research communications
H-perimidin-2-yl)-6-methoxyphenol
Hirshfeld surface analysis and interaction energy and DFT studies of 2-(2,3-dihydro-1aLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Faculté des Sciences, Universite Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique et de Substances Naturelles, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan, Côte d'Ivoire, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Thermodynamique et Physicochimie du Milieu, Université Nangui Abrogoua, UFR-SFA, 02 BP 801 Abidjan 02, Côte d'Ivoire, eLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët Boigny, 01 BP V34 Abidjan 01, Côte d'Ivoire, and fUFR des Sciences Biologiques, Université Péléforo Gon Coulibaly, BP 1328 Korhogo, Côte d'Ivoire
*Correspondence e-mail: daoudaballo526@gmail.com
The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H⋯π interactions may further stabilize the The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; perimidin; methoxyphenol; Hirshfeld surface.
CCDC reference: 1976883
1. Chemical context
Six-membered ; Koca et al., 2012; Zhao et al., 2012; Baranov & Fadeev, 2016; Lahmidi et al., 2018). Perimidine derivatives (perinaphtho-fused perimidine ring systems) in particular have aroused a lot of interest because of their applications in photophysics (Del Valle et al., 1997) and their use as colouring matters for polyester fibers (Claramunt et al., 1995) and as fluorescent materials (Varsha et al., 2010). These molecules have a wide range of biological applications (Dzieduszycka et al., 2002), indicating that the perimidine group is a potentially useful model in medicinal chemistry research and therapeutic applications. In coordination chemistry, perimidine derivatives have been studied for their interesting catalytic activities (Cucciolito et al., 2013a; Akıncı et al., 2014) as well as in the field of corrosion inhibition (He et al., 2018). As a continuation of our research on the development of new perimidine derivatives with potential pharmacological applications, we studied the condensation reaction of ortho-vanillin and 1,8-diaminonaphthalene in ether under agitation at room temperature, which gave the title compound, 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol, in good yield. We report herein the synthesis, the molecular and crystal structures along with Hirshfeld surface analysis and computational calculations of the title compound, (I).
carrying two nitrogen atoms have been widely studied (Aly & El-Shaieb, 20042. Structural commentary
The title compound, (I), consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring (Fig. 1). A puckering analysis of the non-planar six-membered C4N2, B (N1/N2/C1/C9–C11), ring gave the parameters q2 = 0.3879 (12) Å, q3 = −0.2565 (12) Å, QT = 0.4650 (13) Å, θ2 = 123.47 (15)° and φ2 = 235.98 (18)°]. The ring adopts an where atom C1 is at the flap position and at a distance of 0.6454 (12) Å from the best plane through the other five atoms. The C4N2 ring is hinged about the N⋯N vector with the N1—C1—N2 plane being inclined by 47.44 (7)° to the best plane of the other five atoms (N1/N2/C9–C11). In the methoxyphenol moiety, the C8—O2—C4—C5 and C8—O2—C4—C3 torsion angles are −2.9 (2)° and 176.72 (12)°, respectively. Rings A (C2–C7), C (C10–C15) and D (C9/C10/C15–C18) are oriented at dihedral angles of A/C = 65.39 (4)°, A/D = 69.63 (4)° and C/D = 4.31 (3)°.
3. Supramolecular features
In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds (Table 1) link the molecules into infinite chains along the b-axis direction (Fig. 2). The C—H⋯π interactions (Table 1) may further stabilize the crystal structure.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spot appearing near O1 indicates its role as the respective donor and/or acceptor; it also appears as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there are no π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and O⋯C/C⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 6 b-g, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 49.0% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen-atom content of the molecule with the tip at de = di = 1.20 Å. In the presence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot, Fig. 6c, delineated into H⋯C/C⋯H contacts (Table 2; 35.8% contribution to the HS) have the tips at de + di = 2.68 Å. The pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (12.0% contribution, Fig. 6d) have a symmetrical distribution of points with the tips at de + di = 3.03 Å. The H⋯N/N⋯H contacts (Fig. 6e, 1.8% contribution) have a distribution of points with the tips at de + di = 2.72 Å. The C⋯C contacts (0.8%, Fig. 6f) have the tip at de = di = 3.37 Å. Finally, the O⋯C/C⋯O interactions make only a 0.5% contribution to the overall crystal packing.
|
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 7a–c, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated as −37.5 (Eele), −7.8 (Epol), −52.0 (Edis), 52.4 (Erep) and −58.4 (Etot) [or O1—H1O⋯N2 and −11.3 (Eele), −3.4 (Epol), −48.4 (Edis), 30.0 (Erep) and −38.0 (Etot) for N2—H2N⋯O1.
6. DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, (χ), hardness (η), potential (μ), (ω) and softness (σ) are recorded in Table 4. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending from the whole 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is about 2.6162 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −3.1985 and −0.5823 eV, respectively.
|
|
7. Database survey
Similar compounds of the perimidine derivative have also been reported (Ghorbani, 2012; Fun et al., 2011; Maloney et al., 2013; Cucciolito et al., 2013b; Manimekalai et al., 2014), in which the groups at position 2 are almost coplanar with the perimidic nucleus (Ghorbani, 2012; Fun et al., 2011; Cucciolito et al., 2013b). The closest examples to the title compound, (I), are (II) (Cucciolito et al., 2013b) and (III) (Fun et al., 2011), while (IV) (Ghorbani, 2012), (V) (Maloney et al., 2013) and (VI) (Manimekalai et al., 2014) are more distant relatives.
8. Synthesis and crystallization
The title compound, (I), was synthesized from the condensation of ortho-vanillin (3 mmol) and 1,8- diaminonaphthalene (4 mmol) in ether (30 ml) under agitation at room temperature. Brown single crystals were obtained by the slow evaporation of the acetone solvent after 15 days (yield: 75%).
9. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms and H14C, H15A and H15B of the allyl moiety), 0.98 Å (for methine H atom) and 0.97 Å (for methylene H atoms), and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was placed in a calculated position with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) while H atoms bonded to N atoms were refined independently with Uiso(H) = 1.2Ueq(N)
details are summarized in Table 5
|
Supporting information
CCDC reference: 1976883
https://doi.org/10.1107/S2056989020004284/lh5952sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020004284/lh5952Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020004284/lh5952Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020004284/lh5952Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b).C18H16N2O2 | Dx = 1.341 Mg m−3 |
Mr = 292.33 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 6789 reflections |
a = 12.7245 (7) Å | θ = 3.2–28.1° |
b = 9.5887 (6) Å | µ = 0.09 mm−1 |
c = 23.7276 (14) Å | T = 293 K |
V = 2895.0 (3) Å3 | Elongated platelet, brown |
Z = 8 | 0.52 × 0.10 × 0.04 mm |
F(000) = 1232 |
Rigaku XtaLAB PRO diffractometer | 3499 independent reflections |
Radiation source: micro-focus sealed X-ray tube, Rigaku micromax 003 | 2640 reflections with I > 2σ(I) |
Rigaku Integrated Confocal MaxFlux double bounce multi-layer mirror optics monochromator | Rint = 0.036 |
Detector resolution: 5.811 pixels mm-1 | θmax = 29.0°, θmin = 2.4° |
ω scans | h = −16→14 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −12→13 |
Tmin = 0.390, Tmax = 1.000 | l = −30→30 |
16885 measured reflections |
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: mixed |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0609P)2 + 0.4131P] where P = (Fo2 + 2Fc2)/3 |
3496 reflections | (Δ/σ)max = 0.001 |
207 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.73352 (7) | 0.23966 (10) | 0.63178 (4) | 0.0437 (2) | |
H1O | 0.731483 | 0.294081 | 0.658419 | 0.066* | |
N1 | 0.52935 (9) | 0.35194 (11) | 0.70590 (5) | 0.0395 (3) | |
H1N | 0.4730 (12) | 0.3089 (15) | 0.6946 (6) | 0.047* | |
C1 | 0.57436 (10) | 0.44289 (13) | 0.66329 (5) | 0.0373 (3) | |
H1 | 0.532216 | 0.528041 | 0.659972 | 0.045* | |
O2 | 0.72915 (8) | 0.09678 (11) | 0.53981 (4) | 0.0519 (3) | |
N2 | 0.68133 (8) | 0.47793 (11) | 0.68254 (4) | 0.0379 (3) | |
H2N | 0.7113 (11) | 0.5331 (16) | 0.6587 (6) | 0.045* | |
C2 | 0.57650 (10) | 0.36729 (13) | 0.60760 (5) | 0.0363 (3) | |
C3 | 0.65312 (9) | 0.26779 (12) | 0.59586 (5) | 0.0346 (3) | |
C4 | 0.64940 (10) | 0.19120 (13) | 0.54596 (5) | 0.0383 (3) | |
C5 | 0.56894 (11) | 0.21405 (14) | 0.50790 (6) | 0.0449 (3) | |
H5 | 0.566134 | 0.163263 | 0.474546 | 0.054* | |
C6 | 0.49246 (11) | 0.31282 (15) | 0.51959 (6) | 0.0500 (4) | |
H6 | 0.438253 | 0.327981 | 0.494027 | 0.060* | |
C9 | 0.52580 (9) | 0.40296 (12) | 0.76054 (5) | 0.0346 (3) | |
C7 | 0.49623 (11) | 0.38823 (14) | 0.56858 (6) | 0.0458 (3) | |
H7 | 0.444503 | 0.454306 | 0.575894 | 0.055* | |
C8 | 0.72720 (13) | 0.01056 (17) | 0.49174 (7) | 0.0603 (4) | |
H8A | 0.788077 | −0.048578 | 0.491698 | 0.090* | |
H8B | 0.727304 | 0.067394 | 0.458433 | 0.090* | |
H8C | 0.664899 | −0.045880 | 0.492341 | 0.090* | |
C10 | 0.60767 (9) | 0.49588 (12) | 0.77664 (5) | 0.0335 (3) | |
C11 | 0.68804 (9) | 0.53139 (12) | 0.73789 (5) | 0.0347 (3) | |
C12 | 0.77148 (11) | 0.61181 (14) | 0.75512 (6) | 0.0441 (3) | |
H12 | 0.825905 | 0.631841 | 0.730241 | 0.053* | |
C13 | 0.77415 (12) | 0.66349 (15) | 0.81036 (6) | 0.0506 (4) | |
H13 | 0.830410 | 0.718819 | 0.821577 | 0.061* | |
C14 | 0.69668 (12) | 0.63475 (14) | 0.84781 (6) | 0.0479 (3) | |
H14 | 0.699244 | 0.673103 | 0.883784 | 0.057* | |
C15 | 0.61190 (10) | 0.54681 (13) | 0.83261 (5) | 0.0384 (3) | |
C16 | 0.53296 (10) | 0.50546 (15) | 0.87065 (6) | 0.0451 (3) | |
H16 | 0.532878 | 0.540825 | 0.907150 | 0.054* | |
C17 | 0.45685 (11) | 0.41435 (16) | 0.85456 (6) | 0.0498 (4) | |
H17 | 0.406633 | 0.386074 | 0.880644 | 0.060* | |
C18 | 0.45257 (10) | 0.36232 (15) | 0.79961 (6) | 0.0445 (3) | |
H18 | 0.399877 | 0.299926 | 0.789503 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0417 (5) | 0.0466 (5) | 0.0427 (5) | 0.0082 (4) | −0.0125 (4) | −0.0068 (4) |
N1 | 0.0352 (6) | 0.0420 (6) | 0.0412 (6) | −0.0088 (5) | 0.0001 (4) | −0.0046 (5) |
C1 | 0.0358 (7) | 0.0346 (6) | 0.0416 (7) | 0.0020 (5) | −0.0025 (5) | 0.0001 (5) |
O2 | 0.0499 (6) | 0.0560 (6) | 0.0499 (6) | 0.0108 (5) | −0.0044 (4) | −0.0146 (5) |
N2 | 0.0378 (6) | 0.0389 (6) | 0.0370 (6) | −0.0084 (5) | 0.0024 (4) | 0.0003 (4) |
C2 | 0.0382 (6) | 0.0346 (6) | 0.0361 (6) | −0.0014 (5) | −0.0029 (5) | 0.0039 (5) |
C3 | 0.0336 (6) | 0.0356 (6) | 0.0347 (6) | −0.0029 (5) | −0.0035 (5) | 0.0048 (5) |
C4 | 0.0380 (7) | 0.0381 (6) | 0.0387 (7) | −0.0015 (5) | 0.0007 (5) | 0.0012 (5) |
C5 | 0.0510 (8) | 0.0482 (8) | 0.0354 (7) | −0.0046 (6) | −0.0051 (6) | −0.0013 (6) |
C6 | 0.0500 (8) | 0.0550 (8) | 0.0451 (8) | 0.0023 (7) | −0.0163 (6) | 0.0049 (7) |
C9 | 0.0309 (6) | 0.0339 (6) | 0.0389 (7) | 0.0033 (5) | −0.0009 (5) | 0.0000 (5) |
C7 | 0.0439 (7) | 0.0458 (7) | 0.0476 (8) | 0.0072 (6) | −0.0095 (6) | 0.0021 (6) |
C8 | 0.0658 (10) | 0.0599 (10) | 0.0551 (9) | 0.0081 (8) | 0.0010 (7) | −0.0165 (8) |
C10 | 0.0336 (6) | 0.0298 (6) | 0.0372 (6) | 0.0032 (5) | −0.0017 (5) | 0.0027 (5) |
C11 | 0.0371 (6) | 0.0300 (6) | 0.0371 (6) | −0.0005 (5) | −0.0010 (5) | 0.0020 (5) |
C12 | 0.0431 (7) | 0.0437 (7) | 0.0454 (7) | −0.0106 (6) | −0.0011 (6) | 0.0032 (6) |
C13 | 0.0550 (9) | 0.0468 (8) | 0.0499 (8) | −0.0182 (7) | −0.0099 (6) | 0.0010 (7) |
C14 | 0.0599 (9) | 0.0446 (7) | 0.0392 (7) | −0.0069 (7) | −0.0064 (6) | −0.0033 (6) |
C15 | 0.0414 (7) | 0.0355 (6) | 0.0384 (7) | 0.0047 (5) | −0.0030 (5) | 0.0016 (5) |
C16 | 0.0445 (7) | 0.0547 (8) | 0.0362 (7) | 0.0053 (6) | 0.0017 (5) | −0.0019 (6) |
C17 | 0.0380 (7) | 0.0662 (9) | 0.0452 (8) | 0.0001 (7) | 0.0079 (6) | 0.0039 (7) |
C18 | 0.0328 (7) | 0.0502 (8) | 0.0504 (8) | −0.0046 (6) | 0.0027 (6) | −0.0005 (6) |
O1—C3 | 1.3587 (14) | C9—C10 | 1.4230 (17) |
O1—H1O | 0.8200 | C7—H7 | 0.9300 |
N1—C9 | 1.3865 (16) | C8—H8A | 0.9600 |
N1—C1 | 1.4529 (17) | C8—H8B | 0.9600 |
N1—H1N | 0.870 (15) | C8—H8C | 0.9600 |
C1—N2 | 1.4745 (16) | C10—C15 | 1.4161 (17) |
C1—C2 | 1.5074 (17) | C10—C11 | 1.4168 (16) |
C1—H1 | 0.9800 | C11—C12 | 1.3744 (18) |
O2—C4 | 1.3677 (15) | C12—C13 | 1.4017 (19) |
O2—C8 | 1.4088 (17) | C12—H12 | 0.9300 |
N2—C11 | 1.4124 (16) | C13—C14 | 1.355 (2) |
N2—H2N | 0.864 (15) | C13—H13 | 0.9300 |
C2—C3 | 1.3922 (17) | C14—C15 | 1.4160 (19) |
C2—C7 | 1.3930 (17) | C14—H14 | 0.9300 |
C3—C4 | 1.3942 (17) | C15—C16 | 1.4074 (18) |
C4—C5 | 1.3826 (18) | C16—C17 | 1.359 (2) |
C5—C6 | 1.386 (2) | C16—H16 | 0.9300 |
C5—H5 | 0.9300 | C17—C18 | 1.397 (2) |
C6—C7 | 1.370 (2) | C17—H17 | 0.9300 |
C6—H6 | 0.9300 | C18—H18 | 0.9300 |
C9—C18 | 1.3710 (17) | ||
O1···O2 | 2.5772 (14) | C5···H8Ai | 2.94 |
O1···N2 | 2.6668 (14) | C5···H8B | 2.72 |
C12···O1i | 3.1736 (17) | C5···H8C | 2.80 |
C17···O1ii | 3.3145 (17) | C8···H5 | 2.55 |
C11···O1i | 3.3650 (15) | H13···C9i | 2.93 |
N2···O1i | 2.9867 (14) | H13···C10i | 2.97 |
H2N···O1i | 2.196 (15) | C10···H1 | 2.95 |
H18···O1ii | 2.88 | C12···H1Oi | 2.88 |
H12···O1i | 2.66 | H1···H7 | 2.39 |
H17···O1ii | 2.63 | H1N···H18 | 2.44 |
O2···H6iii | 2.87 | H1O···H2N | 2.31 |
N1···H1O | 2.86 | H17···H1Oii | 2.57 |
H12···N1i | 2.86 | H18···H1Oii | 2.47 |
N2···H1O | 1.96 | H2N···H12 | 2.43 |
C18···C12ii | 3.567 (2) | H5···H8B | 2.28 |
C1···H1O | 2.46 | H5···H8C | 2.40 |
C4···H8Ai | 2.92 | H14···H16 | 2.53 |
C3—O1—H1O | 109.5 | C2—C7—H7 | 119.5 |
C9—N1—C1 | 116.86 (10) | O2—C8—H8A | 109.5 |
C9—N1—H1N | 115.4 (10) | O2—C8—H8B | 109.5 |
C1—N1—H1N | 113.3 (10) | H8A—C8—H8B | 109.5 |
N1—C1—N2 | 106.56 (10) | O2—C8—H8C | 109.5 |
N1—C1—C2 | 109.17 (10) | H8A—C8—H8C | 109.5 |
N2—C1—C2 | 111.38 (10) | H8B—C8—H8C | 109.5 |
N1—C1—H1 | 109.9 | C15—C10—C11 | 119.89 (11) |
N2—C1—H1 | 109.9 | C15—C10—C9 | 119.70 (11) |
C2—C1—H1 | 109.9 | C11—C10—C9 | 120.31 (11) |
C4—O2—C8 | 117.50 (11) | C12—C11—N2 | 121.79 (11) |
C11—N2—C1 | 115.25 (10) | C12—C11—C10 | 119.96 (11) |
C11—N2—H2N | 111.1 (10) | N2—C11—C10 | 118.20 (10) |
C1—N2—H2N | 110.1 (10) | C11—C12—C13 | 119.68 (12) |
C3—C2—C7 | 118.64 (12) | C11—C12—H12 | 120.2 |
C3—C2—C1 | 121.17 (11) | C13—C12—H12 | 120.2 |
C7—C2—C1 | 120.00 (11) | C14—C13—C12 | 121.57 (13) |
O1—C3—C2 | 122.54 (11) | C14—C13—H13 | 119.2 |
O1—C3—C4 | 116.99 (11) | C12—C13—H13 | 119.2 |
C2—C3—C4 | 120.47 (11) | C13—C14—C15 | 120.54 (12) |
O2—C4—C5 | 125.78 (12) | C13—C14—H14 | 119.7 |
O2—C4—C3 | 114.47 (11) | C15—C14—H14 | 119.7 |
C5—C4—C3 | 119.75 (12) | C16—C15—C14 | 123.25 (12) |
C4—C5—C6 | 119.84 (12) | C16—C15—C10 | 118.50 (12) |
C4—C5—H5 | 120.1 | C14—C15—C10 | 118.24 (12) |
C6—C5—H5 | 120.1 | C17—C16—C15 | 120.63 (13) |
C7—C6—C5 | 120.39 (12) | C17—C16—H16 | 119.7 |
C7—C6—H6 | 119.8 | C15—C16—H16 | 119.7 |
C5—C6—H6 | 119.8 | C16—C17—C18 | 121.31 (13) |
C18—C9—N1 | 123.65 (12) | C16—C17—H17 | 119.3 |
C18—C9—C10 | 119.61 (12) | C18—C17—H17 | 119.3 |
N1—C9—C10 | 116.62 (11) | C9—C18—C17 | 120.20 (13) |
C6—C7—C2 | 120.90 (13) | C9—C18—H18 | 119.9 |
C6—C7—H7 | 119.5 | C17—C18—H18 | 119.9 |
C9—N1—C1—N2 | 56.76 (13) | C18—C9—C10—C15 | −0.81 (17) |
C9—N1—C1—C2 | 177.15 (10) | N1—C9—C10—C15 | −176.97 (10) |
N1—C1—N2—C11 | −52.57 (13) | C18—C9—C10—C11 | 175.67 (11) |
C2—C1—N2—C11 | −171.54 (10) | N1—C9—C10—C11 | −0.50 (16) |
N1—C1—C2—C3 | −78.14 (14) | C1—N2—C11—C12 | −157.13 (12) |
N2—C1—C2—C3 | 39.26 (16) | C1—N2—C11—C10 | 25.13 (15) |
N1—C1—C2—C7 | 96.72 (13) | C15—C10—C11—C12 | 1.88 (17) |
N2—C1—C2—C7 | −145.88 (12) | C9—C10—C11—C12 | −174.59 (11) |
C7—C2—C3—O1 | −179.32 (11) | C15—C10—C11—N2 | 179.66 (10) |
C1—C2—C3—O1 | −4.39 (18) | C9—C10—C11—N2 | 3.19 (17) |
C7—C2—C3—C4 | 0.17 (18) | N2—C11—C12—C13 | 179.45 (12) |
C1—C2—C3—C4 | 175.10 (11) | C10—C11—C12—C13 | −2.86 (19) |
C8—O2—C4—C5 | −2.9 (2) | C11—C12—C13—C14 | 0.8 (2) |
C8—O2—C4—C3 | 176.72 (12) | C12—C13—C14—C15 | 2.2 (2) |
O1—C3—C4—O2 | −0.28 (16) | C13—C14—C15—C16 | 175.57 (13) |
C2—C3—C4—O2 | −179.80 (11) | C13—C14—C15—C10 | −3.1 (2) |
O1—C3—C4—C5 | 179.39 (12) | C11—C10—C15—C16 | −177.68 (11) |
C2—C3—C4—C5 | −0.13 (18) | C9—C10—C15—C16 | −1.19 (17) |
O2—C4—C5—C6 | 179.60 (12) | C11—C10—C15—C14 | 1.09 (17) |
C3—C4—C5—C6 | 0.0 (2) | C9—C10—C15—C14 | 177.58 (11) |
C4—C5—C6—C7 | 0.2 (2) | C14—C15—C16—C17 | −176.13 (13) |
C1—N1—C9—C18 | 152.51 (12) | C10—C15—C16—C17 | 2.57 (19) |
C1—N1—C9—C10 | −31.50 (15) | C15—C16—C17—C18 | −2.0 (2) |
C5—C6—C7—C2 | −0.1 (2) | N1—C9—C18—C17 | 177.36 (12) |
C3—C2—C7—C6 | −0.1 (2) | C10—C9—C18—C17 | 1.5 (2) |
C1—C2—C7—C6 | −175.04 (13) | C16—C17—C18—C9 | −0.1 (2) |
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x−1/2, y, −z+3/2; (iii) x+1/2, −y+1/2, −z+1. |
Cg1 and Cg4 are the centroids of rings A (C2–C7) and D (C9/C10/C15–C18), respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N2 | 0.82 | 1.96 | 2.6667 (14) | 144 |
N2—H2N···O1i | 0.864 (15) | 2.196 (15) | 2.9870 (14) | 152.2 (13) |
C8—H8A···Cg1iv | 0.96 | 2.82 | 3.6580 (17) | 146 |
C13—H13···Cg4i | 0.93 | 2.87 | 3.7336 (16) | 155 |
C16—H16···Cg1v | 0.93 | 2.87 | 3.4880 (15) | 125 |
Symmetry codes: (i) −x+3/2, y+1/2, z; (iv) x, −y−1/2, z−1/2; (v) x+1/2, −y−1/2, −z. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
O1—C3 | 1.3587 (14) | 1.38948 |
O1—H1O | 0.82 | 0.97611 |
N1—C9 | 1.3865 (16) | 1.39921 |
N1—C1 | 1.4529 (17) | 1.47118 |
N1—H1N | 0.870 (15) | 0.90721 |
C1—N2 | 1.4745 (16) | 1.47531 |
C1—C2 | 1.5074 (17) | 1.51309 |
O2—C4 | 1.3677 (15) | 1.40231 |
O2—C8 | 1.4088 (17) | 1.45201 |
N2—C11 | 1.4124 (16) | 1.39016 |
N2—H2N | 0.864 (15) | 0.90717 |
C3—O1—H1O | 109.5 | 109.04 |
C9—N1—C1 | 116.86 (10) | 117.19 |
C9—N1—H1N | 115.4 (10) | 116.29 |
C1—N1—H1N | 113.3 (10) | 114.01 |
N1—C1—N2 | 106.56 (10) | 106.87 |
N1—C1—C2 | 109.17 (10) | 110.78 |
N2—C1—C2 | 111.38 (10) | 110.82 |
N1—C1—H1 | 109.9 | 110.12 |
N2—C1—H1 | 109.9 | 109.09 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy TE (eV) | -26013 |
EHOMO (eV) | -3.1985 |
ELUMO (eV) | -0.5823 |
Gap, ΔE (eV) | 2.6162 |
Dipole moment, µ (Debye) | 7.0880 |
Ionisation potential, I (eV) | 3.1985 |
Electron affinity, A | 0.5823 |
Electronegativity, χ | 1.8904 |
Hardness, η | 1.3081 |
Electrophilicity index, ω | 1.3660 |
Softness, σ | 0.7645 |
Fraction of electrons transferred, ΔN | 1.9530 |
Funding information
TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Akıncı, P. A., Gülcemal, S., Kazheva, O. N., Alexandrov, G. G., Dyachenko, O. A., Çetinkaya, E. & Çetinkaya, B. (2014). J. Organomet. Chem. 765, 23–30. Google Scholar
Aly, A. A. & El-Shaieb, K. M. (2004). Tetrahedron, 60, 3797–3802. Web of Science CrossRef CAS Google Scholar
Baranov, D. S. & Fadeev, D. S. (2016). Mendeleev Commun. 26, 174–176. Web of Science CrossRef CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Claramunt, R. M., Dotor, J. & Elguero, J. (1995). Ann. Quim. 91, 151–183. CAS Google Scholar
Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013a). Tetrahedron Lett. 54, 1503–1506. Google Scholar
Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013b). Acta Cryst. E69, o1133–o1134. CSD CrossRef IUCr Journals Google Scholar
Del Valle, J. C., Catalán, J., Foces-Foces, C., Llamas-Saiz, A. L., Elguero, J., Sanz, D., Dotor, J. & Claramunt, R. M. (1997). J. Lumin. 75, 17–26. CrossRef CAS Web of Science Google Scholar
Dzieduszycka, M., Martelli, S., Arciemiuk, M., Bontemps-Gracz, M. M., Kupiec, A. & Borowski, E. (2002). Bioorg. Med. Chem. 10, 1025–1035. Web of Science CrossRef PubMed CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US Google Scholar
Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o715–o716. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ghorbani, M. H. (2012). Acta Cryst. E68, o2605. CSD CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
He, X., Mao, J., Ma, Q. & Tang, Y. (2018). J. Mol. Liq. 269, 260–268. Web of Science CrossRef CAS Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Koca, I., ngren, H., Kýbrýz, E. & Yýlmaz, F. (2012). Dyes Pigments, 95, 421–426. Web of Science CSD CrossRef CAS Google Scholar
Lahmidi, S., Sebbar, N. K., Hökelek, T., Chkirate, K., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1833–1837. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Maloney, S., Slawin, A. M. Z. & Woollins, J. D. (2013). Acta Cryst. E69, o246. CSD CrossRef IUCr Journals Google Scholar
Manimekalai, A., Vijayalakshmi, N. & Selvanayagam, S. (2014). Acta Cryst. E70, o959. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Varsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. M. M. (2010). Tetrahedron Lett. 51, 2174–2177. Web of Science CSD CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Zhao, J.-F., Liu, Y., Soh, J. B., Li, Y.-X., Ganguly, R., Ye, K.-Q., Huo, F., Huang, L., Tok, A. L. Y., Loo, J. S. C. & Zhang, Q. (2012). Tetrahedron Lett. 53, 6044–6047. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.