research communications
H-phenanthro[9,10-d]imidazol-3-ium benzoate
and Hirshfeld surface analysis of 2-phenyl-1aDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, UP, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, and dDepartment of Chemistry, Taras Shecchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: necmid@omu.edu.tr, igolenya@ua.fm
In the title compound, C21H15N2+·C7H5O2−, 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid form an complex. The system is consolidated by hydrogen bonds along with π–π interactions and N—H⋯π interactions between the constituent units. For a better understanding of the and intermolecular interactions, a Hirshfeld surface analysis was performed.
Keywords: crystal structure; 2-phenyl-1-H-phenanthro[9,10-d]imidazole; hydrogen bonding; π–π interactions.
CCDC reference: 1997348
1. Chemical context
When phenanthrene is substituted by a heterocyclic moiety, its intermolecular charge-transfer ability is increased (Xu et al., 2017). Such a donor–π–acceptor (D–π–A) arrangement has tunable properties that can be controlled by suitable substituents (Cao et al., 2017). The presence of a heteroatom such as N, O or S may give electron-rich heterocycles (thiophene, pyrrole, or furan) or electron-deficient heterocycles (pyridine, phenanthroline) (Xu et al., 2017). The and λmax can be modulated by the selection of D and A. Thus the photophysical properties can be controlled (Wang et al., 2017). The inclusion of heterocycles enhances the polarizability, thermal and chemical stabilities of such adducts. The π-conjugated heterocyclic systems increase delocalization, thus enhancing the stability and photophysical properties (Gu et al., 2017, Zhang et al., 2012). By proper selection of the heterocyclic substituent, good fluorescence with higher sensitivity can be achieved (Li et al., 2016; Huang et al., 2012). The synthesis of selective chromo-fluorogenic sensors for anions, cations and neutral molecules can be achieved (Chou et al., 2012; Zhuang et al., 2012). Herein we report the of the title compound, which was synthesized from 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid.
2. Structural commentary
The structure of the title compound is shown in Fig. 1. The proton from benzoic acid (BA) is completely transferred to the N atom of the imidazole ring of 2-phenyl-1-H-phenanthro[9,10-d]imidazole (M1), leading to the formation of a M1+BA− The is monoclinic, P21/n and two asymmetric units, two M1+ ions and two benzoate ions, are combined in an inversion dimer of ion pairs (unit A, Fig. 2). The benzoate ion and M1+ are nearly perpendicular [67.82 (4)°] to one another and the torsional angle C1—O1—N1—C22 is 78.24 (su?)°. Unit A is stabilized by hydrogen bonds (N1—H1⋯O1, 1.77 Å, and N2—H2⋯O2, 1.83 Å; Fig. 2). Beside the hydrogen bonds, there are weak π interactions between the two M+1 moieties [intercentroid separations between the C23–C28 and C8/C9/C14/C15/C20/C21 rings = 3.4590 (9) Å].
3. Supramolecular features
In the crystal, the A units are associated through weak, slipped, π-stacking interactions between the C9–C14 benzene rings and N1/C22/N2/C21/C8 imidazole rings across inversion centers [centroid–centroid distance = 3.5675 (9) Å, dihedral angle = 1.57 (8)°, slippage = 1.532 Å). The stepped stacks thus formed extend alternately in the directions of the normals to (111) and (11) and are connected via C7—H7⋯Cg4 interactions (Table 1, Fig. 3).
4. Hirshfeld surface analysis
The Hirshfeld surfaces provide an extended qualitative and quantitative analysis of the interactions between the constituents of the ) are centered on the N1—H1⋯O1, C10—H10⋯O1 and C28—H28⋯O1 interactions of the benzoate ion with the phenanthrene and with the N—H of the imidazole. Their bond lengths are 1.77, 2.40, and 2.48 Å, respectively. The fingerprint plots (Fig. 5) show the percentage contribution of the various interactions. Those of H⋯H and H⋯C dominate at 44.8% and 30.6%, respectively. The H⋯O interactions involve oxygen atoms from the benzoate anion and the N—H group of the imidazole ring of M1+.
The analysis shows the presence of C—H⋯O and N—H⋯O hydrogen bonds leading to multidirectional interactions to form the three-dimensional structure. The red spots in the Hirshfeld surface (Fig. 45. Database survey
A search of the Cambridge Structural database (CSD, version 5.41, update November 2019; Groom et al., 2016) for the 2,3-dihydro-1H-phenanthro[9,10-d]imidazole moiety revealed 45 hits of which the most similar to the title compound are imidazole derivatives (CEZWEL: Mormul et al., 2013; ODEDAD: Li et al., 2016; QORJUD: Tapu et al., 2009; REKXOX: Akula et al., 2017; YUMTEG: Ullah et al., 2009; ZACSAA: Therrien et al., 2014). The N—C bond lengths of the imidazole ring in these structures vary from 1.312 (2) to 1.365 (2) Å. The molecular conformations of these structures are also planar.
6. Synthesis and crystallization
A condensation reaction was performed between equimolar quantities of phenanthrene-9,10-dione and benzaldehyde. 1 mmol of phenanthrene-9,10-dione, 1 mmol of benzaldehyde, 5 mmol of ammonium acetate and 30 mL of glacial acetic acid were added to single-neck 100 mL round-bottom flask. The mixture was refluxed for 12 h under nitrogen. After completion of the reaction, the reaction mixture was cooled to room temperature and then 50 mL of deionized cold water were added. The product precipitated out as pale-brown solid. The solid product was filtered, washed with deionized water and dried in a vacuum oven to give 2-phenyl-1H-phenanthro[9,10-d]imidazole (M1) as the final product. Crystals were prepared using 20 mg of M1 and 20 mg of benzoic acid dissolved in 5mL of ethanol. The clear solution was left undisturbed for crystallization. Fine crystals were obtained after 15 days.
7. Refinement
Crystal data, data collection and structure . The NH hydrogen atoms were located in difference-Fourier maps and, together with the carbon-bound hydrogen atoms, were included as riding contributions in calculated positions [N—H = 0.86, C—H = 0.93 Å; Uiso(H) = 1.2Ueq(C,N)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 1997348
https://doi.org/10.1107/S2056989020005344/mw2157sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020005344/mw2157Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2020).C21H15N2+·C7H5O2− | F(000) = 872 |
Mr = 416.46 | Dx = 1.365 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4693 (4) Å | Cell parameters from 9121 reflections |
b = 8.7384 (3) Å | θ = 3.2–28.1° |
c = 24.5049 (9) Å | µ = 0.09 mm−1 |
β = 91.792 (1)° | T = 100 K |
V = 2026.70 (13) Å3 | Block, pink |
Z = 4 | 0.39 × 0.28 × 0.17 mm |
Bruker APEXII CCD diffractometer | 3269 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 26.0°, θmin = 2.3° |
Tmin = 0.708, Tmax = 0.746 | h = −11→11 |
25446 measured reflections | k = −10→10 |
3979 independent reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0356P)2 + 1.042P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
3979 reflections | Δρmax = 0.23 e Å−3 |
289 parameters | Δρmin = −0.33 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.23573 (12) | 0.35667 (14) | 0.39271 (5) | 0.0272 (3) | |
O2 | 0.43116 (12) | 0.21182 (14) | 0.39047 (5) | 0.0277 (3) | |
N1 | 0.27589 (13) | 0.51384 (15) | 0.48272 (5) | 0.0174 (3) | |
H1 | 0.259534 | 0.474240 | 0.451017 | 0.021* | |
N2 | 0.36868 (13) | 0.65362 (15) | 0.54849 (5) | 0.0177 (3) | |
H2 | 0.421794 | 0.718335 | 0.565817 | 0.021* | |
C1 | 0.30537 (16) | 0.24344 (19) | 0.37667 (6) | 0.0190 (3) | |
C2 | 0.23159 (16) | 0.13699 (18) | 0.33666 (6) | 0.0174 (3) | |
C3 | 0.30647 (17) | 0.0201 (2) | 0.31269 (7) | 0.0260 (4) | |
H3 | 0.400888 | 0.004987 | 0.322848 | 0.031* | |
C4 | 0.24293 (19) | −0.0746 (2) | 0.27379 (7) | 0.0327 (4) | |
H4 | 0.294737 | −0.151762 | 0.257587 | 0.039* | |
C5 | 0.10194 (18) | −0.0537 (2) | 0.25920 (7) | 0.0261 (4) | |
H5 | 0.059013 | −0.115598 | 0.232633 | 0.031* | |
C6 | 0.02506 (17) | 0.05930 (19) | 0.28422 (7) | 0.0225 (4) | |
H6 | −0.070461 | 0.071109 | 0.275216 | 0.027* | |
C7 | 0.08921 (16) | 0.15524 (18) | 0.32262 (6) | 0.0194 (3) | |
H7 | 0.037017 | 0.231785 | 0.338992 | 0.023* | |
C8 | 0.20749 (15) | 0.47649 (18) | 0.52979 (6) | 0.0172 (3) | |
C9 | 0.09665 (15) | 0.36873 (18) | 0.53830 (6) | 0.0185 (3) | |
C10 | 0.03891 (16) | 0.27684 (18) | 0.49600 (7) | 0.0214 (4) | |
H10 | 0.070829 | 0.286745 | 0.460668 | 0.026* | |
C11 | −0.06499 (16) | 0.17229 (19) | 0.50718 (7) | 0.0241 (4) | |
H11 | −0.102982 | 0.111124 | 0.479346 | 0.029* | |
C12 | −0.11351 (17) | 0.1577 (2) | 0.56009 (7) | 0.0267 (4) | |
H12 | −0.183127 | 0.086184 | 0.567421 | 0.032* | |
C13 | −0.05897 (17) | 0.2486 (2) | 0.60154 (7) | 0.0243 (4) | |
H13 | −0.093418 | 0.238283 | 0.636479 | 0.029* | |
C14 | 0.04783 (15) | 0.35686 (18) | 0.59221 (7) | 0.0201 (3) | |
C15 | 0.10846 (15) | 0.45281 (18) | 0.63613 (6) | 0.0197 (3) | |
C16 | 0.06231 (17) | 0.4443 (2) | 0.69008 (7) | 0.0244 (4) | |
H16 | −0.010480 | 0.377451 | 0.698225 | 0.029* | |
C17 | 0.12253 (17) | 0.5328 (2) | 0.73112 (7) | 0.0263 (4) | |
H17 | 0.090928 | 0.523517 | 0.766521 | 0.032* | |
C18 | 0.23025 (17) | 0.6361 (2) | 0.72023 (7) | 0.0243 (4) | |
H18 | 0.269913 | 0.695635 | 0.748191 | 0.029* | |
C19 | 0.27759 (16) | 0.64963 (19) | 0.66800 (6) | 0.0213 (4) | |
H19 | 0.348675 | 0.719290 | 0.660521 | 0.026* | |
C20 | 0.21874 (15) | 0.55833 (18) | 0.62580 (6) | 0.0187 (3) | |
C21 | 0.26552 (15) | 0.56429 (18) | 0.57097 (6) | 0.0173 (3) | |
C22 | 0.37202 (15) | 0.62210 (18) | 0.49467 (6) | 0.0174 (3) | |
C23 | 0.46252 (15) | 0.69837 (18) | 0.45586 (6) | 0.0180 (3) | |
C24 | 0.55209 (16) | 0.81660 (19) | 0.47343 (7) | 0.0224 (4) | |
H24 | 0.554159 | 0.846890 | 0.509828 | 0.027* | |
C25 | 0.63769 (17) | 0.8886 (2) | 0.43664 (7) | 0.0264 (4) | |
H25 | 0.697088 | 0.967356 | 0.448523 | 0.032* | |
C26 | 0.63607 (17) | 0.8448 (2) | 0.38243 (7) | 0.0264 (4) | |
H26 | 0.695022 | 0.892778 | 0.358048 | 0.032* | |
C27 | 0.54566 (18) | 0.7287 (2) | 0.36468 (7) | 0.0260 (4) | |
H27 | 0.543584 | 0.699591 | 0.328159 | 0.031* | |
C28 | 0.45880 (17) | 0.65616 (19) | 0.40079 (7) | 0.0224 (4) | |
H28 | 0.397852 | 0.579232 | 0.388489 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0306 (6) | 0.0247 (6) | 0.0259 (6) | −0.0004 (5) | −0.0033 (5) | −0.0090 (5) |
O2 | 0.0214 (6) | 0.0332 (7) | 0.0279 (6) | −0.0035 (5) | −0.0069 (5) | −0.0051 (5) |
N1 | 0.0161 (6) | 0.0172 (7) | 0.0185 (7) | 0.0026 (5) | −0.0037 (5) | −0.0023 (5) |
N2 | 0.0151 (6) | 0.0177 (7) | 0.0200 (7) | −0.0006 (5) | −0.0035 (5) | −0.0032 (5) |
C1 | 0.0211 (8) | 0.0216 (8) | 0.0144 (7) | −0.0032 (7) | 0.0002 (6) | 0.0011 (6) |
C2 | 0.0184 (7) | 0.0192 (8) | 0.0146 (7) | −0.0039 (6) | 0.0010 (6) | 0.0011 (6) |
C3 | 0.0166 (7) | 0.0336 (10) | 0.0277 (9) | 0.0000 (7) | −0.0019 (7) | −0.0089 (8) |
C4 | 0.0264 (9) | 0.0371 (11) | 0.0343 (10) | 0.0034 (8) | −0.0006 (8) | −0.0185 (9) |
C5 | 0.0269 (9) | 0.0285 (9) | 0.0226 (8) | −0.0054 (7) | −0.0046 (7) | −0.0076 (7) |
C6 | 0.0180 (7) | 0.0245 (9) | 0.0245 (8) | −0.0022 (7) | −0.0051 (7) | 0.0006 (7) |
C7 | 0.0192 (8) | 0.0187 (8) | 0.0203 (8) | 0.0010 (6) | −0.0007 (6) | −0.0003 (6) |
C8 | 0.0145 (7) | 0.0173 (8) | 0.0197 (8) | 0.0042 (6) | −0.0019 (6) | −0.0001 (6) |
C9 | 0.0143 (7) | 0.0156 (8) | 0.0254 (8) | 0.0045 (6) | −0.0036 (6) | 0.0004 (6) |
C10 | 0.0177 (8) | 0.0183 (8) | 0.0281 (9) | 0.0042 (6) | −0.0035 (7) | −0.0017 (7) |
C11 | 0.0182 (8) | 0.0171 (8) | 0.0364 (10) | 0.0028 (7) | −0.0075 (7) | −0.0035 (7) |
C12 | 0.0178 (8) | 0.0200 (9) | 0.0420 (11) | 0.0001 (7) | −0.0019 (7) | 0.0058 (8) |
C13 | 0.0185 (8) | 0.0255 (9) | 0.0288 (9) | 0.0015 (7) | −0.0009 (7) | 0.0054 (7) |
C14 | 0.0141 (7) | 0.0181 (8) | 0.0278 (9) | 0.0046 (6) | −0.0025 (6) | 0.0019 (7) |
C15 | 0.0147 (7) | 0.0207 (8) | 0.0234 (8) | 0.0060 (6) | −0.0007 (6) | 0.0013 (7) |
C16 | 0.0192 (8) | 0.0275 (9) | 0.0264 (9) | 0.0037 (7) | 0.0013 (7) | 0.0027 (7) |
C17 | 0.0241 (8) | 0.0347 (10) | 0.0201 (8) | 0.0076 (8) | 0.0022 (7) | 0.0002 (7) |
C18 | 0.0217 (8) | 0.0299 (9) | 0.0212 (8) | 0.0068 (7) | −0.0044 (7) | −0.0032 (7) |
C19 | 0.0162 (7) | 0.0227 (9) | 0.0247 (9) | 0.0040 (6) | −0.0035 (6) | −0.0023 (7) |
C20 | 0.0152 (7) | 0.0190 (8) | 0.0217 (8) | 0.0064 (6) | −0.0033 (6) | −0.0002 (6) |
C21 | 0.0137 (7) | 0.0166 (8) | 0.0214 (8) | 0.0026 (6) | −0.0032 (6) | 0.0000 (6) |
C22 | 0.0150 (7) | 0.0157 (8) | 0.0214 (8) | 0.0051 (6) | −0.0032 (6) | −0.0016 (6) |
C23 | 0.0144 (7) | 0.0171 (8) | 0.0224 (8) | 0.0051 (6) | −0.0021 (6) | 0.0009 (6) |
C24 | 0.0190 (8) | 0.0243 (9) | 0.0236 (8) | 0.0014 (7) | −0.0024 (7) | −0.0011 (7) |
C25 | 0.0194 (8) | 0.0265 (9) | 0.0330 (10) | −0.0021 (7) | −0.0045 (7) | 0.0038 (8) |
C26 | 0.0203 (8) | 0.0286 (10) | 0.0304 (9) | 0.0034 (7) | 0.0014 (7) | 0.0097 (8) |
C27 | 0.0301 (9) | 0.0264 (9) | 0.0215 (8) | 0.0057 (7) | 0.0000 (7) | 0.0018 (7) |
C28 | 0.0234 (8) | 0.0191 (8) | 0.0243 (8) | 0.0021 (7) | −0.0029 (7) | −0.0011 (7) |
O1—C1 | 1.2588 (19) | C12—C13 | 1.377 (2) |
O2—C1 | 1.2587 (19) | C12—H12 | 0.9300 |
N1—C22 | 1.339 (2) | C13—C14 | 1.409 (2) |
N1—C8 | 1.380 (2) | C13—H13 | 0.9300 |
N1—H1 | 0.8600 | C14—C15 | 1.467 (2) |
N2—C22 | 1.349 (2) | C15—C16 | 1.407 (2) |
N2—C21 | 1.379 (2) | C15—C20 | 1.422 (2) |
N2—H2 | 0.8600 | C16—C17 | 1.378 (2) |
C1—C2 | 1.507 (2) | C16—H16 | 0.9300 |
C2—C3 | 1.384 (2) | C17—C18 | 1.394 (2) |
C2—C7 | 1.390 (2) | C17—H17 | 0.9300 |
C3—C4 | 1.386 (2) | C18—C19 | 1.374 (2) |
C3—H3 | 0.9300 | C18—H18 | 0.9300 |
C4—C5 | 1.383 (2) | C19—C20 | 1.407 (2) |
C4—H4 | 0.9300 | C19—H19 | 0.9300 |
C5—C6 | 1.382 (2) | C20—C21 | 1.429 (2) |
C5—H5 | 0.9300 | C22—C23 | 1.461 (2) |
C6—C7 | 1.386 (2) | C23—C24 | 1.396 (2) |
C6—H6 | 0.9300 | C23—C28 | 1.398 (2) |
C7—H7 | 0.9300 | C24—C25 | 1.382 (2) |
C8—C21 | 1.369 (2) | C24—H24 | 0.9300 |
C8—C9 | 1.430 (2) | C25—C26 | 1.382 (2) |
C9—C10 | 1.408 (2) | C25—H25 | 0.9300 |
C9—C14 | 1.417 (2) | C26—C27 | 1.389 (2) |
C10—C11 | 1.376 (2) | C26—H26 | 0.9300 |
C10—H10 | 0.9300 | C27—C28 | 1.381 (2) |
C11—C12 | 1.395 (2) | C27—H27 | 0.9300 |
C11—H11 | 0.9300 | C28—H28 | 0.9300 |
C22—N1—C8 | 108.53 (13) | C13—C14—C9 | 117.21 (15) |
C22—N1—H1 | 125.7 | C13—C14—C15 | 122.08 (15) |
C8—N1—H1 | 125.7 | C9—C14—C15 | 120.70 (14) |
C22—N2—C21 | 108.28 (13) | C16—C15—C20 | 116.92 (15) |
C22—N2—H2 | 125.9 | C16—C15—C14 | 122.22 (15) |
C21—N2—H2 | 125.9 | C20—C15—C14 | 120.86 (14) |
O2—C1—O1 | 126.11 (15) | C17—C16—C15 | 121.50 (16) |
O2—C1—C2 | 117.05 (14) | C17—C16—H16 | 119.3 |
O1—C1—C2 | 116.84 (14) | C15—C16—H16 | 119.3 |
C3—C2—C7 | 119.04 (14) | C16—C17—C18 | 120.82 (16) |
C3—C2—C1 | 119.87 (14) | C16—C17—H17 | 119.6 |
C7—C2—C1 | 121.09 (14) | C18—C17—H17 | 119.6 |
C2—C3—C4 | 121.02 (15) | C19—C18—C17 | 119.72 (16) |
C2—C3—H3 | 119.5 | C19—C18—H18 | 120.1 |
C4—C3—H3 | 119.5 | C17—C18—H18 | 120.1 |
C5—C4—C3 | 119.58 (16) | C18—C19—C20 | 120.15 (16) |
C5—C4—H4 | 120.2 | C18—C19—H19 | 119.9 |
C3—C4—H4 | 120.2 | C20—C19—H19 | 119.9 |
C6—C5—C4 | 119.83 (15) | C19—C20—C15 | 120.88 (15) |
C6—C5—H5 | 120.1 | C19—C20—C21 | 122.89 (15) |
C4—C5—H5 | 120.1 | C15—C20—C21 | 116.23 (14) |
C5—C6—C7 | 120.51 (15) | C8—C21—N2 | 107.21 (14) |
C5—C6—H6 | 119.7 | C8—C21—C20 | 122.93 (14) |
C7—C6—H6 | 119.7 | N2—C21—C20 | 129.85 (14) |
C6—C7—C2 | 119.97 (15) | N1—C22—N2 | 108.77 (14) |
C6—C7—H7 | 120.0 | N1—C22—C23 | 126.05 (14) |
C2—C7—H7 | 120.0 | N2—C22—C23 | 125.15 (14) |
C21—C8—N1 | 107.20 (13) | C24—C23—C28 | 119.31 (15) |
C21—C8—C9 | 122.75 (15) | C24—C23—C22 | 119.99 (14) |
N1—C8—C9 | 130.06 (14) | C28—C23—C22 | 120.69 (14) |
C10—C9—C14 | 120.94 (15) | C25—C24—C23 | 119.90 (16) |
C10—C9—C8 | 122.55 (15) | C25—C24—H24 | 120.0 |
C14—C9—C8 | 116.51 (14) | C23—C24—H24 | 120.0 |
C11—C10—C9 | 119.71 (16) | C26—C25—C24 | 120.80 (16) |
C11—C10—H10 | 120.1 | C26—C25—H25 | 119.6 |
C9—C10—H10 | 120.1 | C24—C25—H25 | 119.6 |
C10—C11—C12 | 120.25 (16) | C25—C26—C27 | 119.43 (16) |
C10—C11—H11 | 119.9 | C25—C26—H26 | 120.3 |
C12—C11—H11 | 119.9 | C27—C26—H26 | 120.3 |
C13—C12—C11 | 120.41 (16) | C28—C27—C26 | 120.56 (16) |
C13—C12—H12 | 119.8 | C28—C27—H27 | 119.7 |
C11—C12—H12 | 119.8 | C26—C27—H27 | 119.7 |
C12—C13—C14 | 121.48 (16) | C27—C28—C23 | 119.98 (16) |
C12—C13—H13 | 119.3 | C27—C28—H28 | 120.0 |
C14—C13—H13 | 119.3 | C23—C28—H28 | 120.0 |
O2—C1—C2—C3 | −6.4 (2) | C15—C16—C17—C18 | 1.1 (2) |
O1—C1—C2—C3 | 172.81 (15) | C16—C17—C18—C19 | −0.3 (2) |
O2—C1—C2—C7 | 174.49 (15) | C17—C18—C19—C20 | −0.7 (2) |
O1—C1—C2—C7 | −6.2 (2) | C18—C19—C20—C15 | 1.0 (2) |
C7—C2—C3—C4 | 2.3 (3) | C18—C19—C20—C21 | −178.48 (15) |
C1—C2—C3—C4 | −176.81 (16) | C16—C15—C20—C19 | −0.2 (2) |
C2—C3—C4—C5 | −1.0 (3) | C14—C15—C20—C19 | −179.56 (14) |
C3—C4—C5—C6 | −1.2 (3) | C16—C15—C20—C21 | 179.29 (13) |
C4—C5—C6—C7 | 2.0 (3) | C14—C15—C20—C21 | −0.1 (2) |
C5—C6—C7—C2 | −0.7 (2) | N1—C8—C21—N2 | −0.15 (16) |
C3—C2—C7—C6 | −1.4 (2) | C9—C8—C21—N2 | 179.75 (13) |
C1—C2—C7—C6 | 177.64 (14) | N1—C8—C21—C20 | 178.83 (13) |
C22—N1—C8—C21 | −0.49 (16) | C9—C8—C21—C20 | −1.3 (2) |
C22—N1—C8—C9 | 179.62 (15) | C22—N2—C21—C8 | 0.74 (16) |
C21—C8—C9—C10 | −178.91 (14) | C22—N2—C21—C20 | −178.15 (15) |
N1—C8—C9—C10 | 1.0 (2) | C19—C20—C21—C8 | −179.40 (15) |
C21—C8—C9—C14 | 0.3 (2) | C15—C20—C21—C8 | 1.1 (2) |
N1—C8—C9—C14 | −179.82 (14) | C19—C20—C21—N2 | −0.7 (2) |
C14—C9—C10—C11 | −1.0 (2) | C15—C20—C21—N2 | 179.84 (14) |
C8—C9—C10—C11 | 178.22 (14) | C8—N1—C22—N2 | 0.96 (16) |
C9—C10—C11—C12 | 0.3 (2) | C8—N1—C22—C23 | −176.97 (14) |
C10—C11—C12—C13 | 0.6 (2) | C21—N2—C22—N1 | −1.05 (16) |
C11—C12—C13—C14 | −0.8 (2) | C21—N2—C22—C23 | 176.90 (14) |
C12—C13—C14—C9 | 0.2 (2) | N1—C22—C23—C24 | 175.89 (14) |
C12—C13—C14—C15 | −179.05 (15) | N2—C22—C23—C24 | −1.7 (2) |
C10—C9—C14—C13 | 0.7 (2) | N1—C22—C23—C28 | −3.0 (2) |
C8—C9—C14—C13 | −178.51 (13) | N2—C22—C23—C28 | 179.44 (14) |
C10—C9—C14—C15 | 179.95 (14) | C28—C23—C24—C25 | −1.2 (2) |
C8—C9—C14—C15 | 0.7 (2) | C22—C23—C24—C25 | 179.97 (14) |
C13—C14—C15—C16 | −1.0 (2) | C23—C24—C25—C26 | −0.1 (2) |
C9—C14—C15—C16 | 179.84 (14) | C24—C25—C26—C27 | 1.0 (2) |
C13—C14—C15—C20 | 178.35 (14) | C25—C26—C27—C28 | −0.6 (2) |
C9—C14—C15—C20 | −0.8 (2) | C26—C27—C28—C23 | −0.7 (2) |
C20—C15—C16—C17 | −0.8 (2) | C24—C23—C28—C27 | 1.5 (2) |
C14—C15—C16—C17 | 178.53 (15) | C22—C23—C28—C27 | −179.60 (14) |
Cg4 is the centroid of the C15–C20 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.77 | 2.6159 (17) | 168 |
N2—H2···O2i | 0.86 | 1.83 | 2.6523 (16) | 158 |
C7—H7···Cg4ii | 0.93 | 2.79 | 3.585 (2) | 145 |
C10—H10···O1 | 0.93 | 2.40 | 3.265 (2) | 155 |
C19—H19···O2i | 0.93 | 2.54 | 3.372 (2) | 150 |
C24—H24···O2i | 0.93 | 2.50 | 3.343 (2) | 152 |
C28—H28···O1 | 0.93 | 2.48 | 3.365 (2) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1. |
Acknowledgements
The authors are grateful to the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India, for providing laboratory facilities.
Funding information
Dr Farman Ali acknowledges the DST for INSPIRE Faculty Funding.
References
Akula, S. B., Chen, H.-S., Su, C., Chen, B.-R., Chiou, J.-J., Shieh, C.-H., Lin, Y.-F. & Li, W.-R. (2017). Inorg. Chem. 56, 12987–12995. CSD CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, L., Zhang, D., Xu, L., Fang, Z., Jiang, X.-F. & Lu, F. (2017). Eur. J. Org. Chem. 2017, 2495–2500. CrossRef CAS Google Scholar
Chou, H. H., Chen, Y. H., Hsu, H. P., Chang, W. H., Chen, Y. H. & Cheng, C. H. (2012). Adv. Mater. 24, 5867–5871. CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gu, P.-Y., Wang, Z., Liu, G., Yao, H., Wang, Z., Li, Y., Zhu, J., Li, S. & Zhang, Q. (2017). Chem. Mater. 29, 4172–4175. CSD CrossRef CAS Google Scholar
Huang, H., Wang, Y., Zhuang, S., Yang, X., Wang, L. & Yang, C. (2012). J. Phys. Chem. C, 116, 19458–19466. CrossRef CAS Google Scholar
Li, J., Chen, S., Wang, Z. & Zhang, Q. (2016). Chem. Rec. 16, 1518–1530. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mormul, J., Steimann, M., Maichle–Mössmer, C. & Nagel, U. (2013). Eur. J. Inorg. Chem. pp. 3421–3428. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tapu, D., Owens, C., VanDerveer, D. & Gwaltney, K. (2009). Organometallics, 28, 270–276. CSD CrossRef CAS Google Scholar
Therrien, J. A., Wolf, M. O. & Patrick, B. O. (2014). Inorg. Chem. 53, 12962–12972. CSD CrossRef CAS PubMed Google Scholar
Ullah, F., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2009). Organometallics, 28, 2441–2449. CSD CrossRef CAS Google Scholar
Wang, Z., Gu, P., Liu, G., Yao, H., Wu, Y., Li, Y., Rakesh, G., Zhu, J., Fu, H. & Zhang, Q. (2017). Chem. Commun. 53, 7772–7775. CSD CrossRef CAS Google Scholar
Xu, L., Zhang, D., Zhou, Y., Zheng, Y., Cao, L., Jiang, X.-F. & Lu, F. (2017). Opt. Mater. 70, 131–137. CrossRef CAS Google Scholar
Zhang, Y., Lai, S.-L., Tong, Q.-X., Lo, M.-F., Ng, T.-W., Chan, M.-Y., Wen, Z.-C., He, J., Jeff, K.-S., Tang, X.-L., Liu, W., Ko, C., Wang, P. & Lee, C. (2012). Chem. Mater. 24, 61–70. CSD CrossRef Google Scholar
Zhuang, S., Shangguan, R., Jin, J., Tu, G., Wang, L., Chen, J., Ma, D. & Zhu, X. (2012). Org. Electron. 13, 3050–3059. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.