research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of two piperine derivatives

CROSSMARK_Color_square_no_text.svg

aFaculty of Pharmacy and Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 3500295, Japan, and bFaculty of Science, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 3500295, Japan
*Correspondence e-mail: yinoue@josai.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 March 2020; accepted 3 April 2020; online 9 April 2020)

The title compounds, 5-(2H-1,3-benzodioxol-5-yl)-N-cyclo­hexyl­penta-2,4-dienamide, C18H21NO3 (I), and 5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one C16H17NO3 (II), are derivatives of piperine, which is known as a pungent component of pepper. Their geometrical parameters are similar to those of the three polymorphs of piperine, which indicate conjugation of electrons over the length of the mol­ecules. The extended structure of (I) features N—H⋯O amide hydrogen bonds, which generate C(4) [010] chains. The crystal of (II) features aromatic ππ stacking, as for two of three known piperine polymorphs.

1. Chemical context

Piperine [(2E,4E)-1-[5-(1,3-benzodioxol-5­yl)-1-oxo-2,4-pen­ta­dien­yl]piperidine, C17H19NO3, is the major pungent ingredient of Piperaceae pepper (Piper nigrum). Piperine is an amide having a methyl­ene­dioxy­phenyl grouping as a characteristic of its chemical structure (Fig. 1[link]). Inter­estingly, when the amide group is in a near planar conformation, the conjugated state of the penta­diene chain of piperine has the property that electrons are easily donated and the stretching vibration of the amide carbonyl group is affected (Pfund et al., 2015[Pfund, L. Y., Chamberlin, B. L. & Matzger, A. J. (2015). Cryst. Growth Des. 15, 2047-2051.]). As part of our studies in this area, we have already reported a complex using the poorly water-soluble piperine (log P = 2.25) and the cyclic polysaccharide cyclo­dextrin (Szejtli, 1998[Szejtli, J. (1998). Chem. Rev. 98, 1743-1754.]; Ezawa et al., 2016[Ezawa, T., Inoue, Y., Tunvichien, S., Suzuki, R. & Kanamoto, I. (2016). Int. J. Med. Chem. 2016, 1-9.]). In addition, piperine has been evaluated for its inclusion mechanism and dissolution properties using various cyclo­dextrins (Ezawa et al., 2018[Ezawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y. & Kanamoto, I. (2018). AAPS PharmSciTech, 19, 923-933.], 2019[Ezawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y. & Kanamoto, I. (2019). Int. J. Med. Chem. 2019, 1-14.]). The synthesis of piperine derivatives was necessary to understand the inclusion mechanism of piperine and cyclo­dextrin and the detailed mol­ecular behaviour of piperine.

[Scheme 1]
[Figure 1]
Figure 1
The chemical structure of piperine.

Therefore, the aim of this study was to synthesize the title compounds (2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-N-cyclo­hexyl­penta-2,4-dienamide, C18H21NO3, (I)[link], and (2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one, C16H17NO3, (II)[link], from piperine and to determine their X-ray crystal structures. The log P of (I)[link] is 3.36 and that of (II)[link] is 2.36. Assessing the structural properties of the title compounds (crystal structure, geometry, inter­molecular inter­actions, etc.) will help to evaluate the inclusion behaviour of piperine with cyclo­dextrin.

2. Structural commentary

Compound (I)[link] (Fig. 2[link]) crystallizes in the monoclinic space group P21/c with four mol­ecules per unit cell. The C1–C6 cyclo­hexyl ring adopts a chair conformation with the exocyclic C5—N1 bond in an equatorial orientation. The C7–C12/O2/O3 fused-ring system is almost planar (r.m.s. deviation = 0.020 Å) and subtends a dihedral angle of 21.57 (4)° with the cyclo­hexyl ring. The bond distances and angles (amide, penta­diene and methyl­ene­dioxy­phenyl moieties) of (I)[link] are not significantly different from the equivalent data for the three polymorphs of piperine (Pfund et al., 2015[Pfund, L. Y., Chamberlin, B. L. & Matzger, A. J. (2015). Cryst. Growth Des. 15, 2047-2051.]) (Table 1[link]).

Table 1
Key geometrical parameters (Å) for the title compounds and piperine polymorphs

  (I) (II) PIPINE10 PIPINE12 PIPINE13
Amide C18—N1 (1.344) C1—N1 (1.350) C1—N1 (1.331) C1—N1 (1.363) C1—N1 (1.353)
  C18—O1 (1.242) C1—O1 (1.243) C1—O1 (1.218) C1—O1 (1.235) C1—O1 (1.482)
  C14—C15 (1.346) C4—C5 (1.345) C4—C5 (1.312) C4—C5 (1.330) C4—C5 (1.347)
Penta­diene C15—C16 (1.444) C3—C4 (1.441) C3—C4 (1.437) C3—C4 (1.440) C3—C4 (1.442)
  C16—C17 (1.342) C2—C3 (1.341) C2—C3 (1.311) C2—C3 (1.332) C2—C3 (1.341)
  C17—C18 (1.479) C1—C2 (1.480) C1—C2 (1.473) C1—C2 (1.477) C1—C2 (1.482)
  C8—C9 (1.390) C6—C7 (1.397) C6—C7 (1.387) C6—C7 (1.399) C6—C7 (1.403)
  C8—C13 (1.371) C6—C12 (1.412) C6—C12 (1.396) C6—C12 (1.414) C6—C12 (1.412)
  C9—C10 (1.374) C7—C8 (1.403) C7—C8 (1.393) C7—C8 (1.395) C7—C8 (1.393)
Methyl­ene­dioxy­phen­yl C10—C11 (1.402) C8—C9 (1.369) C8—C9 (1.343) C8—C9 (1.360) C8—C9 (1.371)
  C11—C12 (1.399) C9—C11 (1.385) C9—C11 (1.357) C9—C11 (1.377) C9—C11 (1.381)
  C12—C13 (1.412) C11—C12 (1.364) C11—C12 (1.364) C11—C12 (1.370) C11—C12 (1.367)
  C8—O2 (1.371) C9—O2 (1.378) C9—O2 (1.373) c9—O2 (1.383) C9—O2 (1.378)
  C9—O3 (1.370) C11—O3 (1.376) C11—O3 (1.362) C11—O3 (1.383) C11—O3 (1.383)
π-stacking close contacts   C9⋯C9 (3.268)   C8⋯C8 (3.110) C9⋯C12 (3.327)
    C9⋯C12 (3.322)   C8⋯C8 (3.303)  
    C11⋯C12 (3.287)      
[Figure 2]
Figure 2
Displacement ellipsoid drawing at a 50% probability level of the asymmetric unit of (I)[link].

Compound (II)[link] (Fig. 3[link]), also known as piperilyn, crystallizes in the ortho­rhom­bic space group Pbca with eight mol­ecules per unit cell. The C13–C16/N1 ring is well described as being twisted with C14 and C15 deviating from C13/N1/C16 by 0.205 (2) and −0.382 (2) Å, respectively. The C9/O2/C10/O3/C11 ring has a clear tendency towards an envelope conformation [deviation of C10 from the other four atoms = −0.216 (2) Å]. The dihedral angle between the C13–C16/N1 and C6–C12/O2/O3 rings (all atoms) is 12.29 (10)°. As with (I)[link], the key bond-distance data for (II)[link] are comparable to those of piperine (Table 1[link]).

[Figure 3]
Figure 3
Displacement ellipsoid drawing at a 50% probability level of the asymmetric unit of (II)[link].

Thus, we may conclude that the title compounds show intra­molecular resonance from the amide group to the ether O atoms of the methyl­ene­dioxy­phenyl moiety, similar to piperine.

3. Supra­molecular features

Piperine crystallizes in three polymorphs: form I [CCDC (Groom et al., 2016) refcode: PIPINE10] and form II (PIPINE12) in space group P21/n and form III (PIPINE13) in space group C2/c (Table 1[link]) (Pfund et al., 2015[Pfund, L. Y., Chamberlin, B. L. & Matzger, A. J. (2015). Cryst. Growth Des. 15, 2047-2051.]). The packing for forms II and III features aromatic ππ stacking inter­actions, while that of form I does not.

The crystal structure of (I)[link] does not feature ππ stacking inter­actions, which is similar to piperine form I. Compound (I)[link] possesses an N—H grouping, which forms a classical N1—H⋯O1 hydrogen bond (Table 2[link]) between the amide-bond sites, generating [010] C(4) chains (Fig. 4[link]) with adjacent mol­ecules related by simple translation. The unit-cell packing for (I)[link] is illustrated in Fig. 5[link].

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.874 (16) 2.086 (16) 2.9547 (12) 172.8 (14)
Symmetry code: (i) x, y+1, z.
[Figure 4]
Figure 4
A view along the c-axis direction of the crystal packing of (I)[link]. The N—H⋯O hydrogen bonds are drawn as dashed lines.
[Figure 5]
Figure 5
The unit-cell packing for (I)[link] viewed down [100] with hydrogen bonds drawn as dashed lines.

The structure of (II)[link] does feature ππ stacking with the closest inter­molecular contacts being C9⋯C9 = 3.268 (3), C9⋯C12 = 3.322 (3) and C11⋯C12 = 3.287 (3) Å (Fig. 6[link]). The overall packing for (II)[link] can be described as undulating sheets propagating in the (010) plane (Fig. 7[link]).

[Figure 6]
Figure 6
Fragment of the crystal of (II)[link] showing close C⋯C contacts due to ππ stacking.
[Figure 7]
Figure 7
The unit-cell packing for (II)[link] viewed down [100].

4. Synthesis and crystallization

Piperine was purchased from Fujifilm Wako Pure Chemical Co., Ltd. The synthesis of piperine derivatives was performed using a previously reported procedure (Takao et al., 2015[Takao, K., Miyashiro, T. & Sugita, Y. (2015). Chem. Pharm. Bull. 63, 326-333.]). After dissolving piperine in ethanol, hydrolysis was performed by stirring for 20 h in the presence of KOH. After evaporating the solvent under vacuum, the resulting reaction mixture was suspended in water and acidified with 4 M HCl to pH < 1. The resultant pale-brown precipitate was collected by filtration, washed with cold water and recrystallized from methanol solution to give piperic acid. The piperic acid (1.0 mmol) was dissolved in CH2Cl2 (5 ml) and oxalyl chloride (10 mmol) was added and the mixture was stirred at room temperature for 3 h. The solvent and excess oxalyl chloride were then evaporated under reduced pressure.

To prepare (I)[link], the crude acid chloride generated was dissolved in CH2Cl2 (2 ml) and cyclo­hexyl­amine (1.2 mmol) and Et3N (8 mmol) were added, and the mixture was stirred at 273 K for 5 h. Ice-cold water was added to the mixture, followed by extraction with chloro­form (5 ml). The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent hexa­ne:etyl acetate 1:1 v/v) to give (I)[link] in the form of a yellow powder. Light-yellow needles of (I)[link] were recrystallized from ethyl acetate solution.

Compound (II)[link] was prepared by the same procedure with pyrrolidine (1.2 mmol) replacing the cyclo­hexyl­amine to give (II)[link] in the form of a white powder. Colourless needles of (II)[link] were recrystallized from ethyl acetate solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms for carbon atom were included in their calculated positions and refined as riding atoms with Uiso(H) = 1.2Ueq(C). The hydrogen atom attached to N1 in (I)[link] was located in a difference-Fourier map and its position freely refined with Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C18H21NO3 C16H17NO3
Mr 299.36 271.30
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbca
Temperature (K) 90 90
a, b, c (Å) 11.4982 (7), 5.0086 (3), 26.7240 (16) 11.8747 (10), 7.2485 (6), 30.392 (2)
α, β, γ (°) 90, 97.683 (2), 90 90, 90, 90
V3) 1525.22 (16) 2616.0 (4)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.10
Crystal size (mm) 0.58 × 0.07 × 0.07 0.28 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker D8 goniometer Bruker D8 goniometer
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.580, 0.747 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27741, 4862, 4204 41504, 3506, 2193
Rint 0.066 0.128
(sin θ/λ)max−1) 0.725 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.07 0.050, 0.143, 1.05
No. of reflections 4862 3506
No. of parameters 202 182
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.26 0.28, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011); software used to prepare material for publication: Generate Report (Bruker, 2018).

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) top
Crystal data top
C18H21NO3F(000) = 640
Mr = 299.36Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4982 (7) ÅCell parameters from 9948 reflections
b = 5.0086 (3) Åθ = 2.5–33.5°
c = 26.7240 (16) ŵ = 0.09 mm1
β = 97.683 (2)°T = 90 K
V = 1525.22 (16) Å3Needle, light-yellow
Z = 40.58 × 0.07 × 0.07 mm
Data collection top
Bruker D8 goniometer
diffractometer
4862 independent reflections
Radiation source: microfocus X-ray tube4204 reflections with I > 2σ(I)
Multilayered conforacal mirror monochromatorRint = 0.066
Detector resolution: 7.391 pixels mm-1θmax = 31.0°, θmin = 2.2°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
k = 77
Tmin = 0.580, Tmax = 0.747l = 3838
27741 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.7464P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4862 reflectionsΔρmax = 0.42 e Å3
202 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.96864 (7)0.23821 (16)0.65434 (3)0.01577 (17)
O20.26072 (7)0.95788 (18)0.47532 (3)0.01982 (18)
O30.09239 (7)0.7586 (2)0.49784 (4)0.0246 (2)
N11.02983 (8)0.66732 (19)0.66764 (4)0.01464 (18)
H11.0072 (13)0.834 (3)0.6656 (6)0.018*
C11.35763 (10)0.7868 (2)0.69502 (4)0.0179 (2)
H1A1.3875930.6339310.6770370.021*
H1AB1.4041400.9464790.6885620.021*
C21.37316 (10)0.7289 (2)0.75164 (4)0.0177 (2)
H2A1.4566520.6894100.7635360.021*
H2AB1.3502980.8878690.7700540.021*
C31.29754 (11)0.4914 (2)0.76259 (4)0.0184 (2)
H3A1.3066330.4589420.7994450.022*
H3AB1.3245480.3298300.7461680.022*
C41.16802 (10)0.5412 (2)0.74321 (4)0.0174 (2)
H4A1.1214750.3814010.7495670.021*
H4AB1.1390040.6932820.7617080.021*
C51.15165 (9)0.6024 (2)0.68667 (4)0.01204 (19)
H51.1747570.4407430.6683890.014*
C61.22876 (10)0.8346 (2)0.67461 (4)0.0156 (2)
H6A1.2016021.0003030.6896040.019*
H6AB1.2209840.8594590.6375630.019*
C70.13448 (10)0.9561 (2)0.46564 (4)0.0178 (2)
H00F0.1031601.1341670.4728210.021*
H00G0.1083130.9122740.4297790.021*
C80.29070 (10)0.7663 (2)0.51139 (4)0.0146 (2)
C90.19016 (9)0.6451 (2)0.52444 (4)0.0157 (2)
C100.19552 (10)0.4395 (2)0.55871 (4)0.0172 (2)
H100.1266940.3564870.5674250.021*
C110.30804 (10)0.3586 (2)0.58014 (4)0.0154 (2)
H110.3154070.2138910.6033180.018*
C120.40980 (9)0.4841 (2)0.56850 (4)0.0135 (2)
C130.40115 (9)0.6936 (2)0.53284 (4)0.0142 (2)
H130.4690380.7804580.5240740.017*
C140.52399 (9)0.3949 (2)0.59388 (4)0.0151 (2)
H140.5285040.2191940.6074040.018*
C150.62312 (9)0.5413 (2)0.59963 (4)0.0153 (2)
H150.6188730.7207650.5880240.018*
C160.73553 (9)0.4407 (2)0.62246 (4)0.0144 (2)
H160.7415260.2564960.6309090.017*
C170.83199 (9)0.5927 (2)0.63240 (4)0.0147 (2)
H170.8254370.7791830.6262120.018*
C180.94810 (9)0.4819 (2)0.65259 (4)0.01252 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0151 (4)0.0087 (3)0.0230 (4)0.0010 (3)0.0008 (3)0.0012 (3)
O20.0130 (4)0.0226 (4)0.0237 (4)0.0022 (3)0.0019 (3)0.0074 (3)
O30.0116 (4)0.0333 (5)0.0284 (5)0.0015 (4)0.0014 (3)0.0109 (4)
N10.0124 (4)0.0082 (4)0.0228 (5)0.0014 (3)0.0006 (3)0.0001 (3)
C10.0146 (5)0.0186 (5)0.0199 (5)0.0044 (4)0.0007 (4)0.0004 (4)
C20.0181 (5)0.0134 (5)0.0201 (5)0.0006 (4)0.0034 (4)0.0003 (4)
C30.0222 (5)0.0137 (5)0.0181 (5)0.0006 (4)0.0016 (4)0.0024 (4)
C40.0191 (5)0.0176 (5)0.0160 (5)0.0002 (4)0.0037 (4)0.0016 (4)
C50.0112 (4)0.0089 (4)0.0158 (5)0.0010 (3)0.0012 (3)0.0004 (3)
C60.0160 (5)0.0119 (5)0.0181 (5)0.0033 (4)0.0007 (4)0.0031 (4)
C70.0140 (5)0.0196 (5)0.0195 (5)0.0029 (4)0.0010 (4)0.0003 (4)
C80.0149 (5)0.0148 (5)0.0144 (5)0.0007 (4)0.0035 (4)0.0001 (4)
C90.0106 (4)0.0198 (5)0.0167 (5)0.0007 (4)0.0020 (4)0.0022 (4)
C100.0128 (5)0.0208 (5)0.0183 (5)0.0038 (4)0.0035 (4)0.0010 (4)
C110.0148 (5)0.0160 (5)0.0156 (5)0.0028 (4)0.0031 (4)0.0003 (4)
C120.0121 (4)0.0134 (5)0.0153 (5)0.0005 (4)0.0030 (3)0.0015 (4)
C130.0117 (4)0.0145 (5)0.0169 (5)0.0008 (4)0.0037 (4)0.0006 (4)
C140.0137 (5)0.0148 (5)0.0169 (5)0.0016 (4)0.0030 (4)0.0016 (4)
C150.0138 (5)0.0138 (5)0.0183 (5)0.0025 (4)0.0027 (4)0.0006 (4)
C160.0144 (5)0.0129 (5)0.0162 (5)0.0023 (4)0.0029 (4)0.0011 (4)
C170.0138 (5)0.0110 (4)0.0194 (5)0.0030 (4)0.0023 (4)0.0020 (4)
C180.0127 (4)0.0108 (4)0.0143 (5)0.0006 (4)0.0027 (3)0.0010 (3)
Geometric parameters (Å, º) top
O1—C181.2429 (13)C6—H6A0.9900
O2—C81.3710 (14)C6—H6AB0.9900
O2—C71.4400 (14)C7—H00F0.9900
O3—C91.3705 (14)C7—H00G0.9900
O3—C71.4372 (15)C8—C131.3710 (15)
N1—C181.3440 (14)C8—C91.3909 (15)
N1—C51.4614 (13)C9—C101.3741 (16)
N1—H10.874 (16)C10—C111.4028 (15)
C1—C21.5275 (16)C10—H100.9500
C1—C61.5279 (16)C11—C121.3991 (15)
C1—H1A0.9900C11—H110.9500
C1—H1AB0.9900C12—C131.4120 (15)
C2—C31.5246 (17)C12—C141.4648 (15)
C2—H2A0.9900C13—H130.9500
C2—H2AB0.9900C14—C151.3468 (15)
C3—C41.5305 (16)C14—H140.9500
C3—H3A0.9900C15—C161.4442 (15)
C3—H3AB0.9900C15—H150.9500
C4—C51.5284 (15)C16—C171.3423 (15)
C4—H4A0.9900C16—H160.9500
C4—H4AB0.9900C17—C181.4793 (15)
C5—C61.5228 (15)C17—H170.9500
C5—H51.0000
C8—O2—C7105.94 (9)H6A—C6—H6AB107.9
C9—O3—C7106.11 (9)O3—C7—O2107.98 (9)
C18—N1—C5123.36 (9)O3—C7—H00F110.1
C18—N1—H1116.8 (10)O2—C7—H00F110.1
C5—N1—H1119.9 (10)O3—C7—H00G110.1
C2—C1—C6111.27 (9)O2—C7—H00G110.1
C2—C1—H1A109.4H00F—C7—H00G108.4
C6—C1—H1A109.4C13—C8—O2127.72 (10)
C2—C1—H1AB109.4C13—C8—C9122.25 (10)
C6—C1—H1AB109.4O2—C8—C9110.03 (10)
H1A—C1—H1AB108.0O3—C9—C10128.10 (10)
C3—C2—C1110.13 (9)O3—C9—C8109.91 (10)
C3—C2—H2A109.6C10—C9—C8121.98 (10)
C1—C2—H2A109.6C9—C10—C11116.43 (10)
C3—C2—H2AB109.6C9—C10—H10121.8
C1—C2—H2AB109.6C11—C10—H10121.8
H2A—C2—H2AB108.1C12—C11—C10122.19 (11)
C2—C3—C4111.23 (9)C12—C11—H11118.9
C2—C3—H3A109.4C10—C11—H11118.9
C4—C3—H3A109.4C11—C12—C13119.88 (10)
C2—C3—H3AB109.4C11—C12—C14118.98 (10)
C4—C3—H3AB109.4C13—C12—C14121.13 (10)
H3A—C3—H3AB108.0C8—C13—C12117.22 (10)
C5—C4—C3110.66 (9)C8—C13—H13121.4
C5—C4—H4A109.5C12—C13—H13121.4
C3—C4—H4A109.5C15—C14—C12125.40 (10)
C5—C4—H4AB109.5C15—C14—H14117.3
C3—C4—H4AB109.5C12—C14—H14117.3
H4A—C4—H4AB108.1C14—C15—C16123.65 (11)
N1—C5—C6108.34 (9)C14—C15—H15118.2
N1—C5—C4111.98 (9)C16—C15—H15118.2
C6—C5—C4111.37 (9)C17—C16—C15123.70 (10)
N1—C5—H5108.3C17—C16—H16118.1
C6—C5—H5108.3C15—C16—H16118.1
C4—C5—H5108.3C16—C17—C18122.76 (10)
C5—C6—C1111.66 (9)C16—C17—H17118.6
C5—C6—H6A109.3C18—C17—H17118.6
C1—C6—H6A109.3O1—C18—N1123.06 (10)
C5—C6—H6AB109.3O1—C18—C17122.66 (10)
C1—C6—H6AB109.3N1—C18—C17114.26 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.874 (16)2.086 (16)2.9547 (12)172.8 (14)
Symmetry code: (i) x, y+1, z.
5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II) top
Crystal data top
C16H17NO3Dx = 1.378 Mg m3
Mr = 271.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3874 reflections
a = 11.8747 (10) Åθ = 2.7–25.8°
b = 7.2485 (6) ŵ = 0.10 mm1
c = 30.392 (2) ÅT = 90 K
V = 2616.0 (4) Å3Needle, colorless
Z = 80.28 × 0.06 × 0.06 mm
F(000) = 1152
Data collection top
Bruker D8 goniometer
diffractometer
3506 independent reflections
Radiation source: microfocus X-ray tube2193 reflections with I > 2σ(I)
Multilayered conforacal mirror monochromatorRint = 0.128
Detector resolution: 7.391 pixels mm-1θmax = 29.1°, θmin = 2.7°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
k = 99
Tmin = 0.666, Tmax = 0.746l = 4141
41504 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0492P)2 + 1.9223P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.28 e Å3
3506 reflectionsΔρmin = 0.26 e Å3
182 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0038 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.90586 (12)0.3421 (2)0.67241 (5)0.0219 (3)
O20.77314 (12)0.9757 (2)0.35830 (4)0.0239 (4)
O30.62806 (12)0.8589 (2)0.40118 (5)0.0238 (3)
N10.72232 (13)0.3304 (2)0.69173 (5)0.0178 (4)
C10.80525 (16)0.3650 (3)0.66249 (6)0.0179 (4)
C20.77084 (17)0.4355 (3)0.61881 (6)0.0200 (4)
H20.6931950.4356080.6112730.024*
C30.84580 (17)0.4994 (3)0.58954 (6)0.0195 (4)
H30.9234970.4937000.5968620.023*
C40.81458 (18)0.5762 (3)0.54755 (6)0.0202 (4)
H40.7374860.5713210.5392780.024*
C50.88758 (17)0.6543 (3)0.51932 (6)0.0204 (4)
H50.9646740.6547870.5276650.024*
C60.85964 (17)0.7386 (3)0.47701 (6)0.0189 (4)
C70.94619 (18)0.8085 (3)0.45072 (7)0.0233 (5)
H71.0214610.8013520.4611700.028*
C80.92613 (18)0.8889 (3)0.40946 (7)0.0238 (5)
H80.9857630.9348910.3917550.029*
C90.81622 (17)0.8975 (3)0.39603 (6)0.0197 (4)
C100.65583 (18)0.9250 (3)0.35806 (7)0.0243 (5)
H10A0.6087441.0332100.3505590.029*
H10B0.6421060.8273570.3359110.029*
C110.72958 (17)0.8288 (3)0.42176 (6)0.0192 (4)
C120.74749 (17)0.7485 (3)0.46174 (6)0.0194 (4)
H120.6868000.7010560.4786680.023*
C130.74989 (17)0.2759 (3)0.73696 (6)0.0191 (4)
H13A0.8033650.3640490.7504770.023*
H13B0.7831820.1507430.7377370.023*
C140.63666 (17)0.2799 (3)0.76059 (7)0.0214 (4)
H14A0.6331460.1838690.7837220.026*
H14B0.6229010.4019630.7741580.026*
C150.55179 (17)0.2411 (3)0.72417 (7)0.0229 (5)
H15A0.4764640.2896080.7319740.028*
H15B0.5457120.1070300.7183980.028*
C160.59994 (16)0.3421 (3)0.68437 (7)0.0202 (4)
H16A0.5781310.2804540.6565830.024*
H16B0.5743360.4720520.6835500.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160 (7)0.0250 (8)0.0247 (7)0.0012 (6)0.0006 (6)0.0005 (6)
O20.0236 (8)0.0286 (8)0.0195 (7)0.0012 (6)0.0007 (6)0.0050 (6)
O30.0196 (8)0.0307 (8)0.0209 (7)0.0019 (6)0.0009 (6)0.0048 (6)
N10.0134 (8)0.0218 (9)0.0181 (8)0.0001 (7)0.0008 (6)0.0024 (7)
C10.0177 (10)0.0158 (9)0.0204 (10)0.0005 (8)0.0011 (8)0.0021 (8)
C20.0186 (10)0.0206 (10)0.0208 (10)0.0005 (8)0.0025 (8)0.0014 (8)
C30.0199 (10)0.0194 (10)0.0191 (10)0.0002 (8)0.0009 (8)0.0017 (8)
C40.0201 (10)0.0201 (10)0.0203 (10)0.0012 (8)0.0022 (8)0.0017 (8)
C50.0181 (10)0.0214 (10)0.0216 (10)0.0014 (8)0.0003 (8)0.0002 (8)
C60.0187 (10)0.0197 (10)0.0184 (10)0.0013 (8)0.0002 (8)0.0022 (8)
C70.0185 (10)0.0283 (11)0.0230 (10)0.0001 (9)0.0006 (8)0.0003 (9)
C80.0214 (11)0.0265 (11)0.0236 (10)0.0015 (9)0.0048 (8)0.0028 (9)
C90.0232 (11)0.0204 (10)0.0156 (9)0.0011 (8)0.0008 (8)0.0006 (8)
C100.0218 (11)0.0308 (12)0.0204 (10)0.0001 (9)0.0006 (8)0.0026 (9)
C110.0180 (10)0.0197 (10)0.0200 (10)0.0009 (8)0.0011 (8)0.0004 (8)
C120.0182 (10)0.0202 (10)0.0197 (9)0.0001 (8)0.0025 (8)0.0001 (8)
C130.0198 (10)0.0196 (10)0.0180 (9)0.0017 (8)0.0007 (8)0.0008 (8)
C140.0206 (10)0.0218 (10)0.0218 (10)0.0007 (9)0.0021 (8)0.0008 (8)
C150.0171 (10)0.0266 (11)0.0251 (10)0.0011 (9)0.0018 (8)0.0016 (9)
C160.0144 (9)0.0241 (11)0.0221 (10)0.0011 (8)0.0007 (8)0.0000 (8)
Geometric parameters (Å, º) top
O1—C11.243 (2)C7—H70.9500
O2—C91.377 (2)C8—C91.369 (3)
O2—C101.441 (2)C8—H80.9500
O3—C111.376 (2)C9—C111.385 (3)
O3—C101.434 (2)C10—H10A0.9900
N1—C11.350 (2)C10—H10B0.9900
N1—C131.467 (2)C11—C121.364 (3)
N1—C161.473 (2)C12—H120.9500
C1—C21.480 (3)C13—C141.525 (3)
C2—C31.341 (3)C13—H13A0.9900
C2—H20.9500C13—H13B0.9900
C3—C41.441 (3)C14—C151.523 (3)
C3—H30.9500C14—H14A0.9900
C4—C51.345 (3)C14—H14B0.9900
C4—H40.9500C15—C161.525 (3)
C5—C61.462 (3)C15—H15A0.9900
C5—H50.9500C15—H15B0.9900
C6—C71.397 (3)C16—H16A0.9900
C6—C121.412 (3)C16—H16B0.9900
C7—C81.403 (3)
C9—O2—C10104.98 (15)O2—C10—H10A110.2
C11—O3—C10105.50 (15)O3—C10—H10B110.2
C1—N1—C13120.26 (16)O2—C10—H10B110.2
C1—N1—C16127.52 (16)H10A—C10—H10B108.5
C13—N1—C16112.21 (15)C12—C11—O3127.55 (19)
O1—C1—N1121.10 (18)C12—C11—C9122.74 (19)
O1—C1—C2121.93 (18)O3—C11—C9109.69 (17)
N1—C1—C2116.95 (17)C11—C12—C6117.50 (19)
C3—C2—C1122.08 (19)C11—C12—H12121.3
C3—C2—H2119.0C6—C12—H12121.3
C1—C2—H2119.0N1—C13—C14103.86 (16)
C2—C3—C4123.4 (2)N1—C13—H13A111.0
C2—C3—H3118.3C14—C13—H13A111.0
C4—C3—H3118.3N1—C13—H13B111.0
C5—C4—C3124.2 (2)C14—C13—H13B111.0
C5—C4—H4117.9H13A—C13—H13B109.0
C3—C4—H4117.9C15—C14—C13103.75 (16)
C4—C5—C6126.23 (19)C15—C14—H14A111.0
C4—C5—H5116.9C13—C14—H14A111.0
C6—C5—H5116.9C15—C14—H14B111.0
C7—C6—C12119.16 (18)C13—C14—H14B111.0
C7—C6—C5119.19 (18)H14A—C14—H14B109.0
C12—C6—C5121.64 (18)C14—C15—C16103.87 (16)
C6—C7—C8122.5 (2)C14—C15—H15A111.0
C6—C7—H7118.8C16—C15—H15A111.0
C8—C7—H7118.8C14—C15—H15B111.0
C9—C8—C7116.59 (19)C16—C15—H15B111.0
C9—C8—H8121.7H15A—C15—H15B109.0
C7—C8—H8121.7N1—C16—C15102.81 (16)
C8—C9—O2128.41 (18)N1—C16—H16A111.2
C8—C9—C11121.54 (19)C15—C16—H16A111.2
O2—C9—C11110.01 (18)N1—C16—H16B111.2
O3—C10—O2107.62 (16)C15—C16—H16B111.2
O3—C10—H10A110.2H16A—C16—H16B109.1
Key geometrical parameters (Å) for the title compounds and piperine polymorphs top
(I)(II)PIPINE10PIPINE12PIPINE13
AmideC18—N1 (1.344)C1—N1 (1.350)C1—N1 (1.331)C1—N1 (1.363)C1—N1 (1.353)
C18—O1 (1.242)C1—O1 (1.243)C1—O1 (1.218)C1—O1 (1.235)C1—O1 (1.482)
C14—C15 (1.346)C4—C5 (1.345)C4—C5 (1.312)C4—C5 (1.330)C4—C5 (1.347)
PentadieneC15—C16 (1.444)C3—C4 (1.441)C3—C4 (1.437)C3—C4 (1.440)C3—C4 (1.442)
C16—C17 (1.342)C2—C3 (1.341)C2—C3 (1.311)C2—C3 (1.332)C2—C3 (1.341 )
C17—C18 (1.479)C1—C2 (1.480)C1—C2 (1.473)C1—C2 (1.477)C1—C2 (1.482 )
C8—C9 (1.390)C6—C7 (1.397)C6—C7 (1.387)C6—C7 (1.399)C6—C7 (1.403)
C8—C13 (1.371)C6—C12 (1.412)C6—C12 (1.396)C6—C12 (1.414)C6—C12 (1.412)
C9—C10 (1.374)C7—C8 (1.403)C7—C8 (1.393)C7—C8 (1.395)C7—C8 (1.393)
MethylenedioxyphenylC10—C11 (1.402)C8—C9 (1.369)C8—C9 (1.343)C8—C9 (1.360)C8—C9 (1.371)
C11—C12 (1.399)C9—C11 (1.385)C9—C11 (1.357)C9—C11 (1.377)C9—C11 (1.381)
C12—C13 (1.412)C11—C12 (1.364)C11—C12 (1.364)C11—C12 (1.370)C11—C12 (1.367)
C8—O2 (1.371)C9—O2 (1.378)C9—O2 (1.373)c9—O2 (1.383)C9—O2 (1.378)
C9—O3 (1.370)C11—O3 (1.376)C11—O3 (1.362)C11—O3 (1.383)C11—O3 (1.383)
π-stacking close contactsC9···C9 (3.268)C8···C8 (3.110)C9···C12 (3.327)
C9···C12 (3.322)C8···C8 (3.303)
C11···C12 (3.287)
 

Funding information

This research was supported by Josai University.

References

First citationBruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEzawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y. & Kanamoto, I. (2018). AAPS PharmSciTech, 19, 923–933.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEzawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y. & Kanamoto, I. (2019). Int. J. Med. Chem. 2019, 1–14.  Google Scholar
First citationEzawa, T., Inoue, Y., Tunvichien, S., Suzuki, R. & Kanamoto, I. (2016). Int. J. Med. Chem. 2016, 1–9.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPfund, L. Y., Chamberlin, B. L. & Matzger, A. J. (2015). Cryst. Growth Des. 15, 2047–2051.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzejtli, J. (1998). Chem. Rev. 98, 1743–1754.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTakao, K., Miyashiro, T. & Sugita, Y. (2015). Chem. Pharm. Bull. 63, 326–333.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds