research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-phenyl-1H-phenanthro[9,10-d]imidazol-3-ium benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, UP, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, and dDepartment of Chemistry, Taras Shecchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: necmid@omu.edu.tr, igolenya@ua.fm

Edited by J. T. Mague, Tulane University, USA (Received 16 March 2020; accepted 16 April 2020; online 24 April 2020)

In the title compound, C21H15N2+·C7H5O2, 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid form an ion pair complex. The system is consolidated by hydrogen bonds along with ππ inter­actions and N—H⋯π inter­actions between the constituent units. For a better understanding of the crystal structure and inter­molecular inter­actions, a Hirshfeld surface analysis was performed.

1. Chemical context

When phenanthrene is substituted by a heterocyclic moiety, its inter­molecular charge-transfer ability is increased (Xu et al., 2017[Xu, L., Zhang, D., Zhou, Y., Zheng, Y., Cao, L., Jiang, X.-F. & Lu, F. (2017). Opt. Mater. 70, 131-137.]). Such a donor–π–acceptor (DπA) arrangement has tunable properties that can be controlled by suitable substituents (Cao et al., 2017[Cao, L., Zhang, D., Xu, L., Fang, Z., Jiang, X.-F. & Lu, F. (2017). Eur. J. Org. Chem. 2017, 2495-2500.]). The presence of a heteroatom such as N, O or S may give electron-rich heterocycles (thio­phene, pyrrole, or furan) or electron-deficient heterocycles (pyridine, phenanthroline) (Xu et al., 2017[Xu, L., Zhang, D., Zhou, Y., Zheng, Y., Cao, L., Jiang, X.-F. & Lu, F. (2017). Opt. Mater. 70, 131-137.]). The dipole moment and λmax can be modulated by the selection of D and A. Thus the photophysical properties can be controlled (Wang et al., 2017[Wang, Z., Gu, P., Liu, G., Yao, H., Wu, Y., Li, Y., Rakesh, G., Zhu, J., Fu, H. & Zhang, Q. (2017). Chem. Commun. 53, 7772-7775.]). The inclusion of heterocycles enhances the polarizability, thermal and chemical stabilities of such adducts. The π-conjugated heterocyclic systems increase delocalization, thus enhancing the stability and photophysical properties (Gu et al., 2017[Gu, P.-Y., Wang, Z., Liu, G., Yao, H., Wang, Z., Li, Y., Zhu, J., Li, S. & Zhang, Q. (2017). Chem. Mater. 29, 4172-4175.], Zhang et al., 2012[Zhang, Y., Lai, S.-L., Tong, Q.-X., Lo, M.-F., Ng, T.-W., Chan, M.-Y., Wen, Z.-C., He, J., Jeff, K.-S., Tang, X.-L., Liu, W., Ko, C., Wang, P. & Lee, C. (2012). Chem. Mater. 24, 61-70.]). By proper selection of the heterocyclic substituent, good fluorescence with higher sensitivity can be achieved (Li et al., 2016[Li, J., Chen, S., Wang, Z. & Zhang, Q. (2016). Chem. Rec. 16, 1518-1530.]; Huang et al., 2012[Huang, H., Wang, Y., Zhuang, S., Yang, X., Wang, L. & Yang, C. (2012). J. Phys. Chem. C, 116, 19458-19466.]). The synthesis of selective chromo-fluoro­genic sensors for anions, cations and neutral mol­ecules can be achieved (Chou et al., 2012[Chou, H. H., Chen, Y. H., Hsu, H. P., Chang, W. H., Chen, Y. H. & Cheng, C. H. (2012). Adv. Mater. 24, 5867-5871.]; Zhuang et al., 2012[Zhuang, S., Shangguan, R., Jin, J., Tu, G., Wang, L., Chen, J., Ma, D. & Zhu, X. (2012). Org. Electron. 13, 3050-3059.]). Herein we report the crystal structure of the title compound, which was synthesized from 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid.

[Scheme 1]

2. Structural commentary

The structure of the title compound is shown in Fig. 1[link]. The proton from benzoic acid (BA) is completely transferred to the N atom of the imidazole ring of 2-phenyl-1-H-phenanthro[9,10-d]imidazole (M1), leading to the formation of a M1+BA co-crystal. The space group is monoclinic, P21/n and two asymmetric units, two M1+ ions and two benzoate ions, are combined in an inversion dimer of ion pairs (unit A, Fig. 2[link]). The benzoate ion and M1+ are nearly perpendicular [67.82 (4)°] to one another and the torsional angle C1—O1—N1—C22 is 78.24 (su?)°. Unit A is stabilized by hydrogen bonds (N1—H1⋯O1, 1.77 Å, and N2—H2⋯O2, 1.83 Å; Fig. 2[link]). Beside the hydrogen bonds, there are weak π inter­actions between the two M+1 moieties [inter­centroid separations between the C23–C28 and C8/C9/C14/C15/C20/C21 rings = 3.4590 (9) Å].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labelling. The dashed line indicates the N—H⋯O hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Unit A consisting of two entities each of benzoate ions and M1 moieties, linked by hydrogen bonds and ππ inter­actions.

3. Supra­molecular features

In the crystal, the A units are associated through weak, slipped, π-stacking inter­actions between the C9–C14 benzene rings and N1/C22/N2/C21/C8 imidazole rings across inversion centers [centroid–centroid distance = 3.5675 (9) Å, dihedral angle = 1.57 (8)°, slippage = 1.532 Å). The stepped stacks thus formed extend alternately in the directions of the normals to (111) and (1[\overline{1}]1) and are connected via C7—H7⋯Cg4 inter­actions (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C15–C20 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.77 2.6159 (17) 168
N2—H2⋯O2i 0.86 1.83 2.6523 (16) 158
C7—H7⋯Cg4ii 0.93 2.79 3.585 (2) 145
C10—H10⋯O1 0.93 2.40 3.265 (2) 155
C19—H19⋯O2i 0.93 2.54 3.372 (2) 150
C24—H24⋯O2i 0.93 2.50 3.343 (2) 152
C28—H28⋯O1 0.93 2.48 3.365 (2) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.
[Figure 3]
Figure 3
Supra­molecular structure showing A units stacked over adjacent rows of A units running perpendicular to each other.

4. Hirshfeld surface analysis

The Hirshfeld surfaces provide an extended qualitative and qu­anti­tative analysis of the inter­actions between the constituents of the co-crystal. The analysis shows the presence of C—H⋯O and N—H⋯O hydrogen bonds leading to multidirectional inter­actions to form the three-dimensional structure. The red spots in the Hirshfeld surface (Fig. 4[link]) are centered on the N1—H1⋯O1, C10—H10⋯O1 and C28—H28⋯O1 inter­actions of the benzoate ion with the phenanthrene and with the N—H of the imidazole. Their bond lengths are 1.77, 2.40, and 2.48 Å, respectively. The fingerprint plots (Fig. 5[link]) show the percentage contribution of the various inter­actions. Those of H⋯H and H⋯C dominate at 44.8% and 30.6%, respectively. The H⋯O inter­actions involve oxygen atoms from the benzoate anion and the N—H group of the imidazole ring of M1+.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural database (CSD, version 5.41, update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2,3-di­hydro-1H-phenanthro[9,10-d]imidazole moiety revealed 45 hits of which the most similar to the title compound are imidazole derivatives (CEZWEL: Mormul et al., 2013[Mormul, J., Steimann, M., Maichle-Mössmer, C. & Nagel, U. (2013). Eur. J. Inorg. Chem. pp. 3421-3428.]; ODEDAD: Li et al., 2016[Li, J., Chen, S., Wang, Z. & Zhang, Q. (2016). Chem. Rec. 16, 1518-1530.]; QORJUD: Tapu et al., 2009[Tapu, D., Owens, C., VanDerveer, D. & Gwaltney, K. (2009). Organometallics, 28, 270-276.]; REKXOX: Akula et al., 2017[Akula, S. B., Chen, H.-S., Su, C., Chen, B.-R., Chiou, J.-J., Shieh, C.-H., Lin, Y.-F. & Li, W.-R. (2017). Inorg. Chem. 56, 12987-12995.]; YUMTEG: Ullah et al., 2009[Ullah, F., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2009). Organometallics, 28, 2441-2449.]; ZACSAA: Therrien et al., 2014[Therrien, J. A., Wolf, M. O. & Patrick, B. O. (2014). Inorg. Chem. 53, 12962-12972.]). The N—C bond lengths of the imidazole ring in these structures vary from 1.312 (2) to 1.365 (2) Å. The mol­ecular conformations of these structures are also planar.

6. Synthesis and crystallization

A condensation reaction was performed between equimolar qu­anti­ties of phenanthrene-9,10-dione and benzaldehyde. 1 mmol of phenanthrene-9,10-dione, 1 mmol of benzaldehyde, 5 mmol of ammonium acetate and 30 mL of glacial acetic acid were added to single-neck 100 mL round-bottom flask. The mixture was refluxed for 12 h under nitro­gen. After completion of the reaction, the reaction mixture was cooled to room temperature and then 50 mL of deionized cold water were added. The product precipitated out as pale-brown solid. The solid product was filtered, washed with deionized water and dried in a vacuum oven to give 2-phenyl-1H-phenanthro[9,10-d]imidazole (M1) as the final product. Crystals were prepared using 20 mg of M1 and 20 mg of benzoic acid dissolved in 5mL of ethanol. The clear solution was left undisturbed for crystallization. Fine crystals were obtained after 15 days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH hydrogen atoms were located in difference-Fourier maps and, together with the carbon-bound hydrogen atoms, were included as riding contributions in calculated positions [N—H = 0.86, C—H = 0.93 Å; Uiso(H) = 1.2Ueq(C,N)].

Table 2
Experimental details

Crystal data
Chemical formula C21H15N2+·C7H5O2
Mr 416.46
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.4693 (4), 8.7384 (3), 24.5049 (9)
β (°) 91.792 (1)
V3) 2026.70 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.39 × 0.28 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.708, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25446, 3979, 3269
Rint 0.046
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.10
No. of reflections 3979
No. of parameters 289
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

2-Phenyl-1H-phenanthro[9,10-d]imidazol-3-ium benzoate top
Crystal data top
C21H15N2+·C7H5O2F(000) = 872
Mr = 416.46Dx = 1.365 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4693 (4) ÅCell parameters from 9121 reflections
b = 8.7384 (3) Åθ = 3.2–28.1°
c = 24.5049 (9) ŵ = 0.09 mm1
β = 91.792 (1)°T = 100 K
V = 2026.70 (13) Å3Block, pink
Z = 40.39 × 0.28 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
3269 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 26.0°, θmin = 2.3°
Tmin = 0.708, Tmax = 0.746h = 1111
25446 measured reflectionsk = 1010
3979 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0356P)2 + 1.042P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3979 reflectionsΔρmax = 0.23 e Å3
289 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23573 (12)0.35667 (14)0.39271 (5)0.0272 (3)
O20.43116 (12)0.21182 (14)0.39047 (5)0.0277 (3)
N10.27589 (13)0.51384 (15)0.48272 (5)0.0174 (3)
H10.2595340.4742400.4510170.021*
N20.36868 (13)0.65362 (15)0.54849 (5)0.0177 (3)
H20.4217940.7183350.5658170.021*
C10.30537 (16)0.24344 (19)0.37667 (6)0.0190 (3)
C20.23159 (16)0.13699 (18)0.33666 (6)0.0174 (3)
C30.30647 (17)0.0201 (2)0.31269 (7)0.0260 (4)
H30.4008880.0049870.3228480.031*
C40.24293 (19)0.0746 (2)0.27379 (7)0.0327 (4)
H40.2947370.1517620.2575870.039*
C50.10194 (18)0.0537 (2)0.25920 (7)0.0261 (4)
H50.0590130.1155980.2326330.031*
C60.02506 (17)0.05930 (19)0.28422 (7)0.0225 (4)
H60.0704610.0711090.2752160.027*
C70.08921 (16)0.15524 (18)0.32262 (6)0.0194 (3)
H70.0370170.2317850.3389920.023*
C80.20749 (15)0.47649 (18)0.52979 (6)0.0172 (3)
C90.09665 (15)0.36873 (18)0.53830 (6)0.0185 (3)
C100.03891 (16)0.27684 (18)0.49600 (7)0.0214 (4)
H100.0708290.2867450.4606680.026*
C110.06499 (16)0.17229 (19)0.50718 (7)0.0241 (4)
H110.1029820.1111240.4793460.029*
C120.11351 (17)0.1577 (2)0.56009 (7)0.0267 (4)
H120.1831270.0861840.5674210.032*
C130.05897 (17)0.2486 (2)0.60154 (7)0.0243 (4)
H130.0934180.2382830.6364790.029*
C140.04783 (15)0.35686 (18)0.59221 (7)0.0201 (3)
C150.10846 (15)0.45281 (18)0.63613 (6)0.0197 (3)
C160.06231 (17)0.4443 (2)0.69008 (7)0.0244 (4)
H160.0104800.3774510.6982250.029*
C170.12253 (17)0.5328 (2)0.73112 (7)0.0263 (4)
H170.0909280.5235170.7665210.032*
C180.23025 (17)0.6361 (2)0.72023 (7)0.0243 (4)
H180.2699130.6956350.7481910.029*
C190.27759 (16)0.64963 (19)0.66800 (6)0.0213 (4)
H190.3486750.7192900.6605210.026*
C200.21874 (15)0.55833 (18)0.62580 (6)0.0187 (3)
C210.26552 (15)0.56429 (18)0.57097 (6)0.0173 (3)
C220.37202 (15)0.62210 (18)0.49467 (6)0.0174 (3)
C230.46252 (15)0.69837 (18)0.45586 (6)0.0180 (3)
C240.55209 (16)0.81660 (19)0.47343 (7)0.0224 (4)
H240.5541590.8468900.5098280.027*
C250.63769 (17)0.8886 (2)0.43664 (7)0.0264 (4)
H250.6970880.9673560.4485230.032*
C260.63607 (17)0.8448 (2)0.38243 (7)0.0264 (4)
H260.6950220.8927780.3580480.032*
C270.54566 (18)0.7287 (2)0.36468 (7)0.0260 (4)
H270.5435840.6995910.3281590.031*
C280.45880 (17)0.65616 (19)0.40079 (7)0.0224 (4)
H280.3978520.5792320.3884890.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (6)0.0247 (6)0.0259 (6)0.0004 (5)0.0033 (5)0.0090 (5)
O20.0214 (6)0.0332 (7)0.0279 (6)0.0035 (5)0.0069 (5)0.0051 (5)
N10.0161 (6)0.0172 (7)0.0185 (7)0.0026 (5)0.0037 (5)0.0023 (5)
N20.0151 (6)0.0177 (7)0.0200 (7)0.0006 (5)0.0035 (5)0.0032 (5)
C10.0211 (8)0.0216 (8)0.0144 (7)0.0032 (7)0.0002 (6)0.0011 (6)
C20.0184 (7)0.0192 (8)0.0146 (7)0.0039 (6)0.0010 (6)0.0011 (6)
C30.0166 (7)0.0336 (10)0.0277 (9)0.0000 (7)0.0019 (7)0.0089 (8)
C40.0264 (9)0.0371 (11)0.0343 (10)0.0034 (8)0.0006 (8)0.0185 (9)
C50.0269 (9)0.0285 (9)0.0226 (8)0.0054 (7)0.0046 (7)0.0076 (7)
C60.0180 (7)0.0245 (9)0.0245 (8)0.0022 (7)0.0051 (7)0.0006 (7)
C70.0192 (8)0.0187 (8)0.0203 (8)0.0010 (6)0.0007 (6)0.0003 (6)
C80.0145 (7)0.0173 (8)0.0197 (8)0.0042 (6)0.0019 (6)0.0001 (6)
C90.0143 (7)0.0156 (8)0.0254 (8)0.0045 (6)0.0036 (6)0.0004 (6)
C100.0177 (8)0.0183 (8)0.0281 (9)0.0042 (6)0.0035 (7)0.0017 (7)
C110.0182 (8)0.0171 (8)0.0364 (10)0.0028 (7)0.0075 (7)0.0035 (7)
C120.0178 (8)0.0200 (9)0.0420 (11)0.0001 (7)0.0019 (7)0.0058 (8)
C130.0185 (8)0.0255 (9)0.0288 (9)0.0015 (7)0.0009 (7)0.0054 (7)
C140.0141 (7)0.0181 (8)0.0278 (9)0.0046 (6)0.0025 (6)0.0019 (7)
C150.0147 (7)0.0207 (8)0.0234 (8)0.0060 (6)0.0007 (6)0.0013 (7)
C160.0192 (8)0.0275 (9)0.0264 (9)0.0037 (7)0.0013 (7)0.0027 (7)
C170.0241 (8)0.0347 (10)0.0201 (8)0.0076 (8)0.0022 (7)0.0002 (7)
C180.0217 (8)0.0299 (9)0.0212 (8)0.0068 (7)0.0044 (7)0.0032 (7)
C190.0162 (7)0.0227 (9)0.0247 (9)0.0040 (6)0.0035 (6)0.0023 (7)
C200.0152 (7)0.0190 (8)0.0217 (8)0.0064 (6)0.0033 (6)0.0002 (6)
C210.0137 (7)0.0166 (8)0.0214 (8)0.0026 (6)0.0032 (6)0.0000 (6)
C220.0150 (7)0.0157 (8)0.0214 (8)0.0051 (6)0.0032 (6)0.0016 (6)
C230.0144 (7)0.0171 (8)0.0224 (8)0.0051 (6)0.0021 (6)0.0009 (6)
C240.0190 (8)0.0243 (9)0.0236 (8)0.0014 (7)0.0024 (7)0.0011 (7)
C250.0194 (8)0.0265 (9)0.0330 (10)0.0021 (7)0.0045 (7)0.0038 (8)
C260.0203 (8)0.0286 (10)0.0304 (9)0.0034 (7)0.0014 (7)0.0097 (8)
C270.0301 (9)0.0264 (9)0.0215 (8)0.0057 (7)0.0000 (7)0.0018 (7)
C280.0234 (8)0.0191 (8)0.0243 (8)0.0021 (7)0.0029 (7)0.0011 (7)
Geometric parameters (Å, º) top
O1—C11.2588 (19)C12—C131.377 (2)
O2—C11.2587 (19)C12—H120.9300
N1—C221.339 (2)C13—C141.409 (2)
N1—C81.380 (2)C13—H130.9300
N1—H10.8600C14—C151.467 (2)
N2—C221.349 (2)C15—C161.407 (2)
N2—C211.379 (2)C15—C201.422 (2)
N2—H20.8600C16—C171.378 (2)
C1—C21.507 (2)C16—H160.9300
C2—C31.384 (2)C17—C181.394 (2)
C2—C71.390 (2)C17—H170.9300
C3—C41.386 (2)C18—C191.374 (2)
C3—H30.9300C18—H180.9300
C4—C51.383 (2)C19—C201.407 (2)
C4—H40.9300C19—H190.9300
C5—C61.382 (2)C20—C211.429 (2)
C5—H50.9300C22—C231.461 (2)
C6—C71.386 (2)C23—C241.396 (2)
C6—H60.9300C23—C281.398 (2)
C7—H70.9300C24—C251.382 (2)
C8—C211.369 (2)C24—H240.9300
C8—C91.430 (2)C25—C261.382 (2)
C9—C101.408 (2)C25—H250.9300
C9—C141.417 (2)C26—C271.389 (2)
C10—C111.376 (2)C26—H260.9300
C10—H100.9300C27—C281.381 (2)
C11—C121.395 (2)C27—H270.9300
C11—H110.9300C28—H280.9300
C22—N1—C8108.53 (13)C13—C14—C9117.21 (15)
C22—N1—H1125.7C13—C14—C15122.08 (15)
C8—N1—H1125.7C9—C14—C15120.70 (14)
C22—N2—C21108.28 (13)C16—C15—C20116.92 (15)
C22—N2—H2125.9C16—C15—C14122.22 (15)
C21—N2—H2125.9C20—C15—C14120.86 (14)
O2—C1—O1126.11 (15)C17—C16—C15121.50 (16)
O2—C1—C2117.05 (14)C17—C16—H16119.3
O1—C1—C2116.84 (14)C15—C16—H16119.3
C3—C2—C7119.04 (14)C16—C17—C18120.82 (16)
C3—C2—C1119.87 (14)C16—C17—H17119.6
C7—C2—C1121.09 (14)C18—C17—H17119.6
C2—C3—C4121.02 (15)C19—C18—C17119.72 (16)
C2—C3—H3119.5C19—C18—H18120.1
C4—C3—H3119.5C17—C18—H18120.1
C5—C4—C3119.58 (16)C18—C19—C20120.15 (16)
C5—C4—H4120.2C18—C19—H19119.9
C3—C4—H4120.2C20—C19—H19119.9
C6—C5—C4119.83 (15)C19—C20—C15120.88 (15)
C6—C5—H5120.1C19—C20—C21122.89 (15)
C4—C5—H5120.1C15—C20—C21116.23 (14)
C5—C6—C7120.51 (15)C8—C21—N2107.21 (14)
C5—C6—H6119.7C8—C21—C20122.93 (14)
C7—C6—H6119.7N2—C21—C20129.85 (14)
C6—C7—C2119.97 (15)N1—C22—N2108.77 (14)
C6—C7—H7120.0N1—C22—C23126.05 (14)
C2—C7—H7120.0N2—C22—C23125.15 (14)
C21—C8—N1107.20 (13)C24—C23—C28119.31 (15)
C21—C8—C9122.75 (15)C24—C23—C22119.99 (14)
N1—C8—C9130.06 (14)C28—C23—C22120.69 (14)
C10—C9—C14120.94 (15)C25—C24—C23119.90 (16)
C10—C9—C8122.55 (15)C25—C24—H24120.0
C14—C9—C8116.51 (14)C23—C24—H24120.0
C11—C10—C9119.71 (16)C26—C25—C24120.80 (16)
C11—C10—H10120.1C26—C25—H25119.6
C9—C10—H10120.1C24—C25—H25119.6
C10—C11—C12120.25 (16)C25—C26—C27119.43 (16)
C10—C11—H11119.9C25—C26—H26120.3
C12—C11—H11119.9C27—C26—H26120.3
C13—C12—C11120.41 (16)C28—C27—C26120.56 (16)
C13—C12—H12119.8C28—C27—H27119.7
C11—C12—H12119.8C26—C27—H27119.7
C12—C13—C14121.48 (16)C27—C28—C23119.98 (16)
C12—C13—H13119.3C27—C28—H28120.0
C14—C13—H13119.3C23—C28—H28120.0
O2—C1—C2—C36.4 (2)C15—C16—C17—C181.1 (2)
O1—C1—C2—C3172.81 (15)C16—C17—C18—C190.3 (2)
O2—C1—C2—C7174.49 (15)C17—C18—C19—C200.7 (2)
O1—C1—C2—C76.2 (2)C18—C19—C20—C151.0 (2)
C7—C2—C3—C42.3 (3)C18—C19—C20—C21178.48 (15)
C1—C2—C3—C4176.81 (16)C16—C15—C20—C190.2 (2)
C2—C3—C4—C51.0 (3)C14—C15—C20—C19179.56 (14)
C3—C4—C5—C61.2 (3)C16—C15—C20—C21179.29 (13)
C4—C5—C6—C72.0 (3)C14—C15—C20—C210.1 (2)
C5—C6—C7—C20.7 (2)N1—C8—C21—N20.15 (16)
C3—C2—C7—C61.4 (2)C9—C8—C21—N2179.75 (13)
C1—C2—C7—C6177.64 (14)N1—C8—C21—C20178.83 (13)
C22—N1—C8—C210.49 (16)C9—C8—C21—C201.3 (2)
C22—N1—C8—C9179.62 (15)C22—N2—C21—C80.74 (16)
C21—C8—C9—C10178.91 (14)C22—N2—C21—C20178.15 (15)
N1—C8—C9—C101.0 (2)C19—C20—C21—C8179.40 (15)
C21—C8—C9—C140.3 (2)C15—C20—C21—C81.1 (2)
N1—C8—C9—C14179.82 (14)C19—C20—C21—N20.7 (2)
C14—C9—C10—C111.0 (2)C15—C20—C21—N2179.84 (14)
C8—C9—C10—C11178.22 (14)C8—N1—C22—N20.96 (16)
C9—C10—C11—C120.3 (2)C8—N1—C22—C23176.97 (14)
C10—C11—C12—C130.6 (2)C21—N2—C22—N11.05 (16)
C11—C12—C13—C140.8 (2)C21—N2—C22—C23176.90 (14)
C12—C13—C14—C90.2 (2)N1—C22—C23—C24175.89 (14)
C12—C13—C14—C15179.05 (15)N2—C22—C23—C241.7 (2)
C10—C9—C14—C130.7 (2)N1—C22—C23—C283.0 (2)
C8—C9—C14—C13178.51 (13)N2—C22—C23—C28179.44 (14)
C10—C9—C14—C15179.95 (14)C28—C23—C24—C251.2 (2)
C8—C9—C14—C150.7 (2)C22—C23—C24—C25179.97 (14)
C13—C14—C15—C161.0 (2)C23—C24—C25—C260.1 (2)
C9—C14—C15—C16179.84 (14)C24—C25—C26—C271.0 (2)
C13—C14—C15—C20178.35 (14)C25—C26—C27—C280.6 (2)
C9—C14—C15—C200.8 (2)C26—C27—C28—C230.7 (2)
C20—C15—C16—C170.8 (2)C24—C23—C28—C271.5 (2)
C14—C15—C16—C17178.53 (15)C22—C23—C28—C27179.60 (14)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C15–C20 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.772.6159 (17)168
N2—H2···O2i0.861.832.6523 (16)158
C7—H7···Cg4ii0.932.793.585 (2)145
C10—H10···O10.932.403.265 (2)155
C19—H19···O2i0.932.543.372 (2)150
C24—H24···O2i0.932.503.343 (2)152
C28—H28···O10.932.483.365 (2)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India, for providing laboratory facilities.

Funding information

Dr Farman Ali acknowledges the DST for INSPIRE Faculty Funding.

References

First citationAkula, S. B., Chen, H.-S., Su, C., Chen, B.-R., Chiou, J.-J., Shieh, C.-H., Lin, Y.-F. & Li, W.-R. (2017). Inorg. Chem. 56, 12987–12995.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, L., Zhang, D., Xu, L., Fang, Z., Jiang, X.-F. & Lu, F. (2017). Eur. J. Org. Chem. 2017, 2495–2500.  CrossRef CAS Google Scholar
First citationChou, H. H., Chen, Y. H., Hsu, H. P., Chang, W. H., Chen, Y. H. & Cheng, C. H. (2012). Adv. Mater. 24, 5867–5871.  CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, P.-Y., Wang, Z., Liu, G., Yao, H., Wang, Z., Li, Y., Zhu, J., Li, S. & Zhang, Q. (2017). Chem. Mater. 29, 4172–4175.  CSD CrossRef CAS Google Scholar
First citationHuang, H., Wang, Y., Zhuang, S., Yang, X., Wang, L. & Yang, C. (2012). J. Phys. Chem. C, 116, 19458–19466.  CrossRef CAS Google Scholar
First citationLi, J., Chen, S., Wang, Z. & Zhang, Q. (2016). Chem. Rec. 16, 1518–1530.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMormul, J., Steimann, M., Maichle–Mössmer, C. & Nagel, U. (2013). Eur. J. Inorg. Chem. pp. 3421–3428.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTapu, D., Owens, C., VanDerveer, D. & Gwaltney, K. (2009). Organometallics, 28, 270–276.  CSD CrossRef CAS Google Scholar
First citationTherrien, J. A., Wolf, M. O. & Patrick, B. O. (2014). Inorg. Chem. 53, 12962–12972.  CSD CrossRef CAS PubMed Google Scholar
First citationUllah, F., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2009). Organometallics, 28, 2441–2449.  CSD CrossRef CAS Google Scholar
First citationWang, Z., Gu, P., Liu, G., Yao, H., Wu, Y., Li, Y., Rakesh, G., Zhu, J., Fu, H. & Zhang, Q. (2017). Chem. Commun. 53, 7772–7775.  CSD CrossRef CAS Google Scholar
First citationXu, L., Zhang, D., Zhou, Y., Zheng, Y., Cao, L., Jiang, X.-F. & Lu, F. (2017). Opt. Mater. 70, 131–137.  CrossRef CAS Google Scholar
First citationZhang, Y., Lai, S.-L., Tong, Q.-X., Lo, M.-F., Ng, T.-W., Chan, M.-Y., Wen, Z.-C., He, J., Jeff, K.-S., Tang, X.-L., Liu, W., Ko, C., Wang, P. & Lee, C. (2012). Chem. Mater. 24, 61–70.  CSD CrossRef Google Scholar
First citationZhuang, S., Shangguan, R., Jin, J., Tu, G., Wang, L., Chen, J., Ma, D. & Zhu, X. (2012). Org. Electron. 13, 3050–3059.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds