research communications
Dehydration synthesis and
of terbium oxychloride, TbOClaPacific Northwest National Laboratory, Richland, WA 99352, USA
*Correspondence e-mail: saehwa.chong@pnnl.gov
Terbium oxychloride, TbOCl, was synthesized via the simple heat-treatment of TbCl3·6H2O and its structure was determined by against X-ray powder diffraction data. TbOCl crystallizes with the matlockite (PbFCl) structure in the tetragonal P4/nmm and is composed of alternating (001) layers of (TbO)n and n Cl−. The unit-cell parameters, unit-cell volume, and density were compared to the literature data of other isostructural rare-earth oxychlorides in the same and showed good agreement when compared to the calculated trendlines.
Keywords: oxychloride; rare-earth oxyhalide; powder diffraction.
CCDC reference: 1993793
1. Chemical context
Rare-earth oxychlorides, REOCl, are promising materials for various applications including use as catalysts, sensors, and phosphors (Podkolzin et al., 2007; Au et al., 1997; Peringer et al., 2009; Marsal et al., 2005,; Kim et al., 2019; Berdowski et al., 1984; Imanaka et al., 2001a,b; Okamoto et al., 2002; Kim et al., 2014). LaOCl is a stable catalyst for converting methane to methyl chloride (Podkolzin et al., 2007) and can be used as a sensor material to detect CO2 and Cl2 gases (Marsal et al., 2005; Imanaka et al., 2001b). The EuOCl catalyst showed high efficiency in converting ethylene to vinyl chloride (Scharfe et al., 2016). The luminescent properties of REOX (RE = La, Eu; X = F, Cl, Br, I) can be controlled to emit a wide range of visible light from blue to red by changing the crystal symmetries and compositions (Kim et al., 2014, 2019). As part of our studies in this area, we now describe the dehydration synthesis and structure of the title compound.
2. Structural commentary
The structural parameters of REOCl (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) in the literature and current study are summarized in Table 1. All these REOCl compounds crystallize in the matlockite (PbFCl; Bannister, 1934) structure within the tetragonal P4/nmm The of TbOCl contains alternating (001) layers of (TbO)n and n Cl− (Fig. 1a). The Tb cation is coordinated by five chloride ions and four oxygen atoms, forming a mono-capped TbO4Cl5 square antiprism (Fig. 1b and 1c). The RE—Cl and RE—O bond lengths in the REOCl compounds are provided in Table 1. With larger RE cations in the structures, the RE—Cl and RE—O bond lengths increase (Fig. 2).
The shortest Cl⋯Cl separation in TbOCl is 3.271 (4) Å, which compares with the van der Waals diameter of a Cl− ion of about 3.62 Å. The Cl⋯Cl distances of other REOCl compounds are also short, ranging from 3.24 to 3.46 Å on going from Ho3+ to La3+. With non-bonded vectors shorter than the van der Waals separation, strong interactions between atoms are expected in the structure (Maslen et al., 1996). Templeton & Dauben (1953) mention the presence of weaker anion–anion repulsion between Cl atoms in REOCl structures. The structural parameters of TbOCl were compared with the trendlines calculated using the values from Table 1 (Fig. 3). The unit-cell parameters and volumes increase linearly with the larger RE cations (Shannon, 1976) whereas the densities decrease non-linearly, fitting well to a 2nd order polynomial trend.
3. Synthesis and crystallization
The title compound was synthesized by a simple heat treatment of TbCl3·6H2O (Alfa Aesar, 99.99%). About 0.5 g of TbCl3·6H2O was placed in an alumina crucible, heated to 400°C at 5°C min−1, held for 8 h, and then cooled to room temperature at 5°C min−1. This synthesis method was used in our previous study (Riley et al., 2018). The resulting product was a light-brown powder, which was ground in a mortar and pestle for X-ray powder diffraction analysis.
4. Refinement
Crystal data, data collection and structure . The unit-cell parameters were obtained using TOPAS (version 4.2; Bruker, 2009) by refining the GdOCl pattern (ICSD 77820) with geometrical and chemical resemblance as a starting model. The was performed using JANA2006 (Petříček et al., 2014) with the obtained unit-cell parameters as initial values. A pseudo-Voigt function with other peak-shape parameters were used to fit peaks, and the background was modeled with a Chebychev polynomial. The plot of the result is shown in Fig. 4. The final converged at Rwp = 3.22%.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1993793
https://doi.org/10.1107/S2056989020004387/hb7896sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: https://doi.org/10.1107/S2056989020004387/hb7896Isup2.rtv
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020004387/hb7896Isup3.hkl
Data collection: XRD Commander (Kienle & Jacob, 2003); cell
TOPAS (Bruker, 2009); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).TbOCl | Z = 2 |
Mr = 210.4 | Dx = 6.804 Mg m−3 |
Tetragonal, P4/nmm | Cu Kα radiation, λ = 1.54188 Å |
a = 3.9279 (2) Å | T = 293 K |
c = 6.6556 (5) Å | light brown |
V = 102.68 (1) Å3 | cylinder, 25 × 25 mm |
Bruker D8 Advance diffractometer | Data collection mode: reflection |
Radiation source: sealed X-ray tube | Scan method: step |
Specimen mounting: packed powder pellet | 2θmin = 5°, 2θmax = 68.977°, 2θstep = 0.019° |
Rp = 0.020 | 17 parameters |
Rwp = 0.032 | Weighting scheme based on measured s.u.'s |
Rexp = 0.009 | (Δ/σ)max = 0.030 |
R(F) = 0.033 | Background function: 8 Chebyshev polynoms |
3292 data points | Preferred orientation correction: March & Dollase |
Profile function: Pseudo-Voigt |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.5 | 0 | 0.3305 (2) | 0.002 | |
Cl1 | 0 | 0.5 | 0.1298 (9) | 0.002 | |
O1 | 1 | 0 | 0.5 | 0.002 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.002 | 0.002 | 0.002 | 0 | 0 | 0 |
Cl1 | 0.002 | 0.002 | 0.002 | 0 | 0 | 0 |
O1 | 0.002 | 0.002 | 0.002 | 0 | 0 | 0 |
Tb1—Tb1i | 3.5784 (13) | Tb1—O1v | 2.2649 (7) |
Tb1—Tb1ii | 3.5784 (13) | Tb1—O1 | 2.2649 (7) |
Tb1—Tb1iii | 3.5784 (13) | Tb1—O1vi | 2.2649 (7) |
Tb1—Tb1iv | 3.5784 (13) | Tb1—O1vii | 2.2649 (7) |
Tb1i—Tb1—Tb1ii | 66.57 (2) | Tb1iii—Tb1—O1vii | 99.31 (4) |
Tb1i—Tb1—Tb1iii | 66.57 (2) | Tb1iv—Tb1—O1v | 99.31 (4) |
Tb1i—Tb1—Tb1iv | 101.82 (4) | Tb1iv—Tb1—O1 | 37.817 (14) |
Tb1i—Tb1—O1v | 37.817 (14) | Tb1iv—Tb1—O1vi | 99.31 (4) |
Tb1i—Tb1—O1 | 99.31 (4) | Tb1iv—Tb1—O1vii | 37.817 (14) |
Tb1i—Tb1—O1vi | 37.817 (14) | O1v—Tb1—O1 | 120.25 (6) |
Tb1i—Tb1—O1vii | 99.31 (4) | O1v—Tb1—O1vi | 75.63 (3) |
Tb1ii—Tb1—Tb1iii | 101.82 (4) | O1v—Tb1—O1vii | 75.63 (3) |
Tb1ii—Tb1—Tb1iv | 66.57 (2) | O1—Tb1—O1vi | 75.63 (3) |
Tb1ii—Tb1—O1v | 37.817 (14) | O1—Tb1—O1vii | 75.63 (3) |
Tb1ii—Tb1—O1 | 99.31 (4) | O1vi—Tb1—O1vii | 120.25 (6) |
Tb1ii—Tb1—O1vi | 99.31 (4) | Tb1—O1—Tb1viii | 120.25 (4) |
Tb1ii—Tb1—O1vii | 37.817 (14) | Tb1—O1—Tb1iii | 104.37 (2) |
Tb1iii—Tb1—Tb1iv | 66.57 (2) | Tb1—O1—Tb1iv | 104.37 (2) |
Tb1iii—Tb1—O1v | 99.31 (4) | Tb1viii—O1—Tb1iii | 104.37 (2) |
Tb1iii—Tb1—O1 | 37.817 (14) | Tb1viii—O1—Tb1iv | 104.37 (2) |
Tb1iii—Tb1—O1vi | 37.817 (14) | Tb1iii—O1—Tb1iv | 120.25 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1; (ii) −x+1/2, y+1/2, −z+1; (iii) −x+3/2, y−1/2, −z+1; (iv) −x+3/2, y+1/2, −z+1; (v) x−1, y, z; (vi) −y+1/2, x−3/2, z; (vii) −y+1/2, x−1/2, z; (viii) x+1, y, z. |
All compounds crystallize in the P4/nmm space group. For the RE—Cl bond lengths, the first value refers to one neighboring Cl atom, and the second number refers to four neighboring Cl atoms. Densities are calculated from crystallographic data. |
RE | a (Å) | c (Å) | V (Å3) | Density (g cm-3) | RE—O (Å) | RE—Cl (Å) | Cl···Cl (Å) | Cl···O (Å) | O···O (Å) | ICSD/PDF |
Ho | 3.893 | 6.602 | 100.1 | 7.182 | 2.247 | 3.04, 3.05 | 3.24 | 3.12 | 2.753 | 76171 (Templeton & Dauben, 1953) |
Dy | 3.91 | 6.62 | 101.2 | 7.023 | 00-047-1725 (Kirik et al., 1996) | |||||
Tb | 3.9269 | 6.648 | 102.5 | 6.815 | 00-048-1648 (Kirik et al., 1996) | |||||
Tb | 3.9279 | 6.6556 | 102.7 | 6.804 | 2.2649 | 3.064, 3.082 | 3.271 | 3.151 | 2.7774 | current study |
Gd | 3.9495 | 6.6708 | 104.1 | 6.661 | 2.2839 | 3.036, 3.098 | 3.267 | 3.176 | 2.7927 | 59232 (Meyer & Schleid, 1986) |
Gd | 3.9698 | 6.7008 | 105.6 | 6.564 | 2.28 | 3.212, 3.071 | 3.428 | 3.089 | 2.8071 | 77820 (Hölsä et al., 1996) |
Eu | 3.9646 | 6.695 | 105.2 | 6.42 | 2.286 | 3.08, 3.11 | 3.3 | 3.17 | 2.8034 | 28529 (Bärnighausen et al., 1965) |
Eu | 3.9668 | 6.6955 | 105.4 | 6.412 | 2.2901 | 3.062, 3.1103 | 3.289 | 3.183 | 2.80492 | 54682 (Schnick, 2004) |
Sm | 3.982 | 6.721 | 106.6 | 6.289 | 2.296 | 3.09, 3.12 | 3.31 | 3.19 | 2.8157 | 26581 (Templeton & Dauben, 1953) |
Nd | 4.04 | 6.77 | 110.5 | 5.882 | 2.359 | 3.114, 3.11 | 3.428 | 3.165 | 2.86 | 31665 (Zachariasen, 1949) |
Nd | 4.0249 | 6.7837 | 109.9 | 5.914 | 2.3362 | 3.082, 3.141 | 3.343 | 3.221 | 2.84603 | 59231 (Meyer & Schleid, 1986) |
Pr | 4.053 | 6.799 | 111.7 | 5.723 | 2.3674 | 3.128, 3.116 | 3.441 | 3.178 | 2.866 | 31664 (Zachariasen, 1949) |
Ce | 4.0866 | 6.8538 | 114.5 | 5.558 | 2.3687 | 3.1190, 3.1846 | 3.3942 | 3.2572 | 2.8897 | 412069 (Schnick, 2004) |
Ce | 4.0785 | 6.8346 | 113.7 | 5.596 | 2.36413 | 3.103, 3.180 | 3.38 | 3.254 | 2.88393 | 72154 (Wołcyrz & Kepinski, 1992) |
La | 4.109 | 6.865 | 115.9 | 5.454 | 2.39 | 3.14, 3.18 | 3.45 | 3.24 | 2.9055 | 24611 (Sillen & Nylander, 1941) |
La | 4.117 | 6.881 | 116.6 | 5.42 | 2.3866 | 3.126, 3.2046 | 3.416 | 3.2751 | 2.9112 | 40297 (Brixner & Moore, 1983) |
La | 4.1351 | 6.904 | 118.1 | 5.355 | 2.395 | 3.165, 3.209 | 3.457 | 3.268 | 2.92397 | 77815 (Hölsä et al., 1996) |
La | 4.1162 | 6.8746 | 116.5 | 5.428 | 2.3832 | 3.138, 3.201 | 3.425 | 3.265 | 2.9106 | 84330 (Hölsä et al., 1997) |
La | 4.12 | 6.882 | 116.8 | 5.412 | 00-008-0477 (Swanson et al., 1957) |
Acknowledgements
The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05–76RL01830.
References
Au, C. T., He, H., Lai, S. Y. & Ng, C. F. (1997). Appl. Catal. Gen. 159, 133–145. CrossRef CAS Google Scholar
Bannister, F. A. (1934). Miner. Mag. j. Miner. Soc. 23, 587–597. CrossRef ICSD CAS Google Scholar
Bärnighausen, H., Brauer, G. & Schultz, N. (1965). Z. Anorg. Allg. Chem. 338, 250–265. Google Scholar
Berdowski, P. A. M., van Herk, J., Jansen, L. & Blasse, G. (1984). Phys. Status Solidi B, 125, 387–391. CrossRef CAS Google Scholar
Brixner, L. H. & Moore, E. P. (1983). Acta Cryst. C39, 1316. CrossRef ICSD IUCr Journals Google Scholar
Bruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany. Google Scholar
Hölsä, J., Lastusaari, M. & Valkonen, J. (1997). J. Alloys Compd, 262, 299–304. Google Scholar
Hölsä, J., Säilynoja, E., Koski, K., Rahiala, H. & Valkonen, J. (1996). Powder Diffr. 11, 129–133. Google Scholar
Imanaka, N., Okamoto, K. & Adachi, G. (2001a). Chem. Lett. 30, 130–131. CrossRef Google Scholar
Imanaka, N., Okamoto, K. & Adachi, G. (2001b). Electrochem. Commun. 3, 49–51. CrossRef CAS Google Scholar
Kienle, M. & Jacob, M. (2003). XRD Commander. Bruker AXS GmbH, Karlsruhe, Germany. Google Scholar
Kim, D., Jeong, J. R., Jang, Y., Bae, J.-S., Chung, I., Liang, R., Seo, D.-K., Kim, S.-J. & Park, J.-C. (2019). Phys. Chem. Chem. Phys. 21, 1737–1749. CrossRef CAS PubMed Google Scholar
Kim, D., Park, S., Kim, S., Kang, S.-G. & Park, J.-C. (2014). Inorg. Chem. 53, 11966–11973. CrossRef CAS PubMed Google Scholar
Kirik, S., Yakimov, I., Blochin, A. & Soloyov, L. (1996). ICDD Grant-in-Aid, Institute of Chemistry, Krasnoyarsk, Russia. Google Scholar
Marsal, A., Centeno, M. A., Odriozola, J. A., Cornet, A. & Morante, J. R. (2005). Sens. Actuators B Chem. 108, 484–489. CrossRef CAS Google Scholar
Maslen, E. N., Streltsov, V. A., Streltsova, N. R. & Ishizawa, N. (1996). Acta Cryst. B52, 576–579. CrossRef CAS IUCr Journals Google Scholar
Meyer, G. & Schleid, T. (1986). Z. Anorg. Allg. Chem. 533, 181–185. CrossRef ICSD CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Okamoto, K., Imanaka, N. & Adachi, G. (2002). Solid State Ionics, 154–155, 577–580. CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peringer, E., Salzinger, M., Hutt, M., Lemonidou, A. A. & Lercher, J. A. (2009). Top. Catal. 52, 1220–1231. CrossRef CAS Google Scholar
Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Podkolzin, S. G., Stangland, E. E., Jones, M. E., Peringer, E. & Lercher, J. A. (2007). J. Am. Chem. Soc. 129, 2569–2576. CrossRef PubMed CAS Google Scholar
Riley, B. J., Pierce, D. A., Crum, J. V., Williams, B. D., Snyder, M. M. V. & Peterson, J. A. (2018). Prog. Nucl. Energy, 104, 102–108. CrossRef CAS Google Scholar
Scharfe, M., Lira-Parada, P. A., Amrute, A. P., Mitchell, S. & Pérez-Ramírez, J. (2016). J. Catal. 344, 524–534. CrossRef CAS Google Scholar
Schnick, W. (2004). Private Communication. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sillen, L. G. & Nylander, A. L. (1941). Svensk Kemisk Tidskrift, 53, 367–372. CAS Google Scholar
Swanson, H. E., Gilfrich, N. T. & Cook, M. I. (1957). Circ. Bur. Stand. pp. 539. Google Scholar
Templeton, D. H. & Dauben, C. H. (1953). J. Am. Chem. Soc. 75, 6069–6070. CrossRef ICSD CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wołcyrz, M. & Kepinski, L. (1992). J. Solid State Chem. 99, 409–413. Google Scholar
Zachariasen, W. H. (1949). Acta Cryst. 2, 388–390. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.