research communications
and Hirshfeld surface analysis of 6-benzoyl-3,5-diphenylcyclohex-2-en-1-one
aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az, 1063 Baku, Azerbaijan, and dDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine
*Correspondence e-mail: mustford@ukr.net
In the title compound, C25H20O2, the central cyclohexenone ring adopts an The mean plane of the cyclohexenone ring makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the two attached phenyl rings, while it is inclined by 69.55 (11)° to the phenyl ring of the benzoyl group. In the crystal, the molecules are linked by C—H⋯O and C—H⋯π interactions, forming a three-dimensional network.
Keywords: crystal structure; Michael addition products; cyclohexen-1-one ring; envelope conformation; Hirshfeld surface analysis.
CCDC reference: 1983451
1. Chemical context
There have been a series of significant examples of enone derivatives used as target products as well as synthetic intermediates (Abdelhamid et al., 2011; Asgarova et al., 2019; Khalilov et al., 2018a,b; Thomas, 2007). Moreover, a number of useful compounds containing enone moieties have been found in nature, such as cyanthiwigin U, (+)-cepharamine, phorbol and grandisine G, which were the object of a total synthesis (Pfeiffer et al., 2005; Schultz & Wang, 1998; Kawamura et al., 2016; Cuthbertson & Taylor, 2013). As part of a further study on the chemistry of α,β-unsaturated (Naghiyev et al., 2016), we report herein the and Hirshfeld surface analysis of the title compound.
2. Structural commentary
In the title compound (Fig. 1), the central cyclohexenone ring adopts an with puckering parameters QT = 0.470 (2) Å, θ = 125.3 (2)° and φ = 300.8 (3)°. The mean plane of the cyclohexenone ring [maximum deviation = 0.335 (2) Å] makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the C14–C18 and C20–C25 phenyl rings, whereas it is inclined by 69.55 (11)° to the C8–C13 phenyl ring of the benzoyl group.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are linked by C—H⋯O and C—H⋯π interactions (C2—H2A⋯O2i, C15—H15A⋯O1i, C22—H22A⋯O1ii and C11—H11A⋯Cg3iii; symmetry codes as given in Table 1; Cg3 is the centroid of the C14–C19 ring), forming layers parallel to the ab plane. The layers are further connected by another C—H⋯π interaction (C24—H24A⋯Cg2iv; Table 1; Cg2 is the centroid of the C8–C13 ring), forming a three-dimensional network (Fig. 2).
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed using CrystalExplorer 3.1 (Wolff et al., 2012). The surface of the title compound mapped over dnorm is shown in Fig. 3. The dark-red spots on the dnorm surface arise as a result of short interatomic contacts, while the other weaker intermolecular interactions appear as light-red spots. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) is shown in Fig. 4. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The overall two-dimensional fingerprint plot (Spackman & McKinnon, 2002), and those delineated into H⋯H (48.8%), C⋯H/H⋯C (34.9%) and O⋯H/H⋯O (15%) contacts are illustrated in Fig. 5a–d, respectively. The most significant intermolecular contribution is from the H⋯H contact (48.8%) (Fig. 5b). The other minor contributions to the Hirshfeld surface are by C⋯C (0.9%), O⋯C/C⋯O (0.5%) and O⋯O (0.1%) contacts. The large number of H⋯H, C⋯H/H⋯C and O⋯H/H⋯O interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
4. Database survey
Although a search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016) for 3,5-diphenylcyclohex-2-en-1-one derivatives gave 44 hits, no compound having a skeleton of 6-acetyl-3,5-diphenylcyclohex-2-en-1-one was found. As related compounds, nine derivatives of ethyl 2-oxo-4,6-diphenylcyclohex-3-ene carboxylate were reported.
5. Synthesis and crystallization
To a solution of 1,3-diphenyl-2-propen-1-one (1.90 mmol) in benzene (15 ml), 1-phenylbutane-1,3-dione (1.90 mmol) and 0.05 ml of dry piperidine were added in this order, and the mixture was stirred at room temperature for 24 h. After completion of the reaction (as monitored by TLC), the solvent was removed under reduced pressure, and the residue was washed with hot water. Then, the products were recrystallized from ethanol (yield 72%, m.p. 446 K). IR (KBr): 2926, 2966, 3006 and 3062 ν(CH), 1610, 1650 and 1676 ν (C=O) cm−1; 1H NMR (300.130 MHz, DMSO-d6): δ 3.12 (dd, 2H, CH2, 2JH–H = 16.3 Hz, 3JH–H = 8.2 Hz), 3.91 (t, 1H, CH, 3JH–H = 12.4 Hz), 5.52 (d, 1H, CH, 3JH–H = 12.4 Hz), 6.56 (s, 1H, CH=), 7.1–7.92 (m, 15Harom, 3Ar); 13C NMR (75.468 MHz, DMSO-d6): δ 199.4, 197.5, 159.6, 142.7, 138.3, 137.8, 133.7, 130.9, 129.3, 129.1, 128.8, 128.0, 127.2, 126.9, 124.2, 58.2, 43.9, 36.4; MS (ESI): m/z: 353.15 [M + H]+.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed at calculated positions using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). Owing to poor agreement between observed and calculated intensities, eighteen outliers ( 2 5) , (3 2 2) , ( 2 2) , (5 0 3) , (0 1 1) , (5 1 3) , ( 0 4) , ( 1 7) , ( 2 3) , ( 3 5) , ( 11 2) , (2 4 3), (4 8 7) , ( 0 7) , ( 10 5) , (2 5 5) , ( 2 15) and (0 1 2) were omitted in the final cycle of refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1983451
https://doi.org/10.1107/S2056989020005381/is5536sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020005381/is5536Isup2.hkl
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).C25H20O2 | F(000) = 744 |
Mr = 352.41 | Dx = 1.238 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2365 (4) Å | Cell parameters from 3243 reflections |
b = 9.7989 (4) Å | θ = 2.5–25.0° |
c = 19.3759 (8) Å | µ = 0.08 mm−1 |
β = 103.333 (2)° | T = 296 K |
V = 1891.14 (13) Å3 | Prism, colourless |
Z = 4 | 0.23 × 0.20 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2471 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.073 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 27.0°, θmin = 2.1° |
Tmin = 0.660, Tmax = 0.746 | h = −13→13 |
23764 measured reflections | k = −12→12 |
4102 independent reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.149 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0717P)2 + 0.020P] where P = (Fo2 + 2Fc2)/3 |
4102 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.84873 (15) | 0.4571 (2) | 0.84508 (9) | 0.0662 (5) | |
O2 | 0.73311 (16) | 0.59881 (16) | 0.68577 (9) | 0.0556 (4) | |
C1 | 0.7327 (2) | 0.4250 (2) | 0.81963 (11) | 0.0432 (5) | |
C2 | 0.68555 (19) | 0.3941 (2) | 0.74035 (11) | 0.0377 (5) | |
H2A | 0.703396 | 0.297799 | 0.732533 | 0.045* | |
C3 | 0.53461 (19) | 0.4203 (2) | 0.71377 (10) | 0.0380 (5) | |
H3A | 0.519851 | 0.518223 | 0.718969 | 0.046* | |
C4 | 0.4572 (2) | 0.3451 (3) | 0.76099 (11) | 0.0471 (6) | |
H4A | 0.362962 | 0.369151 | 0.746260 | 0.056* | |
H4B | 0.464862 | 0.247638 | 0.754221 | 0.056* | |
C5 | 0.5064 (2) | 0.3775 (2) | 0.83834 (10) | 0.0388 (5) | |
C6 | 0.6339 (2) | 0.4151 (2) | 0.86315 (11) | 0.0442 (5) | |
H6A | 0.661662 | 0.436354 | 0.911083 | 0.053* | |
C7 | 0.7682 (2) | 0.4818 (2) | 0.70074 (11) | 0.0401 (5) | |
C8 | 0.89014 (19) | 0.4261 (2) | 0.68142 (11) | 0.0403 (5) | |
C9 | 0.9499 (2) | 0.5025 (3) | 0.63619 (12) | 0.0532 (6) | |
H9A | 0.912888 | 0.586024 | 0.619070 | 0.064* | |
C10 | 1.0629 (2) | 0.4558 (3) | 0.61664 (13) | 0.0612 (7) | |
H10A | 1.101409 | 0.507482 | 0.586302 | 0.073* | |
C11 | 1.1189 (2) | 0.3329 (3) | 0.64180 (13) | 0.0580 (7) | |
H11A | 1.194874 | 0.301126 | 0.628243 | 0.070* | |
C12 | 1.0623 (2) | 0.2568 (3) | 0.68717 (13) | 0.0570 (6) | |
H12A | 1.101121 | 0.174324 | 0.704782 | 0.068* | |
C13 | 0.9480 (2) | 0.3026 (2) | 0.70664 (12) | 0.0486 (6) | |
H13A | 0.909822 | 0.250122 | 0.736835 | 0.058* | |
C14 | 0.47921 (18) | 0.3846 (2) | 0.63661 (10) | 0.0375 (5) | |
C15 | 0.4852 (2) | 0.2530 (3) | 0.61136 (12) | 0.0515 (6) | |
H15A | 0.529328 | 0.185343 | 0.641574 | 0.062* | |
C16 | 0.4257 (2) | 0.2214 (3) | 0.54103 (13) | 0.0604 (7) | |
H16A | 0.429682 | 0.132362 | 0.525007 | 0.073* | |
C17 | 0.3615 (2) | 0.3190 (3) | 0.49526 (13) | 0.0620 (7) | |
H17A | 0.322732 | 0.297407 | 0.448269 | 0.074* | |
C18 | 0.3552 (3) | 0.4496 (3) | 0.51981 (13) | 0.0625 (7) | |
H18A | 0.311330 | 0.516816 | 0.489171 | 0.075* | |
C19 | 0.4131 (2) | 0.4825 (2) | 0.58944 (12) | 0.0491 (6) | |
H19A | 0.407775 | 0.571668 | 0.604998 | 0.059* | |
C20 | 0.4106 (2) | 0.3634 (2) | 0.88513 (11) | 0.0398 (5) | |
C21 | 0.2742 (2) | 0.3877 (3) | 0.86040 (13) | 0.0550 (6) | |
H21A | 0.241528 | 0.412364 | 0.813221 | 0.066* | |
C22 | 0.1862 (2) | 0.3760 (3) | 0.90421 (15) | 0.0667 (8) | |
H22A | 0.095277 | 0.393434 | 0.886588 | 0.080* | |
C23 | 0.2324 (3) | 0.3389 (3) | 0.97356 (15) | 0.0662 (7) | |
H23A | 0.173169 | 0.331066 | 1.003253 | 0.079* | |
C24 | 0.3663 (3) | 0.3132 (3) | 0.99904 (14) | 0.0625 (7) | |
H24A | 0.397718 | 0.287297 | 1.046135 | 0.075* | |
C25 | 0.4553 (2) | 0.3253 (3) | 0.95566 (12) | 0.0516 (6) | |
H25A | 0.545976 | 0.307812 | 0.973826 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0359 (9) | 0.1016 (15) | 0.0586 (10) | −0.0170 (9) | 0.0056 (8) | −0.0036 (9) |
O2 | 0.0606 (10) | 0.0407 (10) | 0.0728 (11) | 0.0030 (8) | 0.0305 (9) | 0.0069 (8) |
C1 | 0.0342 (11) | 0.0494 (13) | 0.0456 (13) | −0.0024 (10) | 0.0084 (9) | 0.0009 (10) |
C2 | 0.0310 (10) | 0.0410 (12) | 0.0426 (12) | −0.0015 (9) | 0.0115 (9) | 0.0000 (9) |
C3 | 0.0340 (10) | 0.0434 (12) | 0.0379 (11) | 0.0018 (9) | 0.0107 (9) | −0.0001 (9) |
C4 | 0.0342 (11) | 0.0680 (16) | 0.0398 (12) | −0.0073 (10) | 0.0101 (9) | 0.0004 (11) |
C5 | 0.0367 (11) | 0.0434 (13) | 0.0376 (12) | 0.0024 (9) | 0.0112 (9) | 0.0001 (9) |
C6 | 0.0398 (12) | 0.0545 (14) | 0.0378 (12) | 0.0003 (10) | 0.0074 (9) | −0.0019 (10) |
C7 | 0.0383 (11) | 0.0404 (13) | 0.0428 (12) | −0.0034 (10) | 0.0118 (9) | −0.0003 (9) |
C8 | 0.0354 (11) | 0.0432 (12) | 0.0434 (12) | −0.0054 (9) | 0.0111 (9) | −0.0038 (10) |
C9 | 0.0485 (13) | 0.0566 (15) | 0.0587 (15) | −0.0081 (11) | 0.0211 (11) | 0.0045 (12) |
C10 | 0.0459 (14) | 0.0793 (19) | 0.0643 (17) | −0.0090 (13) | 0.0248 (12) | 0.0062 (14) |
C11 | 0.0313 (11) | 0.082 (2) | 0.0644 (16) | −0.0024 (12) | 0.0176 (11) | −0.0128 (14) |
C12 | 0.0389 (12) | 0.0618 (16) | 0.0717 (16) | 0.0052 (11) | 0.0159 (12) | 0.0005 (13) |
C13 | 0.0407 (12) | 0.0528 (15) | 0.0557 (14) | −0.0018 (10) | 0.0183 (10) | 0.0054 (11) |
C14 | 0.0298 (10) | 0.0491 (13) | 0.0365 (11) | −0.0019 (9) | 0.0136 (8) | −0.0015 (9) |
C15 | 0.0490 (13) | 0.0568 (15) | 0.0501 (14) | 0.0037 (11) | 0.0141 (11) | −0.0028 (12) |
C16 | 0.0615 (16) | 0.0654 (17) | 0.0603 (16) | −0.0112 (13) | 0.0261 (13) | −0.0215 (13) |
C17 | 0.0562 (15) | 0.092 (2) | 0.0387 (13) | −0.0195 (15) | 0.0123 (11) | −0.0051 (14) |
C18 | 0.0600 (16) | 0.0763 (19) | 0.0468 (14) | −0.0068 (13) | 0.0035 (12) | 0.0123 (13) |
C19 | 0.0496 (13) | 0.0522 (14) | 0.0455 (13) | −0.0026 (11) | 0.0110 (10) | 0.0046 (11) |
C20 | 0.0369 (11) | 0.0449 (12) | 0.0393 (12) | 0.0016 (9) | 0.0122 (9) | −0.0039 (9) |
C21 | 0.0421 (12) | 0.0775 (18) | 0.0470 (14) | 0.0041 (12) | 0.0137 (11) | −0.0002 (12) |
C22 | 0.0405 (13) | 0.099 (2) | 0.0657 (18) | 0.0000 (13) | 0.0214 (12) | −0.0073 (15) |
C23 | 0.0624 (16) | 0.083 (2) | 0.0653 (18) | 0.0023 (14) | 0.0404 (14) | −0.0014 (14) |
C24 | 0.0645 (16) | 0.0813 (19) | 0.0476 (14) | 0.0096 (14) | 0.0254 (12) | 0.0091 (13) |
C25 | 0.0429 (12) | 0.0707 (17) | 0.0434 (13) | 0.0104 (11) | 0.0146 (10) | 0.0034 (11) |
O1—C1 | 1.218 (2) | C12—C13 | 1.384 (3) |
O2—C7 | 1.217 (2) | C12—H12A | 0.9300 |
C1—C6 | 1.461 (3) | C13—H13A | 0.9300 |
C1—C2 | 1.530 (3) | C14—C15 | 1.385 (3) |
C2—C7 | 1.530 (3) | C14—C19 | 1.389 (3) |
C2—C3 | 1.533 (3) | C15—C16 | 1.393 (3) |
C2—H2A | 0.9800 | C15—H15A | 0.9300 |
C3—C14 | 1.513 (3) | C16—C17 | 1.366 (4) |
C3—C4 | 1.530 (3) | C16—H16A | 0.9300 |
C3—H3A | 0.9800 | C17—C18 | 1.371 (4) |
C4—C5 | 1.501 (3) | C17—H17A | 0.9300 |
C4—H4A | 0.9700 | C18—C19 | 1.381 (3) |
C4—H4B | 0.9700 | C18—H18A | 0.9300 |
C5—C6 | 1.335 (3) | C19—H19A | 0.9300 |
C5—C20 | 1.487 (3) | C20—C25 | 1.388 (3) |
C6—H6A | 0.9300 | C20—C21 | 1.388 (3) |
C7—C8 | 1.487 (3) | C21—C22 | 1.378 (3) |
C8—C13 | 1.387 (3) | C21—H21A | 0.9300 |
C8—C9 | 1.396 (3) | C22—C23 | 1.367 (4) |
C9—C10 | 1.376 (3) | C22—H22A | 0.9300 |
C9—H9A | 0.9300 | C23—C24 | 1.370 (3) |
C10—C11 | 1.374 (4) | C23—H23A | 0.9300 |
C10—H10A | 0.9300 | C24—C25 | 1.379 (3) |
C11—C12 | 1.378 (3) | C24—H24A | 0.9300 |
C11—H11A | 0.9300 | C25—H25A | 0.9300 |
O1—C1—C6 | 121.6 (2) | C11—C12—C13 | 120.3 (2) |
O1—C1—C2 | 120.64 (19) | C11—C12—H12A | 119.8 |
C6—C1—C2 | 117.80 (17) | C13—C12—H12A | 119.8 |
C1—C2—C7 | 108.05 (16) | C12—C13—C8 | 120.4 (2) |
C1—C2—C3 | 111.34 (16) | C12—C13—H13A | 119.8 |
C7—C2—C3 | 111.64 (17) | C8—C13—H13A | 119.8 |
C1—C2—H2A | 108.6 | C15—C14—C19 | 117.7 (2) |
C7—C2—H2A | 108.6 | C15—C14—C3 | 121.83 (19) |
C3—C2—H2A | 108.6 | C19—C14—C3 | 120.35 (19) |
C14—C3—C4 | 110.59 (16) | C14—C15—C16 | 120.5 (2) |
C14—C3—C2 | 114.35 (16) | C14—C15—H15A | 119.7 |
C4—C3—C2 | 109.83 (16) | C16—C15—H15A | 119.7 |
C14—C3—H3A | 107.2 | C17—C16—C15 | 121.0 (2) |
C4—C3—H3A | 107.2 | C17—C16—H16A | 119.5 |
C2—C3—H3A | 107.2 | C15—C16—H16A | 119.5 |
C5—C4—C3 | 113.23 (17) | C16—C17—C18 | 118.8 (2) |
C5—C4—H4A | 108.9 | C16—C17—H17A | 120.6 |
C3—C4—H4A | 108.9 | C18—C17—H17A | 120.6 |
C5—C4—H4B | 108.9 | C17—C18—C19 | 120.8 (2) |
C3—C4—H4B | 108.9 | C17—C18—H18A | 119.6 |
H4A—C4—H4B | 107.7 | C19—C18—H18A | 119.6 |
C6—C5—C20 | 122.24 (19) | C18—C19—C14 | 121.1 (2) |
C6—C5—C4 | 119.54 (18) | C18—C19—H19A | 119.5 |
C20—C5—C4 | 118.20 (17) | C14—C19—H19A | 119.5 |
C5—C6—C1 | 124.03 (19) | C25—C20—C21 | 117.5 (2) |
C5—C6—H6A | 118.0 | C25—C20—C5 | 120.77 (18) |
C1—C6—H6A | 118.0 | C21—C20—C5 | 121.71 (19) |
O2—C7—C8 | 120.30 (19) | C22—C21—C20 | 121.5 (2) |
O2—C7—C2 | 118.76 (18) | C22—C21—H21A | 119.3 |
C8—C7—C2 | 120.94 (19) | C20—C21—H21A | 119.3 |
C13—C8—C9 | 118.4 (2) | C23—C22—C21 | 120.0 (2) |
C13—C8—C7 | 123.14 (19) | C23—C22—H22A | 120.0 |
C9—C8—C7 | 118.4 (2) | C21—C22—H22A | 120.0 |
C10—C9—C8 | 120.8 (2) | C22—C23—C24 | 119.6 (2) |
C10—C9—H9A | 119.6 | C22—C23—H23A | 120.2 |
C8—C9—H9A | 119.6 | C24—C23—H23A | 120.2 |
C11—C10—C9 | 120.2 (2) | C23—C24—C25 | 120.7 (2) |
C11—C10—H10A | 119.9 | C23—C24—H24A | 119.6 |
C9—C10—H10A | 119.9 | C25—C24—H24A | 119.6 |
C10—C11—C12 | 119.9 (2) | C24—C25—C20 | 120.6 (2) |
C10—C11—H11A | 120.1 | C24—C25—H25A | 119.7 |
C12—C11—H11A | 120.1 | C20—C25—H25A | 119.7 |
O1—C1—C2—C7 | −31.1 (3) | C10—C11—C12—C13 | 1.0 (4) |
C6—C1—C2—C7 | 148.64 (19) | C11—C12—C13—C8 | −0.8 (4) |
O1—C1—C2—C3 | −154.1 (2) | C9—C8—C13—C12 | 0.0 (3) |
C6—C1—C2—C3 | 25.7 (3) | C7—C8—C13—C12 | −179.4 (2) |
C1—C2—C3—C14 | −176.81 (17) | C4—C3—C14—C15 | −63.8 (2) |
C7—C2—C3—C14 | 62.3 (2) | C2—C3—C14—C15 | 60.8 (3) |
C1—C2—C3—C4 | −51.8 (2) | C4—C3—C14—C19 | 112.4 (2) |
C7—C2—C3—C4 | −172.67 (17) | C2—C3—C14—C19 | −123.0 (2) |
C14—C3—C4—C5 | −179.34 (18) | C19—C14—C15—C16 | −0.4 (3) |
C2—C3—C4—C5 | 53.5 (2) | C3—C14—C15—C16 | 175.84 (19) |
C3—C4—C5—C6 | −27.3 (3) | C14—C15—C16—C17 | 0.7 (3) |
C3—C4—C5—C20 | 153.97 (19) | C15—C16—C17—C18 | −0.6 (4) |
C20—C5—C6—C1 | 177.5 (2) | C16—C17—C18—C19 | 0.3 (4) |
C4—C5—C6—C1 | −1.2 (3) | C17—C18—C19—C14 | −0.1 (4) |
O1—C1—C6—C5 | −178.4 (2) | C15—C14—C19—C18 | 0.1 (3) |
C2—C1—C6—C5 | 1.8 (3) | C3—C14—C19—C18 | −176.2 (2) |
C1—C2—C7—O2 | −83.9 (2) | C6—C5—C20—C25 | −30.6 (3) |
C3—C2—C7—O2 | 38.9 (3) | C4—C5—C20—C25 | 148.1 (2) |
C1—C2—C7—C8 | 95.4 (2) | C6—C5—C20—C21 | 149.3 (2) |
C3—C2—C7—C8 | −141.80 (19) | C4—C5—C20—C21 | −32.0 (3) |
O2—C7—C8—C13 | 169.2 (2) | C25—C20—C21—C22 | 0.7 (4) |
C2—C7—C8—C13 | −10.2 (3) | C5—C20—C21—C22 | −179.2 (2) |
O2—C7—C8—C9 | −10.3 (3) | C20—C21—C22—C23 | −0.5 (4) |
C2—C7—C8—C9 | 170.39 (19) | C21—C22—C23—C24 | −0.1 (4) |
C13—C8—C9—C10 | 0.5 (3) | C22—C23—C24—C25 | 0.4 (4) |
C7—C8—C9—C10 | 180.0 (2) | C23—C24—C25—C20 | −0.2 (4) |
C8—C9—C10—C11 | −0.3 (4) | C21—C20—C25—C24 | −0.4 (4) |
C9—C10—C11—C12 | −0.5 (4) | C5—C20—C25—C24 | 179.6 (2) |
Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 phenyl rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O2i | 0.98 | 2.50 | 3.251 (3) | 133 |
C15—H15A···O1i | 0.93 | 2.55 | 3.369 (3) | 148 |
C22—H22A···O1ii | 0.93 | 2.54 | 3.472 (3) | 175 |
C11—H11A···Cg3iii | 0.93 | 2.88 | 3.717 (2) | 150 |
C24—H24A···Cg2iv | 0.93 | 2.78 | 3.667 (3) | 159 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) x+1, y, z; (iv) x−3/2, −y−1/2, z−1/2. |
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o2830. CSD CrossRef IUCr Journals Google Scholar
Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490–1493. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Kawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). Nature, 532, 90–93. CSD CrossRef CAS PubMed Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Gurbanov, A. V., Maharramov, A. M., Mamedov, I. G., Allahverdiyev, M. A. & Mahmudov, K. T. (2016). J. Iran. Chem. Soc. 13, 1–6. CSD CrossRef CAS Google Scholar
Pfeiffer, M. W. B. & Phillips, A. J. (2005). J. Am. Chem. Soc. 127, 5334–5335. CrossRef PubMed CAS Google Scholar
Schultz, A. G. & Wang, A. (1998). J. Am. Chem. Soc. 120, 8259–8260. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Thomas, A. W. (2007). Science of Synthesis, Vol. 31a, pp. 337–401. Stuttgart: Thieme. Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.