research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dehydration synthesis and crystal structure of terbium oxychloride, TbOCl

CROSSMARK_Color_square_no_text.svg

aPacific Northwest National Laboratory, Richland, WA 99352, USA
*Correspondence e-mail: saehwa.chong@pnnl.gov

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 February 2020; accepted 30 March 2020; online 3 April 2020)

Terbium oxychloride, TbOCl, was synthesized via the simple heat-treatment of TbCl3·6H2O and its structure was determined by refinement against X-ray powder diffraction data. TbOCl crystallizes with the matlockite (PbFCl) structure in the tetra­gonal space group P4/nmm and is composed of alternating (001) layers of (TbO)n and n Cl. The unit-cell parameters, unit-cell volume, and density were compared to the literature data of other isostructural rare-earth oxychlorides in the same space group and showed good agreement when compared to the calculated trendlines.

1. Chemical context

Rare-earth oxychlorides, REOCl, are promising materials for various applications including use as catalysts, sensors, and phosphors (Podkolzin et al., 2007[Podkolzin, S. G., Stangland, E. E., Jones, M. E., Peringer, E. & Lercher, J. A. (2007). J. Am. Chem. Soc. 129, 2569-2576.]; Au et al., 1997[Au, C. T., He, H., Lai, S. Y. & Ng, C. F. (1997). Appl. Catal. Gen. 159, 133-145.]; Peringer et al., 2009[Peringer, E., Salzinger, M., Hutt, M., Lemonidou, A. A. & Lercher, J. A. (2009). Top. Catal. 52, 1220-1231.]; Marsal et al., 2005[Marsal, A., Centeno, M. A., Odriozola, J. A., Cornet, A. & Morante, J. R. (2005). Sens. Actuators B Chem. 108, 484-489.],; Kim et al., 2019[Kim, D., Jeong, J. R., Jang, Y., Bae, J.-S., Chung, I., Liang, R., Seo, D.-K., Kim, S.-J. & Park, J.-C. (2019). Phys. Chem. Chem. Phys. 21, 1737-1749.]; Berdowski et al., 1984[Berdowski, P. A. M., van Herk, J., Jansen, L. & Blasse, G. (1984). Phys. Status Solidi B, 125, 387-391.]; Imanaka et al., 2001a[Imanaka, N., Okamoto, K. & Adachi, G. (2001a). Chem. Lett. 30, 130-131.],b[Imanaka, N., Okamoto, K. & Adachi, G. (2001b). Electrochem. Commun. 3, 49-51.]; Okamoto et al., 2002[Okamoto, K., Imanaka, N. & Adachi, G. (2002). Solid State Ionics, 154-155, 577-580.]; Kim et al., 2014[Kim, D., Park, S., Kim, S., Kang, S.-G. & Park, J.-C. (2014). Inorg. Chem. 53, 11966-11973.]). LaOCl is a stable catalyst for converting methane to methyl chloride (Podkolzin et al., 2007[Podkolzin, S. G., Stangland, E. E., Jones, M. E., Peringer, E. & Lercher, J. A. (2007). J. Am. Chem. Soc. 129, 2569-2576.]) and can be used as a sensor material to detect CO2 and Cl2 gases (Marsal et al., 2005[Marsal, A., Centeno, M. A., Odriozola, J. A., Cornet, A. & Morante, J. R. (2005). Sens. Actuators B Chem. 108, 484-489.]; Imanaka et al., 2001b[Imanaka, N., Okamoto, K. & Adachi, G. (2001b). Electrochem. Commun. 3, 49-51.]). The EuOCl catalyst showed high efficiency in converting ethyl­ene to vinyl chloride (Scharfe et al., 2016[Scharfe, M., Lira-Parada, P. A., Amrute, A. P., Mitchell, S. & Pérez-Ramírez, J. (2016). J. Catal. 344, 524-534.]). The luminescent properties of REOX (RE = La, Eu; X = F, Cl, Br, I) can be controlled to emit a wide range of visible light from blue to red by changing the crystal symmetries and compositions (Kim et al., 2014[Kim, D., Park, S., Kim, S., Kang, S.-G. & Park, J.-C. (2014). Inorg. Chem. 53, 11966-11973.], 2019[Kim, D., Jeong, J. R., Jang, Y., Bae, J.-S., Chung, I., Liang, R., Seo, D.-K., Kim, S.-J. & Park, J.-C. (2019). Phys. Chem. Chem. Phys. 21, 1737-1749.]). As part of our studies in this area, we now describe the dehydration synthesis and structure of the title compound.

2. Structural commentary

The structural parameters of REOCl (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) in the literature and current study are summarized in Table 1[link]. All these REOCl compounds crystallize in the matlockite (PbFCl; Bannister, 1934[Bannister, F. A. (1934). Miner. Mag. j. Miner. Soc. 23, 587-597.]) structure within the tetra­gonal P4/nmm space group. The crystal structure of TbOCl contains alternating (001) layers of (TbO)n and n Cl (Fig. 1[link]a). The Tb cation is coordinated by five chloride ions and four oxygen atoms, forming a mono-capped TbO4Cl5 square anti­prism (Fig. 1[link]b and 1c). The RE—Cl and RE—O bond lengths in the REOCl compounds are provided in Table 1[link]. With larger RE cations in the structures, the RE—Cl and RE—O bond lengths increase (Fig. 2[link]).

Table 1
Structural parameters of REOCl compounds

All compounds crystallize in the P4/nmm space group. For the RE—Cl bond lengths, the first value refers to one neighboring Cl atom, and the second number refers to four neighboring Cl atoms. Densities are calculated from crystallographic data.

RE a(Å) c(Å) V3) Density(g cm−3) RE—O(Å) RE—Cl(Å) Cl⋯Cl(Å) Cl⋯O(Å) O⋯O (Å) ICSD/PDF
Ho 3.893 6.602 100.1 7.182 2.247 3.04, 3.05 3.24 3.12 2.753 76171 (Templeton & Dauben, 1953[Templeton, D. H. & Dauben, C. H. (1953). J. Am. Chem. Soc. 75, 6069-6070.])
Dy 3.91 6.62 101.2 7.023           00–047-1725 (Kirik et al., 1996[Kirik, S., Yakimov, I., Blochin, A. & Soloyov, L. (1996). ICDD Grant-in-Aid, Institute of Chemistry, Krasnoyarsk, Russia.])
Tb 3.9269 6.648 102.5 6.815           00–048-1648 (Kirik et al., 1996[Kirik, S., Yakimov, I., Blochin, A. & Soloyov, L. (1996). ICDD Grant-in-Aid, Institute of Chemistry, Krasnoyarsk, Russia.])
Tb 3.9279 6.6556 102.7 6.804 2.2649 3.064, 3.082 3.271 3.151 2.7774 Current study
Gd 3.9495 6.6708 104.1 6.661 2.2839 3.036, 3.098 3.267 3.176 2.7927 59232 (Meyer & Schleid, 1986[Meyer, G. & Schleid, T. (1986). Z. Anorg. Allg. Chem. 533, 181-185.])
Gd 3.9698 6.7008 105.6 6.564 2.28 3.212, 3.071 3.428 3.089 2.8071 77820 (Hölsä et al., 1996[Hölsä, J., Säilynoja, E., Koski, K., Rahiala, H. & Valkonen, J. (1996). Powder Diffr. 11, 129-133.])
Eu 3.9646 6.695 105.2 6.42 2.286 3.08, 3.11 3.3 3.17 2.8034 28529 (Bärnighausen et al., 1965[Bärnighausen, H., Brauer, G. & Schultz, N. (1965). Z. Anorg. Allg. Chem. 338, 250-265.])
Eu 3.9668 6.6955 105.4 6.412 2.2901 3.062, 3.1103 3.289 3.183 2.80492 54682 (Schnick, 2004[Schnick, W. (2004). Private Communication.])
Sm 3.982 6.721 106.6 6.289 2.296 3.09, 3.12 3.31 3.19 2.8157 26581 (Templeton & Dauben, 1953[Templeton, D. H. & Dauben, C. H. (1953). J. Am. Chem. Soc. 75, 6069-6070.])
Nd 4.04 6.77 110.5 5.882 2.359 3.114, 3.11 3.428 3.165 2.86 31665 (Zachariasen, 1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 388-390.])
Nd 4.0249 6.7837 109.9 5.914 2.3362 3.082, 3.141 3.343 3.221 2.84603 59231 (Meyer & Schleid, 1986[Meyer, G. & Schleid, T. (1986). Z. Anorg. Allg. Chem. 533, 181-185.])
Pr 4.053 6.799 111.7 5.723 2.3674 3.128, 3.116 3.441 3.178 2.866 31664 (Zachariasen, 1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 388-390.])
Ce 4.0866 6.8538 114.5 5.558 2.3687 3.1190, 3.1846 3.3942 3.2572 2.8897 412069 (Schnick, 2004[Schnick, W. (2004). Private Communication.])
Ce 4.0785 6.8346 113.7 5.596 2.36413 3.103, 3.180 3.38 3.254 2.88393 72154 (Wołcyrz & Kepinski, 1992[Wołcyrz, M. & Kepinski, L. (1992). J. Solid State Chem. 99, 409-413.])
La 4.109 6.865 115.9 5.454 2.39 3.14, 3.18 3.45 3.24 2.9055 24611 (Sillen & Nylander, 1941[Sillen, L. G. & Nylander, A. L. (1941). Svensk Kemisk Tidskrift, 53, 367-372.])
La 4.117 6.881 116.6 5.42 2.3866 3.126, 3.2046 3.416 3.2751 2.9112 40297 (Brixner & Moore, 1983[Brixner, L. H. & Moore, E. P. (1983). Acta Cryst. C39, 1316.])
La 4.1351 6.904 118.1 5.355 2.395 3.165, 3.209 3.457 3.268 2.92397 77815 (Hölsä et al., 1996[Hölsä, J., Säilynoja, E., Koski, K., Rahiala, H. & Valkonen, J. (1996). Powder Diffr. 11, 129-133.])
La 4.1162 6.8746 116.5 5.428 2.3832 3.138, 3.201 3.425 3.265 2.9106 84330 (Hölsä et al., 1997[Hölsä, J., Lastusaari, M. & Valkonen, J. (1997). J. Alloys Compd, 262, 299-304.])
La 4.12 6.882 116.8 5.412           00–008-0477 (Swanson et al., 1957[Swanson, H. E., Gilfrich, N. T. & Cook, M. I. (1957). Circ. Bur. Stand. pp. 539.])
[Figure 1]
Figure 1
(a) Crystal structure of TbOCl, (b) the coordination environment of Tb, and (c) polyhedron representation of the Tb environment.
[Figure 2]
Figure 2
The RE—Cl and RE—O bond lengths in the REOCl compounds listed in Table 1[link] as a function of RE crystal radius (coordination = 9) according to Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). Where multiple values were available, averages and standard deviations are included for the datapoints. For (a), 1-nd and 4-nd denote 1 and 4 neighbor distances, respectively

The shortest Cl⋯Cl separation in TbOCl is 3.271 (4) Å, which compares with the van der Waals diameter of a Cl ion of about 3.62 Å. The Cl⋯Cl distances of other REOCl compounds are also short, ranging from 3.24 to 3.46 Å on going from Ho3+ to La3+. With non-bonded vectors shorter than the van der Waals separation, strong inter­actions between atoms are expected in the structure (Maslen et al., 1996[Maslen, E. N., Streltsov, V. A., Streltsova, N. R. & Ishizawa, N. (1996). Acta Cryst. B52, 576-579.]). Templeton & Dauben (1953[Templeton, D. H. & Dauben, C. H. (1953). J. Am. Chem. Soc. 75, 6069-6070.]) mention the presence of weaker anion–anion repulsion between Cl atoms in REOCl structures. The structural parameters of TbOCl were compared with the trendlines calculated using the values from Table 1[link] (Fig. 3[link]). The unit-cell parameters and volumes increase linearly with the larger RE cations (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) whereas the densities decrease non-linearly, fitting well to a 2nd order polynomial trend.

[Figure 3]
Figure 3
(a, b) Unit-cell parameters (a and c, respectively), (c) unit-cell volumes, and calculated unit-cell densities as a function of the crystal radius of the RE (coordination = 9) according to Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) compared to literature values provided in Table 1[link].

3. Synthesis and crystallization

The title compound was synthesized by a simple heat treatment of TbCl3·6H2O (Alfa Aesar, 99.99%). About 0.5 g of TbCl3·6H2O was placed in an alumina crucible, heated to 400°C at 5°C min−1, held for 8 h, and then cooled to room temperature at 5°C min−1. This synthesis method was used in our previous study (Riley et al., 2018[Riley, B. J., Pierce, D. A., Crum, J. V., Williams, B. D., Snyder, M. M. V. & Peterson, J. A. (2018). Prog. Nucl. Energy, 104, 102-108.]). The resulting product was a light-brown powder, which was ground in a mortar and pestle for X-ray powder diffraction analysis.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The unit-cell parameters were obtained using TOPAS (version 4.2; Bruker, 2009[Bruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany.]) by refining the GdOCl pattern (ICSD 77820) with geometrical and chemical resemblance as a starting model. The Rietveld refinement was performed using JANA2006 (Petříček et al., 2014[Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) with the obtained unit-cell parameters as initial values. A pseudo-Voigt function with other peak-shape parameters were used to fit peaks, and the background was modeled with a Chebychev polynomial. The plot of the Rietveld refinement result is shown in Fig. 4[link]. The final refinement converged at Rwp = 3.22%.

Table 2
Experimental details

Crystal data
Chemical formula TbOCl
Mr 210.4
Crystal system, space group Tetragonal, P4/nmm
Temperature (K) 293
a, c (Å) 3.9279 (2), 6.6556 (5)
V3) 102.68 (1)
Z 2
Radiation type Cu Kα, λ = 1.54188 Å
Specimen shape, size (mm) Cylinder, 25 × 25
 
Data collection
Diffractometer Bruker D8 Advance
Specimen mounting Packed powder pellet
Data collection mode Reflection
Scan method Step
2θ values (°) 2θmin = 5, 2θmax = 68.977, 2θstep = 0.019
 
Refinement
R factors and goodness of fit Rp = 0.020, Rwp = 0.032, Rexp = 0.009, R(F) = 0.033, χ2 = 13.690
No. of parameters 17
Computer programs: XRD Commander (Kienle & Jacob, 2003[Kienle, M. & Jacob, M. (2003). XRD Commander. Bruker AXS GmbH, Karlsruhe, Germany.]), TOPAS (Bruker, 2009[Bruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Measured, calculated, and difference XRD patterns of TbOCl.

Supporting information


Computing details top

Data collection: XRD Commander (Kienle & Jacob, 2003); cell refinement: TOPAS (Bruker, 2009); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Terbium oxychloride top
Crystal data top
TbOClZ = 2
Mr = 210.4Dx = 6.804 Mg m3
Tetragonal, P4/nmmCu Kα radiation, λ = 1.54188 Å
a = 3.9279 (2) ÅT = 293 K
c = 6.6556 (5) Ålight brown
V = 102.68 (1) Å3cylinder, 25 × 25 mm
Data collection top
Bruker D8 Advance
diffractometer
Data collection mode: reflection
Radiation source: sealed X-ray tubeScan method: step
Specimen mounting: packed powder pellet2θmin = 5°, 2θmax = 68.977°, 2θstep = 0.019°
Refinement top
Rp = 0.02017 parameters
Rwp = 0.032Weighting scheme based on measured s.u.'s
Rexp = 0.009(Δ/σ)max = 0.030
R(F) = 0.033Background function: 8 Chebyshev polynoms
3292 data pointsPreferred orientation correction: March & Dollase
Profile function: Pseudo-Voigt
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.500.3305 (2)0.002
Cl100.50.1298 (9)0.002
O1100.50.002
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.0020.0020.002000
Cl10.0020.0020.002000
O10.0020.0020.002000
Geometric parameters (Å, º) top
Tb1—Tb1i3.5784 (13)Tb1—O1v2.2649 (7)
Tb1—Tb1ii3.5784 (13)Tb1—O12.2649 (7)
Tb1—Tb1iii3.5784 (13)Tb1—O1vi2.2649 (7)
Tb1—Tb1iv3.5784 (13)Tb1—O1vii2.2649 (7)
Tb1i—Tb1—Tb1ii66.57 (2)Tb1iii—Tb1—O1vii99.31 (4)
Tb1i—Tb1—Tb1iii66.57 (2)Tb1iv—Tb1—O1v99.31 (4)
Tb1i—Tb1—Tb1iv101.82 (4)Tb1iv—Tb1—O137.817 (14)
Tb1i—Tb1—O1v37.817 (14)Tb1iv—Tb1—O1vi99.31 (4)
Tb1i—Tb1—O199.31 (4)Tb1iv—Tb1—O1vii37.817 (14)
Tb1i—Tb1—O1vi37.817 (14)O1v—Tb1—O1120.25 (6)
Tb1i—Tb1—O1vii99.31 (4)O1v—Tb1—O1vi75.63 (3)
Tb1ii—Tb1—Tb1iii101.82 (4)O1v—Tb1—O1vii75.63 (3)
Tb1ii—Tb1—Tb1iv66.57 (2)O1—Tb1—O1vi75.63 (3)
Tb1ii—Tb1—O1v37.817 (14)O1—Tb1—O1vii75.63 (3)
Tb1ii—Tb1—O199.31 (4)O1vi—Tb1—O1vii120.25 (6)
Tb1ii—Tb1—O1vi99.31 (4)Tb1—O1—Tb1viii120.25 (4)
Tb1ii—Tb1—O1vii37.817 (14)Tb1—O1—Tb1iii104.37 (2)
Tb1iii—Tb1—Tb1iv66.57 (2)Tb1—O1—Tb1iv104.37 (2)
Tb1iii—Tb1—O1v99.31 (4)Tb1viii—O1—Tb1iii104.37 (2)
Tb1iii—Tb1—O137.817 (14)Tb1viii—O1—Tb1iv104.37 (2)
Tb1iii—Tb1—O1vi37.817 (14)Tb1iii—O1—Tb1iv120.25 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+3/2, y1/2, z+1; (iv) x+3/2, y+1/2, z+1; (v) x1, y, z; (vi) y+1/2, x3/2, z; (vii) y+1/2, x1/2, z; (viii) x+1, y, z.
Structural parameters of REOCl compounds top
All compounds crystallize in the P4/nmm space group. For the RE—Cl bond lengths, the first value refers to one neighboring Cl atom, and the second number refers to four neighboring Cl atoms. Densities are calculated from crystallographic data.
REa (Å)c (Å)V3)Density (g cm-3)RE—O (Å)RE—Cl (Å)Cl···Cl (Å)Cl···O (Å)O···O (Å)ICSD/PDF
Ho3.8936.602100.17.1822.2473.04, 3.053.243.122.75376171 (Templeton & Dauben, 1953)
Dy3.916.62101.27.02300-047-1725 (Kirik et al., 1996)
Tb3.92696.648102.56.81500-048-1648 (Kirik et al., 1996)
Tb3.92796.6556102.76.8042.26493.064, 3.0823.2713.1512.7774current study
Gd3.94956.6708104.16.6612.28393.036, 3.0983.2673.1762.792759232 (Meyer & Schleid, 1986)
Gd3.96986.7008105.66.5642.283.212, 3.0713.4283.0892.807177820 (Hölsä et al., 1996)
Eu3.96466.695105.26.422.2863.08, 3.113.33.172.803428529 (Bärnighausen et al., 1965)
Eu3.96686.6955105.46.4122.29013.062, 3.11033.2893.1832.8049254682 (Schnick, 2004)
Sm3.9826.721106.66.2892.2963.09, 3.123.313.192.815726581 (Templeton & Dauben, 1953)
Nd4.046.77110.55.8822.3593.114, 3.113.4283.1652.8631665 (Zachariasen, 1949)
Nd4.02496.7837109.95.9142.33623.082, 3.1413.3433.2212.8460359231 (Meyer & Schleid, 1986)
Pr4.0536.799111.75.7232.36743.128, 3.1163.4413.1782.86631664 (Zachariasen, 1949)
Ce4.08666.8538114.55.5582.36873.1190, 3.18463.39423.25722.8897412069 (Schnick, 2004)
Ce4.07856.8346113.75.5962.364133.103, 3.1803.383.2542.8839372154 (Wołcyrz & Kepinski, 1992)
La4.1096.865115.95.4542.393.14, 3.183.453.242.905524611 (Sillen & Nylander, 1941)
La4.1176.881116.65.422.38663.126, 3.20463.4163.27512.911240297 (Brixner & Moore, 1983)
La4.13516.904118.15.3552.3953.165, 3.2093.4573.2682.9239777815 (Hölsä et al., 1996)
La4.11626.8746116.55.4282.38323.138, 3.2013.4253.2652.910684330 (Hölsä et al., 1997)
La4.126.882116.85.41200-008-0477 (Swanson et al., 1957)
 

Acknowledgements

The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05–76RL01830.

References

First citationAu, C. T., He, H., Lai, S. Y. & Ng, C. F. (1997). Appl. Catal. Gen. 159, 133–145.  CrossRef CAS Google Scholar
First citationBannister, F. A. (1934). Miner. Mag. j. Miner. Soc. 23, 587–597.  CrossRef ICSD CAS Google Scholar
First citationBärnighausen, H., Brauer, G. & Schultz, N. (1965). Z. Anorg. Allg. Chem. 338, 250–265.  Google Scholar
First citationBerdowski, P. A. M., van Herk, J., Jansen, L. & Blasse, G. (1984). Phys. Status Solidi B, 125, 387–391.  CrossRef CAS Google Scholar
First citationBrixner, L. H. & Moore, E. P. (1983). Acta Cryst. C39, 1316.  CrossRef ICSD IUCr Journals Google Scholar
First citationBruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationHölsä, J., Lastusaari, M. & Valkonen, J. (1997). J. Alloys Compd, 262, 299–304.  Google Scholar
First citationHölsä, J., Säilynoja, E., Koski, K., Rahiala, H. & Valkonen, J. (1996). Powder Diffr. 11, 129–133.  Google Scholar
First citationImanaka, N., Okamoto, K. & Adachi, G. (2001a). Chem. Lett. 30, 130–131.  CrossRef Google Scholar
First citationImanaka, N., Okamoto, K. & Adachi, G. (2001b). Electrochem. Commun. 3, 49–51.  CrossRef CAS Google Scholar
First citationKienle, M. & Jacob, M. (2003). XRD Commander. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationKim, D., Jeong, J. R., Jang, Y., Bae, J.-S., Chung, I., Liang, R., Seo, D.-K., Kim, S.-J. & Park, J.-C. (2019). Phys. Chem. Chem. Phys. 21, 1737–1749.  CrossRef CAS PubMed Google Scholar
First citationKim, D., Park, S., Kim, S., Kang, S.-G. & Park, J.-C. (2014). Inorg. Chem. 53, 11966–11973.  CrossRef CAS PubMed Google Scholar
First citationKirik, S., Yakimov, I., Blochin, A. & Soloyov, L. (1996). ICDD Grant-in-Aid, Institute of Chemistry, Krasnoyarsk, Russia.  Google Scholar
First citationMarsal, A., Centeno, M. A., Odriozola, J. A., Cornet, A. & Morante, J. R. (2005). Sens. Actuators B Chem. 108, 484–489.  CrossRef CAS Google Scholar
First citationMaslen, E. N., Streltsov, V. A., Streltsova, N. R. & Ishizawa, N. (1996). Acta Cryst. B52, 576–579.  CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, G. & Schleid, T. (1986). Z. Anorg. Allg. Chem. 533, 181–185.  CrossRef ICSD CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkamoto, K., Imanaka, N. & Adachi, G. (2002). Solid State Ionics, 154–155, 577–580.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeringer, E., Salzinger, M., Hutt, M., Lemonidou, A. A. & Lercher, J. A. (2009). Top. Catal. 52, 1220–1231.  CrossRef CAS Google Scholar
First citationPetříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationPodkolzin, S. G., Stangland, E. E., Jones, M. E., Peringer, E. & Lercher, J. A. (2007). J. Am. Chem. Soc. 129, 2569–2576.  CrossRef PubMed CAS Google Scholar
First citationRiley, B. J., Pierce, D. A., Crum, J. V., Williams, B. D., Snyder, M. M. V. & Peterson, J. A. (2018). Prog. Nucl. Energy, 104, 102–108.  CrossRef CAS Google Scholar
First citationScharfe, M., Lira-Parada, P. A., Amrute, A. P., Mitchell, S. & Pérez-Ramírez, J. (2016). J. Catal. 344, 524–534.  CrossRef CAS Google Scholar
First citationSchnick, W. (2004). Private Communication.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSillen, L. G. & Nylander, A. L. (1941). Svensk Kemisk Tidskrift, 53, 367–372.  CAS Google Scholar
First citationSwanson, H. E., Gilfrich, N. T. & Cook, M. I. (1957). Circ. Bur. Stand. pp. 539.  Google Scholar
First citationTempleton, D. H. & Dauben, C. H. (1953). J. Am. Chem. Soc. 75, 6069–6070.  CrossRef ICSD CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWołcyrz, M. & Kepinski, L. (1992). J. Solid State Chem. 99, 409–413.  Google Scholar
First citationZachariasen, W. H. (1949). Acta Cryst. 2, 388–390.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds