 0.06 × 0.06 mm |
XtaLAB AFC12 (RCD3) diffractometer | 3102 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source | 2649 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.059 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.5°, θmin = 2.4° |
ω scans | h = −16→15 |
Absorption correction: gaussian (CrysAlis Pro; Rigaku OD, 2019) | k = −12→14 |
Tmin = 0.536, Tmax = 1.000 | l = −12→12 |
14982 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0786P)2 + 0.3872P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3102 reflections | Δρmax = 0.37 e Å−3 |
186 parameters | Δρmin = −0.35 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.94791 (8) | 0.57248 (8) | 0.63770 (9) | 0.0190 (2) | |
O3 | 0.86017 (8) | 0.55049 (8) | 0.33216 (9) | 0.0176 (2) | |
H3A | 0.915716 | 0.504655 | 0.340015 | 0.026* | |
H3B | 0.867014 | 0.575836 | 0.417953 | 0.026* | |
O2 | 1.06257 (9) | 0.57949 (9) | 0.92208 (10) | 0.0229 (3) | |
N2 | 0.81295 (9) | 0.75421 (10) | 0.52944 (11) | 0.0157 (3) | |
N3 | 0.88775 (9) | 0.75945 (10) | 0.66155 (11) | 0.0159 (3) | |
H3 | 0.893005 | 0.823175 | 0.715043 | 0.019* | |
N1 | 0.39936 (10) | 0.87858 (10) | 0.00561 (12) | 0.0199 (3) | |
C9 | 0.74829 (11) | 0.84311 (11) | 0.50238 (13) | 0.0159 (3) | |
H9 | 0.758000 | 0.905931 | 0.569470 | 0.019* | |
C11 | 1.02928 (11) | 0.68189 (11) | 0.84694 (13) | 0.0154 (3) | |
C12 | 1.07767 (11) | 0.77766 (12) | 0.92134 (14) | 0.0178 (3) | |
H12 | 1.068840 | 0.858404 | 0.892168 | 0.021* | |
C6 | 0.66077 (11) | 0.85061 (11) | 0.37235 (13) | 0.0151 (3) | |
C3 | 0.48293 (11) | 0.86842 (11) | 0.12594 (13) | 0.0148 (3) | |
C7 | 0.63960 (11) | 0.76157 (11) | 0.26809 (13) | 0.0153 (3) | |
H7 | 0.685817 | 0.694446 | 0.280113 | 0.018* | |
C10 | 0.95190 (11) | 0.66568 (11) | 0.70625 (13) | 0.0152 (3) | |
C8 | 0.55339 (11) | 0.76949 (11) | 0.14894 (13) | 0.0153 (3) | |
H8 | 0.540804 | 0.707402 | 0.080663 | 0.018* | |
C4 | 0.50366 (11) | 0.95729 (12) | 0.23173 (13) | 0.0173 (3) | |
H4 | 0.457358 | 1.024256 | 0.220967 | 0.021* | |
C5 | 0.59054 (11) | 0.94761 (11) | 0.35049 (13) | 0.0174 (3) | |
H5 | 0.603117 | 1.008900 | 0.419786 | 0.021* | |
C13 | 1.14452 (12) | 0.73294 (13) | 1.05223 (14) | 0.0213 (3) | |
H13 | 1.189178 | 0.778064 | 1.127900 | 0.026* | |
C1 | 0.32241 (11) | 0.97532 (13) | −0.00914 (14) | 0.0213 (3) | |
H1A | 0.290556 | 0.973484 | 0.070497 | 0.032* | |
H1B | 0.265496 | 0.966333 | −0.098568 | 0.032* | |
H1C | 0.359355 | 1.051331 | −0.009268 | 0.032* | |
C14 | 1.13200 (12) | 0.61440 (13) | 1.04763 (14) | 0.0240 (3) | |
H14 | 1.166921 | 0.561822 | 1.122047 | 0.029* | |
C2 | 0.37893 (12) | 0.78798 (13) | −0.10364 (14) | 0.0227 (3) | |
H2A | 0.446986 | 0.764697 | −0.121504 | 0.034* | |
H2B | 0.329883 | 0.819423 | −0.191193 | 0.034* | |
H2C | 0.346096 | 0.718529 | −0.072104 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0221 (6) | 0.0142 (5) | 0.0170 (5) | 0.0019 (4) | −0.0008 (4) | −0.0029 (3) |
O3 | 0.0184 (5) | 0.0183 (5) | 0.0142 (4) | 0.0004 (4) | 0.0014 (4) | 0.0006 (3) |
O2 | 0.0303 (6) | 0.0168 (5) | 0.0160 (5) | 0.0017 (4) | −0.0030 (4) | 0.0030 (3) |
N2 | 0.0145 (6) | 0.0170 (5) | 0.0120 (5) | −0.0006 (4) | −0.0022 (4) | −0.0007 (4) |
N3 | 0.0162 (6) | 0.0155 (5) | 0.0122 (5) | 0.0013 (4) | −0.0022 (4) | −0.0032 (4) |
N1 | 0.0179 (6) | 0.0215 (6) | 0.0159 (5) | 0.0059 (4) | −0.0023 (4) | −0.0005 (4) |
C9 | 0.0165 (7) | 0.0154 (6) | 0.0142 (6) | −0.0014 (5) | 0.0015 (5) | −0.0011 (4) |
C11 | 0.0145 (7) | 0.0169 (6) | 0.0136 (6) | 0.0032 (5) | 0.0016 (5) | 0.0022 (4) |
C12 | 0.0169 (7) | 0.0157 (6) | 0.0179 (6) | 0.0029 (5) | 0.0002 (5) | −0.0004 (5) |
C6 | 0.0151 (7) | 0.0150 (6) | 0.0136 (6) | −0.0006 (5) | 0.0016 (5) | 0.0019 (4) |
C3 | 0.0134 (7) | 0.0169 (6) | 0.0131 (6) | −0.0002 (5) | 0.0023 (5) | 0.0028 (4) |
C7 | 0.0161 (7) | 0.0135 (6) | 0.0154 (6) | 0.0017 (5) | 0.0029 (5) | 0.0024 (4) |
C10 | 0.0153 (7) | 0.0155 (6) | 0.0137 (6) | −0.0014 (5) | 0.0023 (5) | −0.0004 (4) |
C8 | 0.0169 (7) | 0.0144 (6) | 0.0138 (6) | 0.0004 (5) | 0.0031 (5) | −0.0011 (4) |
C4 | 0.0176 (7) | 0.0145 (6) | 0.0187 (6) | 0.0037 (5) | 0.0031 (5) | 0.0023 (5) |
C5 | 0.0196 (7) | 0.0140 (6) | 0.0167 (6) | 0.0004 (5) | 0.0018 (5) | −0.0019 (4) |
C13 | 0.0187 (7) | 0.0247 (7) | 0.0167 (6) | 0.0029 (5) | −0.0017 (5) | −0.0025 (5) |
C1 | 0.0168 (7) | 0.0230 (7) | 0.0213 (7) | 0.0059 (5) | 0.0009 (5) | 0.0033 (5) |
C14 | 0.0274 (8) | 0.0249 (7) | 0.0143 (6) | 0.0045 (6) | −0.0028 (5) | 0.0025 (5) |
C2 | 0.0210 (8) | 0.0241 (7) | 0.0181 (6) | 0.0018 (5) | −0.0026 (5) | −0.0015 (5) |
O1—C10 | 1.2392 (16) | C6—C5 | 1.3979 (18) |
O3—H3A | 0.8701 | C3—C8 | 1.4163 (18) |
O3—H3B | 0.8694 | C3—C4 | 1.4120 (18) |
O2—C11 | 1.3709 (15) | C7—H7 | 0.9500 |
O2—C14 | 1.3633 (16) | C7—C8 | 1.3740 (17) |
N2—N3 | 1.3846 (14) | C8—H8 | 0.9500 |
N2—C9 | 1.2832 (17) | C4—H4 | 0.9500 |
N3—H3 | 0.8800 | C4—C5 | 1.3780 (18) |
N3—C10 | 1.3383 (17) | C5—H5 | 0.9500 |
N1—C3 | 1.3641 (16) | C13—H13 | 0.9500 |
N1—C1 | 1.4547 (17) | C13—C14 | 1.343 (2) |
N1—C2 | 1.4491 (17) | C1—H1A | 0.9800 |
C9—H9 | 0.9500 | C1—H1B | 0.9800 |
C9—C6 | 1.4517 (17) | C1—H1C | 0.9800 |
C11—C12 | 1.3530 (18) | C14—H14 | 0.9500 |
C11—C10 | 1.4720 (17) | C2—H2A | 0.9800 |
C12—H12 | 0.9500 | C2—H2B | 0.9800 |
C12—C13 | 1.4242 (18) | C2—H2C | 0.9800 |
C6—C7 | 1.4030 (18) | ||
H3A—O3—H3B | 104.5 | N3—C10—C11 | 113.95 (11) |
C14—O2—C11 | 105.77 (10) | C3—C8—H8 | 119.4 |
C9—N2—N3 | 113.86 (10) | C7—C8—C3 | 121.29 (11) |
N2—N3—H3 | 120.7 | C7—C8—H8 | 119.4 |
C10—N3—N2 | 118.67 (10) | C3—C4—H4 | 119.7 |
C10—N3—H3 | 120.7 | C5—C4—C3 | 120.50 (12) |
C3—N1—C1 | 120.22 (11) | C5—C4—H4 | 119.7 |
C3—N1—C2 | 121.15 (11) | C6—C5—H5 | 118.9 |
C2—N1—C1 | 118.37 (11) | C4—C5—C6 | 122.18 (12) |
N2—C9—H9 | 119.0 | C4—C5—H5 | 118.9 |
N2—C9—C6 | 121.99 (11) | C12—C13—H13 | 126.8 |
C6—C9—H9 | 119.0 | C14—C13—C12 | 106.48 (12) |
O2—C11—C10 | 115.39 (11) | C14—C13—H13 | 126.8 |
C12—C11—O2 | 110.58 (11) | N1—C1—H1A | 109.5 |
C12—C11—C10 | 134.03 (11) | N1—C1—H1B | 109.5 |
C11—C12—H12 | 127.0 | N1—C1—H1C | 109.5 |
C11—C12—C13 | 106.10 (12) | H1A—C1—H1B | 109.5 |
C13—C12—H12 | 127.0 | H1A—C1—H1C | 109.5 |
C7—C6—C9 | 122.97 (12) | H1B—C1—H1C | 109.5 |
C5—C6—C9 | 119.58 (11) | O2—C14—H14 | 124.5 |
C5—C6—C7 | 117.39 (12) | C13—C14—O2 | 111.06 (12) |
N1—C3—C8 | 121.51 (11) | C13—C14—H14 | 124.5 |
N1—C3—C4 | 121.20 (12) | N1—C2—H2A | 109.5 |
C4—C3—C8 | 117.28 (12) | N1—C2—H2B | 109.5 |
C6—C7—H7 | 119.3 | N1—C2—H2C | 109.5 |
C8—C7—C6 | 121.34 (12) | H2A—C2—H2B | 109.5 |
C8—C7—H7 | 119.3 | H2A—C2—H2C | 109.5 |
O1—C10—N3 | 124.19 (12) | H2B—C2—H2C | 109.5 |
O1—C10—C11 | 121.86 (11) | ||
O2—C11—C12—C13 | −0.78 (16) | C12—C11—C10—N3 | −27.5 (2) |
O2—C11—C10—O1 | −26.44 (19) | C12—C13—C14—O2 | 0.68 (18) |
O2—C11—C10—N3 | 153.34 (12) | C6—C7—C8—C3 | 0.6 (2) |
N2—N3—C10—O1 | −1.2 (2) | C3—C4—C5—C6 | −0.5 (2) |
N2—N3—C10—C11 | 179.07 (11) | C7—C6—C5—C4 | −0.2 (2) |
N2—C9—C6—C7 | 0.7 (2) | C10—C11—C12—C13 | 179.99 (15) |
N2—C9—C6—C5 | 177.86 (13) | C8—C3—C4—C5 | 1.20 (19) |
N3—N2—C9—C6 | −176.75 (11) | C4—C3—C8—C7 | −1.24 (19) |
N1—C3—C8—C7 | 177.79 (12) | C5—C6—C7—C8 | 0.16 (19) |
N1—C3—C4—C5 | −177.83 (12) | C1—N1—C3—C8 | 174.21 (12) |
C9—N2—N3—C10 | 173.35 (12) | C1—N1—C3—C4 | −6.80 (19) |
C9—C6—C7—C8 | 177.35 (12) | C14—O2—C11—C12 | 1.18 (16) |
C9—C6—C5—C4 | −177.48 (12) | C14—O2—C11—C10 | −179.43 (12) |
C11—O2—C14—C13 | −1.14 (17) | C2—N1—C3—C8 | 0.3 (2) |
C11—C12—C13—C14 | 0.07 (17) | C2—N1—C3—C4 | 179.28 (13) |
C12—C11—C10—O1 | 152.75 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O1i | 0.87 | 1.92 | 2.7844 (15) | 170 |
O3—H3B···O1 | 0.87 | 2.12 | 2.9033 (12) | 150 |
O3—H3B···N2 | 0.87 | 2.48 | 3.1681 (14) | 137 |
N3—H3···O3ii | 0.88 | 1.95 | 2.7996 (14) | 162 |
C9—H9···O3ii | 0.95 | 2.59 | 3.3724 (15) | 140 |
C12—H12···O1iii | 0.95 | 2.43 | 3.3687 (16) | 170 |
C7—H7···O3 | 0.95 | 2.71 | 3.6295 (16) | 164 |
C1—H1A···O3iv | 0.98 | 2.55 | 3.4057 (17) | 146 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+2, y+1/2, −z+3/2; (iv) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors are grateful to the Sonatel Foundation for financial support.
References
Alagesan, M., Bhuvanesh, N. S. P. & Dharmaraj, N. (2014). Dalton Trans. 43, 6087–6099. Web of Science CSD CrossRef CAS PubMed Google Scholar
Barros, M. R., Menezes, T. M., da Silva, L. P., Pires, D. S., Princival, J. L., Seabra, G. & Neves, J. L. (2019). Int. J. Biol. Macromol. 136, 1034–1041. Web of Science CrossRef CAS PubMed Google Scholar
Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o413–o414. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584. Web of Science CSD CrossRef CAS PubMed Google Scholar
Delatour, T., Huertas-Pérez, J. F., Dubois, M., Theurillat, X., Desmarchelier, A., Ernest, M. & Stadler, R. H. (2020). Food Chem. 303, 125406. Web of Science CrossRef PubMed Google Scholar
Dige, N. C., Mahajan, P. G., Raza, H., Hassan, M., Vanjare, B. D., Hong, H., Hwan Lee, K., Latip, J. & Seo, S.-Y. (2019). Bioorg. Chem. 92, 103201. Web of Science CrossRef PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haba, P. M., Diouf, O., Gaye, M., Sall, A. S., Barry, A. H., Weller, R. & Chahrazed, B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 421–422. Google Scholar
Jiang, J.-H. (2010). Acta Cryst. E66, o627. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y.-F. & Jian, F.-F. (2010a). Acta Cryst. E66, o2157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y.-F. & Jian, F.-F. (2010b). Acta Cryst. E66, o2061. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y.-F. & Jian, F.-F. (2010c). Acta Cryst. E66, o1670. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2696. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maurya, M. R., Agarwal, S., Bader, C., Ebel, M. & Rehder, D. (2005). Dalton Trans. pp. 537–544. Web of Science CSD CrossRef Google Scholar
Mohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). J. Coord. Chem. 69, 3545–3559. Web of Science CSD CrossRef CAS Google Scholar
Morehouse, K. M., Perez, G. & McNeal, T. P. (2018). Radiat. Phys. Chem. 152, 81–88. Web of Science CrossRef CAS Google Scholar
Qian, H., Zhang, T., Song, L., Yu, S., Yuan, Q., Sun, L., Zhang, D., Yin, Z. & Dai, Y. (2017). Eur. J. Org. Chem. 2017, 1337–1342. Web of Science CSD CrossRef CAS Google Scholar
Rehman, H., Jahan, S., Ullah, I. & Winberg, S. (2019). Chemosphere, 230, 327–336. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rodríguez-Argüelles, M. C., Cao, R., García-Deibe, A. M., Pelizzi, C., Sanmartín-Matalobos, J. & Zani, F. (2009). Polyhedron, 28, 2187–2195. Google Scholar
Sathyadevi, P., Krishnamoorthy, P., Jayanthi, E., Butorac, R. R., Cowley, A. H. & Dharmaraj, N. (2012). Inorg. Chim. Acta, 384, 83–96. Web of Science CSD CrossRef CAS Google Scholar
Sennappan, M., Krishna, P. M. & Krishna, R. H. (2019). J. Mol. Struct. 1178, 333–340. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, P. P., Guerra, W., Dos Santos, G. C., Fernandes, N. G., Silveira, J. N., da Costa Ferreira, A. M., Bortolotto, T., Terenzi, H., Bortoluzzi, A. J., Neves, A. & Pereira-Maia, E. C. (2014). J. Inorg. Biochem. 132, 67–76. Web of Science CSD CrossRef CAS PubMed Google Scholar
Singh, Y. P., Patel, R. N., Singh, Y., Butcher, R. J., Vishakarma, P. K. & Singh, R. K. B. (2017). Polyhedron, 122, 1–15. Web of Science CSD CrossRef CAS Google Scholar
Sirot, V., Rivière, G., Leconte, S., Vin, K., Traore, T., Jean, J., Carne, G., Gorecki, S., Veyrand, B., Marchand, P., Le Bizec, B., Jean-Pierre, C., Feidt, C., Vasseur, P., Lambert, M., Inthavong, C., Guérin, T. & Hulin, M. (2019). Food Chem. Toxicol. 130, 308–316. Web of Science CrossRef CAS PubMed Google Scholar
Sriram, D., Yogeeswari, P., Vyas, D. R. K., Senthilkumar, P., Bhat, P. & Srividya, M. (2010). Bioorg. Med. Chem. Lett. 20, 4313–4316. Web of Science CrossRef CAS PubMed Google Scholar
Tai, X.-S. & Wang, X. (2017). Crystallogr. Rep. 62, 242–245. Web of Science CSD CrossRef CAS Google Scholar
Torre, M. F. de la, González, S., Campos, E. G., Mussons, M. L., Morán, J. R. & Caballero, M. C. (1997). Tetrahedron Lett. 38, 8591–8594. Google Scholar
Wang, L.-H. & Tai, X.-S. (2016). Crystals, 6, 57–63. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.