research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(1-mesityl-1H-imidazole-κN3)di­phenyl­boron tri­fluoro­methane­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indiana University, 800 E Kirkwood Street, 47405, Bloomington (IN), USA
*Correspondence e-mail: vcarta@iu.edu

Edited by J. Jasinsk, Keene State College, USA (Received 18 February 2020; accepted 9 April 2020; online 21 April 2020)

The solid-state structure of bis­(1-mesityl-1H-imidazole-κN3)di­phenyl­boron tri­fluoro­methane­sulfonate, C36H38BN4+·CF3SO3 or (Ph2B(MesIm)2OTf), is reported. Bis(1-mesityl-1H-imidazole-κN3)di­phenyl­boron (Ph2B(MesIm)2+) is a bulky ligand that crystallizes in the ortho­rhom­bic space group Pbcn. The asymmetric unit contains one Ph2B(MesIm)2+ cationic ligand and one tri­fluoro­methane­sulfonate anion that balances the positive charge of the ligand. The tetra­hedral geometry around the boron center is distorted as a result of the steric bulk of the phenyl groups. Weak inter­actions, such as ππ stacking are present in the crystal structure.

1. Chemical context

Ph2B(MesIm)2+ (Fig. 1[link]) can undergo C—H activation on the imidazole functionalities, generating a bi(carbene)borate ligand, which can coordinate to a metal center with two carbenes. The ligand is bulky and has strong σ-donor character. For this reason, it can be used to stabilize a metal center. Similar bulky ligands, such as tris­(mesityl­imidazole)­phenyl­borane, PhB(MesIm)3 (Fig. 2[link]) have been used to synthesize iron nitride complexes (Smith & Subedi, 2012[Smith, J. M. & Subedi, D. (2012). Dalton Trans. 41, 1423-1429.]), which have shown promising applications in catalysis (Scepaniak et al., 2009[Scepaniak, J. J., Young, J. A., Bontchev, R. P. & Smith, J. M. (2009). Angew. Chem. Int. Ed. 48, 3158-3160.]) and in the production of ammonia both in biological and in industrial processes (Smith & Subedi, 2012[Smith, J. M. & Subedi, D. (2012). Dalton Trans. 41, 1423-1429.]). The threefold symmetry and the bulk of [PhB(MesIm)3]2+ ligand are key to stabilizing iron–nitro­gen multiple bonds and isolate the terminal iron nitride complexes (Smith & Subedi, 2012[Smith, J. M. & Subedi, D. (2012). Dalton Trans. 41, 1423-1429.]).

[Scheme 1]
[Figure 1]
Figure 1
Chemical structure of di­phenyldi(mesityl­imidazole)­borane Ph2B(MesIm)2+.
[Figure 2]
Figure 2
Chemical structure of phenyl­tris­(mesityl­imidazole)­borane PhB(MesIm)32+.

In this paper, we discuss the synthesis and crystal structure of Ph2B(MesIm)2OTf, which can potentially be used to synthesize low-coordinate metal complexes for small-mol­ecule activation and catalysis. The synthesis of Ph2B(MesIm)2OTf started from the reaction of 1 eq. of Ph2BCl with 2 eq. of 1-mesityl-1H-imidazole. The product was further reacted with 1 eq. of tri­methyl­silyl tri­fluoro­methane­sulfonate (TMSOTf) to yield the title compound.

2. Structural commentary

The title compound crystallizes in the ortho­rhom­bic space group Pbcn. The asymmetric unit consists of one Ph2B(MesIm)2+ ligand and one triflate anion that balances the total positive charge of Ph2B(MesIm)2+ (Fig. 3[link]).

[Figure 3]
Figure 3
Mol­ecular structure of Ph2B(MesIm)2OTf with atom labels. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

The boron atom has tetra­hedral geometry. As a result of the steric repulsion of the phenyl groups, the angle between the boron and the two phenyl groups (C1—B1—C7) is 116.7 (3)° and larger than the typical tetra­hedral angle (109°), whereas the angle between the imidazole moieties and the boron center (N1—B1–N3) is smaller at 105.8 (3)°. The remaining two angles are 107.4 (3) and 109.3 (3)°. The bulky mesityl groups point away from each other, creating a pocket in which the triflate mol­ecule is located (Fig. 4[link]). The dihedral angles between the imidazole and mesityl mean planes are 63.1 (2)° for N1/N2/C13–C15 and C16—C21, and 67.85 (17)° for N3/N4/C25–C27 and C28–C33. The dihedral angle between the mean planes defined by the phenyl rings on the boron atom (C1–C6 and C7–C12) is 58.28 (19)°.

[Figure 4]
Figure 4
Partial packing diagram of Ph2B(MesIm)2OTf along the c axis. Hydrogen atoms are omitted for clarity. Dotteded lines indicate the weak inter­molecular inter­actions between tri­fluoro­methane­sulfonate and di­phenyldi(mesityl­imidazole)­borane.

3. Supra­molecular features

Although no classical hydrogen bonds were found in the structure, weak inter­molecular inter­actions between the triflate anion and the protons on the imidazole groups are present (Table 1[link]). The triflate anion also inter­acts weakly with one of the imidazole rings (N3/N4/C25–C27) through one oxygen atom (O1), with a centroid–oxygen distance of 3.529 (3) Å. Additional weak inter­actions, namely ππ stacking, are present in the packing for one of the mesityl groups (C28–C36), with a perpendicular distance of 3.5727 (13) Å between the mesityl ring (C28–C33) and the least-squares mean plane of a neighboring symmetry-equivalent moiety (Fig. 5[link]). The centroid–centroid distance between the two mesityl rings is 3.947 (2) Å and the slippage between the two π-rings is 1.677 Å. The dihedral angle between the two mesityl mean planes is 7.58 (15)°. The second mesityl ring (C16–C24) is not involved in ππ stacking inter­actions, with the closest aromatic rings, C1–C6 and C7–C12, at centroid–centroid distances of 5.710 (2) and 5.139 (3) Å, respectively, and with mean-plane dihedral angles of 16.31 (19) and 49.8 (2)°, respectively. The two mesityl groups are almost perpendicular, subtending a dihedral angle of 88.39 (17)°.

Table 1
Weak inter­molecular inter­actions (Å, °) between the tri­fluoro­methane­sulfonate anion and the imidazole moieties in Ph2B(MesIm)2+

  Distance Angle
C26⋯S1i 3.793 (4) 149.4
C26⋯O2i 3.264 (5) 160.0
C15⋯O1 3.132 (5) 118.7
C14⋯O3ii 3.242 (5) 159.4
N3—C27⋯O1 3.529 (3) 125.0
Symmetry codes: (i) x, −y + 1, z − [{1\over 2}]; (ii) −x + [{1\over 2}], y + [{1\over 2}], z.
[Figure 5]
Figure 5
ππ stacking in the crystal structure of Ph2B(MesIm)2+ between the mesityl ring C28–C33 and its neighboring symmetry-equivalent moiety. The rings involved in ππ stacking are represented in black.

4. Database survey

A survey of the Cambridge Structural Database (CSD Version 5.41, 2020.0 CSD Release; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was undertaken for structures related to Ph2B(MesIm)2OTf. One example is the structure of (3-butyl­imidazole)­tri­phenyl­boron [Ph3B(3-ButIm); refcode OFAFIK; Stenzel et al., 2002[Stenzel, O., Raubenheimer, H. G. & Esterhuysen, C. (2002). Dalton Trans. 1132-1138.]), a neutral mol­ecule with an additional phenyl ring instead of an imidazole group (three phenyl rings) and with an alkyl chain instead of the mesityl moiety. Ph3B(3-ButIm) crystallizes in the space group P[\overline{1}], and has a very different crystal packing from Ph2B(MesIm)2OTf. However, the two mol­ecules have a similar geometry around the boron atom, with the tetra­hedral angles around the boron atom impacted by the bulky phenyl groups. The C—B—C angles involving phenyl moieties range between 108 and 114°, while the angles between imidazole and phenyl moieties are accordingly smaller (C—B—N angles of about 104–109°). Ph3B(3-ButIm) shows C—H⋯π inter­actions from the imidazole hydrogen to the phenyl ring. These inter­actions are not present in Ph2B(MesIm)2OTf, where the imidazole inter­acts only weakly with the triflate oxygen atoms. Another similar example is phenyl­imidazole tri­phenyl­borane [Ph3B(PhIm); ACIPEH; Kiviniemi et al., 2001[Kiviniemi, S., Nissinen, M., Alaviuhkola, T., Rissanen, K. & Pursiainen, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2364-2369.]]. Ph3B(PhIm) is a neutral mol­ecule with three phenyl rings on the boron atom and one phenyl ring on the imidazole functionality. Ph3B(PhIm) crystallizes in the monoclinic space group C2/c and again has a different crystal packing from Ph2B(MesIm)2OTf, characterized by chains that are stabilized by weak ππ stacking inter­actions between the phenyl groups on the imidazole.

The CSD search also revealed one di­phenyl­bis­(ada­man­tyl­imidazole)­borane chloride salt, Ph2B(AdIm)2Cl (CAX­MAS; Xiong et al., 2017[Xiong, Y., Yao, S., Szilvási, M., Ballestero-Martínez, E., Grützmacher, H. & Driess, M. (2017). Angew. Chem. Int. Ed. 56, 4333-4336.]). In this compound, the imidazole functionalities are bound to adamantyl groups and the tetra­hedral boron atom is bound to two toluene and two imidazole groups. The protons on the imidazole groups inter­act via hydrogen bonds with the chloride anion, which is located in a pocket between the two bulky adamantyl groups, similar to that observed for the triflate anion in Ph2B(MesIm)2OTf. The crystal packing shows weak inter­molecular C—H⋯π inter­actions between the methyl group on the toluene functionality and the aromatic ring on the neighboring toluene. Despite some similarities with the title compound, Ph2B(AdIm)2Cl crystallizes in the space group C2/c and has a different crystal packing structure.

Few boron dimers with bridging imidazole groups were found in the CSD. One example is [Ph2B(3-BuIm)]2 (FULPAE; Arrowsmith et al., 2009[Arrowsmith, M., Heath, A., Hill, M. S., Hitchcock, P. B. & Kociok-Köhna, G. (2009). Organometallics, 28, 4550-4559.]), which crystallizes in the space group C2/c. In this boron dimer, the two tetra­hedral boron centers are bridged by two 3-butyl­imidazole groups and each boron atom is bound to two phenyl groups. A second example of a boron dimer is [Ph2B(3-BuIm)]2 (PONLOW; Su et al., 2019[Su, Y., Huan Do, D. C., Li, Y. & Kinjo, R. (2019). J. Am. Chem. Soc. 141, 13729-13733.]), space group P21/n. In this compound one boron atom is bound to two phenyl groups and the second boron atom is bound to one chloride and one hydrogen atom. The boron atoms are bridged by two di­phenyl­mesityl­imidazole groups.

5. Synthesis and crystallization

The synthesis of Ph2B(MesIm)2OTf is shown in Fig. 6[link]. A 25 mL flask was charged with Ph2BCl (914 mg, 4.5 mmol), 1-mesityl-1H-imidazole (1.7 g, 9 mmol) and toluene (10 mL). The mixture was stirred at room temperature for 2 h. During the course of the reaction, a white precipitate formed. Then TMS OTf (1.0 g, 4.5 mmol) was added as a brown liquid. The mixture was further stirred at 383 K overnight. The toluene was evaporated under vacuum, affording a white residue that was washed with Et2O (3 × 10 mL) to obtain Ph2B(MesIm)2OTf as a white powder (2.6 g, 79% yield). Single crystals suitable for X-ray diffraction were grown by vapor diffusion using diethyl ether and DCM. 1H NMR (400 MHz, CDCl3, 298 K): δ (ppm) 7.81 (s, 2H), 7.47 (s, 2H), 7.35 (s, 2H), 7.24–7.27 (m, 6H), 7.10 (d, J = 8.0 Hz, 4H), 6.93 (s, 4H), 2.25 (s, 6H), 1.99 (s, 12H). 13C NMR (101 MHz, CDCl3, 298 K): δ (ppm) 104.92 (s), 137.99 (s), 134.31 (s), 133.06 (s), 131.05 (s), 129.66 (s), 128.99 (s), 128.28 (s), 127.85 (s), 126.45 (s), 124.23 (s), 21.03 (s), 17.38 (s).

[Figure 6]
Figure 6
Reaction for the synthesis of Ph2B(MesIm)2OTf. Ph2BCl (1 equiv.), 1-mesityl-1H-imidazole (2 equiv.) were stirred in toluene at room temperature for 2 h. TMS OTf (1 equiv.) was then added and the mixture was further stirred at 383 K overnight.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters [Uiso(H) = 1.2 or 1.5 × Ueq(parent atom)].

Table 2
Experimental details

Crystal data
Chemical formula C36H38BN4+·CF3O3S
Mr 686.58
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 100
a, b, c (Å) 28.661 (4), 15.979 (3), 15.352 (3)
V3) 7031 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.20 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker Venture D8
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINTand SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.620, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 55395, 8077, 4090
Rint 0.207
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.225, 1.01
No. of reflections 8077
No. of parameters 448
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.56
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINTand SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(1-mesityl-1H-imidazole-κN3)diphenylboron trifluoromethanesulfonate, top
Crystal data top
C36H38BN4+·CF3O3SDx = 1.297 Mg m3
Mr = 686.58Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 783 reflections
a = 28.661 (4) Åθ = 2.7–22.0°
b = 15.979 (3) ŵ = 0.15 mm1
c = 15.352 (3) ÅT = 100 K
V = 7031 (2) Å3Plate, clear colourless
Z = 80.20 × 0.10 × 0.05 mm
F(000) = 2880
Data collection top
Bruker Venture D8
diffractometer
4090 reflections with I > 2σ(I)
φ and ω scansRint = 0.207
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.5°, θmin = 2.0°
Tmin = 0.620, Tmax = 0.746h = 3737
55395 measured reflectionsk = 2017
8077 independent reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.225 w = 1/[σ2(Fo2) + (0.086P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
8077 reflectionsΔρmax = 0.29 e Å3
448 parametersΔρmin = 0.56 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A colorless crystal (plate, approximate dimensions 0.20 × 0.10 × 0.05 mm3) was placed onto the tip of a MiTeGen pin and mounted on a Bruker Venture D8 diffractometer equipped with a Photon II detector at 100.0 K. The data collection was carried out using Mo Kα radiation (λ = 0.71073 Å, graphite monochromator) with a frame time of 0.5 seconds and a detector distance of 50 mm. Complete data to a resolution of 0.77 Å with a redundancy of 4 were collected. The frames were integrated with the Bruker software package SAINT using a narrow-frame algorithm (Bruker, 2016) to a resolution of 0.77 Å.

The space group Pbcn was determined based on intensity statistics and systematic absences. The structure was solved using SHELXT (Sheldrick, 2015) and refined using full-matrix least-squares on F2with the OLEX2 suite (Dolomanov et al., 2009). An intrinsic phasing solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33052 (3)0.51497 (7)0.84291 (6)0.0314 (3)
F30.28584 (8)0.47946 (19)0.98737 (17)0.0591 (8)
O20.36630 (8)0.55684 (18)0.89278 (18)0.0381 (7)
O30.33701 (8)0.42598 (18)0.83416 (18)0.0382 (7)
N40.41363 (9)0.56867 (19)0.61232 (19)0.0243 (7)
F20.24174 (8)0.4902 (2)0.87503 (19)0.0667 (9)
N30.38087 (9)0.69119 (19)0.63308 (19)0.0243 (7)
F10.27011 (9)0.6001 (2)0.9347 (2)0.0737 (9)
N10.31506 (9)0.7835 (2)0.6882 (2)0.0294 (7)
N20.24087 (9)0.7535 (2)0.6981 (2)0.0295 (7)
O10.31616 (10)0.5576 (2)0.76506 (19)0.0504 (8)
C270.40732 (11)0.6326 (2)0.6686 (2)0.0240 (8)
H270.4200790.6351500.7256180.029*
C260.38945 (11)0.5878 (2)0.5366 (2)0.0261 (8)
H260.3872820.5543290.4855830.031*
C60.38221 (12)0.7486 (2)0.8345 (2)0.0281 (8)
H60.3563190.7117630.8296010.034*
C280.44454 (11)0.4982 (2)0.6233 (2)0.0239 (8)
C250.36961 (11)0.6633 (2)0.5499 (2)0.0275 (8)
H250.3509520.6927780.5089100.033*
C300.45687 (12)0.3513 (2)0.6343 (2)0.0292 (8)
H300.4449210.2958800.6367120.035*
C150.28330 (11)0.7240 (3)0.6763 (2)0.0288 (9)
H150.2895680.6690350.6557220.035*
C330.49270 (11)0.5138 (2)0.6266 (2)0.0257 (8)
C290.42563 (12)0.4176 (2)0.6266 (2)0.0270 (8)
C10.39593 (11)0.7953 (2)0.7613 (2)0.0273 (8)
C160.19747 (11)0.7084 (2)0.6921 (2)0.0293 (9)
C20.43327 (11)0.8508 (2)0.7742 (2)0.0284 (8)
H20.4431530.8848170.7268610.034*
C320.52197 (11)0.4447 (3)0.6345 (2)0.0291 (9)
H320.5547230.4535090.6373090.035*
C210.17238 (12)0.6943 (2)0.7690 (2)0.0310 (9)
C360.51244 (12)0.6001 (2)0.6162 (3)0.0307 (9)
H36A0.4993830.6261660.5638140.046*
H36B0.5464540.5967400.6107830.046*
H36C0.5043780.6339410.6673230.046*
C50.40513 (12)0.7545 (3)0.9134 (3)0.0326 (9)
H50.3954860.7208920.9612130.039*
C70.38224 (12)0.8477 (2)0.5930 (2)0.0295 (9)
C310.50495 (12)0.3631 (3)0.6386 (2)0.0306 (9)
C170.18141 (12)0.6840 (3)0.6106 (2)0.0299 (9)
C120.42784 (12)0.8482 (3)0.5586 (2)0.0321 (9)
H120.4500520.8098830.5813030.038*
C190.11264 (12)0.6264 (3)0.6814 (3)0.0331 (9)
C200.12978 (13)0.6533 (3)0.7608 (3)0.0344 (9)
H200.1117680.6434840.8117750.041*
C340.37388 (11)0.4017 (3)0.6219 (3)0.0329 (9)
H34A0.3573220.4443540.6557470.049*
H34B0.3669790.3461760.6457720.049*
H34C0.3636690.4041640.5610040.049*
C130.29209 (12)0.8530 (3)0.7202 (3)0.0340 (9)
H130.3062400.9047560.7355510.041*
C140.24595 (12)0.8351 (3)0.7261 (3)0.0361 (10)
H140.2218970.8714630.7456610.043*
C30.45621 (12)0.8580 (3)0.8530 (3)0.0338 (9)
H30.4814510.8960910.8593290.041*
C80.35079 (13)0.9032 (3)0.5542 (3)0.0349 (9)
H80.3193280.9039910.5736750.042*
C110.44155 (14)0.9023 (3)0.4933 (2)0.0374 (10)
H110.4728030.9014660.4726940.045*
C100.40973 (14)0.9575 (3)0.4579 (3)0.0406 (10)
H100.4191010.9952550.4134440.049*
C220.20862 (12)0.7009 (3)0.5280 (2)0.0386 (10)
H22A0.2199430.7588180.5285400.058*
H22B0.1883290.6924590.4774240.058*
H22C0.2352300.6625620.5246650.058*
C180.13875 (12)0.6426 (3)0.6070 (3)0.0329 (9)
H180.1271200.6249030.5520730.039*
C40.44202 (12)0.8092 (3)0.9228 (3)0.0356 (10)
H40.4577210.8133420.9771220.043*
C370.28007 (13)0.5219 (3)0.9132 (3)0.0418 (11)
C90.36438 (15)0.9577 (3)0.4874 (3)0.0425 (11)
H90.3422580.9949010.4624250.051*
C230.06599 (13)0.5824 (3)0.6753 (3)0.0444 (11)
H23A0.0562970.5640600.7334220.067*
H23B0.0688120.5337000.6368710.067*
H23C0.0426500.6210450.6515710.067*
C350.53809 (14)0.2904 (3)0.6448 (3)0.0426 (11)
H35A0.5248440.2475680.6832210.064*
H35B0.5679440.3096840.6686520.064*
H35C0.5430850.2666990.5867310.064*
C240.18976 (15)0.7225 (3)0.8564 (3)0.0419 (11)
H24A0.2236090.7143670.8596550.063*
H24B0.1745400.6897210.9022750.063*
H24C0.1824890.7819630.8644740.063*
B10.36969 (13)0.7823 (3)0.6694 (3)0.0273 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0263 (5)0.0332 (6)0.0347 (6)0.0018 (4)0.0037 (4)0.0032 (5)
F30.0434 (14)0.083 (2)0.0510 (17)0.0021 (13)0.0132 (12)0.0086 (15)
O20.0316 (13)0.0371 (18)0.0456 (17)0.0116 (12)0.0116 (12)0.0105 (14)
O30.0362 (14)0.0332 (18)0.0453 (18)0.0009 (12)0.0041 (12)0.0057 (14)
N40.0203 (13)0.0241 (18)0.0284 (17)0.0011 (12)0.0002 (12)0.0022 (14)
F20.0227 (12)0.104 (3)0.074 (2)0.0032 (13)0.0044 (12)0.0208 (17)
N30.0224 (13)0.0230 (18)0.0274 (16)0.0024 (12)0.0004 (12)0.0012 (13)
F10.0653 (17)0.062 (2)0.093 (2)0.0289 (15)0.0020 (16)0.0247 (18)
N10.0237 (15)0.032 (2)0.0327 (18)0.0071 (13)0.0000 (13)0.0064 (15)
N20.0241 (14)0.035 (2)0.0296 (17)0.0062 (13)0.0014 (12)0.0038 (15)
O10.0512 (17)0.056 (2)0.0436 (18)0.0009 (15)0.0141 (14)0.0211 (16)
C270.0231 (16)0.025 (2)0.0240 (19)0.0029 (14)0.0004 (14)0.0023 (16)
C260.0218 (16)0.031 (2)0.0260 (19)0.0007 (14)0.0050 (14)0.0003 (17)
C60.0257 (17)0.026 (2)0.032 (2)0.0032 (15)0.0004 (15)0.0009 (17)
C280.0225 (16)0.023 (2)0.0264 (19)0.0016 (14)0.0017 (14)0.0023 (16)
C250.0245 (17)0.031 (2)0.027 (2)0.0037 (15)0.0036 (14)0.0006 (17)
C300.0357 (19)0.022 (2)0.030 (2)0.0009 (16)0.0035 (16)0.0021 (17)
C150.0232 (17)0.029 (2)0.034 (2)0.0039 (15)0.0004 (15)0.0005 (17)
C330.0276 (17)0.026 (2)0.0239 (19)0.0010 (15)0.0032 (15)0.0006 (16)
C290.0301 (17)0.029 (2)0.0215 (18)0.0014 (15)0.0007 (15)0.0025 (16)
C10.0220 (16)0.031 (2)0.029 (2)0.0064 (15)0.0007 (14)0.0009 (17)
C160.0220 (17)0.031 (2)0.035 (2)0.0079 (15)0.0015 (15)0.0008 (18)
C20.0299 (18)0.028 (2)0.027 (2)0.0007 (15)0.0064 (15)0.0011 (17)
C320.0225 (17)0.039 (3)0.026 (2)0.0063 (16)0.0024 (14)0.0012 (17)
C210.0345 (19)0.030 (2)0.028 (2)0.0065 (16)0.0003 (16)0.0022 (18)
C360.0255 (17)0.031 (2)0.036 (2)0.0025 (16)0.0002 (16)0.0020 (18)
C50.0328 (19)0.034 (3)0.030 (2)0.0057 (17)0.0022 (16)0.0023 (18)
C70.0296 (18)0.030 (2)0.029 (2)0.0014 (16)0.0075 (15)0.0033 (17)
C310.0338 (19)0.034 (3)0.0237 (19)0.0104 (17)0.0036 (15)0.0027 (17)
C170.0259 (17)0.034 (2)0.030 (2)0.0058 (16)0.0019 (15)0.0011 (18)
C120.0360 (19)0.030 (2)0.031 (2)0.0008 (16)0.0001 (16)0.0005 (18)
C190.0269 (18)0.030 (2)0.042 (2)0.0043 (16)0.0011 (16)0.0012 (19)
C200.036 (2)0.031 (2)0.037 (2)0.0047 (17)0.0059 (17)0.0034 (19)
C340.0302 (19)0.031 (2)0.038 (2)0.0092 (16)0.0029 (16)0.0004 (19)
C130.0305 (19)0.028 (2)0.044 (2)0.0026 (16)0.0009 (17)0.0080 (19)
C140.0243 (18)0.041 (3)0.043 (2)0.0059 (16)0.0004 (16)0.010 (2)
C30.0292 (18)0.035 (3)0.038 (2)0.0032 (16)0.0025 (16)0.0080 (19)
C80.041 (2)0.030 (3)0.033 (2)0.0017 (17)0.0090 (17)0.0038 (19)
C110.047 (2)0.040 (3)0.025 (2)0.0025 (19)0.0048 (17)0.0006 (19)
C100.059 (3)0.029 (3)0.034 (2)0.011 (2)0.005 (2)0.002 (2)
C220.0320 (19)0.054 (3)0.030 (2)0.0007 (18)0.0011 (16)0.005 (2)
C180.0287 (18)0.036 (3)0.034 (2)0.0064 (16)0.0025 (16)0.0002 (19)
C40.0278 (19)0.048 (3)0.031 (2)0.0030 (17)0.0006 (16)0.006 (2)
C370.030 (2)0.048 (3)0.047 (3)0.0011 (19)0.0069 (18)0.005 (2)
C90.053 (3)0.032 (3)0.042 (3)0.0027 (19)0.016 (2)0.006 (2)
C230.036 (2)0.038 (3)0.059 (3)0.0036 (18)0.003 (2)0.001 (2)
C350.042 (2)0.041 (3)0.045 (3)0.0127 (19)0.0011 (19)0.006 (2)
C240.058 (3)0.041 (3)0.027 (2)0.000 (2)0.0003 (19)0.0040 (19)
B10.0191 (18)0.024 (3)0.038 (3)0.0029 (16)0.0023 (17)0.000 (2)
Geometric parameters (Å, º) top
S1—O21.444 (3)C36—H36B0.9800
S1—O31.440 (3)C36—H36C0.9800
S1—O11.436 (3)C5—H50.9500
S1—C371.808 (4)C5—C41.379 (5)
F3—C371.335 (5)C7—C121.410 (5)
N4—C271.350 (4)C7—C81.398 (5)
N4—C261.387 (4)C7—B11.611 (6)
N4—C281.443 (4)C31—C351.503 (5)
F2—C371.344 (4)C17—C221.513 (5)
N3—C271.322 (4)C17—C181.391 (5)
N3—C251.391 (4)C12—H120.9500
N3—B11.592 (5)C12—C111.381 (5)
F1—C371.323 (5)C19—C201.384 (5)
N1—C151.330 (5)C19—C181.389 (5)
N1—C131.382 (5)C19—C231.513 (5)
N1—B11.592 (5)C20—H200.9500
N2—C151.347 (4)C34—H34A0.9800
N2—C161.441 (5)C34—H34B0.9800
N2—C141.380 (5)C34—H34C0.9800
C27—H270.9500C13—H130.9500
C26—H260.9500C13—C141.356 (5)
C26—C251.350 (5)C14—H140.9500
C6—H60.9500C3—H30.9500
C6—C11.406 (5)C3—C41.387 (5)
C6—C51.381 (5)C8—H80.9500
C28—C331.404 (5)C8—C91.401 (6)
C28—C291.398 (5)C11—H110.9500
C25—H250.9500C11—C101.380 (6)
C30—H300.9500C10—H100.9500
C30—C291.392 (5)C10—C91.376 (6)
C30—C311.392 (5)C22—H22A0.9800
C15—H150.9500C22—H22B0.9800
C33—C321.392 (5)C22—H22C0.9800
C33—C361.500 (5)C18—H180.9500
C29—C341.507 (5)C4—H40.9500
C1—C21.405 (5)C9—H90.9500
C1—B11.611 (5)C23—H23A0.9800
C16—C211.400 (5)C23—H23B0.9800
C16—C171.390 (5)C23—H23C0.9800
C2—H20.9500C35—H35A0.9800
C2—C31.382 (5)C35—H35B0.9800
C32—H320.9500C35—H35C0.9800
C32—C311.394 (5)C24—H24A0.9800
C21—C201.391 (5)C24—H24B0.9800
C21—C241.502 (5)C24—H24C0.9800
C36—H36A0.9800
O2—S1—C37102.90 (18)C7—C12—H12118.6
O3—S1—O2114.52 (16)C11—C12—C7122.7 (4)
O3—S1—C37102.7 (2)C11—C12—H12118.6
O1—S1—O2115.16 (18)C20—C19—C18118.4 (3)
O1—S1—O3115.30 (19)C20—C19—C23120.8 (4)
O1—S1—C37103.82 (19)C18—C19—C23120.8 (4)
C27—N4—C26107.6 (3)C21—C20—H20118.8
C27—N4—C28126.7 (3)C19—C20—C21122.5 (4)
C26—N4—C28125.2 (3)C19—C20—H20118.8
C27—N3—C25106.6 (3)C29—C34—H34A109.5
C27—N3—B1128.2 (3)C29—C34—H34B109.5
C25—N3—B1124.6 (3)C29—C34—H34C109.5
C15—N1—C13107.4 (3)H34A—C34—H34B109.5
C15—N1—B1129.8 (3)H34A—C34—H34C109.5
C13—N1—B1122.9 (3)H34B—C34—H34C109.5
C15—N2—C16126.0 (3)N1—C13—H13125.7
C15—N2—C14108.3 (3)C14—C13—N1108.6 (4)
C14—N2—C16125.7 (3)C14—C13—H13125.7
N4—C27—H27124.8N2—C14—H14126.8
N3—C27—N4110.4 (3)C13—C14—N2106.4 (3)
N3—C27—H27124.8C13—C14—H14126.8
N4—C26—H26126.9C2—C3—H3120.3
C25—C26—N4106.3 (3)C2—C3—C4119.4 (4)
C25—C26—H26126.9C4—C3—H3120.3
C1—C6—H6118.9C7—C8—H8119.1
C5—C6—H6118.9C7—C8—C9121.8 (4)
C5—C6—C1122.2 (3)C9—C8—H8119.1
C33—C28—N4118.0 (3)C12—C11—H11120.1
C29—C28—N4119.0 (3)C10—C11—C12119.8 (4)
C29—C28—C33122.9 (3)C10—C11—H11120.1
N3—C25—H25125.5C11—C10—H10120.1
C26—C25—N3109.1 (3)C9—C10—C11119.8 (4)
C26—C25—H25125.5C9—C10—H10120.1
C29—C30—H30118.7C17—C22—H22A109.5
C31—C30—H30118.7C17—C22—H22B109.5
C31—C30—C29122.5 (4)C17—C22—H22C109.5
N1—C15—N2109.4 (3)H22A—C22—H22B109.5
N1—C15—H15125.3H22A—C22—H22C109.5
N2—C15—H15125.3H22B—C22—H22C109.5
C28—C33—C36122.0 (3)C17—C18—H18119.0
C32—C33—C28117.1 (3)C19—C18—C17122.0 (4)
C32—C33—C36120.8 (3)C19—C18—H18119.0
C28—C29—C34122.4 (3)C5—C4—C3120.1 (4)
C30—C29—C28117.1 (3)C5—C4—H4120.0
C30—C29—C34120.6 (4)C3—C4—H4120.0
C6—C1—B1120.1 (3)F3—C37—S1112.3 (3)
C2—C1—C6115.8 (3)F3—C37—F2106.4 (4)
C2—C1—B1124.1 (3)F2—C37—S1111.7 (3)
C21—C16—N2118.1 (3)F1—C37—S1112.3 (3)
C17—C16—N2119.0 (3)F1—C37—F3107.1 (4)
C17—C16—C21122.9 (3)F1—C37—F2106.7 (3)
C1—C2—H2118.7C8—C9—H9119.9
C3—C2—C1122.6 (4)C10—C9—C8120.1 (4)
C3—C2—H2118.7C10—C9—H9119.9
C33—C32—H32118.8C19—C23—H23A109.5
C33—C32—C31122.3 (3)C19—C23—H23B109.5
C31—C32—H32118.8C19—C23—H23C109.5
C16—C21—C24122.3 (3)H23A—C23—H23B109.5
C20—C21—C16116.8 (3)H23A—C23—H23C109.5
C20—C21—C24120.9 (3)H23B—C23—H23C109.5
C33—C36—H36A109.5C31—C35—H35A109.5
C33—C36—H36B109.5C31—C35—H35B109.5
C33—C36—H36C109.5C31—C35—H35C109.5
H36A—C36—H36B109.5H35A—C35—H35B109.5
H36A—C36—H36C109.5H35A—C35—H35C109.5
H36B—C36—H36C109.5H35B—C35—H35C109.5
C6—C5—H5120.0C21—C24—H24A109.5
C4—C5—C6120.0 (4)C21—C24—H24B109.5
C4—C5—H5120.0C21—C24—H24C109.5
C12—C7—B1119.0 (3)H24A—C24—H24B109.5
C8—C7—C12115.7 (4)H24A—C24—H24C109.5
C8—C7—B1125.3 (3)H24B—C24—H24C109.5
C30—C31—C32118.1 (3)N3—B1—C1109.3 (3)
C30—C31—C35121.6 (4)N3—B1—C7107.0 (3)
C32—C31—C35120.3 (3)N1—B1—N3105.8 (3)
C16—C17—C22122.2 (3)N1—B1—C1107.4 (3)
C16—C17—C18117.4 (3)N1—B1—C7110.1 (3)
C18—C17—C22120.4 (3)C7—B1—C1116.7 (3)
O2—S1—C37—F364.4 (3)C29—C30—C31—C320.3 (5)
O2—S1—C37—F2176.1 (3)C29—C30—C31—C35178.6 (3)
O2—S1—C37—F156.3 (3)C1—C6—C5—C41.7 (6)
O3—S1—C37—F354.8 (3)C1—C2—C3—C40.3 (6)
O3—S1—C37—F264.6 (4)C16—N2—C15—N1178.4 (3)
O3—S1—C37—F1175.5 (3)C16—N2—C14—C13179.0 (3)
N4—C26—C25—N30.4 (4)C16—C21—C20—C190.8 (6)
N4—C28—C33—C32178.1 (3)C16—C17—C18—C190.5 (6)
N4—C28—C33—C362.0 (5)C2—C1—B1—N3111.7 (4)
N4—C28—C29—C30177.9 (3)C2—C1—B1—N1134.0 (3)
N4—C28—C29—C341.9 (5)C2—C1—B1—C79.8 (5)
N1—C13—C14—N20.5 (4)C2—C3—C4—C50.5 (6)
N2—C16—C21—C20177.6 (3)C21—C16—C17—C22179.0 (4)
N2—C16—C21—C241.5 (5)C21—C16—C17—C181.0 (6)
N2—C16—C17—C221.8 (5)C36—C33—C32—C31175.8 (3)
N2—C16—C17—C18178.2 (3)C5—C6—C1—C22.4 (5)
O1—S1—C37—F3175.2 (3)C5—C6—C1—B1176.7 (3)
O1—S1—C37—F255.8 (4)C7—C12—C11—C101.3 (6)
O1—S1—C37—F164.1 (3)C7—C8—C9—C100.2 (6)
C27—N4—C26—C250.5 (4)C31—C30—C29—C280.0 (5)
C27—N4—C28—C3364.4 (5)C31—C30—C29—C34179.8 (3)
C27—N4—C28—C29118.2 (4)C17—C16—C21—C200.4 (6)
C27—N3—C25—C260.2 (4)C17—C16—C21—C24178.8 (4)
C27—N3—B1—N1115.8 (4)C12—C7—C8—C92.0 (6)
C27—N3—B1—C10.5 (5)C12—C7—B1—N357.2 (4)
C27—N3—B1—C7126.8 (3)C12—C7—B1—N1171.7 (3)
C26—N4—C27—N30.3 (4)C12—C7—B1—C165.5 (5)
C26—N4—C28—C33107.0 (4)C12—C11—C10—C90.7 (6)
C26—N4—C28—C2970.4 (4)C20—C19—C18—C170.6 (6)
C6—C1—C2—C31.7 (5)C13—N1—C15—N21.1 (4)
C6—C1—B1—N367.4 (4)C13—N1—B1—N3179.6 (3)
C6—C1—B1—N147.0 (4)C13—N1—B1—C163.8 (4)
C6—C1—B1—C7171.1 (3)C13—N1—B1—C764.3 (4)
C6—C5—C4—C30.2 (6)C14—N2—C15—N10.8 (4)
C28—N4—C27—N3172.3 (3)C14—N2—C16—C2162.5 (5)
C28—N4—C26—C25172.3 (3)C14—N2—C16—C17114.8 (4)
C28—C33—C32—C310.4 (5)C8—C7—C12—C112.6 (6)
C25—N3—C27—N40.1 (4)C8—C7—B1—N3120.2 (4)
C25—N3—B1—N174.4 (4)C8—C7—B1—N15.6 (5)
C25—N3—B1—C1170.2 (3)C8—C7—B1—C1117.1 (4)
C25—N3—B1—C743.0 (4)C11—C10—C9—C81.2 (6)
C15—N1—C13—C141.0 (4)C22—C17—C18—C19179.6 (4)
C15—N1—B1—N31.0 (5)C18—C19—C20—C211.3 (6)
C15—N1—B1—C1117.6 (4)C23—C19—C20—C21179.7 (4)
C15—N1—B1—C7114.3 (4)C23—C19—C18—C17179.1 (4)
C15—N2—C16—C21118.4 (4)C24—C21—C20—C19180.0 (4)
C15—N2—C16—C1764.2 (5)B1—N3—C27—N4171.2 (3)
C15—N2—C14—C130.2 (4)B1—N3—C25—C26171.9 (3)
C33—C28—C29—C300.6 (5)B1—N1—C15—N2177.7 (3)
C33—C28—C29—C34179.2 (3)B1—N1—C13—C14177.9 (3)
C33—C32—C31—C300.1 (5)B1—C1—C2—C3177.4 (3)
C33—C32—C31—C35178.4 (3)B1—C7—C12—C11179.8 (4)
C29—C28—C33—C320.8 (5)B1—C7—C8—C9179.5 (4)
C29—C28—C33—C36175.3 (3)
Weak intermolecular interactions (Å, °) between the triflate anion and the imidazole moieties in Ph2B(MesIm)2+ top
DistanceAngle
C26···S1i3.793 (4)149.4
C26···O2i3.264 (5)160.0
C15···O13.132 (5)118.7
C14···O3ii3.242 (5)159.4
N3—C27···O13.529 (3)125.0
Symmetry codes: (i) x, -y + 1, z - 1/2; (ii) -x + 1/2, y + 1/2, z.
Bond angles around the boron center in Ph2B(MesIm)2OTf. top
N1 B1 N3N1 B1 C1N3 B1 C1C1 B1 C7
Angle Measurements (°)105.79107.37109.29116.76

Funding information

Funding for this research was provided by: Department of Energy (grant No. DE-SC0019466 to Professor Jeremy Smith); Major Scientific Research Equipment Fund from the President of Indiana University and the Office of the Vice President for Research (award to Dr Maren Pink).

References

First citationArrowsmith, M., Heath, A., Hill, M. S., Hitchcock, P. B. & Kociok-Köhna, G. (2009). Organometallics, 28, 4550–4559.  CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3, SAINTand SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKiviniemi, S., Nissinen, M., Alaviuhkola, T., Rissanen, K. & Pursiainen, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2364–2369.  CSD CrossRef Google Scholar
First citationScepaniak, J. J., Young, J. A., Bontchev, R. P. & Smith, J. M. (2009). Angew. Chem. Int. Ed. 48, 3158–3160.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, J. M. & Subedi, D. (2012). Dalton Trans. 41, 1423–1429.  CrossRef CAS PubMed Google Scholar
First citationStenzel, O., Raubenheimer, H. G. & Esterhuysen, C. (2002). Dalton Trans. 1132–1138.  Google Scholar
First citationSu, Y., Huan Do, D. C., Li, Y. & Kinjo, R. (2019). J. Am. Chem. Soc. 141, 13729–13733.  CSD CrossRef CAS PubMed Google Scholar
First citationXiong, Y., Yao, S., Szilvási, M., Ballestero–Martínez, E., Grützmacher, H. & Driess, M. (2017). Angew. Chem. Int. Ed. 56, 4333–4336.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds