research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-butyl-2,6-bis­­(4-fluoro­phen­yl)piperidin-4-one

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore, Tamilnadu 641 046, India, bDepartment of Chemistry, Thiruvalluvar Arts and Science College, Kurinjipadi, Tamilnadu 607 302, India, cDepartment of Electrical and Computer Engineering, National University of Singapore, Singapore 117 583, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: sivakumar.phd2016@gmail.com, jjasinski@keene.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 December 2019; accepted 2 April 2020; online 9 April 2020)

The title compound, C21H23F2NO, consists of two fluoro­phenyl groups and one butyl group equatorially oriented on a piperidine ring, which adopts a chair conformation. The dihedral angle between the mean planes of the phenyl rings is 72.1 (1)°. In the crystal, N—H⋯O and weak C—H⋯F inter­actions, which form R22[14] motifs, link the mol­ecules into infinite C(6) chains propagating along [001]. A weak C—H⋯π inter­action is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (53.3%), H⋯C/C⋯H (19.1%), H⋯F/F⋯H (15.7%) and H⋯O/O⋯H (7.7%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure in the solid state and used to determine the HOMO–LUMO energy gap and compare it to the UV–vis experimental spectrum.

1. Chemical context

Piperidin-4-one compounds have various biological properties and have applications as anti-viral, antitumor, and antihistaminic agents (El-Subbagh et al., 2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]; Mobio et al., 1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.]; Katritzky & Fan, 1990[Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205-3209.]; Arulraj et al., 2020[Arulraj, R., Sivakumar, S., Rajkumar, K., Jasinski, J. P., Kaur, M. & Thiruvalluvar, A. (2019). J. Chem. Cryst. 50, 41-51.]). 2,6-Disubstituted piperidine-4-ones commonly adopt a chair conformation for the heterocyclic ring (see, for example, Rajkumar et al., 2018[Rajkumar, K., Sivakumar, S., Arulraj, R., Kaur, M., Jasinski, J. P., Manimekalai, A. & Thiruvalluvar, A. (2018). Acta Cryst. E74, 483-486.]). However, on varying the substituents attached to the phenyl ring, the conformation of the ring may change (e.g. Ramachandran et al., 2007[Ramachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.]; Arulraj et al., 2020[Arulraj, R., Sivakumar, S., Suresh, S. & Anitha, K. (2020). Spectrochim. Acta Part A, 232, 118166.]). Additionally, the attached functional group on the crystalline compound is important to determine the activity of the compound in the area of drug discovery.

[Scheme 1]

As part of our studies in this area, we now describe the synthesis and structure of the title compound, C21H23F2NO, (I)[link], in order to establish the structural effects of the butyl and fluoro groups on the conformation. DFT calculations and a Hirshfeld analysis have also been carried out.

2. Structural commentary

Compound (I)[link] crystallizes in space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). In the arbitrarily chosen asymmetric unit, the stereogenic centres have the following configurations: C1 S, C2 R and C5 R, but crystal symmetry generates a racemic mixture. The piperidine ring adopts a slightly distorted chair conformation with puckering parameters Q = 0.5864 (16) Å, θ = 6.56 (15)°, φ = 356.9 (14)°. The dihedral angles for the C1–C5/N1 (all atoms) piperidine (A), C6–C11 fluorophenyl (B) and C12–C17 fluorophenyl (C) rings are A/B = 65.50 (8), A/C = 73.87 (8) and B/C = 72.11 (8)°. The substituents on the piperidine ring adopt equatorial orientations with the keto oxygen atom being anti-clinal [O1—C3—C2—C1 = −124.44 (16)°]. The butyl group lies in a syn-periplanar orientation [O1—C3—C2—C18 = 0.7 (2)] while the fluoro­phenyl groups are both anti-clinal [N1—C5—C6—C7 = −148.28 (13) and N1—C1—C12—C17 = −75.42 (16)°]. The sum of the bond angles around N1 is 336.8°, which is consistent with sp3 hybridization for this atom (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of C21H23F2NO, showing displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

N1—H1⋯O1 and weak C7—H7⋯F1 inter­actions are observed in the crystal of (I)[link] (Table 1[link], Fig. 2[link]), which form [R_{2}^{2}][14] graph-set ring motifs and infinite C(6) chains (via the N—H⋯O bond) along [001]. Some longer C—H⋯O and C—H⋯F contacts are also present as well as a single weak C—H⋯π inter­action (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 1.05 2.06 3.0921 (16) 165
C7—H7⋯F1ii 0.95 2.52 3.3291 (18) 143
C10—H10⋯O1iii 0.95 2.66 3.470 (2) 144
C16—H16⋯F2iv 0.95 2.62 3.3680 (18) 136
C21—H21C⋯F2ii 0.98 2.58 3.489 (2) 154
C21—H21ACg3v 0.98 2.95 3.793 (2) 145
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Crystal packing for C21H23F2NO viewed along the a-axis direction. Dashed lines indicate N—H⋯O hydrogen bonds and weak C—H⋯F inter­actions forming [R_{2}^{2}](14) loops and infinite C(6) chains (via the N—H⋯O bond) along the c-axis direction.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to visualize the inter­molecular inter­actions in (I)[link]. The bright-red spot near H1 indicates its role as a hydrogen-bond donor to O1 (Fig. 3[link]) and another red region near H7 correlates with the C7—H7⋯F1 inter­action. The shape-index of the HS represents a way to visualize ππ stacking by the presence of red and/or blue triangles but there are none in in the title compound (see Figure S1 in the supporting information). The curvedness of the HS can be used to divide the mol­ecular surface into contact patches with each neighbouring mol­ecule thereby using it to define a coordination number in the crystal (see Figure S2 in the supporting information).

[Figure 3]
Figure 3
A view of the three-dimensional Hirshfeld surface for C21H23F2NO, plotted over dnorm in the range −0.39 to 1.31 a.u.

Two-dimensional fingerprint plots show the relative contributions of the various types of contacts to the Hirshfeld surface for (I)[link] (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The overal plot is shown in Fig. 4[link]a. The H⋯H contacts (53.3%) are the most important inter­actions (Fig. 4[link]b), presumably because of the large hydrogen content of (I)[link], with a pair of blue-coloured blunt spikes directing towards the bottom left, in the region 1.20 Å < (de + di) < 1.19 Å. The pair of wings for the H⋯C/C⋯H contacts (Fig. 4[link]c; 19.1% contribution to the HS) is in the region 1.04 Å < (de + di) < 1.58 Å and includes the weak C—H⋯π inter­action. The H⋯F/F⋯H contacts (Fig. 4[link]d; 15.7% contribution) are seen as a pair of wings in the region 1.04 Å < (de + di) < 1.38 Å. The wings for the H⋯O/O⋯H contacts (Fig. 4[link]e; 7.7% contribution) are in the region of 0.88 Å < (de + di) < 1.20 Å while the blunt wings in the plot for F⋯F contacts (Fig. 4[link]f; 2.6%) are in the region 1.60 Å < (de + di) < 1.70 Å. The C⋯C contacts (Fig. 4[link]g) make a negligible 0.1% contribution and are viewed as a dash pattern pointing diagonally left. The O⋯O contacts (Fig. 4[link]h) make no contribution to the HS. The most significant of these contributions to the overall Hirshfeld surface are shown in Figure S3 in the supporting information.

[Figure 4]
Figure 4
A view of the two-dimensional fingerprint plots for C21H23F2NO, showing (a) all inter­actions, and separated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯F/F⋯H, (e) O⋯H/H⋯O, (f) F⋯F, (g) C—C and (h) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. DFT Calculations

A density functional theory (DFT) geometry-optimized calculation for (I)[link] was carried out using WebMo Pro (Schmidt & Polik, 2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLc: Holland. https://www.webmo.net]) in the GAUSSIAN 09 program package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]) using the 6-31+G(d) basis set (Hehre et al., 1986[Hehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). Abinitio Molecular Orbital Theory. New York: Wiley.]). The starting geometry was taken from the crystal structure and no solvent correction was applied. A comparison of bond angles and bond distances in the crystal to those from the DFT calculation are listed in supplementary Table S1, which generally shows good agreement. An overlay of the geometry-optimized calculation with the crystal structure has an r.m.s. deviation of 0.478 Å. The major difference between the experimental and calculated structures occurs in the orientation of the C12–C17 rings, which are rotated by 41.8 (6)° with respect to each other.

The calculated energies (eV) for the frontier mol­ecular orbitals are shown in Fig. 5[link] and key parameters are listed in supplementary Table S2. Both the HOMO and HOMO−1 are localized largely on the piperidine ring. For the LUMO, LUMO+1 and LUMO+2, the orbitals are delocalized over the piperidine ring as well as both phenyl rings. The observed UV/vis absorption spectrum (Fig. 6[link]) shows two band envelopes with λmax values located at ca 256 and 216 nm (∼4.84 and 5.74 eV). The molar extinction coefficients, , are 1.12 and 2.50 l mol−1 cm−1, respectively. We tentatively assign the first absorption band envelope at 256 nm to overlapping contributions from HOMO → LUMO (energy gap 5.71 eV), HOMO → LUMO+1 (5.83 eV) and HOMO−1 → LUMO (5.82 eV). The band at 216 nm is assigned to overlapping contributions from HOMO → LUMO+2 (5.89 eV), HOMO−1 → LUMO+1 (5.95 eV) and HOMO−1 → LUMO+2 (6.01 eV).

[Figure 5]
Figure 5
Schematic MO diagram.
[Figure 6]
Figure 6
UV–vis spectrum of C21H23F2NO

6. Database survey

A search in the Cambridge Crystallographic Database (CSD version 2.0.4 of December 2019; Groom et al.. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2,6-di­phenyl­piperidin-4-one skeleton resulted in 240 hits, which was refined to 44 matches by removing those structures in which the title skeleton substructure was combined with larger mol­ecules. The four most closely related remaining structures based on the pendant arms of the 2,6 di­phenyl­piperidine-4-one central substructure are 2,6-diphenyl-3-iso­propyl­piperidin-4-one (ACEZUD; Nilofar Nissa et al., 2001[Nilofar Nissa, M., Velmurugan, D., Narasimhan, S., Rajagopal, V. & Kim, M.-J. (2001). Acta Cryst. E57, o996-o998.]), t(3)-pentyl-r(2),c6)-di­phenyl­piperidin-4-one (RUGLOV; Gayathri et al., 2009[Gayathri, P., Jayabharathi, J., Rajarajan, G., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o3083.]), 3-(2-chloro­eth­yl)-r(2),c(6)-di­phenyl­piperidin-4-one (PEXDII; Rajkumar et al., 2018[Rajkumar, K., Sivakumar, S., Arulraj, R., Kaur, M., Jasinski, J. P., Manimekalai, A. & Thiruvalluvar, A. (2018). Acta Cryst. E74, 483-486.]) and 3-(2-chloro­eth­yl)-r(2),c(6)-bis­(4-fluoro­phen­yl)piperidin-4-one (PEXDOO; Rajkumar et al., 2018[Rajkumar, K., Sivakumar, S., Arulraj, R., Kaur, M., Jasinski, J. P., Manimekalai, A. & Thiruvalluvar, A. (2018). Acta Cryst. E74, 483-486.]). The piperidine ring in the title compound is in a slightly distorted chair conformation, similar to that observed in ACEZUD and PEXDOO but different from the chair conformation seen in RUGLOV and PEXDII. The dihedral angle between the mean planes of pendant phenyl rings is 72.(1)° in the title compound compared to 76.1 (1)° in PEXDOO, whereas it is 59.90 (5), 59.1 (1) and 63.4 (1)° in RUGLOV, PEXDII and ACEZUD, respectively. In all five compounds, various N—H⋯O and weak C—H⋯O, C—H⋯π or C—H⋯F inter­actions occur in the crystal.

7. Synthesis and crystallization

A mixture of ammonium acetate (0.100 mol, 7.71 g), 4-fluoro­benzaldehyde (0.200 mol, 22.0 ml) and 2-hepta­none (0.100 mol, 14.2 ml) in distilled ethanol was heated first to boiling. After cooling, the viscous liquid obtained was dissolved in ether (200 ml) and shaken with 100 ml concentrated hydro­chloric acid. The precipitated hydro­chloride of 3-butyl-2,6-bis­(4-fluoro­phen­yl)piperidin-4-one was removed by filtration and washed first with a 50 ml mixture of ethanol and ether (1:1) and then with ether to remove most of the coloured impurities. The resulting yellowish base was liberated from an alcoholic solution by adding aqueous ammonia (15 ml) and then diluted with water (200 ml). Then, 1.0 g of the crude sample was dissolved in 100 ml of absolute alcohol, warmed until the sample dissolved, and 2.0 g of animal charcoal added in the resulting solution. The hot solution was filtered and the procedure repeated again. The filtered solution was left for 48 h and colourless prisms of (I)[link] were collected in 75% yield. Analysis for C21H23F2NO (%): found C 74.24, H 6.16, N 4.03; calculated C 73.45, H 6.75, N 4.08; melting point 381.5 K.

[Scheme 2]

FT–IR (cm−1) (KBr): 3287 (νN—H), 3134, 2929, 2866 (νC—H), 1702 (νC=O), 1605, 1508 (νC=C), 793 (νC—Cl); 1H NMR (400 MHz, CDCl3): δ 7.01–7.45 (m, aromatic protons), 4.04 (d, H6 proton), 3.68 (s, H2 proton), 2.67 (t, H5a proton), 2.56 (dd, H5e proton), 2.0 (NH proton), 0.95–1.0 CH2(3), 1.09–1.15 CH2(2), 1.59–1.63 CH2(1), 0.74, (t, CH3 alkyl proton); 13C NMR (400 MHz, CDCl3): δ 129.16, 129.38, 128.18, 128.10, 115.64, 115.56, 115.43, 115.35 (aromatic carbon atoms), 138.52 and 137.64 (aromatic ipso carbon atoms), 66.33 (C2), 57.50 (C3), 208.7 (C4), 51.63 (C5), 61.08 (C6), 24.30 C18H2, 29.71 C19H2, 22.75 C20H2, 13.81 C21H3.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding atoms. The N-bound H atom was located in a difference map and its position was fixed. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases.

Table 2
Experimental details

Crystal data
Chemical formula C21H23F2NO
Mr 343.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 5.4945 (3), 25.0707 (13), 12.9811 (9)
β (°) 93.497 (6)
V3) 1784.83 (18)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.76
Crystal size (mm) 0.42 × 0.36 × 0.35
 
Data collection
Diffractometer Rigaku Oxford Diffraction Gemini Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.803, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6900, 3404, 3045
Rint 0.027
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.04
No. of reflections 3404
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-Butyl-2,6-bis(4-fluorophenyl)piperidin-4-one top
Crystal data top
C21H23F2NOF(000) = 728
Mr = 343.40Dx = 1.278 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 5.4945 (3) ÅCell parameters from 3131 reflections
b = 25.0707 (13) Åθ = 0.8–1.0°
c = 12.9811 (9) ŵ = 0.76 mm1
β = 93.497 (6)°T = 173 K
V = 1784.83 (18) Å3Prism, colourless
Z = 40.42 × 0.36 × 0.35 mm
Data collection top
Rigaku Oxford Diffraction Gemini Eos
diffractometer
3404 independent reflections
Radiation source: fine-focus sealed X-ray tube3045 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.027
ω scansθmax = 71.3°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 66
Tmin = 0.803, Tmax = 1.000k = 3026
6900 measured reflectionsl = 915
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.4364P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.26 e Å3
3404 reflectionsΔρmin = 0.24 e Å3
228 parametersExtinction correction: SHELXL (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0035 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.1088 (2)0.45264 (4)0.91794 (7)0.0458 (3)
F20.2626 (2)0.04577 (4)0.65950 (9)0.0493 (3)
O10.9789 (3)0.28871 (5)0.32525 (9)0.0439 (3)
N10.8301 (2)0.26447 (5)0.61588 (9)0.0265 (3)
H10.8598990.2508160.6924800.032*
C11.0000 (3)0.30675 (6)0.58925 (11)0.0267 (3)
H1A1.1632800.2902640.5806350.032*
C20.9099 (3)0.33248 (6)0.48525 (11)0.0278 (3)
H20.7457570.3483990.4943360.033*
C30.8784 (3)0.28808 (6)0.40558 (11)0.0312 (3)
C40.7247 (3)0.24148 (6)0.43663 (12)0.0341 (4)
H4A0.7292210.2128500.3842620.041*
H4B0.5532310.2529680.4409620.041*
C50.8253 (3)0.22036 (6)0.54247 (11)0.0282 (3)
H50.9964680.2078830.5356040.034*
C60.6767 (3)0.17398 (6)0.57869 (11)0.0261 (3)
C70.7422 (3)0.12243 (6)0.55255 (12)0.0303 (3)
H70.8837370.1169490.5153790.036*
C80.6046 (3)0.07877 (6)0.57975 (13)0.0344 (4)
H80.6490530.0436030.5611670.041*
C90.4023 (3)0.08793 (6)0.63432 (12)0.0340 (4)
C100.3355 (3)0.13790 (7)0.66510 (13)0.0351 (4)
H100.1981180.1427740.7051100.042*
C110.4740 (3)0.18125 (6)0.63626 (12)0.0314 (3)
H110.4295340.2162230.6561110.038*
C121.0247 (3)0.34625 (6)0.67737 (11)0.0265 (3)
C131.2301 (3)0.34492 (6)0.74451 (13)0.0350 (4)
H131.3537330.3193240.7341120.042*
C141.2594 (3)0.38022 (7)0.82671 (13)0.0389 (4)
H141.4004090.3789010.8727840.047*
C151.0794 (3)0.41700 (6)0.83961 (12)0.0327 (4)
C160.8701 (3)0.41935 (6)0.77634 (12)0.0347 (4)
H160.7471170.4449560.7877080.042*
C170.8432 (3)0.38332 (6)0.69539 (12)0.0312 (3)
H170.6985020.3839200.6514440.037*
C181.0774 (3)0.37699 (6)0.45103 (12)0.0300 (3)
H18A1.2146260.3607630.4161940.036*
H18B1.1465890.3959040.5130510.036*
C190.9510 (3)0.41772 (6)0.37807 (12)0.0347 (4)
H19A1.0756660.4420060.3522660.042*
H19B0.8735440.3986100.3179010.042*
C200.7587 (3)0.45074 (7)0.42774 (14)0.0409 (4)
H20A0.8282760.4649040.4943780.049*
H20B0.6195860.4274180.4423980.049*
C210.6662 (4)0.49699 (7)0.36054 (15)0.0453 (4)
H21A0.8000020.5220000.3510000.068*
H21B0.5349310.5153760.3940920.068*
H21C0.6038860.4834140.2932110.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0703 (7)0.0351 (5)0.0321 (5)0.0142 (5)0.0041 (5)0.0113 (4)
F20.0580 (6)0.0342 (5)0.0559 (7)0.0176 (5)0.0041 (5)0.0125 (5)
O10.0700 (8)0.0380 (6)0.0248 (6)0.0140 (6)0.0122 (5)0.0041 (5)
N10.0356 (6)0.0226 (6)0.0212 (6)0.0038 (5)0.0004 (5)0.0010 (4)
C10.0301 (7)0.0244 (7)0.0255 (7)0.0014 (5)0.0015 (5)0.0005 (6)
C20.0342 (7)0.0259 (7)0.0233 (7)0.0032 (6)0.0018 (6)0.0009 (6)
C30.0411 (8)0.0301 (7)0.0219 (7)0.0048 (6)0.0009 (6)0.0028 (6)
C40.0449 (9)0.0313 (8)0.0258 (8)0.0093 (6)0.0010 (6)0.0008 (6)
C50.0340 (7)0.0244 (7)0.0262 (7)0.0035 (6)0.0026 (6)0.0002 (6)
C60.0309 (7)0.0227 (7)0.0244 (7)0.0013 (5)0.0010 (5)0.0010 (5)
C70.0353 (7)0.0276 (7)0.0281 (7)0.0002 (6)0.0027 (6)0.0029 (6)
C80.0467 (9)0.0216 (7)0.0344 (8)0.0011 (6)0.0031 (7)0.0008 (6)
C90.0391 (8)0.0284 (8)0.0338 (8)0.0087 (6)0.0040 (6)0.0093 (6)
C100.0335 (7)0.0358 (8)0.0365 (9)0.0006 (6)0.0063 (6)0.0047 (6)
C110.0343 (7)0.0243 (7)0.0356 (8)0.0029 (6)0.0033 (6)0.0009 (6)
C120.0335 (7)0.0229 (7)0.0231 (7)0.0047 (5)0.0029 (5)0.0025 (5)
C130.0371 (8)0.0334 (8)0.0338 (8)0.0041 (6)0.0029 (6)0.0032 (6)
C140.0398 (8)0.0430 (9)0.0327 (9)0.0049 (7)0.0075 (7)0.0048 (7)
C150.0496 (9)0.0256 (7)0.0235 (7)0.0119 (6)0.0064 (6)0.0038 (6)
C160.0430 (8)0.0301 (8)0.0316 (8)0.0033 (6)0.0074 (6)0.0015 (6)
C170.0321 (7)0.0344 (8)0.0270 (7)0.0004 (6)0.0006 (6)0.0012 (6)
C180.0348 (7)0.0290 (7)0.0266 (7)0.0063 (6)0.0045 (6)0.0004 (6)
C190.0460 (9)0.0294 (8)0.0293 (8)0.0052 (6)0.0073 (6)0.0038 (6)
C200.0513 (10)0.0329 (8)0.0396 (9)0.0004 (7)0.0114 (8)0.0073 (7)
C210.0581 (11)0.0334 (9)0.0442 (10)0.0035 (8)0.0022 (8)0.0044 (7)
Geometric parameters (Å, º) top
F1—C151.3559 (17)C10—H100.9500
F2—C91.3581 (17)C10—C111.391 (2)
O1—C31.2096 (19)C11—H110.9500
N1—H11.0549C12—C131.384 (2)
N1—C11.4678 (17)C12—C171.393 (2)
N1—C51.4590 (18)C13—H130.9500
C1—H1A1.0000C13—C141.388 (2)
C1—C21.5498 (19)C14—H140.9500
C1—C121.5128 (19)C14—C151.370 (2)
C2—H21.0000C15—C161.373 (2)
C2—C31.522 (2)C16—H160.9500
C2—C181.5296 (19)C16—C171.387 (2)
C3—C41.511 (2)C17—H170.9500
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C4—C51.543 (2)C18—C191.530 (2)
C5—H51.0000C19—H19A0.9900
C5—C61.5121 (19)C19—H19B0.9900
C6—C71.389 (2)C19—C201.517 (2)
C6—C111.391 (2)C20—H20A0.9900
C7—H70.9500C20—H20B0.9900
C7—C81.388 (2)C20—C211.520 (2)
C8—H80.9500C21—H21A0.9800
C8—C91.373 (2)C21—H21B0.9800
C9—C101.372 (2)C21—H21C0.9800
C1—N1—H1113.1C6—C11—C10120.76 (14)
C5—N1—H1111.4C6—C11—H11119.6
C5—N1—C1112.32 (11)C10—C11—H11119.6
N1—C1—H1A108.4C13—C12—C1119.50 (13)
N1—C1—C2109.37 (11)C13—C12—C17118.36 (14)
N1—C1—C12108.87 (11)C17—C12—C1122.12 (13)
C2—C1—H1A108.4C12—C13—H13119.3
C12—C1—H1A108.4C12—C13—C14121.38 (15)
C12—C1—C2113.29 (11)C14—C13—H13119.3
C1—C2—H2107.8C13—C14—H14120.9
C3—C2—C1107.73 (11)C15—C14—C13118.19 (15)
C3—C2—H2107.8C15—C14—H14120.9
C3—C2—C18112.44 (12)F1—C15—C14118.78 (15)
C18—C2—C1113.01 (12)F1—C15—C16118.50 (15)
C18—C2—H2107.8C14—C15—C16122.72 (14)
O1—C3—C2122.51 (14)C15—C16—H16120.9
O1—C3—C4122.15 (14)C15—C16—C17118.15 (15)
C4—C3—C2115.25 (12)C17—C16—H16120.9
C3—C4—H4A109.9C12—C17—H17119.4
C3—C4—H4B109.9C16—C17—C12121.17 (14)
C3—C4—C5109.09 (12)C16—C17—H17119.4
H4A—C4—H4B108.3C2—C18—H18A108.7
C5—C4—H4A109.9C2—C18—H18B108.7
C5—C4—H4B109.9C2—C18—C19114.09 (12)
N1—C5—C4108.21 (12)H18A—C18—H18B107.6
N1—C5—H5108.4C19—C18—H18A108.7
N1—C5—C6111.60 (12)C19—C18—H18B108.7
C4—C5—H5108.4C18—C19—H19A108.8
C6—C5—C4111.70 (12)C18—C19—H19B108.8
C6—C5—H5108.4H19A—C19—H19B107.7
C7—C6—C5119.12 (13)C20—C19—C18113.74 (13)
C7—C6—C11118.74 (14)C20—C19—H19A108.8
C11—C6—C5122.13 (13)C20—C19—H19B108.8
C6—C7—H7119.4C19—C20—H20A109.0
C8—C7—C6121.23 (14)C19—C20—H20B109.0
C8—C7—H7119.4C19—C20—C21112.94 (14)
C7—C8—H8121.0H20A—C20—H20B107.8
C9—C8—C7118.03 (14)C21—C20—H20A109.0
C9—C8—H8121.0C21—C20—H20B109.0
F2—C9—C8118.78 (14)C20—C21—H21A109.5
F2—C9—C10118.38 (15)C20—C21—H21B109.5
C10—C9—C8122.84 (14)C20—C21—H21C109.5
C9—C10—H10120.8H21A—C21—H21B109.5
C9—C10—C11118.34 (15)H21A—C21—H21C109.5
C11—C10—H10120.8H21B—C21—H21C109.5
F1—C15—C16—C17178.97 (13)C4—C5—C6—C1188.66 (17)
F2—C9—C10—C11177.84 (14)C5—N1—C1—C264.80 (15)
O1—C3—C4—C5123.39 (17)C5—N1—C1—C12170.93 (11)
N1—C1—C2—C354.89 (15)C5—C6—C7—C8176.87 (13)
N1—C1—C2—C18179.73 (12)C5—C6—C11—C10177.54 (14)
N1—C1—C12—C13102.72 (15)C6—C7—C8—C90.6 (2)
N1—C1—C12—C1775.42 (16)C7—C6—C11—C101.5 (2)
N1—C5—C6—C7148.28 (13)C7—C8—C9—F2178.51 (13)
N1—C5—C6—C1132.63 (19)C7—C8—C9—C101.8 (2)
C1—N1—C5—C464.54 (15)C8—C9—C10—C112.5 (2)
C1—N1—C5—C6172.17 (11)C9—C10—C11—C60.7 (2)
C1—C2—C3—O1124.44 (16)C11—C6—C7—C82.2 (2)
C1—C2—C3—C452.03 (17)C12—C1—C2—C3176.53 (12)
C1—C2—C18—C19155.74 (13)C12—C1—C2—C1858.63 (16)
C1—C12—C13—C14179.62 (14)C12—C13—C14—C150.5 (3)
C1—C12—C17—C16179.67 (14)C13—C12—C17—C162.2 (2)
C2—C1—C12—C13135.36 (14)C13—C14—C15—F1178.24 (14)
C2—C1—C12—C1746.50 (18)C13—C14—C15—C161.7 (2)
C2—C3—C4—C553.09 (18)C14—C15—C16—C171.0 (2)
C2—C18—C19—C2066.24 (18)C15—C16—C17—C121.0 (2)
C3—C2—C18—C1982.03 (16)C17—C12—C13—C141.4 (2)
C3—C4—C5—N155.98 (16)C18—C2—C3—O10.7 (2)
C3—C4—C5—C6179.22 (13)C18—C2—C3—C4177.20 (13)
C4—C5—C6—C790.43 (16)C18—C19—C20—C21170.21 (14)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i1.052.063.0921 (16)165
C7—H7···F1ii0.952.523.3291 (18)143
C10—H10···O1iii0.952.663.470 (2)144
C16—H16···F2iv0.952.623.3680 (18)136
C21—H21C···F2ii0.982.583.489 (2)154
C21—H21A···Cg3v0.982.953.793 (2)145
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x1, y+1/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1, z+1.
 

Acknowledgements

The authors would like to acknowledge Vellore Institute of Technology, Tamilnadu, India for recording the NMR spectra, the Indian Institute of Technology (IIT), Chennai, Tamilnadu, India for recording the FT–IR and UV–Visible spectra and extend their thanks to the Principal, Dr V. Ramnath, Chairman, Mr R. Sattanathan, and Treasurer, Mr T. Ramalingam, of Thiruvalluvar Arts and Science College for giving permission to carry out research work in the Chemistry Laboratory.

Funding information

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationArulraj, R., Sivakumar, S., Rajkumar, K., Jasinski, J. P., Kaur, M. & Thiruvalluvar, A. (2019). J. Chem. Cryst. 50, 41–51.  Web of Science CSD CrossRef Google Scholar
First citationArulraj, R., Sivakumar, S., Suresh, S. & Anitha, K. (2020). Spectrochim. Acta Part A, 232, 118166.  Web of Science CrossRef Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGayathri, P., Jayabharathi, J., Rajarajan, G., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o3083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). Abinitio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationKatritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205–3209.  CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationNilofar Nissa, M., Velmurugan, D., Narasimhan, S., Rajagopal, V. & Kim, M.-J. (2001). Acta Cryst. E57, o996–o998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajkumar, K., Sivakumar, S., Arulraj, R., Kaur, M., Jasinski, J. P., Manimekalai, A. & Thiruvalluvar, A. (2018). Acta Cryst. E74, 483–486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLc: Holland. https://www.webmo.net  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds