research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Hydrogen-bonding patterns in 2,2-bis­­(4-methyl­phen­yl)hexa­fluoro­propane pyridinium and ethyl­enedi­ammonium salt crystals

CROSSMARK_Color_square_no_text.svg

aResearch and Education Center for Natural Sciences, Keio University, Hiyoshi, 4-1-1, Kohoku, Yokohama, Japan
*Correspondence e-mail: sugiyama.h.ad@keio.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 7 April 2020; accepted 21 April 2020; online 24 April 2020)

The crystal structures of two salt crystals of 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane (Bmphfp) with amines, namely, dipyridinium 4,4′-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)dibenzoate 4,4′-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)di­benzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethyl­enedi­ammonium salt ethane-1,2-diaminium 4,4′-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z′ = 2 and in space group Pbca with Z′ = 1. The crystals of compound 1 contain neutral and anionic Bmphfp mol­ecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp mol­ecules, which form a complex three-dimensional hydrogen-bonded network with the ethyl­enedi­amine and water mol­ecules.

1. Chemical context

In recent years, porous organic frameworks have been researched extensively because of their structural versatility and potential applications in gas storage and separation and as catalysts and chemical sensors (He et al., 2011[He, Y., Xiang, S. & Chen, B. (2011). Chen J. Am. Chem. Soc. 133, 14570-14573.]). Hydrogen-bonded organic frameworks (HOFs), which are constructed via inter­molecular hydrogen bonds, are being actively investigated for such applications (Hisaki et al., 2018[Hisaki, I., Suzuki, Y., Gomez, E., Cohen, B., Tohnai, N. & Douhal, A. (2018). Angew. Chem. Int. Ed. 57, 12650-12655.]). HOFs are basically flexible to allow solution-based fabrication/reassembly and dynamic structural conversion as compared to covalent organic frameworks (COFs) (Miyano et al., 2016[Miyano, T., Okada, N., Nishida, R., Yamamoto, A., Hisaki, I. & Tohnai, N. (2016). Chem. Eur. J. 22, 15430-15436.]). Several multiple-carb­oxy­lic acids are reported to create HOFs via carb­oxy­lic dimers (Bassanetti et al., 2016[Bassanetti, I., Bracco, S., Comotti, A., Negroni, M., Bezuidenhout, C., Canossa, S., Mazzeo, P. P., Marchió, L. & Sozzani, P. (2016). J. Mater. Chem. A, 6, 14231-14239.]; Hisaki, 2020[Hisaki, I. (2020). J. Inclusion Phenom. Macrocyclic Chem. 96, 215-231.]). 2,2-Bis(4-methyl­phen­yl)hexa­fluoro­propane (Bmphfp) is a V-shaped di-carb­oxy­lic acid forming a one-dimensional hydrogen-bonded chain in the crystal structure (Tang et al., 2010[Tang, L., Wu, Y.-P., Fu, F., Zhang, Z.-L. & Zheng, D. (2010). Acta Cryst. E66, o1390.]). The HOFs based on carb­oxy­lic acids can be modified or rebuilt by salt formation with various organic bases (Galcera et al., 2012[Galcera, J., Friščić, T., Hejczyk, K. E., Fábián, L., Clarke, S. M., Day, G. M., Molins, E. & Jones, W. (2012). CrystEngComm, 14, 7898-7906.]).

[Scheme 1]

The crystal structures of Bmphfp pyridinium (1) and ethyl­enedi­ammonium (2) salts are reported herein with a focus on the differences in the hydrogen-bonding patterns.

2. Structural commentary

Compound 1 crystallizes in the monoclinic space group P21/c with two Bmphfp mol­ecules and two pyridinium cations in the asymmetric unit (Fig. 1[link]a). Inter­estingly, one of the two Bmphfp mol­ecules is neutral and the other is anionic. The C—O bond lengths of the carb­oxy groups are summarized in Table 1[link], which suggests that mol­ecules A and B are in the neutral and divalent anionic forms, respectively. The two benzene rings are twisted with respect to each other, forming dihedral angles of 72.19 (6) and 69.98 (6)°. On the other hand, compound 2 crystallizes in the ortho­rhom­bic space group Pbcn. The asymmetric unit comprises one Bmphfp anion, one ethyl­enedi­ammonium cation and one water mol­ecule (Fig. 1[link]b). The C—O bond lengths shown in Table 1[link] confirm that the Bmphfp mol­ecule is in the divalent anionic form. The benzene rings are twisted with a dihedral angle of 64.47 (6)°. The N—C—C—N torsion angle in the ethyl­enedi­ammonium cation is 72.72 (14)°.

Table 1
Bond lengths (Å) in the carboxyl groups of compounds 1 and 2

  Bond length bond length
Compound 1 C2—O2 1.215 (2) C2—O3 1.321 (2)
mol­ecule A C25—O26 1.217 (2) C25—O27 1.307 (2)
Compound 1 C29—O28 1.260 (2) C29—O30 1.260 (2)
mol­ecule B C54—O53 1.251 (2) C54—O55 1.268 (2)
Compound 2 C2—O1 1.252 (2) C2—O3 1.265 (2)
  C25—O26 1.258 (2) C25—O27 1.261 (2)
[Figure 1]
Figure 1
Mol­ecular structures of (a) compound 1, and (b) compound 2. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of compound 1, the pyridine mol­ecules form strong N—H⋯O hydrogen bonds with the carboxyl groups of Bmphfp mol­ecule B (Table 2[link], Fig. 2[link]a). The neutral (A) and anionic (B) Bmphfp mol­ecules form a one-dimensional hydrogen-bonded chain motif along the a-axis direction (Fig. 2[link]b). The lengths of the negative charge-assisted O—H⋯O hydrogen bonds, 2.5732 (13) and 2.5125 (13) Å, are shorter than in the common carboxyl dimer [2.643 Å; the mean value calculated from 505 research hits in the Cambridge Structural Database (CSD version 5.41, November 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])]. Fig. 2[link]c shows the crystal packing of compound 1. The pyridine mol­ecules are located between the hydrogen-bonded chains of Bmphfp mol­ecules. There are weak C—H⋯F and F⋯F inter­actions between the Bmphfp and pyridine mol­ecules or between Bmphfp mol­ecules. The shortest inter­atomic distances are 3.159 (1) Å (C⋯F) and 2.696 (1) Å (F⋯F), respectively.

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O55i 0.84 1.75 2.5732 (13) 164
O27—H27⋯O28 0.84 1.68 2.5125 (13) 172
N56—H56⋯O30 0.88 1.79 2.6488 (15) 165
N62—H62⋯O53 0.88 1.67 2.5472 (15) 177
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
Crystal structure of compound 1. (a) Hydrogen bonds between the Bmphfp and pyridine mol­ecules. (b) hydrogen-bonded chain of Bmphfp mol­ecules. (c) Mol­ecular packing along the b-axis direction.

In the crystal of compound 2, one carb­oxy­lic group of the Bmphfp mol­ecule is linked to an ethyl­enedi­ammonium cation by two N—H⋯O hydrogen bonds. The N⋯O inter­atomic distances are 2.7749 (14) and 2.8015 (14) Å, respectively (Table 3[link]). The other carb­oxy­lic group forms N—H⋯O hydrogen bonds with three surrounding ethyl­enedi­ammonium cations (Fig. 3[link]a). Therefore, five of the six hydrogen-atom donors of the ethyl­enedi­ammonium cations are connected to Bmphfp mol­ecules, resulting in a complex three-dimensional hydrogen-bonding network. The water mol­ecule is linked to both Bmphfp and ethyl­enedi­amine mol­ecules via two O—H⋯O and one N—H⋯O hydrogen bonds. Thus, the water mol­ecules are highly stabilized by these inter­molecular inter­actions in the crystal structure (Fig. 3[link]b). Weak C—H⋯F and F⋯F inter­actions are observed between Bmphfp mol­ecules, resulting inter­atomic distances of 3.493 (1) Å (C⋯F) and 2.890 (1) Å (F⋯F), respectively. In compound 2, the Bmphfp mol­ecules do not form a discrete 1-D hydrogen bond chain motif as observed in compound 1 because the one carboxyl group is terminated by an ethyl­enedi­amine mol­ecule.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O32—H32A⋯O27i 0.85 1.92 2.7656 (14) 175
O32—H32B⋯O26ii 0.85 1.93 2.7731 (13) 170
N28—H28A⋯O1iii 0.91 1.87 2.7749 (14) 171
N28—H28B⋯O27 0.91 1.87 2.7609 (14) 165
N28—H28C⋯O3iv 0.91 2.00 2.8015 (14) 146
N31—H31A⋯O26 0.91 1.82 2.6933 (14) 160
N31—H31B⋯O32 0.91 1.91 2.7288 (14) 149
N31—H31C⋯O3v 0.91 1.91 2.7220 (14) 148
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+2, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal structure of compound 2. (a) Hydrogen bonds between Bmphfp, ethyl­enedi­amine, and water mol­ecules. (b) Hydrogen bonds between Bmphfp and ethyl­enedi­amine mol­ecules.

4. Hirshfeld surface analysis

Hirshfeld surfaces (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and their associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The dnorm surface of the Bmphfp mol­ecules in compounds 1 and 2 are shown in Fig. 4[link]ac. The red colour highlights the surface areas where there are strong inter­actions such as O—H⋯O hydrogen bonds. In compound 1, there are two independent Bmphfp mol­ecules, A and B. There is no significant difference in the contact contributions of each of the mol­ecules (Tables 4[link] and 5[link]). However, in the fingerprint plots, mol­ecule B has no contribution from contacts with a long inter­atomic distance (highlighted by the red circle in Fig. 4[link]a) compared to mol­ecule A. Thus, mol­ecule B is more closely packed with the surrounding mol­ecules in the crystal than mol­ecule A. This may be due to the difference in the ionic state between neutral mol­ecule A and anionic mol­ecule B. Compound 1 (mol­ecule A and B) has strong hydrogen-bonding inter­actions, with similar but slightly weaker inter­actions for compound 2. The contributions to the Hirshfeld surface for 2 are listed in Table 6[link].

Table 4
Percentage contributions to the Hirshfeld surface of the Bmphfp mol­ecule A in compound 1

OutsideInside F O H N O Total
C 3.5 0.5 7.9 0.4 1.3 13.6
F 6.0 0.7 16.5   3.6 26.9
H 12.0 8.2 18.7 0.3 2.5 41.8
O 0.3 0.8 14.8 0.5 1.3 17.7
Total 21.9 10.3 57.8 1.3 8.8  

Table 5
Percentage contributions to the Hirshfeld surface of the Bmphfp mol­ecule B in compound 1

OutsideInside F O H N O Total
C 4.9 0.1 5.0 0.9 3.9 14.9
F 6.1   17.1   3.4 26.3
H 12.0 2.3 17.1 0.2 3.5 35.0
O 0.6 0.7 21.4 0.1 0.7 23.6
Total 23.5 3.2 60.7 1.2 11.4  

Table 6
Percentage contributions to the Hirshfeld surface of the Bmphfp mol­ecule in compound 2

OutsideInside F O H O Total
C 2.9 0.7 10.5 0 14.2
F ?6.9 0.6 16.9 2.5 27.0
H 11.7 2.3 17.6 2.5 34.1
O 0.2 0.6 23.6 0.3 24.7
Total ?21.8 4.3 68.6 5.3  
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm of (a) Bmphfp mol­ecule A and (b) Bmphfp mol­ecule B in compound 1, and (c) the Bmphfp mol­ecule in compound 2. Two-dimensional fingerprint plots of these Bmphfp mol­ecules are shown in (d)–(f), respectively.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, November 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for crystal structures with 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane gave 244 hits. Two polymorphs of Bmphfp, TUPNOI (Tang et al., 2010[Tang, L., Wu, Y.-P., Fu, F., Zhang, Z.-L. & Zheng, D. (2010). Acta Cryst. E66, o1390.]) and TUPNOI01 (Pachfule et al., 2010[Pachfule, P., Dey, C., Panda, T., Vanka, K. & Banerjee, R. (2010). Cryst. Growth Des. 10, 1351-1363.]), have been reported. In both crystal structures, the Bmphfp mol­ecules form similar one-dimensional hydrogen-bonding motifs via carb­oxy­lic dimers. However, there is only one structure of a Bmphfp organic salt with 1,4-bis­(2-pyridyl­amino­meth­yl)benzene (EFOLIW; Tripuramallu, 2014[Tripuramallu, B. K. (2014). J. Mol. Struct. 1071, 79-87.]). Other results are inorganic salts or metal complex salts (WAQTUF; Platero-Prats et al., 2012[Platero-Prats, A. E., de la Peña-O'Shea, V. A., Proserpio, D. M., Snejko, N., Gutiérrez-Puebla, E. & Monge, Á. (2012). J. Am. Chem. Soc. 134, 4762-4771.]) including metal–organic frameworks (KUXRAX; Prats et al., 2010[Prats, A. E., de la Peña-O'Shea, V. A., Iglesias, M., Monge, Á & Gutiérrez-Puebla, E. (2010) ChemCatChem, 2, 147-149.]; Platero-Prats et al., 2010[Platero-Prats, A. E., de la Peña-O'Shea, V. A., Snejko, N., Monge, Á & Gutiérrez-Puebla, E. (2010) Chem. Eur. J. 16, 11632-11640.]; AVILAT; Wang et al., 2011[Wang, X., Liu, L., Conato, M. & Jacobson, A. J. (2011). Cryst. Growth Des. 11, 2257-2263.]).

6. Synthesis and crystallization

The reagents 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane, pyridine and ethyl­enedi­amine were purchased from TCI Co., Ltd. (Japan). 2,2-Bis(4-methyl­phen­yl)hexa­fluoro­propane (2.5 mmol, 0.083 g) was dissolved in methanol 10 mL. The Bmphfp solution was mixed into 5 mL of a 1.0 M pyridine methanol solution under stirring. After slow evaporation, colourless plate-like crystals of compound 1 were obtained. When the Bmphfp solution was mixed into 5 ml of a 1.0 M ethyl­enedi­amine methanol solution under stirring, colourless needle-like crystals of compound 2 were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. H atoms were positioned geometrically and refined using a riding model: C—H = 0.93, O—H = 0.82, Nsp2—H = 0.86, Nsp3—H = 0.89 Å with Uiso(H) = 1.2Ueq(C, N,O).

Table 7
Experimental details

  1 2
Crystal data
Chemical formula 2C5H6N+·C17H8F6O42−·C17H10F6O4 C2H10N22+·C17H8F6O42−·H2O
Mr 471.35 470.37
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbca
Temperature (K) 93 93
a, b, c (Å) 25.5453 (7), 13.4125 (4), 11.8879 (4) 13.2518 (3), 12.1773 (3), 25.8419 (6)
α, β, γ (°) 90, 91.644 (3), 90 90, 90, 90
V3) 4071.4 (2) 4170.14 (17)
Z 4 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.25 1.26
Crystal size (mm) 0.3 × 0.25 × 0.05 0.22 × 0.1 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.743, 0.940 0.855, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 30654, 8170, 7361 15896, 4198, 3809
Rint 0.031 0.029
(sin θ/λ)max−1) 0.630 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.03 0.032, 0.082, 1.04
No. of reflections 8170 4198
No. of parameters 597 294
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.71, −0.47 0.29, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dipyridinium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid (1) top
Crystal data top
2C5H6N+·C17H8F6O42·C17H10F6O4F(000) = 1920
Mr = 471.35Dx = 1.538 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 25.5453 (7) ÅCell parameters from 18343 reflections
b = 13.4125 (4) Åθ = 3.4–76.1°
c = 11.8879 (4) ŵ = 1.25 mm1
β = 91.644 (3)°T = 93 K
V = 4071.4 (2) Å3Plate, colourless
Z = 40.3 × 0.25 × 0.05 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
8170 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source7361 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.0000 pixels mm-1θmax = 76.3°, θmin = 3.5°
ω scansh = 3032
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 1613
Tmin = 0.743, Tmax = 0.940l = 1314
30654 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0395P)2 + 1.9293P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8170 reflectionsΔρmax = 0.71 e Å3
597 parametersΔρmin = 0.47 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F120.22833 (3)1.08247 (6)0.68130 (7)0.02200 (17)
F170.22585 (3)0.91369 (6)0.96846 (6)0.02322 (17)
F400.70683 (3)0.41820 (6)0.27299 (7)0.02356 (17)
F440.76965 (3)0.72779 (6)0.13841 (7)0.02456 (18)
F130.26623 (3)1.08382 (6)0.84616 (7)0.02303 (17)
F160.30597 (3)0.91053 (6)0.91890 (7)0.02226 (17)
F180.25655 (3)0.78308 (6)0.88772 (7)0.02241 (17)
F410.74214 (3)0.42826 (6)0.11122 (7)0.02445 (18)
F460.79621 (3)0.58962 (6)0.06906 (7)0.02426 (18)
F420.18370 (3)1.05339 (6)0.82787 (7)0.02393 (18)
F450.71737 (3)0.63923 (7)0.03330 (7)0.02663 (19)
F390.66577 (3)0.49010 (6)0.13508 (7)0.02771 (19)
O300.56288 (4)0.74265 (8)0.56887 (8)0.0231 (2)
O30.02557 (4)0.69282 (7)0.63890 (8)0.0213 (2)
H30.0012900.6697020.6058830.032*
O10.03424 (4)0.77646 (7)0.47641 (8)0.0240 (2)
O270.45867 (4)0.89389 (8)0.49908 (9)0.0266 (2)
H270.4868530.8709720.4751530.040*
O530.93843 (4)0.45833 (8)0.54257 (9)0.0265 (2)
O280.54442 (4)0.84034 (8)0.42017 (9)0.0252 (2)
O550.93586 (4)0.62306 (8)0.57396 (9)0.0272 (2)
N560.52505 (5)0.87381 (9)0.71195 (10)0.0224 (2)
H560.5331960.8233320.6685260.027*
N621.00463 (5)0.43556 (9)0.70485 (10)0.0232 (2)
H620.9825900.4443470.6474610.028*
O260.43599 (5)0.73301 (10)0.50208 (16)0.0605 (5)
C470.78662 (5)0.56715 (10)0.29798 (11)0.0162 (2)
C310.61372 (5)0.72459 (10)0.40592 (11)0.0163 (2)
C70.19098 (5)0.87600 (9)0.72089 (11)0.0163 (2)
C520.80108 (5)0.64725 (10)0.36757 (11)0.0186 (3)
H520.7807700.7065910.3658680.022*
C320.62560 (5)0.75871 (10)0.29904 (11)0.0169 (2)
H320.6065570.8132120.2673310.020*
C190.28904 (5)0.90407 (10)0.69532 (11)0.0162 (2)
C290.57024 (5)0.77278 (10)0.47017 (11)0.0180 (3)
C360.64238 (5)0.64523 (10)0.45168 (11)0.0182 (3)
H360.6345640.6208200.5243150.022*
C330.66487 (5)0.71425 (9)0.23808 (11)0.0168 (2)
H330.6719860.7376810.1646710.020*
C40.09858 (5)0.79697 (9)0.62440 (11)0.0173 (3)
C350.68223 (5)0.60161 (10)0.39192 (11)0.0178 (3)
H350.7018220.5482060.4245330.021*
C340.69390 (5)0.63546 (9)0.28405 (11)0.0157 (2)
C500.87447 (5)0.55365 (10)0.44332 (11)0.0181 (3)
C480.81786 (5)0.48191 (10)0.29880 (11)0.0184 (3)
H480.8095590.4283440.2491420.022*
C490.86115 (5)0.47505 (10)0.37207 (11)0.0186 (3)
H490.8817680.4160920.3733820.022*
C80.15374 (5)0.83113 (10)0.78814 (11)0.0188 (3)
H80.1594990.8282710.8673740.023*
C510.84482 (5)0.64073 (10)0.43901 (11)0.0191 (3)
H510.8545790.6958670.4851790.023*
C20.04955 (5)0.75471 (10)0.57097 (11)0.0186 (3)
C240.32764 (5)0.97498 (10)0.67589 (11)0.0185 (3)
H240.3234351.0412610.7023360.022*
C370.73718 (5)0.57962 (9)0.22137 (11)0.0163 (2)
C110.22998 (5)1.03694 (10)0.78160 (11)0.0185 (3)
C90.10838 (5)0.79069 (10)0.74009 (11)0.0195 (3)
H90.0838400.7584930.7863960.023*
C50.13488 (5)0.84415 (10)0.55735 (11)0.0192 (3)
H50.1281710.8500600.4786190.023*
C220.37889 (5)0.85221 (11)0.58076 (11)0.0200 (3)
C200.29548 (5)0.80725 (10)0.65561 (11)0.0196 (3)
H200.2690000.7588300.6668590.023*
C60.18083 (5)0.88259 (10)0.60500 (11)0.0185 (3)
H60.2056280.9136770.5583740.022*
C380.71313 (5)0.47819 (10)0.18464 (11)0.0196 (3)
C540.92002 (5)0.54511 (11)0.52634 (11)0.0203 (3)
C150.25742 (5)0.88267 (10)0.88711 (11)0.0182 (3)
C100.24143 (5)0.92433 (9)0.76917 (11)0.0162 (3)
C230.37220 (5)0.94944 (10)0.61817 (11)0.0196 (3)
H230.3981020.9983980.6042580.023*
C671.03435 (5)0.35341 (11)0.70980 (12)0.0231 (3)
H671.0313010.3052480.6513790.028*
C210.34043 (5)0.78123 (10)0.59972 (12)0.0219 (3)
H210.3449500.7147180.5743070.026*
C430.75479 (5)0.63450 (10)0.11453 (11)0.0198 (3)
C661.06937 (6)0.33770 (11)0.79865 (13)0.0258 (3)
H661.0905300.2794700.8016450.031*
C250.42714 (5)0.82031 (12)0.52194 (13)0.0256 (3)
C631.00803 (6)0.50452 (11)0.78613 (13)0.0273 (3)
H630.9865870.5622950.7809600.033*
C610.48846 (6)0.86140 (12)0.78893 (13)0.0280 (3)
H610.4721280.7982930.7971990.034*
C641.04211 (6)0.49309 (12)0.87715 (13)0.0304 (3)
H641.0443350.5423260.9345400.036*
C651.07304 (6)0.40845 (12)0.88328 (13)0.0293 (3)
H651.0967340.3989210.9454070.035*
C570.54946 (6)0.96054 (12)0.69936 (13)0.0304 (3)
H570.5752780.9670250.6438850.037*
C600.47446 (7)0.93988 (13)0.85612 (13)0.0329 (3)
H600.4480730.9315610.9100530.040*
C580.53768 (8)1.04085 (13)0.76581 (15)0.0389 (4)
H580.5557331.1022590.7578720.047*
C590.49903 (8)1.03092 (13)0.84465 (14)0.0364 (4)
H590.4895881.0859490.8901170.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F120.0255 (4)0.0189 (4)0.0218 (4)0.0027 (3)0.0038 (3)0.0041 (3)
F170.0252 (4)0.0302 (4)0.0145 (4)0.0009 (3)0.0046 (3)0.0028 (3)
F400.0271 (4)0.0181 (4)0.0257 (4)0.0030 (3)0.0037 (3)0.0010 (3)
F440.0301 (4)0.0181 (4)0.0260 (4)0.0018 (3)0.0096 (3)0.0043 (3)
F130.0257 (4)0.0185 (4)0.0248 (4)0.0017 (3)0.0006 (3)0.0058 (3)
F160.0203 (4)0.0265 (4)0.0198 (4)0.0028 (3)0.0032 (3)0.0002 (3)
F180.0281 (4)0.0180 (4)0.0209 (4)0.0010 (3)0.0014 (3)0.0033 (3)
F410.0296 (4)0.0221 (4)0.0217 (4)0.0034 (3)0.0029 (3)0.0077 (3)
F460.0263 (4)0.0267 (4)0.0202 (4)0.0080 (3)0.0086 (3)0.0014 (3)
F420.0221 (4)0.0233 (4)0.0268 (4)0.0039 (3)0.0093 (3)0.0032 (3)
F450.0300 (4)0.0357 (5)0.0142 (4)0.0099 (4)0.0002 (3)0.0025 (3)
F390.0230 (4)0.0292 (4)0.0304 (4)0.0022 (3)0.0078 (3)0.0085 (4)
O300.0224 (5)0.0302 (5)0.0168 (4)0.0038 (4)0.0035 (4)0.0002 (4)
O30.0169 (4)0.0253 (5)0.0218 (5)0.0046 (4)0.0000 (4)0.0002 (4)
O10.0236 (5)0.0272 (5)0.0210 (5)0.0019 (4)0.0041 (4)0.0005 (4)
O270.0184 (5)0.0335 (5)0.0284 (5)0.0060 (4)0.0092 (4)0.0061 (4)
O530.0246 (5)0.0287 (5)0.0259 (5)0.0059 (4)0.0046 (4)0.0005 (4)
O280.0198 (5)0.0287 (5)0.0274 (5)0.0070 (4)0.0082 (4)0.0064 (4)
O550.0189 (5)0.0302 (5)0.0323 (6)0.0024 (4)0.0031 (4)0.0054 (4)
N560.0218 (6)0.0274 (6)0.0181 (5)0.0059 (5)0.0011 (4)0.0010 (5)
N620.0187 (5)0.0299 (6)0.0209 (6)0.0022 (5)0.0000 (4)0.0053 (5)
O260.0351 (7)0.0400 (7)0.1084 (13)0.0065 (6)0.0369 (8)0.0330 (8)
C470.0155 (6)0.0186 (6)0.0148 (6)0.0005 (5)0.0030 (5)0.0019 (5)
C310.0133 (6)0.0196 (6)0.0161 (6)0.0017 (5)0.0002 (5)0.0034 (5)
C70.0160 (6)0.0161 (6)0.0169 (6)0.0015 (5)0.0018 (5)0.0006 (5)
C520.0186 (6)0.0166 (6)0.0207 (6)0.0020 (5)0.0031 (5)0.0001 (5)
C320.0157 (6)0.0171 (6)0.0179 (6)0.0002 (5)0.0010 (5)0.0006 (5)
C190.0151 (6)0.0194 (6)0.0142 (6)0.0014 (5)0.0007 (5)0.0001 (5)
C290.0140 (6)0.0209 (6)0.0190 (6)0.0018 (5)0.0005 (5)0.0017 (5)
C360.0179 (6)0.0221 (6)0.0146 (6)0.0009 (5)0.0010 (5)0.0003 (5)
C330.0178 (6)0.0181 (6)0.0147 (6)0.0003 (5)0.0005 (5)0.0007 (5)
C40.0161 (6)0.0171 (6)0.0189 (6)0.0018 (5)0.0019 (5)0.0014 (5)
C350.0193 (6)0.0178 (6)0.0164 (6)0.0023 (5)0.0005 (5)0.0006 (5)
C340.0153 (6)0.0173 (6)0.0145 (6)0.0001 (5)0.0011 (5)0.0023 (5)
C500.0148 (6)0.0219 (6)0.0177 (6)0.0010 (5)0.0036 (5)0.0021 (5)
C480.0195 (6)0.0178 (6)0.0181 (6)0.0006 (5)0.0032 (5)0.0014 (5)
C490.0174 (6)0.0188 (6)0.0199 (6)0.0029 (5)0.0034 (5)0.0015 (5)
C80.0195 (6)0.0229 (6)0.0142 (6)0.0009 (5)0.0024 (5)0.0000 (5)
C510.0188 (6)0.0194 (6)0.0194 (6)0.0022 (5)0.0027 (5)0.0028 (5)
C20.0173 (6)0.0177 (6)0.0208 (6)0.0019 (5)0.0018 (5)0.0025 (5)
C240.0186 (6)0.0174 (6)0.0197 (6)0.0007 (5)0.0016 (5)0.0001 (5)
C370.0186 (6)0.0158 (6)0.0145 (6)0.0023 (5)0.0011 (5)0.0002 (5)
C110.0182 (6)0.0188 (6)0.0188 (6)0.0003 (5)0.0032 (5)0.0005 (5)
C90.0186 (6)0.0212 (6)0.0191 (6)0.0016 (5)0.0043 (5)0.0003 (5)
C50.0198 (6)0.0225 (6)0.0153 (6)0.0010 (5)0.0009 (5)0.0007 (5)
C220.0156 (6)0.0275 (7)0.0169 (6)0.0021 (5)0.0000 (5)0.0023 (5)
C200.0173 (6)0.0201 (6)0.0213 (6)0.0016 (5)0.0010 (5)0.0024 (5)
C60.0179 (6)0.0211 (6)0.0167 (6)0.0004 (5)0.0035 (5)0.0014 (5)
C380.0207 (6)0.0198 (6)0.0182 (6)0.0024 (5)0.0001 (5)0.0024 (5)
C540.0146 (6)0.0271 (7)0.0194 (6)0.0009 (5)0.0031 (5)0.0005 (5)
C150.0185 (6)0.0192 (6)0.0170 (6)0.0013 (5)0.0015 (5)0.0020 (5)
C100.0174 (6)0.0165 (6)0.0150 (6)0.0007 (5)0.0030 (5)0.0005 (5)
C230.0164 (6)0.0236 (7)0.0188 (6)0.0009 (5)0.0008 (5)0.0019 (5)
C670.0219 (7)0.0254 (7)0.0220 (7)0.0049 (5)0.0026 (5)0.0012 (6)
C210.0191 (6)0.0220 (7)0.0244 (7)0.0021 (5)0.0012 (5)0.0062 (5)
C430.0222 (6)0.0202 (6)0.0173 (6)0.0054 (5)0.0040 (5)0.0001 (5)
C660.0215 (7)0.0289 (7)0.0268 (7)0.0002 (6)0.0006 (6)0.0067 (6)
C250.0179 (6)0.0338 (8)0.0254 (7)0.0005 (6)0.0035 (5)0.0073 (6)
C630.0273 (7)0.0259 (7)0.0291 (8)0.0005 (6)0.0076 (6)0.0034 (6)
C610.0260 (7)0.0338 (8)0.0244 (7)0.0001 (6)0.0040 (6)0.0019 (6)
C640.0341 (8)0.0328 (8)0.0246 (7)0.0089 (6)0.0041 (6)0.0037 (6)
C650.0244 (7)0.0414 (9)0.0218 (7)0.0064 (6)0.0029 (6)0.0057 (6)
C570.0332 (8)0.0311 (8)0.0273 (8)0.0009 (6)0.0065 (6)0.0064 (6)
C600.0348 (8)0.0408 (9)0.0237 (8)0.0076 (7)0.0089 (6)0.0014 (7)
C580.0568 (11)0.0266 (8)0.0334 (9)0.0012 (7)0.0069 (8)0.0043 (7)
C590.0542 (11)0.0309 (8)0.0242 (8)0.0140 (7)0.0034 (7)0.0005 (6)
Geometric parameters (Å, º) top
F12—C111.3392 (16)C4—C91.3934 (19)
F17—C151.3429 (15)C4—C51.3923 (19)
F40—C381.3365 (16)C35—H350.9500
F44—C431.3357 (16)C35—C341.4005 (18)
F13—C111.3419 (15)C34—C371.5446 (17)
F16—C151.3392 (15)C50—C491.3886 (19)
F18—C151.3359 (15)C50—C511.3922 (19)
F41—C381.3404 (16)C50—C541.5085 (18)
F46—C431.3441 (15)C48—H480.9500
F42—C111.3367 (15)C48—C491.3909 (19)
F45—C431.3407 (16)C49—H490.9500
F39—C381.3399 (15)C8—H80.9500
O30—C291.2602 (17)C8—C91.3873 (19)
O3—H30.8400C51—H510.9500
O3—C21.3209 (17)C24—H240.9500
O1—C21.2152 (17)C24—C231.3889 (19)
O27—H270.8400C37—C381.5502 (18)
O27—C251.3073 (18)C37—C431.5460 (18)
O53—C541.2680 (18)C11—C101.5463 (18)
O28—C291.2596 (17)C9—H90.9500
O55—C541.2507 (18)C5—H50.9500
N56—H560.8800C5—C61.3880 (19)
N56—C611.3371 (19)C22—C231.390 (2)
N56—C571.330 (2)C22—C211.391 (2)
N62—H620.8800C22—C251.4968 (19)
N62—C671.3383 (19)C20—H200.9500
N62—C631.339 (2)C20—C211.3875 (19)
O26—C251.217 (2)C6—H60.9500
C47—C521.3991 (18)C15—C101.5532 (18)
C47—C481.3941 (18)C23—H230.9500
C47—C371.5448 (17)C67—H670.9500
C31—C321.3920 (18)C67—C661.381 (2)
C31—C291.5113 (18)C21—H210.9500
C31—C361.3935 (19)C66—H660.9500
C7—C81.3965 (18)C66—C651.384 (2)
C7—C61.3973 (18)C63—H630.9500
C7—C101.5387 (17)C63—C641.378 (2)
C52—H520.9500C61—H610.9500
C52—C511.3865 (19)C61—C601.375 (2)
C32—H320.9500C64—H640.9500
C32—C331.3889 (18)C64—C651.384 (2)
C19—C241.3941 (18)C65—H650.9500
C19—C201.3931 (19)C57—H570.9500
C19—C101.5443 (17)C57—C581.374 (2)
C36—H360.9500C60—H600.9500
C36—C351.3875 (18)C60—C591.381 (3)
C33—H330.9500C58—H580.9500
C33—C341.3936 (18)C58—C591.387 (3)
C4—C21.4991 (18)C59—H590.9500
C2—O3—H3109.5C8—C9—H9119.8
C25—O27—H27109.5C4—C5—H5119.8
C61—N56—H56119.2C6—C5—C4120.31 (12)
C57—N56—H56119.2C6—C5—H5119.8
C57—N56—C61121.67 (13)C23—C22—C21119.76 (12)
C67—N62—H62119.6C23—C22—C25121.87 (13)
C67—N62—C63120.81 (13)C21—C22—C25118.35 (13)
C63—N62—H62119.6C19—C20—H20119.9
C52—C47—C37117.58 (11)C21—C20—C19120.27 (12)
C48—C47—C52118.96 (12)C21—C20—H20119.9
C48—C47—C37123.44 (11)C7—C6—H6119.7
C32—C31—C29120.22 (12)C5—C6—C7120.65 (12)
C32—C31—C36118.80 (12)C5—C6—H6119.7
C36—C31—C29120.99 (12)F40—C38—F41106.99 (10)
C8—C7—C6118.78 (12)F40—C38—F39106.84 (11)
C8—C7—C10123.03 (11)F40—C38—C37111.26 (10)
C6—C7—C10118.09 (11)F41—C38—C37113.57 (11)
C47—C52—H52119.7F39—C38—F41106.39 (10)
C51—C52—C47120.54 (12)F39—C38—C37111.39 (10)
C51—C52—H52119.7O53—C54—C50116.42 (12)
C31—C32—H32119.5O55—C54—O53125.79 (12)
C33—C32—C31120.97 (12)O55—C54—C50117.79 (12)
C33—C32—H32119.5F17—C15—C10113.00 (11)
C24—C19—C10123.12 (11)F16—C15—F17106.31 (10)
C20—C19—C24119.26 (12)F16—C15—C10111.83 (11)
C20—C19—C10117.34 (11)F18—C15—F17107.19 (11)
O30—C29—C31117.70 (12)F18—C15—F16107.03 (10)
O28—C29—O30125.45 (12)F18—C15—C10111.14 (10)
O28—C29—C31116.85 (12)C7—C10—C19112.24 (10)
C31—C36—H36119.8C7—C10—C11106.77 (10)
C35—C36—C31120.47 (12)C7—C10—C15112.39 (10)
C35—C36—H36119.8C19—C10—C11112.36 (10)
C32—C33—H33119.8C19—C10—C15105.00 (10)
C32—C33—C34120.35 (12)C11—C10—C15108.10 (10)
C34—C33—H33119.8C24—C23—C22119.97 (13)
C9—C4—C2121.32 (12)C24—C23—H23120.0
C5—C4—C2119.43 (12)C22—C23—H23120.0
C5—C4—C9119.25 (12)N62—C67—H67119.6
C36—C35—H35119.6N62—C67—C66120.89 (14)
C36—C35—C34120.71 (12)C66—C67—H67119.6
C34—C35—H35119.6C22—C21—H21119.9
C33—C34—C35118.69 (12)C20—C21—C22120.23 (13)
C33—C34—C37123.97 (11)C20—C21—H21119.9
C35—C34—C37117.29 (11)F44—C43—F46106.43 (11)
C49—C50—C51119.40 (12)F44—C43—F45107.53 (11)
C49—C50—C54120.82 (12)F44—C43—C37111.05 (11)
C51—C50—C54119.77 (12)F46—C43—C37111.60 (11)
C47—C48—H48119.9F45—C43—F46106.54 (10)
C49—C48—C47120.22 (12)F45—C43—C37113.33 (11)
C49—C48—H48119.9C67—C66—H66120.6
C50—C49—C48120.55 (12)C67—C66—C65118.71 (14)
C50—C49—H49119.7C65—C66—H66120.6
C48—C49—H49119.7O27—C25—C22113.69 (13)
C7—C8—H8119.8O26—C25—O27124.54 (14)
C9—C8—C7120.49 (12)O26—C25—C22121.72 (14)
C9—C8—H8119.8N62—C63—H63119.5
C52—C51—C50120.23 (12)N62—C63—C64121.10 (14)
C52—C51—H51119.9C64—C63—H63119.5
C50—C51—H51119.9N56—C61—H61120.0
O3—C2—C4112.03 (11)N56—C61—C60120.06 (15)
O1—C2—O3125.01 (12)C60—C61—H61120.0
O1—C2—C4122.97 (12)C63—C64—H64120.7
C19—C24—H24119.8C63—C64—C65118.65 (14)
C23—C24—C19120.48 (12)C65—C64—H64120.7
C23—C24—H24119.8C66—C65—H65120.1
C47—C37—C38112.44 (10)C64—C65—C66119.83 (14)
C47—C37—C43106.48 (10)C64—C65—H65120.1
C34—C37—C47110.64 (10)N56—C57—H57119.7
C34—C37—C38106.14 (10)N56—C57—C58120.64 (15)
C34—C37—C43113.24 (10)C58—C57—H57119.7
C43—C37—C38107.98 (10)C61—C60—H60120.2
F12—C11—F13107.41 (10)C61—C60—C59119.52 (15)
F12—C11—C10111.19 (11)C59—C60—H60120.2
F13—C11—C10112.53 (11)C57—C58—H58120.5
F42—C11—F12106.59 (10)C57—C58—C59119.01 (16)
F42—C11—F13106.93 (10)C59—C58—H58120.5
F42—C11—C10111.87 (10)C60—C59—C58119.07 (15)
C4—C9—H9119.8C60—C59—H59120.5
C8—C9—C4120.48 (12)C58—C59—H59120.5
F12—C11—C10—C773.81 (13)C48—C47—C52—C512.13 (19)
F12—C11—C10—C1949.66 (14)C48—C47—C37—C34142.26 (12)
F12—C11—C10—C15165.06 (10)C48—C47—C37—C3823.77 (17)
F17—C15—C10—C771.96 (13)C48—C47—C37—C4394.29 (14)
F17—C15—C10—C19165.75 (10)C49—C50—C51—C522.7 (2)
F17—C15—C10—C1145.62 (14)C49—C50—C54—O5313.18 (19)
F13—C11—C10—C7165.65 (10)C49—C50—C54—O55167.73 (13)
F13—C11—C10—C1970.88 (14)C8—C7—C6—C50.79 (19)
F13—C11—C10—C1544.51 (14)C8—C7—C10—C19141.09 (12)
F16—C15—C10—C7168.13 (10)C8—C7—C10—C1195.37 (14)
F16—C15—C10—C1945.84 (13)C8—C7—C10—C1523.00 (17)
F16—C15—C10—C1174.29 (13)C51—C50—C49—C481.5 (2)
F18—C15—C10—C748.59 (14)C51—C50—C54—O53165.83 (12)
F18—C15—C10—C1973.71 (13)C51—C50—C54—O5513.26 (19)
F18—C15—C10—C11166.17 (10)C2—C4—C9—C8179.35 (12)
F42—C11—C10—C745.24 (14)C2—C4—C5—C6179.14 (12)
F42—C11—C10—C19168.71 (10)C24—C19—C20—C211.51 (19)
F42—C11—C10—C1575.90 (13)C24—C19—C10—C7141.61 (12)
N56—C61—C60—C591.0 (2)C24—C19—C10—C1121.26 (17)
N56—C57—C58—C591.5 (3)C24—C19—C10—C1596.00 (14)
N62—C67—C66—C650.4 (2)C37—C47—C52—C51179.52 (12)
N62—C63—C64—C650.0 (2)C37—C47—C48—C49178.47 (12)
C47—C52—C51—C500.9 (2)C9—C4—C2—O315.59 (17)
C47—C48—C49—C501.5 (2)C9—C4—C2—O1163.94 (13)
C47—C37—C38—F4050.14 (14)C9—C4—C5—C61.4 (2)
C47—C37—C38—F4170.65 (14)C5—C4—C2—O3164.93 (12)
C47—C37—C38—F39169.24 (11)C5—C4—C2—O115.6 (2)
C47—C37—C43—F4467.10 (13)C5—C4—C9—C80.1 (2)
C47—C37—C43—F4651.47 (14)C20—C19—C24—C230.35 (19)
C47—C37—C43—F45171.75 (10)C20—C19—C10—C744.43 (15)
C31—C32—C33—C341.22 (19)C20—C19—C10—C11164.79 (11)
C31—C36—C35—C340.94 (19)C20—C19—C10—C1577.96 (13)
C7—C8—C9—C42.0 (2)C6—C7—C8—C92.29 (19)
C52—C47—C48—C493.29 (19)C6—C7—C10—C1942.64 (15)
C52—C47—C37—C3439.47 (15)C6—C7—C10—C1180.90 (14)
C52—C47—C37—C38157.96 (11)C6—C7—C10—C15160.73 (11)
C52—C47—C37—C4383.97 (14)C38—C37—C43—F44171.93 (10)
C32—C31—C29—O30176.34 (12)C38—C37—C43—F4669.49 (13)
C32—C31—C29—O283.42 (18)C38—C37—C43—F4550.78 (14)
C32—C31—C36—C350.44 (19)C54—C50—C49—C48177.47 (12)
C32—C33—C34—C350.71 (19)C54—C50—C51—C52176.32 (12)
C32—C33—C34—C37178.22 (12)C10—C7—C8—C9178.54 (12)
C19—C24—C23—C220.9 (2)C10—C7—C6—C5177.23 (12)
C19—C20—C21—C221.4 (2)C10—C19—C24—C23173.49 (12)
C29—C31—C32—C33178.96 (11)C10—C19—C20—C21172.68 (12)
C29—C31—C36—C35179.97 (12)C23—C22—C21—C200.1 (2)
C36—C31—C32—C330.64 (19)C23—C22—C25—O277.03 (19)
C36—C31—C29—O304.08 (18)C23—C22—C25—O26170.47 (16)
C36—C31—C29—O28176.17 (12)C67—N62—C63—C640.0 (2)
C36—C35—C34—C330.36 (19)C67—C66—C65—C640.4 (2)
C36—C35—C34—C37177.31 (11)C21—C22—C23—C241.1 (2)
C33—C34—C37—C47133.38 (13)C21—C22—C25—O27174.16 (12)
C33—C34—C37—C38104.36 (14)C21—C22—C25—O268.3 (2)
C33—C34—C37—C4313.94 (17)C43—C37—C38—F40167.32 (10)
C4—C5—C6—C71.0 (2)C43—C37—C38—F4146.52 (14)
C35—C34—C37—C4749.08 (15)C43—C37—C38—F3973.59 (13)
C35—C34—C37—C3873.18 (14)C25—C22—C23—C24177.72 (13)
C35—C34—C37—C43168.52 (11)C25—C22—C21—C20178.93 (13)
C34—C37—C38—F4070.96 (13)C63—N62—C67—C660.2 (2)
C34—C37—C38—F41168.25 (10)C63—C64—C65—C660.2 (2)
C34—C37—C38—F3948.14 (14)C61—N56—C57—C580.0 (2)
C34—C37—C43—F4454.71 (14)C61—C60—C59—C580.5 (3)
C34—C37—C43—F46173.28 (10)C57—N56—C61—C601.3 (2)
C34—C37—C43—F4566.44 (14)C57—C58—C59—C601.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O55i0.841.752.5732 (13)164
O27—H27···O280.841.682.5125 (13)172
N56—H56···O300.881.792.6488 (15)165
N62—H62···O530.881.672.5472 (15)177
Symmetry code: (i) x1, y, z.
Ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate (2) top
Crystal data top
C2H10N22+·C17H8F6O42·H2ODx = 1.498 Mg m3
Mr = 470.37Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 9861 reflections
a = 13.2518 (3) Åθ = 3.4–75.7°
b = 12.1773 (3) ŵ = 1.26 mm1
c = 25.8419 (6) ÅT = 93 K
V = 4170.14 (17) Å3Needle, colourless
Z = 80.22 × 0.1 × 0.05 mm
F(000) = 1936
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
4198 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source3809 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.0000 pixels mm-1θmax = 76.3°, θmin = 3.4°
ω scansh = 616
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 1415
Tmin = 0.855, Tmax = 0.940l = 3229
15896 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0378P)2 + 1.7828P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4198 reflectionsΔρmax = 0.29 e Å3
294 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F180.40013 (5)0.38652 (6)0.26137 (3)0.02225 (17)
F160.40185 (6)0.53316 (6)0.21406 (3)0.02269 (17)
F140.71228 (6)0.55005 (6)0.21542 (3)0.02310 (17)
F130.59106 (6)0.64981 (6)0.24516 (3)0.02445 (18)
F120.58145 (6)0.58279 (6)0.16850 (3)0.02503 (18)
F170.44371 (6)0.54163 (7)0.29429 (3)0.02490 (18)
O260.81858 (7)0.35414 (7)0.44805 (3)0.01964 (19)
O270.72698 (7)0.20072 (7)0.44559 (4)0.0221 (2)
O30.70242 (7)0.09542 (7)0.06295 (4)0.0212 (2)
O10.54140 (7)0.11490 (8)0.04076 (4)0.0276 (2)
O321.07320 (7)0.45205 (8)0.56164 (5)0.0328 (3)
H32A1.1195380.4046180.5574510.049*
H32B1.1040510.5132300.5622160.049*
N280.85940 (8)0.09566 (8)0.51156 (4)0.0179 (2)
H28A0.9183900.0945400.4935390.022*
H28B0.8137040.1382260.4945740.022*
H28C0.8349930.0260820.5144470.022*
N310.89649 (8)0.34315 (9)0.54417 (4)0.0184 (2)
H31A0.8801470.3332320.5102850.022*
H31B0.9401040.4005340.5471050.022*
H31C0.8395760.3576760.5626420.022*
C250.75141 (9)0.29400 (10)0.42854 (5)0.0159 (2)
C240.60904 (9)0.30292 (10)0.30102 (5)0.0162 (2)
H240.5768910.2529640.2780940.019*
C80.66525 (9)0.31708 (10)0.18675 (5)0.0164 (2)
H80.7196850.3337360.2093510.020*
C230.65162 (9)0.26430 (10)0.34664 (5)0.0165 (2)
H230.6480090.1883150.3547740.020*
C190.61300 (9)0.41468 (10)0.28846 (5)0.0147 (2)
C70.57178 (9)0.36773 (10)0.19423 (5)0.0151 (2)
C90.67956 (9)0.24269 (10)0.14669 (5)0.0166 (2)
H90.7434030.2083600.1424650.020*
C220.69956 (9)0.33629 (10)0.38054 (5)0.0157 (2)
C100.56220 (9)0.45362 (10)0.23788 (5)0.0154 (2)
C40.60139 (9)0.21785 (10)0.11266 (5)0.0170 (2)
C150.45109 (9)0.47935 (10)0.25180 (5)0.0181 (2)
C210.70136 (10)0.44798 (10)0.36872 (5)0.0186 (3)
H210.7328500.4979290.3918890.022*
C20.61579 (9)0.13734 (10)0.06870 (5)0.0186 (3)
C200.65761 (10)0.48710 (10)0.32345 (5)0.0192 (3)
H200.6580910.5636210.3163010.023*
C110.61193 (10)0.56012 (10)0.21695 (5)0.0188 (3)
C60.49324 (9)0.34242 (11)0.16015 (5)0.0199 (3)
H60.4291920.3763280.1643350.024*
C50.50841 (10)0.26791 (11)0.12021 (5)0.0213 (3)
H50.4540930.2508600.0976000.026*
C290.87763 (10)0.14176 (11)0.56419 (5)0.0219 (3)
H29A0.9086920.0842270.5860730.026*
H29B0.8119020.1614410.5798680.026*
C300.94494 (10)0.24182 (11)0.56454 (5)0.0215 (3)
H30A0.9673140.2556900.6005070.026*
H30B1.0057840.2259430.5436090.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F180.0171 (4)0.0199 (4)0.0298 (4)0.0018 (3)0.0034 (3)0.0003 (3)
F160.0201 (4)0.0194 (4)0.0285 (4)0.0061 (3)0.0062 (3)0.0004 (3)
F140.0188 (4)0.0218 (4)0.0287 (4)0.0052 (3)0.0009 (3)0.0058 (3)
F130.0315 (4)0.0111 (3)0.0307 (4)0.0002 (3)0.0068 (3)0.0003 (3)
F120.0320 (4)0.0213 (4)0.0217 (4)0.0043 (3)0.0072 (3)0.0082 (3)
F170.0224 (4)0.0258 (4)0.0264 (4)0.0056 (3)0.0003 (3)0.0101 (3)
O260.0198 (4)0.0202 (4)0.0190 (4)0.0032 (3)0.0036 (3)0.0016 (4)
O270.0245 (5)0.0179 (4)0.0239 (5)0.0030 (3)0.0061 (4)0.0062 (4)
O30.0185 (4)0.0196 (4)0.0256 (5)0.0009 (3)0.0023 (4)0.0055 (4)
O10.0262 (5)0.0276 (5)0.0291 (5)0.0041 (4)0.0101 (4)0.0104 (4)
O320.0206 (5)0.0177 (5)0.0600 (7)0.0011 (4)0.0056 (5)0.0012 (5)
N280.0184 (5)0.0154 (5)0.0199 (5)0.0003 (4)0.0013 (4)0.0012 (4)
N310.0189 (5)0.0173 (5)0.0190 (5)0.0002 (4)0.0022 (4)0.0007 (4)
C250.0147 (5)0.0164 (5)0.0165 (5)0.0016 (4)0.0011 (5)0.0007 (5)
C240.0171 (6)0.0143 (6)0.0171 (6)0.0022 (4)0.0002 (4)0.0008 (5)
C80.0156 (6)0.0174 (6)0.0164 (6)0.0011 (4)0.0016 (4)0.0014 (5)
C230.0185 (6)0.0125 (5)0.0186 (6)0.0008 (4)0.0013 (5)0.0008 (4)
C190.0144 (5)0.0143 (5)0.0152 (6)0.0006 (4)0.0008 (4)0.0008 (4)
C70.0180 (6)0.0126 (5)0.0146 (5)0.0006 (4)0.0001 (4)0.0018 (4)
C90.0152 (5)0.0169 (6)0.0177 (6)0.0010 (4)0.0005 (4)0.0023 (5)
C220.0133 (5)0.0175 (6)0.0163 (6)0.0007 (4)0.0015 (4)0.0014 (5)
C100.0151 (5)0.0123 (5)0.0186 (6)0.0007 (4)0.0013 (4)0.0009 (4)
C40.0198 (6)0.0139 (5)0.0173 (6)0.0002 (4)0.0010 (5)0.0011 (5)
C150.0179 (6)0.0144 (5)0.0219 (6)0.0014 (5)0.0018 (5)0.0021 (5)
C210.0210 (6)0.0156 (6)0.0192 (6)0.0015 (5)0.0032 (5)0.0018 (5)
C20.0205 (6)0.0155 (6)0.0199 (6)0.0009 (5)0.0005 (5)0.0003 (5)
C200.0233 (6)0.0130 (6)0.0214 (6)0.0001 (5)0.0028 (5)0.0007 (5)
C110.0211 (6)0.0156 (6)0.0197 (6)0.0012 (5)0.0036 (5)0.0030 (5)
C60.0165 (6)0.0205 (6)0.0228 (6)0.0043 (5)0.0036 (5)0.0027 (5)
C50.0201 (6)0.0215 (6)0.0223 (6)0.0018 (5)0.0074 (5)0.0035 (5)
C290.0291 (7)0.0186 (6)0.0181 (6)0.0013 (5)0.0005 (5)0.0006 (5)
C300.0215 (6)0.0198 (6)0.0233 (6)0.0036 (5)0.0064 (5)0.0012 (5)
Geometric parameters (Å, º) top
F18—C151.3398 (14)C8—C91.3886 (18)
F16—C151.3439 (15)C23—H230.9500
F14—C111.3361 (15)C23—C221.3926 (17)
F13—C111.3419 (15)C19—C101.5447 (16)
F12—C111.3442 (15)C19—C201.3946 (18)
F17—C151.3381 (15)C7—C101.5436 (17)
O26—C251.2580 (15)C7—C61.3977 (17)
O27—C251.2607 (15)C9—H90.9500
O3—C21.2652 (16)C9—C41.3922 (17)
O1—C21.2520 (16)C22—C211.3941 (17)
O32—H32A0.8499C10—C151.5478 (17)
O32—H32B0.8500C10—C111.5520 (17)
N28—H28A0.9100C4—C21.5127 (17)
N28—H28B0.9100C4—C51.3884 (18)
N28—H28C0.9100C21—H210.9500
N28—C291.4911 (17)C21—C201.3900 (18)
N31—H31A0.9100C20—H200.9500
N31—H31B0.9100C6—H60.9500
N31—H31C0.9100C6—C51.3890 (18)
N31—C301.4873 (16)C5—H50.9500
C25—C221.5086 (16)C29—H29A0.9900
C24—H240.9500C29—H29B0.9900
C24—C231.3891 (18)C29—C301.5102 (18)
C24—C191.4001 (17)C30—H30A0.9900
C8—H80.9500C30—H30B0.9900
C8—C71.3972 (17)
H32A—O32—H32B104.5C9—C4—C2121.43 (11)
H28A—N28—H28B109.5C5—C4—C9118.44 (11)
H28A—N28—H28C109.5C5—C4—C2120.13 (11)
H28B—N28—H28C109.5F18—C15—F16107.50 (10)
C29—N28—H28A109.5F18—C15—C10110.58 (9)
C29—N28—H28B109.5F16—C15—C10113.08 (10)
C29—N28—H28C109.5F17—C15—F18106.85 (10)
H31A—N31—H31B109.5F17—C15—F16106.48 (9)
H31A—N31—H31C109.5F17—C15—C10112.02 (10)
H31B—N31—H31C109.5C22—C21—H21119.6
C30—N31—H31A109.5C20—C21—C22120.77 (12)
C30—N31—H31B109.5C20—C21—H21119.6
C30—N31—H31C109.5O3—C2—C4117.66 (11)
O26—C25—O27124.47 (11)O1—C2—O3123.96 (12)
O26—C25—C22116.94 (10)O1—C2—C4118.37 (11)
O27—C25—C22118.55 (11)C19—C20—H20119.8
C23—C24—H24119.6C21—C20—C19120.39 (12)
C23—C24—C19120.71 (11)C21—C20—H20119.8
C19—C24—H24119.6F14—C11—F13107.21 (10)
C7—C8—H8119.6F14—C11—F12106.88 (10)
C9—C8—H8119.6F14—C11—C10110.86 (10)
C9—C8—C7120.80 (11)F13—C11—F12106.08 (10)
C24—C23—H23119.8F13—C11—C10113.79 (10)
C24—C23—C22120.39 (11)F12—C11—C10111.63 (10)
C22—C23—H23119.8C7—C6—H6119.9
C24—C19—C10118.57 (11)C5—C6—C7120.29 (12)
C20—C19—C24118.70 (11)C5—C6—H6119.9
C20—C19—C10122.63 (11)C4—C5—C6121.31 (12)
C8—C7—C10118.23 (10)C4—C5—H5119.3
C8—C7—C6118.41 (11)C6—C5—H5119.3
C6—C7—C10123.27 (11)N28—C29—H29A108.8
C8—C9—H9119.6N28—C29—H29B108.8
C8—C9—C4120.74 (11)N28—C29—C30113.89 (11)
C4—C9—H9119.6H29A—C29—H29B107.7
C23—C22—C25120.66 (11)C30—C29—H29A108.8
C23—C22—C21118.97 (11)C30—C29—H29B108.8
C21—C22—C25120.35 (11)N31—C30—C29114.34 (10)
C19—C10—C15106.27 (10)N31—C30—H30A108.7
C19—C10—C11111.49 (10)N31—C30—H30B108.7
C7—C10—C19111.99 (9)C29—C30—H30A108.7
C7—C10—C15112.66 (10)C29—C30—H30B108.7
C7—C10—C11106.06 (10)H30A—C30—H30B107.6
C15—C10—C11108.40 (10)
O26—C25—C22—C23157.85 (11)C7—C10—C15—F1668.51 (13)
O26—C25—C22—C2120.38 (17)C7—C10—C15—F17171.16 (10)
O27—C25—C22—C2320.36 (17)C7—C10—C11—F1472.89 (12)
O27—C25—C22—C21161.41 (12)C7—C10—C11—F13166.18 (10)
N28—C29—C30—N3172.72 (14)C7—C10—C11—F1246.15 (13)
C25—C22—C21—C20177.17 (11)C7—C6—C5—C40.7 (2)
C24—C23—C22—C25176.28 (11)C9—C8—C7—C10177.21 (11)
C24—C23—C22—C211.97 (18)C9—C8—C7—C60.52 (18)
C24—C19—C10—C735.23 (15)C9—C4—C2—O31.95 (18)
C24—C19—C10—C1588.18 (12)C9—C4—C2—O1176.99 (12)
C24—C19—C10—C11153.89 (11)C9—C4—C5—C60.97 (19)
C24—C19—C20—C212.98 (19)C22—C21—C20—C191.4 (2)
C8—C7—C10—C1944.56 (14)C10—C19—C20—C21179.27 (11)
C8—C7—C10—C15164.30 (11)C10—C7—C6—C5177.01 (12)
C8—C7—C10—C1177.27 (13)C15—C10—C11—F14165.90 (10)
C8—C7—C6—C50.50 (19)C15—C10—C11—F1344.96 (13)
C8—C9—C4—C2179.77 (11)C15—C10—C11—F1275.06 (13)
C8—C9—C4—C50.99 (18)C2—C4—C5—C6179.78 (12)
C23—C24—C19—C10178.54 (11)C20—C19—C10—C7148.47 (11)
C23—C24—C19—C202.09 (18)C20—C19—C10—C1588.12 (13)
C23—C22—C21—C201.09 (19)C20—C19—C10—C1129.81 (16)
C19—C24—C23—C220.38 (18)C11—C10—C15—F18169.15 (10)
C19—C10—C15—F1870.90 (12)C11—C10—C15—F1648.55 (13)
C19—C10—C15—F16168.50 (10)C11—C10—C15—F1771.78 (13)
C19—C10—C15—F1748.17 (13)C6—C7—C10—C19138.92 (12)
C19—C10—C11—F1449.27 (13)C6—C7—C10—C1519.19 (16)
C19—C10—C11—F1371.67 (13)C6—C7—C10—C1199.25 (13)
C19—C10—C11—F12168.30 (10)C5—C4—C2—O3178.82 (12)
C7—C8—C9—C40.78 (18)C5—C4—C2—O12.24 (18)
C7—C10—C15—F1852.10 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O32—H32A···O27i0.851.922.7656 (14)175
O32—H32B···O26ii0.851.932.7731 (13)170
N28—H28A···O1iii0.911.872.7749 (14)171
N28—H28B···O270.911.872.7609 (14)165
N28—H28C···O3iv0.912.002.8015 (14)146
N31—H31A···O260.911.822.6933 (14)160
N31—H31B···O320.911.912.7288 (14)149
N31—H31C···O3v0.911.912.7220 (14)148
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+2, y+1, z+1; (iii) x+1/2, y, z+1/2; (iv) x+3/2, y, z+1/2; (v) x, y+1/2, z+1/2.
Bond lengths (Å) in the carboxyl groups of compounds 1 and 2 top
Bondlengthbondlength
Compound 1C2—O21.215 (2)C2—O31.321 (2)
molecule AC25—O261.217 (2)C25—O271.307 (2)
Compound 1C29—O281.260 (2)C29—O301.260 (2)
molecule BC54—O531.251 (2)C54—O551.268 (2)
Compound 2C2—O11.252 (2)C2—O31.265 (2)
C25—O261.258 (2)C25—O271.261 (2)
Percentage contributions to the Hirshfeld surface of the Bmphfp molecule A in compound 1 top
OutsideFOHNOTotal
Inside
C3.50.57.90.41.313.6
F6.00.716.53.626.9
H12.08.218.70.32.541.8
O0.30.814.80.51.317.7
Total21.910.357.81.38.8
Percentage contributions to the Hirshfeld surface of the Bmphfp molecule B in compound 1 top
OutsideFOHNOTotal
Inside
C4.90.15.00.93.914.9
F6.117.13.426.3
H12.02.317.10.23.535.0
O0.60.721.40.10.723.6
Total23.53.260.71.211.4
Percentage contributions to the Hirshfeld surface of the Bmphfp molecule in compound 2 top
OutsideFOHOTotal
Inside
C2.90.710.5014.2
F?6.90.616.92.527.0
H11.72.317.62.534.1
O0.20.623.60.324.7
Total?21.84.368.65.3
 

References

First citationBassanetti, I., Bracco, S., Comotti, A., Negroni, M., Bezuidenhout, C., Canossa, S., Mazzeo, P. P., Marchió, L. & Sozzani, P. (2016). J. Mater. Chem. A, 6, 14231–14239.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalcera, J., Friščić, T., Hejczyk, K. E., Fábián, L., Clarke, S. M., Day, G. M., Molins, E. & Jones, W. (2012). CrystEngComm, 14, 7898–7906.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, Y., Xiang, S. & Chen, B. (2011). Chen J. Am. Chem. Soc. 133, 14570–14573.  CrossRef CAS PubMed Google Scholar
First citationHisaki, I. (2020). J. Inclusion Phenom. Macrocyclic Chem. 96, 215–231.  CAS Google Scholar
First citationHisaki, I., Suzuki, Y., Gomez, E., Cohen, B., Tohnai, N. & Douhal, A. (2018). Angew. Chem. Int. Ed. 57, 12650–12655.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMiyano, T., Okada, N., Nishida, R., Yamamoto, A., Hisaki, I. & Tohnai, N. (2016). Chem. Eur. J. 22, 15430–15436.  CSD CrossRef CAS PubMed Google Scholar
First citationPachfule, P., Dey, C., Panda, T., Vanka, K. & Banerjee, R. (2010). Cryst. Growth Des. 10, 1351–1363.  CSD CrossRef CAS Google Scholar
First citationPlatero-Prats, A. E., de la Peña-O'Shea, V. A., Proserpio, D. M., Snejko, N., Gutiérrez-Puebla, E. & Monge, Á. (2012). J. Am. Chem. Soc. 134, 4762–4771.  Web of Science CAS PubMed Google Scholar
First citationPlatero-Prats, A. E., de la Peña-O'Shea, V. A., Snejko, N., Monge, Á & Gutiérrez-Puebla, E. (2010) Chem. Eur. J. 16, 11632–11640.  Google Scholar
First citationPrats, A. E., de la Peña-O'Shea, V. A., Iglesias, M., Monge, Á & Gutiérrez-Puebla, E. (2010) ChemCatChem, 2, 147–149.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTang, L., Wu, Y.-P., Fu, F., Zhang, Z.-L. & Zheng, D. (2010). Acta Cryst. E66, o1390.  CSD CrossRef IUCr Journals Google Scholar
First citationTripuramallu, B. K. (2014). J. Mol. Struct. 1071, 79–87.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWang, X., Liu, L., Conato, M. & Jacobson, A. J. (2011). Cryst. Growth Des. 11, 2257–2263.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds