research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy, DFT and anti­bacterial activity studies of ethyl 2-[(2Z)-2-(2-chloro­benzyl­­idene)-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl]acetate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Heterocyclique URAC 21, Pole de Competence Pharmacochimie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eLaboratoire de Chimie Appliquee et Environnement, Equipe de Chimie Bioorganique Appliquee, Faculte des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: sebbar.ghizlane@um5s.net.ma

Edited by A. J. Lough, University of Toronto, Canada (Received 5 March 2020; accepted 24 March 2020; online 7 April 2020)

The title compound, C19H16ClNO3S, consists of chloro­phenyl methyl­idene and di­hydro­benzo­thia­zine units linked to an acetate moiety, where the thia­zine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = di­hydro­benzo­thia­zine) hydrogen bonds form layers of mol­ecules parallel to the bc plane. The layers stack along the a-axis direction with inter­calation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the anti­bacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria.

1. Chemical context

A number of pharmacological tests have revealed 1,4-benzo­thia­zine derivatives to possess a wide spectrum of biological applications, indicating that the 1,4-benzo­thia­zine moiety is a potentially useful template in medicinal chemistry research and therapeutic applications such as in vivo anti­proliferative (Zięba et al., 2016[Zięba, A., Latocha, M., Sochanik, A., Nycz, A. & Kuśmierz, D. (2016). Molecules, 21, 1455.]), anti­bacterial (Sebbar et al., 2016b[Sebbar, N. K., Mekhzoum, M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845-6862.]; Ellouz et al., 2019[Ellouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). Sci. Study Res. 20, 563-574.]), anti­microbial (Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. Mol. Pharmacol. 50, 1178-1188.]; Sabatini et al., 2008[Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321-4330.]; Vijay & Rahul, 2016[Vijay, V. D. & Rahul, P. G. (2016). Arabian J. Chem. 9, S225-S229.]), anti-viral (Malagu et al., 1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]), anti-oxidant (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]), anti-inflammatory (Trapani et al., 1985[Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369-376.]; Gowda et al., 2011[Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100-4106.]), anti­pyretic (Warren & Knaus, 1987[Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411-415.]) and anti-cancer (Gupta & Gupta, 1991[Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153-156.]; Gupta et al., 1985[Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381-385.]) areas. They have also been reported as precursors for the syntheses of new compounds (Sebbar et al., 2015a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999.]; Vidal et al., 2006[Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591-593.]) possessing anti-diabetic (Tawada et al., 1990[Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238-1245.]) and anti-corrosion (Ellouz et al., 2016a[Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806-2819.],b[Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482-2497.]) activities, and as anti­proliferative (Zięba et al., 2010[Zięba, A., Sochanik, A., Szurko, A., Rams, M., Mrozek, A. & Cmoch, P. (2010). Eur. J. Med. Chem. 45, 4733-4739.]) or anti­helmintic (Munirajasekar et al., 2011[Munirajasekar, D., Himaja, M. & Sunil, M. (2011). Int. Res. J. Pharm. 2, 114-117.]) agents. The biological activities of some 1,4-benzo­thia­zines are similar to those of pheno­thia­zines, featuring the same structural specificity (Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.],b[Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593-599.]; Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.], 2018[Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.], 2019[Ellouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). Sci. Study Res. 20, 563-574.]; Sebbar et al., 2019a[Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721-727.],b[Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650-1656.]). In a continuation of our research activities devoted to the development of N-substituted 1,4-benzo­thia­zine derivatives and the evaluation of their potential pharmacological activities (Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.]; Sebbar et al., 2017a[Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170695.]), we have synthesized a new heterocyclic system containing 1,4-benzo­thia­zine. We report herein the synthesis and the mol­ecular and crystal structures along with the Hirshfeld surface analysis and inter­action energy calculations [using the CE–B3LYP/6–31G(d,p) energy model] and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level compared with the experimentally determined mol­ecular structure in the solid state. Moreover, the anti­bacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria (e.g. Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa).

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], consists of chloro­phenyl methyl­idene and di­hydro­benzo­thia­zine units linked to an acetate moiety, where the thia­zine ring adopts a screw-boat conformation (Fig. 1[link]). The di­hydro­benzo­thia­zine ring is folded across the N1⋯S1 axis by 36.70 (7)°. A puckering analysis of the thia­zine, B (N1/S1/C1/C6–C8), ring conformation gave the parameters QT = 0.5525 (16) Å, θ = 109.0 (2)° and φ = 161.0 (2)°, indicating a screw-boat conformation. The mean plane of the N1/C16/C17/O2/O3 group is inclined to the mean plane of the S1/C1–C6/N1 unit by 80.06 (7)° while the phenyl, C (C10–C15), ring makes a dihedral angle of 84.92 (6)° with the latter plane. The benzene ring A (C1–C6) is oriented at a dihedral angle of 84.46 (2)° with respect to the C ring.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = di­hydro­benzo­thia­zine) hydrogen bonds (Table 1[link]) form layers of mol­ecules parallel to the bc plane (Fig. 2[link]). The layers stack along the a-axis direction with inter­calation of the ester chains (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1vii 0.95 (3) 2.56 (3) 3.214 (2) 126 (2)
C15—H15⋯O1ii 0.95 (2) 2.40 (2) 3.227 (2) 145.8 (15)
Symmetry codes: (ii) -x+1, -y+1, -z+1; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram viewed along the b-axis direction. The weak C—HPh⋯ODbt (Ph = phenyl and Dbt = di­hydro­benzo­thia­zine) hydrogen bonds are depicted by black dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1 and hydrogen atom H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 4[link]. Here the blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are no ππ inter­actions in (I)[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1956 to 1.3971 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, C⋯Cl/Cl⋯C, H⋯S/S⋯H, S⋯Cl/Cl⋯S and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bi, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 2[link]) contributing 37.5% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen-atom content of the mol­ecule with the tip at de = di = 1.10 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Table 2[link], Fig. 6[link]c; 24.6% contribution to the HS), have tips at de + di = 2.72 Å. The H⋯O/O⋯H contacts (Table 1[link], Fig. 6[link]d) with a 16.7% contribution to the HS have a symmetric distribution of points with the tips at de + di = 2.27 Å. The scattered points in the wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H, Fig. 6[link]e, contacts (7.1% contribution) have the tips at de + di = 3.14 Å. The C⋯Cl/Cl⋯C contacts, Fig. 6[link]f, with 4.2% contribution to the HS have an arrow-shaped distribution of points of split small wings with the tips at de + di = 3.41 Å. The pair of spikes in the fingerprint plot delineated into H⋯S/S⋯H, Fig. 6[link]g, contacts (4.0% contribution) have tips at de + di = 2.78 Å. The pair of characteristic wings in the fingerprint plot delineated into S⋯Cl/Cl⋯S contacts, Fig. 6[link]h, (2.1% contribution) has the tips at de + di = 3.70 Å. Finally, the C⋯C contacts, Fig. 6[link]i, (1.3% contribution) have an arrow-shaped distribution of points with the tip at de = di = 1.85 Å.

Table 2
Selected interatomic distances (Å)

Cl1⋯C14i 3.5363 (9) O1⋯H12i 2.560 (9)
Cl1⋯S1i 3.7268 (3) O1⋯H15ii 2.400 (8)
Cl1⋯C10i 3.5940 (7) O2⋯H18B 2.545 (11)
Cl1⋯C15i 3.4359 (7) O2⋯H13i 2.606 (10)
Cl1⋯H9 2.674 (8) O2⋯H18A 2.74 (3)
S1⋯N1 3.0100 (6) O3⋯H16Bvi 2.666 (8)
S1⋯C15 3.1748 (8) C2⋯C17 3.2932 (10)
S1⋯O1ii 3.4189 (6) C4⋯C14iii 3.5882 (12)
S1⋯H15 2.660 (10) C2⋯H16B 2.621 (8)
S1⋯H5iii 2.906 (9) C4⋯H14iii 2.826 (10)
O1⋯C17 3.1263 (9) C4⋯H12vii 2.993 (10)
O1⋯C12i 3.2141 (10) C5⋯H12vii 2.817 (10)
O1⋯C15ii 3.2268 (8) C7⋯H15 2.937 (9)
O2⋯N1 2.7902 (7) C15⋯H16Aii 2.900 (9)
O2⋯C8 3.2091 (9) C16⋯H16Bvi 2.987 (9)
O2⋯C1 3.3715 (8) C16⋯H2 2.538 (9)
O2⋯C3iv 3.3498 (10) C17⋯H2 2.696 (9)
O2⋯C2 3.4103 (9) H2⋯H16B 2.223 (12)
O1⋯H9 2.516 (9) H5⋯H12vii 2.444 (13)
O1⋯H16A 2.376 (9) H5⋯H15iii 2.509 (12)
O1⋯H4v 2.806 (11) H16B⋯H16Bvi 2.381 (13)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) -x, -y+1, -z+1; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯Cl/Cl ⋯ H, (f) C⋯Cl/Cl⋯C, (g) H⋯S/S⋯H, (h) S ⋯ Cl/Cl⋯S and (i) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯Cl/Cl⋯H inter­actions in Fig. 7[link]a-d, respectively.

[Figure 7]
Figure 7
Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯Cl/Cl⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a default radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −20.3 (Eele), −5.9 (Epol), −48.7 (Edis), 48.5 (Erep) and −38.3 (Etot) for C15—H15⋯O1 and −15.2 (Eele), −4.1 (Epol), −42.2 (Edis), 41.3 (Erep) and −30.3 (Etot) for C12—H12⋯O1.

6. DFT calculations

The optimized structure of the title compound, (I)[link], in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 3[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4[link]. The parameters η and σ are significant for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8[link]. The HOMO and LUMO are localized in the plane extending from the whole 2-[(2Z)-2-(2-chloro­benzyl­idene)-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl]acetate ring. The energy band gap [ΔE = ELUMO - EHOMO] of the mol­ecule is 4.3346 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −5.2696 and −0.9347 eV, respectively.

Table 3
Comparison of selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
Cl1—C11 1.741 (2) 1.83593
S1—C6 1.755 (2) 1.83362
S1—C7 1.757 (2) 1.79349
O1—C8 1.224 (2) 1.26839
O2—C17 1.200 (2) 1.23993
O3—C17 1.335 (2) 1.36867
O3—C18 1.462 (3) 1.48321
N1—C8 1.381 (2) 1.40044
N1—C1 1.417 (2) 1.41683
N1—C16 1.452 (2) 1.47008
     
C6—S1—C7 98.19 (9) 99.41730
C17—O3—C18 116.60 (16) 116.97676
C8—N1—C1 124.52 (15) 125.49531
C8—N1—C16 115.56 (16) 115.02066
C1—N1—C16 118.47 (16) 118.38057
C2—C1—N1 121.41 (17) 121.23845
C2—C1—C6 118.60 (18) 117.94010
C6—C1—N1 120.00 (17) 120.81444
O1—C8—N1 120.36 (17) 120.12402
O1—C8—C7 121.99 (17) 120.12402
N1—C8—C7 117.64 (16) 117.79908

Table 4
Calculated energies

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy, TE (eV) −50964
EHOMO (eV) −5.2696
ELUMO (eV) −0.9347
Gap, ΔE (eV) 4.3346
Dipole moment, μ (Debye) 5.6841
Ionization potential, I (eV) 5.2696
Electron affinity, A 0.9347
Electronegativity, χ 3.1019
Hardness, η 2.1673
Electrophilicity index, ω 2.2198
Softness, σ 0.4614
Fraction of electron transferred, ΔN 0.8993
[Figure 8]
Figure 8
The energy band gap of the title compound, (I)[link].

7. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the fragment (II)[link] yielded 16 hits. The largest group is that for (III)[link] with R = Ph and R′ = A[link] (WUFGIP; Sebbar et al., 2015b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423-o424.]), CH2COOH (APAJUY; Sebbar et al., 2016a[Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). IUCrData, 1, x160863.]), (CH2)17CH3 (CARCEG; Sebbar et al., 2017a[Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170695.]), n-Bu (JOGVOS; Sebbar et al., 2014a[Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o686.]), CH2C≡CH (COGRUN; Sebbar et al., 2014b[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o614.]), R = Ph and R′ = B[link] (EVIYIT; (Sebbar et al., 2016b[Sebbar, N. K., Mekhzoum, M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845-6862.]), CH2COOCH3 (ICAJOL; Zerzouf et al., 2001[Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498-o499.]), R = Ph and R′ = C[link] (JADPOW; Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]) and R = Ph and R′ = D[link] (OBITUR; Sebbar et al., 2016c[Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016c). IUCrData, 1, x161823.]). The remainder have R = 4-ClC6H4 and R′ = bz (OMEGEU; Ellouz et al., 2016c[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.]), n-Bu (PAWCIC; Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.]) and R = 4-ClC6H4 and R′ = B[link] (YANHAZ; Ellouz et al., 2017b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170870.]) or R = 2-ClC6H4, and R′ = CH2C≡CH (SAVTUH; Sebbar et al., 2017b[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170889.]) or R = 4-FC6H4 and R′ = CH2C≡CH (WOCFUS; Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]) or R = 2,4-Cl2C6H3 and R′ = B (DOHZUY; Hni et al., 2019b[Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593-599.], CH2CH2CN (POHPOU; Sebbar et al., 2019a[Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721-727.]). In the majority of these, the thia­zine ring is significantly folded about the S⋯N axis with dihedral angles between the two S/C/C/N planes ranging from ca 35° (JADPOW and WUFGIP) to ca 27° (COGRUN and WOCFUS). Two others have inter­mediate values of ca 15° (POHPOU) and 9° (DOHZUY), while in the last three, the thia­zine ring is nearly flat with a dihedral angle of ca 4° (EVIYIT, OBITUR and OMEGEU). It is not immediately obvious what the reasons are for these nearly planar rings, but it may be in part due to packing considerations since in these last three mol­ecules, the substituents on the thia­zine rings do not hold the benzo­thia­zine moieties as far apart as in the other cases, so that π-stacking inter­actions between the benzo portions can bring them close together and flatten out the rings.

[Scheme 2]

8. Anti­bacterial activity

To compare and analyse the anti­bacterial behaviour contributed by (I)[link], and commercial anti­biotics such as Chloramphenicol (Chlor) and Ampicillin (Amp), we have tested the title compound, (I)[link], against Staphylococcus aureus (ATCC-25923), Escherichia coli (ATTC-25922) and Pseudomonas aeruginosa (ATCC-27853) strains of bacteria using the diffusion disk method to evaluate the applicability of (I)[link] as an anti­bacterial agent (Mabkhot et al., 2016[Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036.]; Hoffmann et al., 2017[Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34-45.]). Fig. 9[link] summarizes the diameter of inhibition (mm) values of (I)[link] and commercial anti­biotics chloramphenicol (Chlor) and ampicillin (Amp) against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The deter­min­ation of the minimum inhibition concentration (MIC) values of the sample (I)[link] against the bacteria are presented in Table 5[link]. The results of anti­bacterial activity of the product tested showed the best activity with MIC value of 21 µg mL−1 and different degrees of growth inhibition against the bacteria tested. It is clear that there is a significant enhancement and a strong anti­bacterial activity associated with sample (I)[link], as compared to commercial anti­biotics. In addition, the maximum effect of (I)[link] was recorded against Staphylococcus aureus (diameter of inhibition 16.4 mm). Chloramphenicol and ampicillin present a moderate anti­bacterial activity diameter of inhibition 22.6 mm and 11.75 mm, respectively, and no zone inhibition was observed with DMSO. On one hand, the chemical structure of (I)[link] can explain this biologic effect. The mechanism of action of (I)[link] is not attributable to one specific mechanism, but there are several targets in the cell: degradation of the cell wall, damage to membrane proteins, damage to cytoplasmic membrane, leakage of cell contents and coagulation of cytoplasm. On the other hand, it should be noted that the derivatives functionalized by ester groups and benzene rings have the highest anti­bacterial coefficient (92% of pathogenic bacteria are sensitive). This study is expected to include anti-inflammatory, anti­fungal, anti-parasitic and anti-cancer activities, because the literature gives a lot of inter­esting results on these topics. Some other types of bacteria may possibly be tested by employing the same method so as to eventually generalize the suggested investigation method (Alderman & Smith, 2001[Alderman, D. & Smith, P. (2001). Aquaculture, 196, 211-243.]).

Table 5
Minimal inhibitory concentration [MIC (μg mL−1)]

ATCC-25923 = Staphylococcus aureus, ATTC-25922 = Escherichia coli, ATCC-27853 = Pseudomonas aeruginosa, Chlor = chloramphenicol and Amp = ampicillin.

Product ATCC-25923 ATTC-25922 ATCC-27853
(I) 21 21 21
Chlor 58 58 58
Amp 12 12 12
DMSO 0 0 0
[Figure 9]
Figure 9
Anti­bacterial activity of the title compound, (I)[link], and the commercial anti­biotics chloramphenicol (Chlor) and ampicillin (Amp) against the bacteria Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa.

9. Synthesis and crystallization

To a solution of 2-(2-chloro­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one (0.57 g, 2 mmol), potassium carbonate (4 mmol) and tetra n-butyl ammonium bromide (0.2 mmol) in DMF (14 ml) was added ethyl chloro­acetate (0.49 g, 4 mmol). Stirring was continued at room temperature for 14 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (8:2) as eluent. Colourless crystals of the title compound, (I)[link], were isolated when the solvent was allowed to evaporate (yield: 66%).

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Hydrogen atoms were located in a difference-Fourier map and refined freely. The model was refined as a two-component twin with twin law [\overline{1}] 0 0, 0 [\overline{1}] 0, 0 0 [\overline{1}] and a refined BASF parameter of 0.34961 (5).

Table 6
Experimental details

Crystal data
Chemical formula C19H16ClNO3S
Mr 373.84
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 11.6882 (2), 9.0903 (2), 16.9533 (3)
β (°) 105.105 (1)
V3) 1739.04 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.22
Crystal size (mm) 0.19 × 0.15 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.57, 0.72
No. of measured, independent and observed [I > 2σ(I)] reflections 25761, 25761, 21950
Rint 0.032
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.03
No. of reflections 25761
No. of parameters 292
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.72, −0.80
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW, University of Göttingen, Göttingen, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016), CELL_NOW (Sheldrick, 2008a); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Ethyl 2-[(2Z)-2-(2-chlorobenzylidene)-3-oxo-3,4-dihydro-2H-\ 1,4-benzothiazin-4-yl]acetate top
Crystal data top
C19H16ClNO3SF(000) = 776
Mr = 373.84Dx = 1.428 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 11.6882 (2) ÅCell parameters from 9820 reflections
b = 9.0903 (2) Åθ = 3.9–74.6°
c = 16.9533 (3) ŵ = 3.22 mm1
β = 105.105 (1)°T = 150 K
V = 1739.04 (6) Å3Block, colourless
Z = 40.19 × 0.15 × 0.11 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
25761 independent reflections
Radiation source: INCOATEC IµS micro–focus source21950 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 3.9°
ω scansh = 1413
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1110
Tmin = 0.57, Tmax = 0.72l = 2121
25761 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039All H-atom parameters refined
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.4043P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
25761 reflectionsΔρmax = 0.72 e Å3
292 parametersΔρmin = 0.80 e Å3
0 restraintsExtinction correction: SHELXL2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual spaceExtinction coefficient: 0.0032 (6)
Special details top

Experimental. Analysis of 529 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the b axis. The raw data were processed using the multi- component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50488 (5)0.51497 (7)0.19568 (3)0.03952 (18)
S10.44083 (4)0.78070 (6)0.47131 (3)0.02735 (16)
O10.31103 (13)0.39288 (15)0.41536 (8)0.0264 (3)
O20.05392 (14)0.49512 (17)0.29883 (9)0.0341 (4)
O30.04896 (13)0.37965 (16)0.37586 (9)0.0306 (3)
N10.21745 (14)0.60019 (17)0.43805 (10)0.0223 (3)
C10.19875 (18)0.7541 (2)0.42964 (11)0.0216 (4)
C20.08488 (19)0.8137 (2)0.40863 (13)0.0272 (4)
H20.019 (2)0.750 (3)0.3964 (15)0.032 (6)*
C30.0683 (2)0.9646 (2)0.40245 (13)0.0299 (5)
H30.010 (3)1.002 (3)0.3866 (16)0.038 (7)*
C40.1643 (2)1.0587 (2)0.41608 (13)0.0294 (5)
H40.152 (3)1.159 (3)0.4110 (17)0.045 (7)*
C50.2778 (2)1.0009 (2)0.43568 (13)0.0274 (4)
H50.345 (2)1.066 (3)0.4429 (15)0.033 (6)*
C60.29556 (17)0.8496 (2)0.44327 (11)0.0228 (4)
C70.41573 (18)0.6168 (2)0.41447 (11)0.0224 (4)
C80.31254 (18)0.5270 (2)0.42214 (11)0.0214 (4)
C90.48358 (18)0.5650 (2)0.36782 (12)0.0239 (4)
H90.461 (2)0.474 (3)0.3411 (15)0.030 (6)*
C100.58341 (18)0.6384 (2)0.34694 (12)0.0230 (4)
C110.59934 (19)0.6260 (2)0.26787 (12)0.0266 (4)
C120.6869 (2)0.7022 (2)0.24392 (13)0.0308 (5)
H120.693 (2)0.689 (3)0.1896 (16)0.039 (7)*
C130.7644 (2)0.7914 (2)0.29922 (13)0.0316 (5)
H130.826 (3)0.842 (3)0.2818 (17)0.042 (7)*
C140.75389 (19)0.8019 (2)0.37885 (13)0.0281 (4)
H140.808 (2)0.863 (3)0.4187 (16)0.037 (7)*
C150.66479 (18)0.7271 (2)0.40190 (12)0.0255 (4)
H150.659 (2)0.733 (2)0.4564 (15)0.027 (6)*
C160.11979 (18)0.5077 (2)0.44607 (12)0.0235 (4)
H16A0.151 (2)0.421 (3)0.4763 (15)0.029 (6)*
H16B0.077 (2)0.556 (3)0.4769 (14)0.026 (6)*
C170.03970 (18)0.4622 (2)0.36420 (12)0.0244 (4)
C180.1348 (2)0.3263 (3)0.30254 (15)0.0386 (5)
H18A0.092 (3)0.255 (3)0.2763 (18)0.048 (8)*
H18B0.161 (3)0.410 (3)0.2641 (19)0.049 (8)*
C190.2350 (3)0.2585 (4)0.3297 (2)0.0509 (7)
H19A0.205 (3)0.173 (3)0.370 (2)0.054 (8)*
H19B0.289 (3)0.220 (4)0.283 (2)0.069 (10)*
H19C0.274 (3)0.331 (4)0.359 (2)0.061 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0417 (4)0.0478 (3)0.0343 (3)0.0153 (2)0.0194 (2)0.0140 (2)
S10.0165 (3)0.0318 (3)0.0341 (3)0.00303 (19)0.0072 (2)0.0083 (2)
O10.0279 (8)0.0251 (7)0.0300 (7)0.0012 (6)0.0143 (6)0.0008 (5)
O20.0335 (9)0.0442 (9)0.0270 (7)0.0083 (7)0.0122 (7)0.0003 (6)
O30.0253 (8)0.0361 (8)0.0318 (7)0.0111 (6)0.0100 (6)0.0034 (6)
N10.0180 (8)0.0251 (8)0.0265 (8)0.0032 (6)0.0104 (7)0.0002 (6)
C10.0196 (10)0.0247 (9)0.0226 (8)0.0025 (8)0.0093 (8)0.0020 (7)
C20.0178 (10)0.0308 (10)0.0340 (10)0.0033 (8)0.0086 (8)0.0031 (8)
C30.0215 (11)0.0327 (11)0.0357 (11)0.0027 (9)0.0080 (9)0.0027 (9)
C40.0296 (12)0.0246 (10)0.0357 (11)0.0008 (9)0.0117 (9)0.0024 (8)
C50.0238 (11)0.0282 (10)0.0323 (10)0.0061 (8)0.0108 (9)0.0064 (8)
C60.0170 (10)0.0287 (10)0.0241 (9)0.0019 (8)0.0083 (8)0.0036 (7)
C70.0190 (10)0.0253 (9)0.0236 (9)0.0012 (7)0.0072 (8)0.0016 (7)
C80.0200 (10)0.0274 (10)0.0184 (8)0.0010 (8)0.0076 (7)0.0006 (7)
C90.0217 (10)0.0254 (10)0.0262 (9)0.0004 (8)0.0094 (8)0.0020 (8)
C100.0191 (10)0.0252 (9)0.0275 (9)0.0040 (7)0.0111 (8)0.0039 (7)
C110.0243 (11)0.0282 (10)0.0300 (10)0.0001 (8)0.0121 (9)0.0012 (8)
C120.0313 (12)0.0368 (12)0.0298 (10)0.0013 (9)0.0177 (9)0.0006 (9)
C130.0249 (11)0.0386 (12)0.0359 (11)0.0044 (9)0.0164 (9)0.0038 (9)
C140.0181 (10)0.0374 (11)0.0296 (10)0.0027 (9)0.0072 (8)0.0006 (9)
C150.0196 (10)0.0333 (10)0.0248 (9)0.0022 (8)0.0083 (8)0.0038 (8)
C160.0208 (10)0.0267 (10)0.0268 (9)0.0039 (8)0.0129 (8)0.0003 (8)
C170.0212 (10)0.0239 (9)0.0307 (10)0.0017 (8)0.0114 (8)0.0017 (8)
C180.0306 (13)0.0435 (13)0.0387 (12)0.0113 (11)0.0033 (10)0.0085 (11)
C190.0319 (15)0.0561 (17)0.0614 (17)0.0187 (13)0.0065 (14)0.0055 (15)
Geometric parameters (Å, º) top
Cl1—C111.741 (2)C9—C101.465 (3)
S1—C61.755 (2)C9—H90.95 (2)
S1—C71.757 (2)C10—C151.401 (3)
O1—C81.224 (2)C10—C111.405 (3)
O2—C171.200 (2)C11—C121.382 (3)
O3—C171.335 (2)C12—C131.383 (3)
O3—C181.462 (3)C12—H120.95 (3)
N1—C81.381 (2)C13—C141.390 (3)
N1—C11.417 (2)C13—H130.96 (3)
N1—C161.452 (2)C14—C151.382 (3)
C1—C21.395 (3)C14—H140.97 (3)
C1—C61.397 (3)C15—H150.95 (2)
C2—C31.386 (3)C16—C171.515 (3)
C2—H20.95 (3)C16—H16A0.96 (3)
C3—C41.382 (3)C16—H16B0.92 (3)
C3—H30.94 (3)C18—C191.498 (4)
C4—C51.384 (3)C18—H18A0.99 (3)
C4—H40.93 (3)C18—H18B1.00 (3)
C5—C61.392 (3)C19—H19A1.03 (3)
C5—H50.96 (3)C19—H19B0.94 (4)
C7—C91.343 (3)C19—H19C1.00 (4)
C7—C81.490 (3)
Cl1···C14i3.5363 (9)O1···H12i2.560 (9)
Cl1···S1i3.7268 (3)O1···H15ii2.400 (8)
Cl1···C10i3.5940 (7)O2···H18B2.545 (11)
Cl1···C15i3.4359 (7)O2···H13i2.606 (10)
Cl1···H92.674 (8)O2···H18A2.74 (3)
S1···N13.0100 (6)O3···H16Bvi2.666 (8)
S1···C153.1748 (8)C2···C173.2932 (10)
S1···O1ii3.4189 (6)C4···C14iii3.5882 (12)
S1···H152.660 (10)C2···H16B2.621 (8)
S1···H5iii2.906 (9)C4···H14iii2.826 (10)
O1···C173.1263 (9)C4···H12vii2.993 (10)
O1···C12i3.2141 (10)C5···H12vii2.817 (10)
O1···C15ii3.2268 (8)C7···H152.937 (9)
O2···N12.7902 (7)C15···H16Aii2.900 (9)
O2···C83.2091 (9)C16···H16Bvi2.987 (9)
O2···C13.3715 (8)C16···H22.538 (9)
O2···C3iv3.3498 (10)C17···H22.696 (9)
O2···C23.4103 (9)H2···H16B2.223 (12)
O1···H92.516 (9)H5···H12vii2.444 (13)
O1···H16A2.376 (9)H5···H15iii2.509 (12)
O1···H4v2.806 (11)H16B···H16Bvi2.381 (13)
C6—S1—C798.19 (9)C12—C11—Cl1117.82 (16)
C17—O3—C18116.60 (16)C10—C11—Cl1119.98 (16)
C8—N1—C1124.52 (15)C11—C12—C13119.92 (19)
C8—N1—C16115.56 (16)C11—C12—H12118.0 (16)
C1—N1—C16118.47 (16)C13—C12—H12122.0 (16)
C2—C1—C6118.60 (18)C12—C13—C14119.4 (2)
C2—C1—N1121.41 (17)C12—C13—H13118.8 (16)
C6—C1—N1120.00 (17)C14—C13—H13121.8 (16)
C3—C2—C1120.63 (19)C15—C14—C13120.3 (2)
C3—C2—H2120.0 (15)C15—C14—H14119.2 (16)
C1—C2—H2119.4 (15)C13—C14—H14120.5 (16)
C4—C3—C2120.6 (2)C14—C15—C10121.74 (18)
C4—C3—H3120.2 (16)C14—C15—H15120.3 (15)
C2—C3—H3119.2 (16)C10—C15—H15118.0 (15)
C3—C4—C5119.4 (2)N1—C16—C17112.65 (16)
C3—C4—H4120.0 (18)N1—C16—H16A109.1 (15)
C5—C4—H4120.6 (18)C17—C16—H16A109.0 (14)
C4—C5—C6120.5 (2)N1—C16—H16B109.1 (15)
C4—C5—H5119.4 (15)C17—C16—H16B110.8 (15)
C6—C5—H5120.1 (15)H16A—C16—H16B106 (2)
C5—C6—C1120.27 (18)O2—C17—O3125.18 (19)
C5—C6—S1119.21 (15)O2—C17—C16125.21 (18)
C1—C6—S1120.51 (15)O3—C17—C16109.61 (16)
C9—C7—C8118.34 (17)O3—C18—C19107.0 (2)
C9—C7—S1125.50 (16)O3—C18—H18A106.6 (17)
C8—C7—S1116.11 (14)C19—C18—H18A113.0 (17)
O1—C8—N1120.36 (17)O3—C18—H18B109.1 (17)
O1—C8—C7121.99 (17)C19—C18—H18B112.6 (18)
N1—C8—C7117.64 (16)H18A—C18—H18B108 (2)
C7—C9—C10127.75 (19)C18—C19—H19A111.0 (18)
C7—C9—H9116.7 (15)C18—C19—H19B108 (2)
C10—C9—H9115.3 (15)H19A—C19—H19B109 (3)
C15—C10—C11116.42 (18)C18—C19—H19C112.1 (19)
C15—C10—C9123.16 (17)H19A—C19—H19C107 (2)
C11—C10—C9120.39 (18)H19B—C19—H19C111 (3)
C12—C11—C10122.19 (19)
C8—N1—C1—C2149.38 (19)C9—C7—C8—N1152.68 (18)
C16—N1—C1—C216.2 (3)S1—C7—C8—N129.5 (2)
C8—N1—C1—C631.3 (3)C8—C7—C9—C10175.30 (18)
C16—N1—C1—C6163.13 (17)S1—C7—C9—C107.1 (3)
C6—C1—C2—C30.8 (3)C7—C9—C10—C1537.4 (3)
N1—C1—C2—C3178.55 (18)C7—C9—C10—C11140.4 (2)
C1—C2—C3—C40.8 (3)C15—C10—C11—C122.9 (3)
C2—C3—C4—C50.3 (3)C9—C10—C11—C12175.1 (2)
C3—C4—C5—C61.3 (3)C15—C10—C11—Cl1178.57 (15)
C4—C5—C6—C11.2 (3)C9—C10—C11—Cl13.5 (3)
C4—C5—C6—S1178.03 (16)C10—C11—C12—C131.7 (3)
C2—C1—C6—C50.2 (3)Cl1—C11—C12—C13179.76 (18)
N1—C1—C6—C5179.53 (17)C11—C12—C13—C140.7 (3)
C2—C1—C6—S1179.07 (15)C12—C13—C14—C151.8 (3)
N1—C1—C6—S10.3 (2)C13—C14—C15—C100.5 (3)
C7—S1—C6—C5146.23 (16)C11—C10—C15—C141.8 (3)
C7—S1—C6—C134.53 (17)C9—C10—C15—C14176.10 (19)
C6—S1—C7—C9134.12 (18)C8—N1—C16—C1780.3 (2)
C6—S1—C7—C848.28 (16)C1—N1—C16—C1786.5 (2)
C1—N1—C8—O1165.71 (18)C18—O3—C17—O20.1 (3)
C16—N1—C8—O10.3 (3)C18—O3—C17—C16179.95 (18)
C1—N1—C8—C714.8 (3)N1—C16—C17—O21.2 (3)
C16—N1—C8—C7179.20 (16)N1—C16—C17—O3179.02 (16)
C9—C7—C8—O127.9 (3)C17—O3—C18—C19171.0 (2)
S1—C7—C8—O1149.91 (15)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1vii0.95 (3)2.56 (3)3.214 (2)126 (2)
C15—H15···O1ii0.95 (2)2.40 (2)3.227 (2)145.8 (15)
Symmetry codes: (ii) x+1, y+1, z+1; (vii) x+1, y+1/2, z+1/2.
Comparison of selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
Cl1—C111.741 (2)1.83593
S1—C61.755 (2)1.83362
S1—C71.757 (2)1.79349
O1—C81.224 (2)1.26839
O2—C171.200 (2)1.23993
O3—C171.335 (2)1.36867
O3—C181.462 (3)1.48321
N1—C81.381 (2)1.40044
N1—C11.417 (2)1.41683
N1—C161.452 (2)1.47008
C6—S1—C798.19 (9)99.41730
C17—O3—C18116.60 (16)116.97676
C8—N1—C1124.52 (15)125.49531
C8—N1—C16115.56 (16)115.02066
C1—N1—C16118.47 (16)118.38057
C2—C1—N1121.41 (17)121.23845
C2—C1—C6118.60 (18)117.94010
C6—C1—N1120.00 (17)120.81444
O1—C8—N1120.36 (17)120.12402
O1—C8—C7121.99 (17)120.12402
N1—C8—C7117.64 (16)117.79908
Calculated energies top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy, TE (eV)-50964
EHOMO (eV)-5.2696
ELUMO (eV)-0.9347
Gap, ΔE (eV)4.3346
Dipole moment, µ (Debye)5.6841
Ionisation potential, I (eV)5.2696
Electron affinity, A0.9347
Electronegativity, χ3.1019
Hardness, η2.1673
Electrophilicity index, ω2.2198
Softness, σ0.4614
Fraction of electron transferred, ΔN0.8993
Minimal inhibitory concentration [MIC (µg mL-1)] top
ATCC-25923 = Staphylococcus aureus, ATTC-25922 = Escherichia coli, ATCC-27853 = Pseudomonas aeruginosa, Chlor = chloramphenicol and Amp = ampicillin.
ProductATCC-25923ATTC-25922ATCC-27853
(I)212121
Chlor585858
Amp121212
DMSO000
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAlderman, D. & Smith, P. (2001). Aquaculture, 196, 211–243.  CrossRef CAS Google Scholar
First citationArmenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. Mol. Pharmacol. 50, 1178–1188.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). Sci. Study Res. 20, 563–574.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.  Web of Science CrossRef PubMed Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170870.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100–4106.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385.  CrossRef CAS Web of Science Google Scholar
First citationGupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156.  CrossRef CAS Web of Science Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationMabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036.  CrossRef Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMunirajasekar, D., Himaja, M. & Sunil, M. (2011). Int. Res. J. Pharm. 2, 114–117.  Google Scholar
First citationSabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o686.  CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016c). IUCrData, 1, x161823.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170695.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). IUCrData, 1, x160863.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170889.  Google Scholar
First citationSebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Mekhzoum, M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.  CSD CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW, University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245.  CrossRef CAS PubMed Google Scholar
First citationTrapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369–376.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationVidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593.  Web of Science CrossRef Google Scholar
First citationVijay, V. D. & Rahul, P. G. (2016). Arabian J. Chem. 9, S225–S229.  Google Scholar
First citationWarren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.  CrossRef CAS Web of Science Google Scholar
First citationZerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar
First citationZięba, A., Latocha, M., Sochanik, A., Nycz, A. & Kuśmierz, D. (2016). Molecules, 21, 1455.  Google Scholar
First citationZięba, A., Sochanik, A., Szurko, A., Rams, M., Mrozek, A. & Cmoch, P. (2010). Eur. J. Med. Chem. 45, 4733–4739.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds