research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­­idene)iridium(I) iodide and (η4-cyclo­octa-1,5-diene)bis­­(1,3-di­ethyl­imidazol-2-yl­­idene)iridium(I) iodide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu

Edited by J. T. Mague, Tulane University, USA (Received 25 February 2020; accepted 27 March 2020; online 3 April 2020)

The title complexes, (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cyclo­octa-1,5-di­ene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid L-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the ortho­rhom­bic space group Pccn, both with Z = 4.

1. Chemical context

The Merola group has been inter­ested in the chemistry of electron-rich iridium compounds for many years (Frazier & Merola, 1992[Frazier, J. & Merola, J. (1992). Polyhedron, 11, 2917-2927.]; Ladipo et al., 1993[Ladipo, F. T., Kooti, M. & Merola, J. S. (1993). Inorg. Chem. 32, 1681-1688.]; Selnau & Merola, 1993[Selnau, H. E. & Merola, J. S. (1993). Organometallics, 12, 1583-1591.]; Merola & Franks, 2013[Merola, J. S. & Franks, M. A. (2013). J. Organomet. Chem. 723, 49-55.]). Recently, we have begun examining the reactivity and catalytic applications of IrI N-heterocyclic carbene (NHC) complexes, which have previously been utilized for various transformations including hydrogenation (Hillier et al., 2001[Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246-4252.]), hydro­silylation (Viciano et al., 2006[Viciano, M., Mas-Marzá, E., Sanaú, M. & Peris, E. (2006). Organometallics, 25, 3063-3069.]), hydro­amination (Sipos et al., 2016[Sipos, G., Ou, A., Skelton, B. W., Falivene, L., Cavallo, L. & Dorta, R. (2016). Chem. Eur. J. 22, 6939-6946.]), H/D exchange (Cochrane et al., 2014[Cochrane, A. R., Idziak, C., Kerr, W. J., Mondal, B., Paterson, L. C., Tuttle, T., Andersson, S. & Nilsson, G. N. (2014). Org. Biomol. Chem. 12, 3598-3603.]), and C—H bond functionalization (Frey et al., 2006[Frey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725-5738.]). While investigating the oxidative addition of amino acids to (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide in aqueous solution, cooling the reaction to room temperature yielded single crystals of the starting material [Ir(COD)(IMe)2]I, where IMe = 1,3-di­methyl­imidazol-2-yl­idene. Though Herrmann and coworkers previously described the crystal structure of this complex in the space group Pbam (Frey et al., 2006[Frey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725-5738.]), the anisotropic displacement parameters of the COD ligand were highly disordered; thus precise atomic coordinates could not be calculated. In an effort to advance the study of the structural properties and reactivity of IrI NHC complexes, we hereby report the single-crystal structure determination of (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide (1) and (η4-cyclo­octa-1,5-diene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide (2).

[Scheme 1]

2. Structural commentary

Complex 1 (CCDC ref code 1983640) crystallizes in the monoclinic space group C2/m with Z = 4 (Figs. 1[link] and 2[link]), which differs from Herrmann's original report of the ortho­rhom­bic space group Pbam. Ir1, C1, C4, and I1 lie in special positions on the mirror plane. The geometry around the metal center is nearly square planar, with the largest angle [C1—Ir1—C4 = 93.14 (10)°] and smallest angle [C7—Ir1—C10 (centroids) = 86.20°] having deviations of 3.14 and 3.80°, respectively, from the ideal 90° geometry. The average Ir—NHC bond length is 2.044 Å [Ir1—C1 = 2.037 (2), Ir1—C4 = 2.051 (2) Å] and the average Ir—CCOD bond length is 2.169 Å [Ir1—C7 = 2.163 (2) Å; Ir1—C10 = 2.174 (2) Å] with an Ir—CODcentroid distance of 2.047 Å, related by symmetry.

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability) of (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide (1), showing part 1 of the disorder for the CH2 carbon atoms of the COD ring. Symmetry code: (i) x, 1 − y, z.
[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability) of (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide (1), showing part 2 of the disorder for the CH2 carbon atoms of the COD ring. Symmetry code: (i) x, 1 − y, z.

Complex 2 (CCDC ref code 1986045) crystallizes in the ortho­rhom­bic space group Pccn with Z = 4 (Fig. 3[link]). Atom Ir1 lies in a special position on the twofold rotation axis. Similarly to 1, the geometry around the metal center is nearly square planar, with the largest angle [C1—Ir1—C1 = 92.93 (12)°] and smallest angle [C8—Ir1—C9 (centroids) = 86.06°] having deviations of 2.92 and 3.94°, respectively, from the ideal 90° geometry. The Ir—NHC bond lengths [2.043 (2) Å] are related by symmetry. The average Ir—CCOD bond length is 2.172 Å [Ir1—C8 = 2.197 (2), Ir1—C9 = 2.147 (2) Å] with an Ir—CODcentroid distance of 2.058 Å, again related by symmetry.

[Figure 3]
Figure 3
Displacement ellipsoid plot (50% probability) of (η4-cyclo­octa-1,5-diene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide (2).Symmetry code: (i) [3\over2] − x, [3\over2] − y, z.

This discrepancy in Ir—CCOD bond lengths and Ir—CODcentroid distances between the two complexes is likely due to the conformation of the COD ligand, which is a boat in 1 and a twist-boat in 2.

3. Supra­molecular features

An examination of the packing diagrams for both title complexes show no unusual supra­molecular features.

4. Database survey

In our search for the COD bis-NHC moiety, we were somewhat surprised to find only ten reported IrCOD structures in the Cambridge Structural Database (CSD2019, update 3; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with two monodentate NHCs, including the original disordered structure reported by Herrmann (WEXKOA; Frey et al., 2006[Frey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725-5738.]). Structures similar to the title compound include a square-planar [(COD)bis­(1-ethyl-3-methyl­imidazol-2-yl­idene)iridium(I)] complex (BAHZER; Hinter­mair et al., 2011[Hintermair, U., Englert, U. & Leitner, W. (2011). Organometallics, 30, 3726-3731.]) and a complex containing quinoline-functionalized NHC ligands (ROWWUX; Jiménez et al., 2015[Jiménez, M. V., Fernández-Tornos, J., Pérez-Torrente, J. J., Modrego, F. J., García-Orduña, P. & Oro, L. A. (2015). Organometallics, 34, 926-940.]), both in space group P21/c (No. 14). Other closely related structures include an iridium COD complex with pyrazolyl-functionalized NHC ligands (CEMVIA; Messerle et al., 2006[Messerle, B. A., Page, M. J. & Turner, P. (2006). Dalton Trans. pp. 3927-3933.]), and an iridium COD complex with penta­fluoro­benzyl functionalized NHCs (TESGEE; Burling et al., 2006[Burling, S., Mahon, M. F., Reade, S. P. & Whittlesey, M. K. (2006). Organometallics, 25, 3761-3767.]), both of which crystallized in space group C2/c (No. 15).

5. Synthesis and crystallization

The title compounds were synthesized using a modified literature procedure (Köcher & Herrmann, 1997[Köcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261-265.]). [Ir(COD)Cl]2 (500 mg, 0.744 mmol) and a magnetic stir bar were added to a flame-dried, nitro­gen-purged 100 mL Schlenk flask. Ethanol (20 mL) was added via syringe and the red solution was stirred. After 5 minutes, a solution of NaOEt in ethanol (1 M, 3.5 mL, 3.50 mmol) was added to the reaction flask dropwise. The solution was stirred for 1 h while the color slowly changed from red to bright yellow, indicating the formation of [Ir(COD)(OEt)]2. The NHC precursor 1,3-di­methyl­imidazolium iodide (840 mg, 3.75 mmol) or 1,3-di­ethyl­imidazolium iodide (945 mg, 3.75 mmol) was dissolved in ethanol (10 mL) and added to the stirring mixture via syringe. After 48 h, the bright-orange mixture was filtered through celite. The solvent was removed by rotary evaporation, and the residue was dissolved in minimal di­chloro­methane.

The crude product was purified via column chromatography with silica gel, first using a 1:1 mixture of cyclo­hexane to ethyl acetate as the mobile phase to collect the bright-yellow iridium mono-NHC complex, followed by 7% methanol in di­chloro­methane to collect the desired orange iridium bis-NHC product. The solvent was removed by rotary evaporation and the bright-orange solid was dried overnight under vacuum (449 mg, 49% for 1; 415 mg, 42% for 2). The products were characterized by 1H and 13C NMR spectroscopy in agreement with previously reported data.

Single crystals of 1 for X-ray crystallography were collected from a subsequent oxidative addition reaction. The title compound, L-proline, and 10 mL of water were added to a 6 dram vial and stirred overnight at 323 K. Upon slowly cooling the reaction mixture to room temperature, bright-orange crystals of the title compound grew and were collected. Single crystals of 2 were grown by dissolving the complex in water, heating it to 323 K, and letting the solution slowly cool to room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [Ir(C5H8N2)2(C8H12)]I [Ir(C7H12N2)2(C8H12)]I
Mr 619.54 675.65
Crystal system, space group Monoclinic, C2/m Orthorhombic, Pccn
Temperature (K) 100 100
a, b, c (Å) 26.6519 (4), 8.3070 (2), 9.7852 (2) 10.6041 (2), 12.3058 (2), 18.2513 (3)
α, β, γ (°) 90, 100.241 (2), 90 90, 90, 90
V3) 2131.90 (8) 2381.65 (7)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.72 6.92
Crystal size (mm) 0.54 × 0.22 × 0.11 0.38 × 0.17 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO;Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Gaussian (CrysAlis PRO;Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.179, 0.960 0.318, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27006, 5884, 5415 59059, 6352, 3839
Rint 0.034 0.062
(sin θ/λ)max−1) 0.871 0.870
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.04 0.030, 0.060, 1.00
No. of reflections 5884 6352
No. of parameters 136 130
No. of restraints 12 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.40, −1.29 1.54, −0.83
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Compound 1 was solved with SHELXS and refined with SHELXL within OLEX2. The refinement proceeded quite well although the displacement ellipsoids for the CH2 carbon atoms of the COD ring were overly elongated, suggesting that there was possible disorder. In OLEX2, the disorder tools were utilized to split the carbon atoms while adding SHELXL SIMU restraint. The disorder model appeared to refine well with reasonable displacement ellipsoids. Fig. 1[link] shows part 1 of the disorder and Fig. 2[link] shows part 2. Both parts show nearly equal occupancies refining to 0.515 (19):0.485 (19). The two parts seem best described as the result of static disorder wherein the saturated portion of the COD ring is slightly twisted. The unsaturated carbon atoms are also likely a part of the disorder, but the positional change is so slight as to not warrant (and to resist) modeling. However, a consequence of this slight disorder is that generating the entire mol­ecule does generate two different hydrogen-atom positions, also refining to 0.515 (19):0.485 (19) relative occupancies.

Data reduction, solution and refinement for 2 presented some inter­esting issues that are discussed here. The data were collected on a XtaLAB Synergy, Dualflex, HyPix diffractometer. Data reduction was performed with CrysAlisPro171.40_64.67a (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]). The crystal was of good quality and peak searching found 9425 peaks that were merged to 5446 profiles. Unit-cell calculations fit 98.2% of the peaks to the cell 9.1397 (5), 10.6193 (7), 12.3249 (6), 89.980 (5). 89.988 (4), 89.965 (6). Further refinement and space group determination led to the finalization of the data in ortho­rhom­bic P. SHELXT within OLEX2 was used for structure solution and several non-centrosymmetric space groups were identified with nearly equal figure of merit. Attempts were made to refine the structure in all five of the proffered space groups and the only one that provided a reasonable solution was P21212. However, while the structure refinement parameters were `reasonable', several displacement ellipsoids in the finalized model were elongated along strange directions. The data were reexamined and a close view of the Ewald sphere showed weak, but clearly present peaks between the axes. The ∼9 Å axis was doubled and now all peaks were aligned fully with the new axes of 18.2790 (10), 10.6196 (7), 12.3245 (6), 89.979 (5), 89.985 (4), 89.965 (5). With those particular settings in CrysAlis, the only reasonable unit cell found was triclinic.

Moving into OLEX2 again, a solution was found in P[\overline{1}] that refined into a solution with excellent figures of merit and well-shaped displacement ellipsoids with Z = 4. However, it was noted that the heavy atoms, iridium and iodine all had coordinates that suggested they sat on special positions, e.g. x = 0.7500. ADDSYM in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to search for higher symmetries and the result suggested that Pccn was an appropriate high-symmetry space group. The newly created data and instruction files from PLATON were used in OLEX2 and the structure in Pccn solved and refined cleanly into the final structure. With this result in hand, the raw data were re-reduced, the originally found x axis was again doubled and space-group analysis was re-performed with slightly larger angle tolerances (0.03 vs 0.015). Pccn was then clearly identified as the top match for the space group. The data and instruction files were once more used in OLEX2 and SHELXT used as the solution program, which determined that Pccn was the best space group. Refinement led to the final structure solution reported in this paper.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1); ShelXT (Sheldrick, 2015a) for (2). For both structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(η4-Cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide (1) top
Crystal data top
[Ir(C5H8N2)2(C8H12)]IF(000) = 1176
Mr = 619.54Dx = 1.930 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 26.6519 (4) ÅCell parameters from 17811 reflections
b = 8.3070 (2) Åθ = 2.6–38.3°
c = 9.7852 (2) ŵ = 7.72 mm1
β = 100.241 (2)°T = 100 K
V = 2131.90 (8) Å3Prism, orange
Z = 40.54 × 0.22 × 0.11 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5884 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source5415 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
ω scansθmax = 38.2°, θmin = 3.1°
Absorption correction: gaussian
(CrysAlisPro;Rigaku OD, 2018)
h = 4544
Tmin = 0.179, Tmax = 0.960k = 1413
27006 measured reflectionsl = 1616
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.4859P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
5884 reflectionsΔρmax = 2.40 e Å3
136 parametersΔρmin = 1.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.35715 (2)0.5000000.71082 (2)0.01615 (3)
N10.36047 (6)0.6287 (2)0.41903 (16)0.0216 (3)
N20.46647 (6)0.3712 (2)0.79484 (18)0.0242 (3)
C10.36077 (9)0.5000000.5047 (2)0.0184 (4)
C20.36009 (8)0.5804 (3)0.28291 (19)0.0254 (4)
H20.3598740.6486080.2048740.031*
C30.36109 (11)0.7956 (3)0.4619 (2)0.0346 (5)
H3A0.3945820.8424110.4583460.052*
H3B0.3543800.8020660.5570450.052*
H3C0.3347340.8552470.3994220.052*
C40.43494 (9)0.5000000.7697 (3)0.0189 (4)
C50.51693 (8)0.4201 (3)0.8329 (2)0.0336 (5)
H50.5458890.3520010.8547800.040*
C60.45066 (10)0.2032 (3)0.7875 (3)0.0353 (5)
H6A0.4639150.1495140.7121610.053*
H6B0.4133440.1971900.7697490.053*
H6C0.4640820.1498350.8757870.053*
C70.27918 (8)0.4158 (4)0.6632 (2)0.0436 (7)
H7A0.2685310.3621220.5711560.052*0.485 (19)
H7B0.2709880.3724990.5664570.052*0.515 (19)
C80.2597 (3)0.3445 (15)0.7821 (6)0.0346 (18)0.485 (19)
H8A0.2374190.2514940.7499830.041*0.485 (19)
H8B0.2391340.4251650.8222950.041*0.485 (19)
C90.2980 (3)0.3377 (15)0.9218 (8)0.0330 (18)0.485 (19)
H9A0.2748120.4157080.9552690.040*0.485 (19)
H9B0.3032030.2460250.9874610.040*0.485 (19)
C100.34831 (8)0.4171 (3)0.9159 (2)0.0329 (5)
H100.3807310.3718650.9692690.040*0.485 (19)
H10A0.3789570.3647540.9722480.040*0.515 (19)
I10.59789 (2)0.0000000.87332 (2)0.03089 (5)
C9A0.3044 (3)0.2893 (16)0.8926 (10)0.0404 (19)0.515 (19)
H9AA0.3177480.1860610.8634490.049*0.515 (19)
H9AB0.2922150.2707330.9812160.049*0.515 (19)
C8A0.2740 (4)0.2775 (14)0.7760 (6)0.0386 (18)0.515 (19)
H8AA0.2376140.2514430.7732500.046*0.515 (19)
H8AB0.2916380.1785330.7537130.046*0.515 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01272 (4)0.02483 (5)0.01113 (4)0.0000.00271 (2)0.000
N10.0225 (7)0.0278 (8)0.0148 (6)0.0037 (6)0.0047 (5)0.0019 (5)
N20.0164 (6)0.0314 (9)0.0245 (7)0.0044 (6)0.0025 (5)0.0026 (6)
C10.0153 (9)0.0264 (12)0.0142 (9)0.0000.0044 (7)0.000
C20.0251 (8)0.0384 (11)0.0139 (6)0.0012 (7)0.0064 (6)0.0023 (7)
C30.0534 (14)0.0269 (10)0.0228 (9)0.0045 (10)0.0050 (9)0.0032 (8)
C40.0154 (9)0.0261 (12)0.0155 (9)0.0000.0036 (7)0.000
C50.0168 (7)0.0498 (14)0.0334 (11)0.0050 (8)0.0019 (7)0.0024 (9)
C60.0324 (11)0.0291 (11)0.0430 (13)0.0065 (9)0.0032 (9)0.0033 (9)
C70.0195 (8)0.092 (2)0.0185 (8)0.0201 (11)0.0007 (6)0.0036 (10)
C80.022 (2)0.057 (5)0.024 (2)0.012 (3)0.0043 (17)0.005 (3)
C90.022 (3)0.063 (5)0.014 (2)0.014 (3)0.0043 (16)0.009 (2)
C100.0205 (8)0.0624 (15)0.0154 (7)0.0086 (9)0.0018 (6)0.0091 (8)
I10.03408 (10)0.03389 (10)0.02760 (9)0.0000.01334 (7)0.000
C9A0.029 (3)0.069 (6)0.025 (3)0.011 (3)0.009 (2)0.012 (3)
C8A0.034 (3)0.055 (5)0.027 (2)0.019 (3)0.006 (2)0.004 (2)
Geometric parameters (Å, º) top
Ir1—C12.037 (2)C6—H6C0.9800
Ir1—C42.051 (2)C7—C7i1.399 (7)
Ir1—C7i2.163 (2)C7—H7A1.0000
Ir1—C72.163 (2)C7—H7B1.0000
Ir1—C10i2.174 (2)C7—C81.480 (6)
Ir1—C102.174 (2)C7—C8A1.616 (8)
N1—C11.357 (2)C8—H8A0.9900
N1—C21.389 (2)C8—H8B0.9900
N1—C31.448 (3)C8—C9A1.530 (12)
N2—C41.356 (2)C9—H9A0.9900
N2—C51.391 (3)C9—H9B0.9900
N2—C61.456 (3)C9—C101.505 (8)
C2—C2i1.336 (5)C9—C8A1.540 (10)
C2—H20.9500C10—C10i1.378 (6)
C3—H3A0.9800C10—H101.0000
C3—H3B0.9800C10—H10A1.0000
C3—H3C0.9800C10—C9A1.567 (10)
C5—C5i1.328 (5)C9A—H9AA0.9900
C5—H50.9500C9A—H9AB0.9900
C6—H6A0.9800C8A—H8AA0.9900
C6—H6B0.9800C8A—H8AB0.9900
C1—Ir1—C493.14 (10)Ir1—C7—H7B111.1
C1—Ir1—C789.97 (9)C7i—C7—Ir171.14 (10)
C1—Ir1—C7i89.97 (9)C7i—C7—H7A116.5
C1—Ir1—C10161.15 (8)C7i—C7—H7B111.1
C1—Ir1—C10i161.16 (8)C7i—C7—C8113.6 (5)
C4—Ir1—C7i160.90 (9)C7i—C7—C8A135.3 (4)
C4—Ir1—C7160.90 (9)C8—C7—Ir1114.8 (3)
C4—Ir1—C1090.61 (8)C8—C7—H7A116.5
C4—Ir1—C10i90.61 (8)C8A—C7—Ir1106.1 (3)
C7i—Ir1—C737.71 (19)C8A—C7—H7B111.1
C7—Ir1—C10i92.50 (9)C7—C8—H8A109.7
C7i—Ir1—C1092.49 (9)C7—C8—H8B109.7
C7i—Ir1—C10i80.72 (8)C7—C8—C9A109.7 (5)
C7—Ir1—C1080.72 (8)H8A—C8—H8B108.2
C10i—Ir1—C1036.95 (15)C9A—C8—H8A109.7
C1—N1—C2111.26 (18)C9A—C8—H8B109.7
C1—N1—C3125.22 (17)H9A—C9—H9B108.2
C2—N1—C3123.51 (18)C10—C9—H9A109.8
C4—N2—C5110.93 (19)C10—C9—H9B109.8
C4—N2—C6125.66 (17)C10—C9—C8A109.4 (5)
C5—N2—C6123.40 (19)C8A—C9—H9A109.8
N1i—C1—Ir1127.97 (11)C8A—C9—H9B109.8
N1—C1—Ir1127.97 (11)Ir1—C10—H10112.1
N1—C1—N1i103.9 (2)Ir1—C10—H10A115.8
N1—C2—H2126.6C9—C10—Ir1114.7 (3)
C2i—C2—N1106.78 (12)C9—C10—H10A115.8
C2i—C2—H2126.6C10i—C10—Ir171.53 (8)
N1—C3—H3A109.5C10i—C10—C9116.0 (5)
N1—C3—H3B109.5C10i—C10—H10112.1
N1—C3—H3C109.5C10i—C10—H10A115.8
H3A—C3—H3B109.5C10i—C10—C9A132.7 (5)
H3A—C3—H3C109.5C9A—C10—Ir1106.3 (4)
H3B—C3—H3C109.5C9A—C10—H10112.1
N2—C4—Ir1127.89 (11)C8—C9A—C10111.6 (7)
N2i—C4—Ir1127.89 (11)C8—C9A—H9AA109.3
N2i—C4—N2104.2 (2)C8—C9A—H9AB109.3
N2—C5—H5126.5C10—C9A—H9AA109.3
C5i—C5—N2106.96 (13)C10—C9A—H9AB109.3
C5i—C5—H5126.5H9AA—C9A—H9AB108.0
N2—C6—H6A109.5C7—C8A—H8AA109.8
N2—C6—H6B109.5C7—C8A—H8AB109.8
N2—C6—H6C109.5C9—C8A—C7109.3 (6)
H6A—C6—H6B109.5C9—C8A—H8AA109.8
H6A—C6—H6C109.5C9—C8A—H8AB109.8
H6B—C6—H6C109.5H8AA—C8A—H8AB108.3
Ir1—C7—H7A116.5
Ir1—C7—C8—C9A21.8 (8)C5—N2—C4—N2i0.9 (3)
Ir1—C7—C8A—C946.8 (7)C6—N2—C4—Ir11.4 (3)
Ir1—C10—C9A—C843.0 (7)C6—N2—C4—N2i177.51 (16)
C1—N1—C2—C2i0.08 (17)C6—N2—C5—C5i177.88 (18)
C2—N1—C1—Ir1176.04 (16)C7i—C7—C8—C9A101.0 (6)
C2—N1—C1—N1i0.1 (3)C7i—C7—C8A—C932.5 (9)
C3—N1—C1—Ir14.7 (3)C7—C8—C9A—C1043.1 (7)
C3—N1—C1—N1i179.40 (16)C10—C9—C8A—C744.8 (8)
C3—N1—C2—C2i179.37 (17)C10i—C10—C9A—C836.7 (8)
C4—N2—C5—C5i0.58 (19)C8A—C9—C10—Ir121.6 (8)
C5—N2—C4—Ir1179.85 (17)C8A—C9—C10—C10i102.2 (6)
Symmetry code: (i) x, y+1, z.
(η4-Cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide (2) top
Crystal data top
[Ir(C7H12N2)2(C8H12)]IDx = 1.884 Mg m3
Mr = 675.65Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 17338 reflections
a = 10.6041 (2) Åθ = 2.7–37.9°
b = 12.3058 (2) ŵ = 6.92 mm1
c = 18.2513 (3) ÅT = 100 K
V = 2381.65 (7) Å3Block, orange
Z = 40.38 × 0.17 × 0.12 mm
F(000) = 1304
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6352 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source3839 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.062
Detector resolution: 10.0000 pixels mm-1θmax = 38.2°, θmin = 2.5°
ω scansh = 1617
Absorption correction: gaussian
(CrysAlisPro;Rigaku OD, 2018)
k = 2121
Tmin = 0.318, Tmax = 1.000l = 3031
59059 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.022P)2 + 1.4351P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
6352 reflectionsΔρmax = 1.54 e Å3
130 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.7500000.7500000.50409 (2)0.01428 (3)
N10.66768 (19)0.56037 (15)0.40954 (10)0.0170 (4)
N20.5533 (2)0.69802 (15)0.38262 (10)0.0160 (4)
C10.6489 (2)0.66696 (18)0.42698 (11)0.0147 (4)
C20.5863 (2)0.52747 (19)0.35491 (12)0.0197 (5)
H20.5822500.4587170.3338820.024*
C30.5145 (2)0.61300 (19)0.33789 (13)0.0193 (4)
H30.4507810.6152080.3028810.023*
C40.7633 (2)0.49015 (18)0.44314 (14)0.0217 (5)
H4A0.8128640.5325690.4774660.026*
H4B0.8197650.4636180.4053320.026*
C50.7056 (3)0.3938 (2)0.48314 (15)0.0258 (5)
H5A0.6667380.3459310.4482970.039*
H5B0.6432770.4192850.5171870.039*
H5C0.7704420.3554090.5091780.039*
C60.5011 (2)0.80817 (19)0.37857 (13)0.0197 (5)
H6A0.5218380.8473220.4230960.024*
H6B0.4099990.8041050.3748960.024*
C70.5529 (3)0.86951 (19)0.31300 (13)0.0238 (5)
H7A0.5319610.8311320.2688550.036*
H7B0.6429150.8752460.3172000.036*
H7C0.5166390.9409450.3114750.036*
C80.8334 (2)0.8517 (2)0.59035 (13)0.0218 (5)
H80.8778750.9160100.5720200.026*
C90.9006 (2)0.7551 (2)0.58265 (13)0.0232 (4)
H90.9836390.7653500.5601280.028*
C100.8939 (3)0.6559 (2)0.63123 (15)0.0317 (6)
H10A0.9409770.6698680.6758260.038*
H10B0.9337110.5953310.6063130.038*
C110.7595 (3)0.6247 (2)0.65118 (15)0.0329 (6)
H11A0.7568150.5477960.6626610.039*
H11B0.7344620.6643840.6947390.039*
I10.2500000.7500000.71451 (2)0.02175 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01317 (5)0.01477 (5)0.01492 (5)0.00400 (6)0.0000.000
N10.0177 (10)0.0156 (8)0.0176 (9)0.0029 (7)0.0019 (7)0.0005 (7)
N20.0179 (10)0.0145 (9)0.0155 (8)0.0021 (7)0.0004 (8)0.0007 (7)
C10.0151 (10)0.0148 (9)0.0144 (9)0.0025 (7)0.0000 (7)0.0004 (8)
C20.0237 (12)0.0175 (10)0.0178 (10)0.0052 (9)0.0024 (9)0.0011 (8)
C30.0213 (12)0.0216 (11)0.0149 (10)0.0029 (9)0.0039 (9)0.0012 (9)
C40.0212 (14)0.0171 (9)0.0267 (11)0.0022 (9)0.0066 (10)0.0008 (8)
C50.0333 (14)0.0170 (11)0.0271 (13)0.0048 (10)0.0070 (11)0.0032 (10)
C60.0194 (12)0.0193 (11)0.0205 (11)0.0035 (9)0.0006 (9)0.0013 (9)
C70.0325 (15)0.0189 (11)0.0200 (11)0.0005 (10)0.0016 (10)0.0007 (9)
C80.0190 (12)0.0247 (12)0.0216 (11)0.0084 (9)0.0032 (9)0.0039 (10)
C90.0175 (9)0.0292 (11)0.0230 (10)0.0072 (12)0.0054 (8)0.0031 (13)
C100.0270 (15)0.0384 (15)0.0297 (14)0.0029 (12)0.0084 (11)0.0090 (12)
C110.0319 (16)0.0418 (14)0.0249 (11)0.0040 (14)0.0006 (13)0.0124 (11)
I10.01710 (8)0.02436 (9)0.02378 (10)0.00028 (11)0.0000.000
Geometric parameters (Å, º) top
Ir1—C1i2.043 (2)C5—H5B0.9600
Ir1—C12.043 (2)C5—H5C0.9600
Ir1—C82.197 (2)C6—H6A0.9700
Ir1—C8i2.197 (2)C6—H6B0.9700
Ir1—C9i2.147 (2)C6—C71.518 (3)
Ir1—C92.147 (2)C7—H7A0.9600
N1—C11.364 (3)C7—H7B0.9600
N1—C21.379 (3)C7—H7C0.9600
N1—C41.467 (3)C8—H80.9800
N2—C11.353 (3)C8—C91.393 (4)
N2—C31.389 (3)C8—C11i1.513 (4)
N2—C61.466 (3)C9—H90.9800
C2—H20.9300C9—C101.510 (4)
C2—C31.336 (3)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
C4—H4A0.9700C10—C111.520 (4)
C4—H4B0.9700C11—H11A0.9700
C4—C51.521 (3)C11—H11B0.9700
C5—H5A0.9600
C1i—Ir1—C192.93 (12)H5A—C5—H5B109.5
C1—Ir1—C8i89.85 (9)H5A—C5—H5C109.5
C1i—Ir1—C8i171.79 (9)H5B—C5—H5C109.5
C1—Ir1—C8171.79 (9)N2—C6—H6A109.4
C1i—Ir1—C889.85 (9)N2—C6—H6B109.4
C1i—Ir1—C9i149.88 (10)N2—C6—C7111.30 (19)
C1i—Ir1—C993.15 (9)H6A—C6—H6B108.0
C1—Ir1—C9149.88 (10)C7—C6—H6A109.4
C1—Ir1—C9i93.15 (9)C7—C6—H6B109.4
C8i—Ir1—C888.46 (13)C6—C7—H7A109.5
C9i—Ir1—C880.66 (9)C6—C7—H7B109.5
C9—Ir1—C837.37 (10)C6—C7—H7C109.5
C9i—Ir1—C8i37.37 (10)H7A—C7—H7B109.5
C9—Ir1—C8i80.66 (9)H7A—C7—H7C109.5
C9i—Ir1—C996.21 (13)H7B—C7—H7C109.5
C1—N1—C2111.1 (2)Ir1—C8—H8114.1
C1—N1—C4124.74 (19)C9—C8—Ir169.36 (13)
C2—N1—C4124.18 (19)C9—C8—H8114.1
C1—N2—C3111.16 (19)C9—C8—C11i124.8 (2)
C1—N2—C6125.05 (19)C11i—C8—Ir1111.88 (17)
C3—N2—C6123.70 (19)C11i—C8—H8114.1
N1—C1—Ir1124.39 (16)Ir1—C9—H9113.1
N2—C1—Ir1131.63 (17)C8—C9—Ir173.27 (14)
N2—C1—N1103.98 (19)C8—C9—H9113.1
N1—C2—H2126.5C8—C9—C10127.3 (2)
C3—C2—N1107.1 (2)C10—C9—Ir1109.49 (17)
C3—C2—H2126.5C10—C9—H9113.1
N2—C3—H3126.6C9—C10—H10A109.0
C2—C3—N2106.7 (2)C9—C10—H10B109.0
C2—C3—H3126.6C9—C10—C11112.9 (2)
N1—C4—H4A109.1H10A—C10—H10B107.8
N1—C4—H4B109.1C11—C10—H10A109.0
N1—C4—C5112.4 (2)C11—C10—H10B109.0
H4A—C4—H4B107.8C8i—C11—C10112.7 (2)
C5—C4—H4A109.1C8i—C11—H11A109.0
C5—C4—H4B109.1C8i—C11—H11B109.0
C4—C5—H5A109.5C10—C11—H11A109.0
C4—C5—H5B109.5C10—C11—H11B109.0
C4—C5—H5C109.5H11A—C11—H11B107.8
Ir1—C8—C9—C10102.1 (2)C3—N2—C6—C776.3 (3)
Ir1—C9—C10—C1139.1 (3)C4—N1—C1—Ir10.3 (3)
N1—C2—C3—N20.1 (3)C4—N1—C1—N2179.6 (2)
C1—N1—C2—C30.6 (3)C4—N1—C2—C3179.4 (2)
C1—N1—C4—C5118.4 (2)C6—N2—C1—Ir12.5 (3)
C1—N2—C3—C20.4 (3)C6—N2—C1—N1177.47 (19)
C1—N2—C6—C7100.0 (3)C6—N2—C3—C2177.2 (2)
C2—N1—C1—Ir1179.19 (16)C8—C9—C10—C1144.4 (4)
C2—N1—C1—N20.8 (3)C9—C10—C11—C8i33.9 (3)
C2—N1—C4—C562.9 (3)C11i—C8—C9—Ir1102.9 (2)
C3—N2—C1—Ir1179.27 (17)C11i—C8—C9—C100.8 (4)
C3—N2—C1—N10.7 (3)
Symmetry code: (i) x+3/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge Dr Carla Slebodnick for her assistance in solving the crystal structure of (η4-cyclo­octa-1,5-diene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide and the Virginia Tech Open Access Subvention Fund for supporting the open access fee for this journal.

Funding information

Funding for this research was provided by: National Science Foundation (purchase of diffractometer) (grant No. 1726077).

References

First citationBurling, S., Mahon, M. F., Reade, S. P. & Whittlesey, M. K. (2006). Organometallics, 25, 3761–3767.  Web of Science CSD CrossRef CAS Google Scholar
First citationCochrane, A. R., Idziak, C., Kerr, W. J., Mondal, B., Paterson, L. C., Tuttle, T., Andersson, S. & Nilsson, G. N. (2014). Org. Biomol. Chem. 12, 3598–3603.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrazier, J. & Merola, J. (1992). Polyhedron, 11, 2917–2927.  CSD CrossRef CAS Web of Science Google Scholar
First citationFrey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725–5738.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationHintermair, U., Englert, U. & Leitner, W. (2011). Organometallics, 30, 3726–3731.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiménez, M. V., Fernández-Tornos, J., Pérez-Torrente, J. J., Modrego, F. J., García-Orduña, P. & Oro, L. A. (2015). Organometallics, 34, 926–940.  Google Scholar
First citationKöcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261–265.  Google Scholar
First citationLadipo, F. T., Kooti, M. & Merola, J. S. (1993). Inorg. Chem. 32, 1681–1688.  CSD CrossRef CAS Web of Science Google Scholar
First citationMerola, J. S. & Franks, M. A. (2013). J. Organomet. Chem. 723, 49–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationMesserle, B. A., Page, M. J. & Turner, P. (2006). Dalton Trans. pp. 3927–3933.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSelnau, H. E. & Merola, J. S. (1993). Organometallics, 12, 1583–1591.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSipos, G., Ou, A., Skelton, B. W., Falivene, L., Cavallo, L. & Dorta, R. (2016). Chem. Eur. J. 22, 6939–6946.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationViciano, M., Mas-Marzá, E., Sanaú, M. & Peris, E. (2006). Organometallics, 25, 3063–3069.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds