research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Functionalized 3-(5-ar­yl­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phen­yl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India, cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824236, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by J. T. Mague, Tulane University, USA (Received 3 April 2020; accepted 11 April 2020; online 21 April 2020)

Five examples each of 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-ones and the corresponding 1-(4-azido­phen­yl)-3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C32H24N2O3, (Ie), the mol­ecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific inter­molecular inter­actions in the structure of 1-(4-azido­phen­yl)-3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azido­phen­yl)-3-[5-(2,4-di­chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the di­chloro­phenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the mol­ecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R22(20) dimers. Similar dimers are formed in 1-(4-azido­phen­yl)-3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the mol­ecular conformations within both series of compounds.

1. Chemical context

Chalcones, 1.3-disubstituted-prop-2-en-1-ones of type R1COCH=CHR2, exhibit a wide range of biological activities, particularly when they incorporate functionalized substituents; these include anti­cancer (Murthy et al., 2013[Murthy, Y. L. N., Suhasini, K. P., Pathania, A. S., Bhushan, S. & Sastry, Y. N. (2013). Eur. J. Med. Chem. 62, 545-555.]), anti­malarial (Mishra et al., 2008[Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530-1535.]; Yadav et al., 2012[Yadav, N., Dixit, S. K., Bhattacharya, A., Mishra, L. C., Sharma, M., Awasthi, S. K. & Bhasin, V. K. (2012). Chem. Biol. Drug Des. 80, 340-347.]), anti­tripanosomal (Carvalho et al., 2012[Carvalho, S. A., Feitosa, L. O., Soares, M., Costa, T. E. M. M., Henriques, M. G., Salomão, K., de Castro, S. L., Kaiser, M., Brun, R., Wardell, J. L., Wardell, S. M. S. V., Trossini, G. H. G., Andricopulo, A. D., da Silva, E. F. & Fraga, C. A. M. (2012). Eur. J. Med. Chem. 54, 512-521.]) and anti­viral (Sharma et al., 2011[Sharma, H., Patil, S., Sanchez, T. W., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2011). Bioorg. Med. Chem. 19, 2030-2045.]) activities. With these properties in mind, we have developed a versatile and efficient route to functionalized chalcones, which are themselves the basis for further elaboration to provide a wide range of multiply substituted chalcones. Here we report the synthesis and characterization of five 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-(prop-2-yn-1- yloxy)phen­yl)prop-2-en-1-ones (I) and a corresponding series of five 1-(4-azido­phen­yl)-3-(3-methyl-1-phenyl-5-(ar­yloxy)-1H-pyrazol-4-yl)-prop-2-en-1-ones (II), together with the structures of a representative selection of three examples of each type, namely (Ib)[link], (Ic)[link] and (Ie)[link] and (IIa)[link], (IId)[link] and (IIe)[link] (Figs. 1[link]–6[link][link][link][link][link]). The compounds of types (I) and (II) were prepared using a common synthetic scheme starting from the commercially available 3-methyl-1-phenyl-1H-pyrazole, which was readily converted, under Vilsmaeier–Haack conditions, to the key precursor 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (A) (Fig. 7[link]), which was then converted to a series of 5-ar­yloxy derivatives (B), by reaction with substituted phenols under basic conditions as previously described (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768-776.]). The 5-ar­yloxy compounds (B) were then condensed with 1-[4-(prop-2-yn-1-yl­oxy)phen­yl]ethan-1-one to give the products (Ia)–(Ie) (Fig. 7[link]) or with 1-(4-azido­phen­yl)ethan-1-one to give the corresponding series of products (IIa)–(IIe). Thus the synthesis of these two matched series of products (I) and (II) from common precursors, is highly efficient. The presence of the alkyne unit in the type (I) products and of the azido unit in the type (II) products means that a small library is now available for use in Huisgen-type cyclo­addition reactions to form bis­(chalcone)-substituted 1,2,3-triazoles. Such highly functionalized triazoles are an attractive synthetic target as 1,2,3-triazoles, which exhibit a very wide range of biological activity of potential medicinal values (Kharb et al., 2011[Kharb, R., Sharma, P. C. & Yar, M. S. (2011). J. Enzyme Inhib. Med. Chem. 26, 1-21.]; Dheer et al., 2017[Dheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30-54.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (Ib)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (Ic)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (Ie)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound (IIa)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of compound (IId)[link] showing the atom-labelling scheme, and the disorder in the 2,4-di­chloro­phenyl group. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The mol­ecular structure of compound (IIe)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 7]
Figure 7
Part of the crystal structure of compound (Ib)[link] showing the formation of a chain of centrosymmetric rings parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

2. Structural commentary

Compounds (Ib)[link] and (Ic)[link] are geometrical isomers (Figs. 1[link] and 2[link]), although they are not isomorphous (Table 3[link]). Although the constitutions of compounds (Ie)[link] and (IIe)[link] differ only in the identity of the small substituent at atom C14 (Figs. 3[link] and 6[link]), these compounds crystallize in different space groups (Table 3[link]).

Table 3
Experimental details

  (Ib) (Ic) (Ie)
Crystal data
Chemical formula C28H21ClN2O3 C28H21ClN2O3 C32H24N2O3
Mr 468.92 468.92 484.53
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 297 297 297
a, b, c (Å) 9.909 (7), 10.193 (6), 12.024 (8) 8.9959 (14), 9.7380 (15), 13.637 (2) 8.8615 (6), 10.4973 (7), 13.6588 (10)
α, β, γ (°) 90.94 (2), 106.27 (2), 92.75 (2) 95.901 (4), 94.122 (4), 95.959 (4) 79.006 (3), 89.412 (3), 80.971 (3)
V3) 1163.9 (13) 1177.8 (3) 1231.54 (15)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.20 0.20 0.08
Crystal size (mm) 0.18 × 0.15 × 0.10 0.20 × 0.15 × 0.15 0.20 × 0.16 × 0.16
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.833, 0.980 0.901, 0.971 0.898, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 43789, 5884, 4402 49011, 4837, 3930 30613, 4373, 3474
Rint 0.061 0.061 0.055
(sin θ/λ)max−1) 0.672 0.629 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.155, 1.10 0.048, 0.125, 1.15 0.070, 0.187, 1.07
No. of reflections 5884 4837 4373
No. of parameters 309 309 336
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.41 0.35, −0.45 0.85, −0.29
  (IIa) (IId) (IIe)
Crystal data
Chemical formula C26H21N5O2 C25H17Cl2N5O2 C29H21N5O2
Mr 435.48 490.33 471.51
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 297 297 297
a, b, c (Å) 9.8432 (6), 11.7441 (7), 12.3005 (7) 28.1916 (17), 8.0537 (5), 22.0446 (12) 9.8460 (8), 22.4303 (18), 11.0490 (9)
α, β, γ (°) 114.120 (2), 111.139 (2), 96.537 (2) 90, 109.070 (1), 90 90, 104.157 (2), 90
V3) 1152.06 (12) 4730.5 (5) 2366.0 (3)
Z 2 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.31 0.09
Crystal size (mm) 0.20 × 0.20 × 0.18 0.18 × 0.15 × 0.15 0.22 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.868, 0.985 0.881, 0.955 0.930, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 17379, 4050, 2957 31508, 4174, 3181 43217, 4196, 2463
Rint 0.048 0.049 0.092
(sin θ/λ)max−1) 0.596 0.595 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.10 0.086, 0.155, 1.36 0.063, 0.154, 1.06
No. of reflections 4050 4174 4196
No. of parameters 301 382 327
No. of restraints 0 291 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.22 0.21, −0.23 0.23, −0.27
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

In each of the compounds reported here, the central core of the mol­ecules, comprising the pyrazole ring and the adjacent prop-2-en-1-one unit is very nearly planar. However, the three substituents at atoms C1, N31 and C35 (Figs. 1[link]–6[link][link][link][link][link]) are all twisted out of the plane of the mol­ecular core, as indicated by the relevant torsional angles (Table 1[link]). None of the mol­ecules, therefore, exhibits any inter­nal symmetry, so that all are conformationally chiral: however, the space groups confirm that they have all crystallized as conformational racemates. In each case, the reference mol­ecule was selected to be one having a positive sign for the torsional angle N32—N31—C311—C312 (Table 1[link]).

Table 1
Selected torsional angles (°) for compounds (Ib)[link], (Ic)[link], (Ie)[link], (IIa)[link], (IId)[link] and (IIe)

Parameter (Ib) (Ic) (Ie) (IIa) (IId) (IIe)
N32—N31—C311—C312 151.1 (3) 137.0 (2) 139.9 (3) 135.1 (2) 149.6 (4) 140.9 (3)
C2—C1—C11—C12 168.8 (2) −163.4 (2) −162.8 (3) 166.8 (2) −172.7 (4) −171.4 (3)
C13—C14—O14—C17 169.8 (2) 3.5 (3) −0.4 (4)      
C14—O14—C17—C18 −68.7 (3) −177.1 (2) −174.7 (3)      
C13—C14—N14—N15       −2.7 (3) −172.6 (5) −5.0 (6)
C34—C35—O351—C351 −76.7 (3) −69.3 (3)   70.1 (3) 78.3 (16)  
C34—C35—O451—C451         65.0 (12)  
C35—O351—C351—C352 157.6 (2) 169.5 (2)   −159.6 (2) −164 (2)  
C35—O451—C451—C45         −163.6 (18)  
C34—C35—O351—C352     −70.6 (4)     −71.1 (5)
C35—O351—C352—C351     161.8 (2)     150.9 (3)

In compound (IId)[link], the 2,4-di­chloro­phen­oxy substituent was found to be disordered over two sets of atomic sites, having occupancies 0.55 (4) and 0.45 (4) (Fig. 5[link]). The disorder involves slight differences in the torsional angles around the bond C35-O351 (Fig. 5[link]), thus C34—C35—O351—Cx51 = 78.3 (16)° when x = 3, and 65.0 (12)° when x = 4: on the other hand, the torsional angles around the bonds O351—Cx51 (x = 3 or 4) are the same within experimental uncertainty, thus C35—O351—Cx51—Cx52 = −164 (2)° for x = 3 and −163.6 (18)° when x = 4.

The orientation of the OCH2CCH substituent relative to the adjacent aryl ring is different in compound (Ib)[link], as compared with (Ic)[link] and (Ie)[link] (Table 1[link], Figs. 1[link]–3[link][link]) and similarly the orientation of the azido substituent is different in (IId)[link], as compared with (IIa)[link] and (IIe)[link]. In the case of the type (I) compounds, it is tempting to associate the observed differences with the different patterns of hydrogen bonding (Table 2[link], and Section 3, below), where atom O14 acts as an acceptor only in (Ib)[link] while atom C19 acts as a donor in (Ic)[link] and (Ie)[link] but not in (Ib)[link]. However, in none of the type (II) compounds do any of the N atoms of the azido unit act as a hydrogen-bond acceptor. Hence, in these compounds, at least, the role of this substituent may be mainly that of a space filler, with the conformation adopted being that which most effectively fills any available space between the mol­ecules.

Table 2
Hydrogen bonds and short intra- and inter-mol­ecular contacts (Å, °) for compounds (Ib)[link], (Ic)[link], (Ie)[link], (IIa)[link], (IId)[link] and (IIe)

Cg1, Cg2, Cg3 and Cg4 represent the centroids of the rings C311–C316), (C351–C356), (C351–C354/C359/C360) and (C355–C360), respectively

Compound D—H⋯A DA H⋯A DA D—H⋯A
(Ib) C355—H355⋯O14i 0.93 2.59 3.468 (4) 158
  C356—H356⋯O1ii 0.93 2.51 3.360 (4) 152
(Ic) C19—H19⋯O1iii 0.93 2.25 3.161 (3) 165
  C16—H16⋯Cg2 0.93 2.98 3.882 (2) 165
  C356—H356⋯Cg1iv 0.93 2.88 3.685 (2) 146
(Ie) C19—H19⋯O1v 0.93 2.32 3.233 (5) 165
  C353—H353⋯Cg1vi 0.93 2.86 3.708 (3) 152
(IIa) C357—H35B⋯O1vii 0.96 2.51 3.396 (4) 154
(IId) C356—H356⋯O1viii 0.93 2.32 3.115 (18) 143
  C456—H456⋯O1viii 0.93 2.47 3.21 (2) 137
(IIe) C353—H353⋯O1ix 0.93 2.47 3.288 (4) 147
  C12—H12⋯Cg3x 0.93 2.93 3.761 (4) 150
  C13—H13⋯Cg4x 0.93 2.73 3.547 (4) 148
Symmmetry codes: (i) 2 − x, −y, 1 − z; (ii) 2 − x, 1 − y, 1 − z; (iii) 1 + x, 1 + y, z; (iv) 1 − x, −y, 2 − z; (v) −1 + x, 1 + y, z; (vi) 1 − x, −y, 1 − z; (vii) 1 − x, 1 − y, 2 − z; (viii) 1 − x, 2 − y, 1 − z; (ix) 1 − x, 1 − y, −z; (x) −1 + x, y, z.

3. Supra­molecular features

The supra­molecular assembly in the structures reported here is dominated by C—H⋯O hydrogen bonds (Table 2[link]), along with C—H⋯π(arene) hydrogen bonds in compounds (Ic)[link], (Ie)[link] and (IIe)[link]. However, in none of the compounds containing chloro­phen­oxy substituents, [(Ib), (Ic) and (IId)] are there any short C—Cl⋯π(arene) contacts (cf. Imai et al., 2008[Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129-1137.]).

There are two C—H⋯O hydrogen bonds in the structure of compound (Ib)[link] (Table 2[link]), and together these link the mol­ecules into a chain of centrosymmetric rings running parallel to the [010] direction, with rings of R22(20) type (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) centred at (1, n + 0.5, 0.5) alternating with rings of R22(30) type centred at (1, n, 0.5), where n represents an integer in each case (Fig. 7[link]). In addition to an intra­molecular C—H⋯π(arene) hydrogen bond (Table 2[link]), the structure of compound (Ic)[link], isomeric with (Ib)[link], contains two hydrogen bonds, one each of C—H⋯O and C—H⋯π(arene) types. The C—H⋯O hydrogen bond links mol­ecules related by translation into a C(11) running parallel to the [110] direction, and inversion-related pairs of such chains are linked by the C—H⋯π(arene) hydrogen bond to form a chain of rings running parallel to [110] (Fig. 8[link]). Although there are no intra­molecular hydrogen bonds in the structure of compound (Ie)[link], the inter­molecular hydrogen bonds (Table 2[link]) are similar to those in compound (Ic)[link], although the C—H⋯π(arene) inter­action involves a different donor atom; again a chain of rings is formed, but this time it runs parallel to the [1[\overline{1}]0] direction (Fig. 9[link]).

[Figure 8]
Figure 8
Part of the crystal structure of compound (Ic)[link] showing the formation of a chain of rings parallel to [110]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of compound (Ie)[link] showing the formation of a chain of rings parallel to [1[\overline{1}]0]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

The only direction-specific inter­molecular contact in compound (IIa)[link] involves a methyl group. Because such groups CH3E generally undergo rapid rotation about the C—E bonds, even in the solid state (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.]), particularly when, as here, the methyl group is bonded to a unit having local C2v (mm2) symmetry, when the rotational barrier is particularly low (Tannenbaum et al., 1956[Tannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42-47.]; Naylor & Wilson, 1957[Naylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057-1060.]). Accordingly, such a contact is not regarded as structurally significant. There is a single C—H⋯O hydrogen bond in the structure of compound (IId)[link], with fairly similar dimensions for each of the two disorder components. Hence it is necessary to consider only the major disorder component, where the inversion-related pairs of mol­ecules are linked into cyclic, centrosymmetric R22(20) dimers (Fig. 10[link]). In the structure of compound (IIe)[link], inversion-related pairs of mol­ecules are linked by paired C—H⋯O hydrogen bonds to form cyclic, centrosymmetric R22(20) dimers, which in turn are linked into a chain of rings running parallel to the [100] direction (Fig. 11[link]) by the combined action of two C—H⋯π(arene) hydrogen bonds, which utilize both rings of the 2-naphthyl substituent as the acceptors.

[Figure 10]
Figure 10
Part of the crystal structure of compound (IId)[link] showing the formation of a centrosymmetric dimer. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline, the minor disorder component and the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 2 − y, 1 − z).
[Figure 11]
Figure 11
Part of the crystal structure of compound (IIe)[link] showing the formation of a chain of rings parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Thus, the supra­molecular assembly in the isomeric pair of compounds (Ib)[link] and (Ic)[link] is different in terms of the hydrogen bonds involved (Table 2[link]), although chains of rings, different in each case, are found in all three of the type (I) compounds. Amongst the type (II) compounds, (IIa)[link] and (IId)[link] exhibit either no direction-specific inter­molecular inter­actions, as in (IIa)[link], or finite, zero-dimensional aggregation, as in (IId)[link]. In (IIe)[link], a chain of rings is again found, but different from those in any of the type (I) series, although the R22(20) motif can be identified in each of (Ib)[link], (IId)[link] and (IIe)[link].

4. Database survey

The structures have recently been reported (Vinutha et al., 2014[Vinutha, N., Kumar, S. M., Shobhitha, S., Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, o560.]; Glidewell et al., 2019[Glidewell, C., Kalluraya, B., Rathore, R. S. & Yathirajan, H. S. (2019). CSD Communication (deposition number 1897876). CCDC, Cambridge, UK.]; Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768-776.]) of a number of carbaldehyde precursors of type (B) (Fig. 12[link]), including examples in which R = 2-chloro­phenyl, 4-chloro­phenyl and 2-naphthyl, i.e. the direct precursors for compounds (Ib)[link], (Ic), (Ie)[link], (IIb), (IIc) and (IIe)[link]. Structures have also been reported (Cuartas et al., 2017[Cuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 784-790.]) for both an amino analogue of (B), namely 5-[benz­yl(meth­yl)amino]-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde and of the chalcone derived from this by condensation with 4-bromo­benzaldehyde; for the 5-(N-methyl­piperazino) analogue (Sunitha et al., 2016[Sunitha, V. M., Manju, N., Naveen, S., Kalluraya, B., Lokanath, N. K. & Manjunath, H. R. (2016). IUCrData, 1, x161593.]) and for the 5-piperidino analogue (Kiran Kumar, 2019[Kiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768-776.]). Finally, we note the structures of two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazole-1-yl)-1-thio­phen-2-yl)prop-2-en-1-ones, both of which exhibit disorder in the orientation of the thio­phene unit (Shaibah et al., 2020[Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48-52.]).

[Figure 12]
Figure 12
The synthetic pathway used for the preparation of compounds (Ia)–(Ie) and (IIa)–(IIe).

5. Synthesis and crystallization

For the preparation of the prop-2-yn-1-yl compounds (I), a solution of potassium hydroxide (0.31g, 5.7 mmol) in ethanol (30 ml) was added to a mixture of the appropriate inter­mediate of type (B, Fig.7), 5.7 mmol) and 4-(prop-2-yn-1-yl­oxy)aceto­phenone (1.0 g, 5.7 mmol) in ethanol (30 ml). The mixtures were then stirred at ambient temperature for 4 h, after which time, TLC indicated that the reactions were complete. The solid products were then collected by filtration, washed with water, dried in air and recrystallized from an ethanol–di­methyl­formamide (initial composition 3:1, v/v). Compound (Ia). Yield 82%, m.p. 551 K. IR (cm−1) 3228 (alkyne C-H), 2312 (alkyne C-C), 1672 (C=O), 1578 (C=N). MS (m/z) 449 (M+1)+. Compound (Ib)[link]. Yield 67%, m.p. 438 K. IR (cm−1) 3230 (alkyne C—H), 2352 (alkyne C—C), 1661 (C=O), 1581 (C=N). MS (m/z) 469 (M+1)+. Compound (Ic)[link]. Yield 77%, m.p. 406–407 K. IR (cm−1) 3234 (alkyne C-H), 2356 (alkyne C—C), 1668 (C=O), 1576 (C=N). MS (m/z) 469 (M+1)+. Compound (Id). Yield 65%, m.p. 485–486 K. IR (cm−1) 3237 (alkyne C—H), 2342 (alkyne C—C), 1676 (C=O), 1559 (C=N). MS (m/z) 469 (M+1)+. Compound (Ie)[link]. Yield 69%, m.p. 447–449 K. IR (cm−1) 3227 (alkyne C—H), 2360 (alkyne C—C), 1654 (C=O), 1588 (C=N). MS (m/z) 485 (M+1)+. For the preparation of the azido compounds (II), a solution of potassium hydroxide (0.34g, 6.2 mmol) in ethanol (30 ml) was added to a solution of 4-azido­aceto­phenone (1.0 g, 6.2 mmol) in ethanol (30 ml). The appropriate inter­mediate (B) (6.2 mmol) was then added and the mixtures were then stirred for 30 min, after which time TLC indicated that the reactions were complete. The solid products were then collected by filtration, washed with water, dried in air and recrystallized from an ethanol–di­methyl­formamide (initial composition 3:1, v/v). Compound (IIa)[link]. Yield 96%, m.p. 385–387 K. IR (cm−1) 2359 (azide), 1650 (C=O), 1592 (C=N). MS (m/z) 436 (M+1)+. Compound (IIb). Yield 74%, m.p. 394–396 K. IR (cm−1) 2355 (azide), 1674 (C=O), 1561 (C=N). MS (m/z) 456 (M+1)+. Compound (IIc). Yield 79%, m.p. 425–427 K. IR (cm−1) 2351 (azide), 1671 (C=O), 15612 (C=N). MS (m/z) 456 (M+1)+. Compound (IId)[link]. Yield 70%, m.p. 505 K. IR (cm−1) 2349 (azide), 1656 (C=O), 1592 (C=N). MS (m/z) 490 (M+1)+. Compound (IIe)[link]. Yield 74%, m.p. 489–490 K. IR (cm−1) 2354 (azide), 1676 (C=O), 1565 (C=N). MS (m/z) 472 (M+1)+. Crystals of compounds (Ib)[link], (Ic)[link], (Ie)[link], (IIa)[link], (IId)[link] and (IIe)[link] which were suitable for single-crystal X-ray diffraction were selected directly from the prepared samples: despite repeated efforts, no crystal suitable for single-crystal X-ray diffraction have yet been obtained for compounds (Ia), (Id), (IIb) or (IIc).

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 3[link]. For a number of the structures, [(Ie), (IIa)[link], (IId)[link] and (IIe)], the diffraction data at values of θ > 25° were uniformly of very indifferent quality, particular in terms of the symmetry-equivalent reflections. This is probably a consequence of the indifferent crystal quality, exemplifying the general difficulty within the series (I) and (II) of growing crystals suitable for single-crystal X-ray diffraction (cf. Section 5, above). These higher-angle reflections were therefore rejected during the data-reduction process: we note also that the intensity statistics indicated that very few of these reflections were likely to be labelled as observed for compounds (Ie)[link], (IIa)[link], (IId)[link] and (IIe)[link]. A number of low-angle reflections for (Ib)[link] and (Ie)[link] were also discarded at this stage because of attenuation by the beam stop. Some further low-angle reflections that had been attenuated by the beam stop were omitted from the data sets before the final refinements, thus: for (Ib)[link] (101), (110), (002), (202) and ([\overline{2}]02); for (Ic)[link] ([\overline{1}]10) and (002); for (Ie)[link] (002), (111) and (012); for (IIa)[link] ([\overline{1}]11); and for (IId)[link] ([\overline{1}]12). In addition, the bad outlier reflections ([\overline{2}]04) for (Id) and (130) for (IIe)[link] were also omitted. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The final difference map for compound (Ie)[link] contained two significant peaks, 0.85 e Å−3 at (0.227, 0.557, 0.598), and 0.81 e Å−3 at (0.380, 0.488, 0.596), respectively 1.27 and 1.14 Å from atom C351: however, attempts to develop a plausible disorder model based upon these two peaks were not fruitful. For the minor disorder compound in compound (IId)[link], the bonded distances and the [1,3] non-bonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, similarity restraints were applied to the anisotropic displacement parameters of the partial-occupancy atoms in the disorder components. Subject to these conditions, the occupancies for the two disorder components refined to values of 0.55 (4) and 0.45 (4). Examination of the final refined structures using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) showed that the structure of compound (IIa)[link] contained a void space, of volume 64 Å3, centred at (0.5, 0, 0), but further examination of this structure using the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) showed that the void contained negligible electron density, consistent with the final difference map.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016). Cell refinement: APEX3/SAINT V8.37A (Bruker, 2016) for (Ib), (Ic), (Ie), (IIa); APEX3/SAINT (Bruker, 2016) for (IId), (IIe). For all structures, data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) top
Crystal data top
C28H21ClN2O3Z = 2
Mr = 468.92F(000) = 488
Triclinic, P1Dx = 1.338 Mg m3
a = 9.909 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.193 (6) ÅCell parameters from 7088 reflections
c = 12.024 (8) Åθ = 3.0–31.0°
α = 90.94 (2)°µ = 0.20 mm1
β = 106.27 (2)°T = 297 K
γ = 92.75 (2)°Block, colourless
V = 1163.9 (13) Å30.18 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII
diffractometer
5884 independent reflections
Radiation source: fine focussealed tube4402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 28.6°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1313
Tmin = 0.833, Tmax = 0.980k = 1313
43789 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.9732P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.43 e Å3
5884 reflectionsΔρmin = 0.41 e Å3
309 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.154 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9482 (2)0.3833 (2)0.72250 (19)0.0464 (5)
O11.0416 (2)0.45886 (19)0.78220 (17)0.0709 (6)
C20.8469 (2)0.4294 (2)0.6173 (2)0.0478 (5)
H20.76550.37790.58250.057*
C30.8698 (2)0.5434 (2)0.57132 (18)0.0405 (4)
H30.95080.59250.61160.049*
C110.9385 (2)0.2433 (2)0.75289 (18)0.0417 (5)
C121.0483 (2)0.1947 (2)0.8398 (2)0.0486 (5)
H121.12470.25070.87780.058*
C131.0451 (2)0.0655 (2)0.8700 (2)0.0488 (5)
H131.11970.03470.92740.059*
C140.9314 (2)0.0192 (2)0.8155 (2)0.0446 (5)
C150.8204 (3)0.0268 (2)0.7302 (2)0.0511 (6)
H150.74310.02920.69390.061*
C160.8253 (2)0.1567 (2)0.6991 (2)0.0496 (5)
H160.75110.18680.64100.060*
O140.94132 (19)0.14583 (16)0.85166 (17)0.0576 (5)
C170.8187 (3)0.2343 (3)0.8139 (3)0.0654 (7)
H17A0.84520.32300.83450.078*
H17B0.78290.23280.73010.078*
C180.7077 (3)0.2002 (3)0.8653 (3)0.0608 (7)
C190.6186 (4)0.1767 (4)0.9061 (3)0.0824 (10)
H190.54690.15780.93900.099*
N310.62180 (18)0.64397 (15)0.30547 (16)0.0394 (4)
N320.71026 (19)0.75523 (16)0.33267 (16)0.0425 (4)
C330.8087 (2)0.72855 (19)0.42829 (19)0.0394 (4)
C340.7862 (2)0.60108 (18)0.46748 (18)0.0373 (4)
C350.6653 (2)0.55241 (18)0.38607 (18)0.0368 (4)
C3110.4990 (2)0.6447 (2)0.20822 (19)0.0424 (5)
C3120.4418 (4)0.5309 (3)0.1454 (3)0.0775 (10)
H3120.48410.45170.16470.093*
C3130.3214 (4)0.5351 (3)0.0534 (3)0.0871 (11)
H3130.28260.45810.01170.104*
C3140.2589 (3)0.6505 (3)0.0231 (2)0.0684 (8)
H3140.17660.65230.03750.082*
C3150.3188 (4)0.7634 (3)0.0829 (3)0.0777 (9)
H3150.27810.84280.06150.093*
C3160.4393 (3)0.7612 (3)0.1752 (2)0.0639 (7)
H3160.47970.83900.21460.077*
C3310.9235 (3)0.8287 (2)0.4843 (2)0.0514 (6)
H33A0.92240.90010.43300.077*
H33B1.01280.78930.50050.077*
H33C0.90930.86130.55530.077*
O3510.58686 (15)0.43808 (13)0.38387 (13)0.0395 (3)
C3510.6396 (2)0.32381 (17)0.35285 (17)0.0335 (4)
C3520.5909 (2)0.20629 (18)0.38930 (17)0.0358 (4)
Cl520.47497 (6)0.21019 (6)0.47407 (5)0.05086 (19)
C3530.6332 (2)0.08826 (19)0.35823 (19)0.0431 (5)
H3530.60080.01020.38320.052*
C3540.7248 (3)0.0858 (2)0.2892 (2)0.0478 (5)
H3540.75280.00600.26710.057*
C3550.7740 (2)0.2023 (2)0.2537 (2)0.0455 (5)
H3550.83580.20060.20810.055*
C3560.7321 (2)0.32177 (19)0.28541 (18)0.0396 (4)
H3560.76590.39990.26160.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0496 (12)0.0438 (12)0.0403 (11)0.0114 (9)0.0060 (9)0.0047 (9)
O10.0757 (13)0.0561 (11)0.0594 (11)0.0278 (9)0.0116 (9)0.0101 (9)
C20.0484 (12)0.0413 (11)0.0463 (12)0.0082 (9)0.0027 (10)0.0037 (9)
C30.0404 (10)0.0360 (10)0.0430 (11)0.0028 (8)0.0092 (8)0.0004 (8)
C110.0438 (11)0.0435 (11)0.0346 (10)0.0065 (9)0.0072 (8)0.0038 (8)
C120.0434 (11)0.0512 (13)0.0443 (11)0.0071 (9)0.0027 (9)0.0045 (10)
C130.0434 (12)0.0514 (13)0.0478 (12)0.0026 (10)0.0060 (9)0.0089 (10)
C140.0501 (12)0.0399 (11)0.0460 (11)0.0008 (9)0.0174 (10)0.0028 (9)
C150.0495 (13)0.0445 (12)0.0525 (13)0.0089 (10)0.0050 (10)0.0025 (10)
C160.0462 (12)0.0477 (12)0.0466 (12)0.0074 (10)0.0005 (10)0.0091 (10)
O140.0601 (10)0.0410 (9)0.0728 (12)0.0041 (7)0.0196 (9)0.0106 (8)
C170.0797 (19)0.0404 (13)0.0728 (18)0.0059 (12)0.0178 (15)0.0014 (12)
C180.0536 (15)0.0500 (14)0.0678 (17)0.0125 (11)0.0010 (13)0.0083 (12)
C190.0546 (17)0.088 (2)0.096 (2)0.0109 (16)0.0100 (17)0.0045 (19)
N310.0418 (9)0.0256 (8)0.0468 (9)0.0026 (6)0.0067 (7)0.0027 (7)
N320.0465 (10)0.0249 (8)0.0515 (10)0.0059 (7)0.0079 (8)0.0017 (7)
C330.0426 (11)0.0283 (9)0.0468 (11)0.0032 (8)0.0127 (9)0.0023 (8)
C340.0393 (10)0.0273 (9)0.0443 (11)0.0002 (7)0.0104 (8)0.0000 (8)
C350.0401 (10)0.0243 (8)0.0460 (11)0.0019 (7)0.0127 (8)0.0007 (7)
C3110.0429 (11)0.0378 (10)0.0443 (11)0.0002 (8)0.0085 (9)0.0063 (8)
C3120.086 (2)0.0420 (14)0.0768 (19)0.0110 (13)0.0211 (16)0.0075 (13)
C3130.094 (2)0.0627 (18)0.074 (2)0.0247 (16)0.0216 (18)0.0134 (15)
C3140.0563 (15)0.089 (2)0.0507 (14)0.0010 (14)0.0002 (12)0.0174 (14)
C3150.087 (2)0.076 (2)0.0599 (17)0.0339 (17)0.0013 (15)0.0082 (15)
C3160.0765 (18)0.0487 (14)0.0565 (15)0.0156 (13)0.0005 (13)0.0013 (11)
C3310.0540 (13)0.0357 (11)0.0585 (14)0.0118 (9)0.0084 (11)0.0002 (10)
O3510.0391 (7)0.0245 (6)0.0563 (9)0.0031 (5)0.0164 (6)0.0009 (6)
C3510.0338 (9)0.0260 (8)0.0374 (9)0.0023 (7)0.0055 (7)0.0005 (7)
C3520.0353 (9)0.0307 (9)0.0382 (10)0.0063 (7)0.0063 (8)0.0020 (7)
Cl520.0522 (3)0.0465 (3)0.0582 (4)0.0102 (2)0.0248 (3)0.0016 (2)
C3530.0521 (12)0.0265 (9)0.0479 (11)0.0043 (8)0.0106 (9)0.0040 (8)
C3540.0604 (14)0.0322 (10)0.0508 (12)0.0068 (9)0.0149 (11)0.0003 (9)
C3550.0481 (12)0.0432 (11)0.0486 (12)0.0061 (9)0.0187 (10)0.0035 (9)
C3560.0409 (10)0.0322 (10)0.0460 (11)0.0023 (8)0.0129 (9)0.0062 (8)
Geometric parameters (Å, º) top
C1—O11.228 (3)C33—C3311.492 (3)
C1—C21.477 (3)C34—C351.382 (3)
C1—C111.484 (3)C35—O3511.365 (2)
C2—C31.331 (3)C311—C3161.367 (3)
C2—H20.9300C311—C3121.380 (3)
C3—C341.443 (3)C312—C3131.384 (4)
C3—H30.9300C312—H3120.9300
C11—C161.391 (3)C313—C3141.363 (5)
C11—C121.398 (3)C313—H3130.9300
C12—C131.373 (3)C314—C3151.364 (5)
C12—H120.9300C314—H3140.9300
C13—C141.385 (3)C315—C3161.385 (4)
C13—H130.9300C315—H3150.9300
C14—O141.368 (3)C316—H3160.9300
C14—C151.384 (3)C331—H33A0.9600
C15—C161.384 (3)C331—H33B0.9600
C15—H150.9300C331—H33C0.9600
C16—H160.9300O351—C3511.387 (2)
O14—C171.438 (3)C351—C3561.384 (3)
C17—C181.458 (4)C351—C3521.393 (3)
C17—H17A0.9700C352—C3531.373 (3)
C17—H17B0.9700C352—Cl521.737 (2)
C18—C191.157 (5)C353—C3541.391 (3)
C19—H190.9300C353—H3530.9300
N31—C351.353 (3)C354—C3551.382 (3)
N31—N321.376 (2)C354—H3540.9300
N31—C3111.433 (3)C355—C3561.386 (3)
N32—C331.325 (3)C355—H3550.9300
C33—C341.418 (3)C356—H3560.9300
O1—C1—C2120.4 (2)N31—C35—O351120.93 (18)
O1—C1—C11120.4 (2)N31—C35—C34109.00 (17)
C2—C1—C11119.14 (19)O351—C35—C34129.85 (19)
C3—C2—C1121.3 (2)C316—C311—C312119.3 (2)
C3—C2—H2119.3C316—C311—N31119.2 (2)
C1—C2—H2119.3C312—C311—N31121.5 (2)
C2—C3—C34128.8 (2)C311—C312—C313119.8 (3)
C2—C3—H3115.6C311—C312—H312120.1
C34—C3—H3115.6C313—C312—H312120.1
C16—C11—C12117.7 (2)C314—C313—C312120.9 (3)
C16—C11—C1123.4 (2)C314—C313—H313119.6
C12—C11—C1118.86 (19)C312—C313—H313119.6
C13—C12—C11121.1 (2)C313—C314—C315119.1 (3)
C13—C12—H12119.5C313—C314—H314120.5
C11—C12—H12119.5C315—C314—H314120.5
C12—C13—C14120.4 (2)C314—C315—C316120.9 (3)
C12—C13—H13119.8C314—C315—H315119.6
C14—C13—H13119.8C316—C315—H315119.6
O14—C14—C15125.2 (2)C311—C316—C315120.0 (3)
O14—C14—C13115.0 (2)C311—C316—H316120.0
C15—C14—C13119.8 (2)C315—C316—H316120.0
C16—C15—C14119.5 (2)C33—C331—H33A109.5
C16—C15—H15120.2C33—C331—H33B109.5
C14—C15—H15120.2H33A—C331—H33B109.5
C15—C16—C11121.6 (2)C33—C331—H33C109.5
C15—C16—H16119.2H33A—C331—H33C109.5
C11—C16—H16119.2H33B—C331—H33C109.5
C14—O14—C17118.3 (2)C35—O351—C351117.09 (16)
O14—C17—C18112.3 (2)C356—C351—O351123.40 (17)
O14—C17—H17A109.1C356—C351—C352119.82 (18)
C18—C17—H17A109.1O351—C351—C352116.73 (18)
O14—C17—H17B109.1C353—C352—C351120.49 (19)
C18—C17—H17B109.1C353—C352—Cl52120.13 (15)
H17A—C17—H17B107.9C351—C352—Cl52119.38 (16)
C19—C18—C17178.1 (3)C352—C353—C354119.80 (19)
C18—C19—H19180.0C352—C353—H353120.1
C35—N31—N32110.06 (17)C354—C353—H353120.1
C35—N31—C311130.75 (17)C355—C354—C353119.8 (2)
N32—N31—C311118.98 (16)C355—C354—H354120.1
C33—N32—N31105.58 (16)C353—C354—H354120.1
N32—C33—C34112.02 (18)C354—C355—C356120.6 (2)
N32—C33—C331120.60 (19)C354—C355—H355119.7
C34—C33—C331127.3 (2)C356—C355—H355119.7
C35—C34—C33103.31 (18)C351—C356—C355119.51 (18)
C35—C34—C3130.32 (19)C351—C356—H356120.2
C33—C34—C3126.33 (19)C355—C356—H356120.2
O1—C1—C2—C313.8 (4)C311—N31—C35—C34175.8 (2)
C11—C1—C2—C3164.2 (2)C33—C34—C35—N310.5 (2)
C1—C2—C3—C34177.4 (2)C3—C34—C35—N31178.0 (2)
O1—C1—C11—C16171.0 (2)C33—C34—C35—O351174.0 (2)
C2—C1—C11—C1611.1 (4)C3—C34—C35—O3513.5 (4)
O1—C1—C11—C129.2 (4)C35—N31—C311—C316147.1 (3)
C2—C1—C11—C12168.8 (2)N32—N31—C311—C31627.1 (3)
C16—C11—C12—C130.7 (4)C35—N31—C311—C31234.7 (4)
C1—C11—C12—C13179.2 (2)N32—N31—C311—C312151.1 (3)
C11—C12—C13—C140.8 (4)C316—C311—C312—C3133.1 (5)
C12—C13—C14—O14179.0 (2)N31—C311—C312—C313178.7 (3)
C12—C13—C14—C150.1 (4)C311—C312—C313—C3140.7 (6)
O14—C14—C15—C16178.1 (2)C312—C313—C314—C3151.7 (6)
C13—C14—C15—C160.9 (4)C313—C314—C315—C3161.6 (5)
C14—C15—C16—C111.0 (4)C312—C311—C316—C3153.1 (5)
C12—C11—C16—C150.1 (4)N31—C311—C316—C315178.6 (3)
C1—C11—C16—C15180.0 (2)C314—C315—C316—C3110.8 (5)
C15—C14—O14—C1711.2 (4)N31—C35—O351—C351109.4 (2)
C13—C14—O14—C17169.8 (2)C34—C35—O351—C35176.7 (3)
C14—O14—C17—C1868.7 (3)C35—O351—C351—C35624.8 (3)
C35—N31—N32—C331.5 (2)C35—O351—C351—C352157.64 (18)
C311—N31—N32—C33176.81 (18)C356—C351—C352—C3530.4 (3)
N31—N32—C33—C341.2 (2)O351—C351—C352—C353177.27 (18)
N31—N32—C33—C331179.43 (19)C356—C351—C352—Cl52179.92 (15)
N32—C33—C34—C350.5 (2)O351—C351—C352—Cl522.4 (2)
C331—C33—C34—C35178.5 (2)C351—C352—C353—C3540.4 (3)
N32—C33—C34—C3177.2 (2)Cl52—C352—C353—C354179.26 (17)
C331—C33—C34—C30.9 (4)C352—C353—C354—C3550.9 (3)
C2—C3—C34—C353.3 (4)C353—C354—C355—C3560.5 (4)
C2—C3—C34—C33173.7 (2)O351—C351—C356—C355176.76 (19)
N32—N31—C35—O351173.80 (17)C352—C351—C356—C3550.8 (3)
C311—N31—C35—O3510.8 (3)C354—C355—C356—C3510.3 (3)
N32—N31—C35—C341.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C355—H355···O14i0.932.593.468 (4)158
C356—H356···O1ii0.932.513.360 (4)152
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1.
3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) top
Crystal data top
C28H21ClN2O3Z = 2
Mr = 468.92F(000) = 488
Triclinic, P1Dx = 1.322 Mg m3
a = 8.9959 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7380 (15) ÅCell parameters from 4839 reflections
c = 13.637 (2) Åθ = 2.9–26.5°
α = 95.901 (4)°µ = 0.20 mm1
β = 94.122 (4)°T = 297 K
γ = 95.959 (4)°Block, brown
V = 1177.8 (3) Å30.20 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII
diffractometer
4837 independent reflections
Radiation source: fine focussealed tube3930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 26.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.901, Tmax = 0.971k = 1212
49011 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.6832P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.35 e Å3
4837 reflectionsΔρmin = 0.45 e Å3
309 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.092 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5453 (2)0.2711 (2)0.53901 (14)0.0354 (4)
O10.49212 (18)0.19336 (17)0.46533 (11)0.0535 (4)
C20.5001 (2)0.2494 (2)0.63858 (14)0.0375 (4)
H20.52660.32020.68990.045*
C30.4233 (2)0.1329 (2)0.65779 (14)0.0360 (4)
H30.39990.06350.60510.043*
C110.65551 (19)0.39198 (18)0.52879 (13)0.0321 (4)
C120.6706 (2)0.4355 (2)0.43611 (13)0.0366 (4)
H120.61030.38900.38210.044*
C130.7725 (2)0.54596 (19)0.42185 (14)0.0373 (4)
H130.78030.57390.35910.045*
C140.8635 (2)0.61513 (19)0.50232 (14)0.0351 (4)
C150.8509 (2)0.5724 (2)0.59521 (14)0.0430 (5)
H150.91240.61800.64900.052*
C160.7477 (2)0.4627 (2)0.60857 (14)0.0408 (5)
H160.73940.43550.67150.049*
O140.96866 (16)0.72487 (15)0.49739 (10)0.0466 (4)
C170.9800 (2)0.7763 (2)0.40407 (16)0.0456 (5)
H17A0.88690.81100.38320.055*
H17B0.99870.70230.35480.055*
C181.1030 (2)0.8878 (2)0.41364 (16)0.0445 (5)
C191.2031 (3)0.9760 (2)0.41795 (18)0.0541 (6)
H191.28251.04600.42140.065*
N310.32759 (17)0.10603 (16)0.91019 (11)0.0359 (4)
N320.23589 (18)0.00607 (17)0.86251 (12)0.0387 (4)
C330.2648 (2)0.00897 (19)0.76832 (14)0.0350 (4)
C340.37180 (19)0.10233 (19)0.75252 (13)0.0324 (4)
C350.4074 (2)0.17216 (19)0.84574 (13)0.0333 (4)
C3110.3251 (2)0.14030 (19)1.01431 (14)0.0376 (4)
C3120.4578 (3)0.1772 (2)1.07284 (16)0.0498 (5)
H3120.54920.18091.04490.060*
C3130.4527 (3)0.2086 (3)1.17386 (18)0.0639 (7)
H3130.54150.23511.21360.077*
C3140.3191 (4)0.2013 (3)1.21603 (18)0.0660 (7)
H3140.31720.22231.28400.079*
C3150.1875 (3)0.1625 (3)1.15721 (19)0.0633 (7)
H3150.09660.15641.18580.076*
C3160.1892 (3)0.1326 (2)1.05553 (16)0.0478 (5)
H3160.10010.10771.01580.057*
C3310.1866 (3)0.1197 (2)0.69277 (16)0.0485 (5)
H33A0.15050.19840.72480.073*
H33B0.25550.14730.64580.073*
H33C0.10370.08450.65910.073*
O3510.48920 (15)0.29585 (13)0.87828 (10)0.0397 (3)
C3510.6443 (2)0.31066 (19)0.87288 (13)0.0335 (4)
C3520.7128 (2)0.4453 (2)0.89176 (16)0.0431 (5)
H3520.65650.51820.90750.052*
C3530.8669 (2)0.4705 (2)0.88698 (16)0.0460 (5)
H3530.91480.56070.89940.055*
C3540.9481 (2)0.3613 (2)0.86373 (14)0.0415 (5)
Cl541.14061 (6)0.39375 (8)0.85575 (5)0.0630 (2)
C3550.8803 (2)0.2275 (2)0.84574 (16)0.0458 (5)
H3550.93690.15470.83050.055*
C3560.7260 (2)0.2015 (2)0.85043 (16)0.0422 (5)
H3560.67850.11120.83850.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0323 (9)0.0385 (10)0.0340 (9)0.0033 (7)0.0052 (7)0.0035 (8)
O10.0583 (9)0.0560 (9)0.0383 (8)0.0266 (7)0.0049 (7)0.0008 (7)
C20.0375 (10)0.0407 (10)0.0334 (9)0.0029 (8)0.0059 (7)0.0046 (8)
C30.0340 (9)0.0396 (10)0.0338 (9)0.0022 (8)0.0067 (7)0.0042 (8)
C110.0306 (9)0.0326 (9)0.0323 (9)0.0010 (7)0.0053 (7)0.0020 (7)
C120.0371 (10)0.0393 (10)0.0307 (9)0.0050 (8)0.0015 (7)0.0014 (7)
C130.0399 (10)0.0376 (10)0.0339 (9)0.0031 (8)0.0041 (8)0.0074 (8)
C140.0329 (9)0.0306 (9)0.0401 (10)0.0043 (7)0.0071 (7)0.0002 (7)
C150.0430 (11)0.0469 (11)0.0332 (10)0.0121 (9)0.0010 (8)0.0040 (8)
C160.0433 (11)0.0464 (11)0.0300 (9)0.0092 (9)0.0050 (8)0.0045 (8)
O140.0492 (8)0.0414 (8)0.0439 (8)0.0179 (6)0.0045 (6)0.0028 (6)
C170.0423 (11)0.0432 (11)0.0492 (12)0.0097 (9)0.0002 (9)0.0125 (9)
C180.0425 (11)0.0422 (11)0.0486 (12)0.0027 (9)0.0061 (9)0.0095 (9)
C190.0508 (13)0.0523 (13)0.0564 (13)0.0144 (10)0.0057 (10)0.0119 (10)
N310.0378 (8)0.0370 (8)0.0320 (8)0.0017 (7)0.0059 (6)0.0035 (6)
N320.0384 (8)0.0393 (9)0.0370 (8)0.0047 (7)0.0066 (7)0.0040 (7)
C330.0336 (9)0.0352 (9)0.0357 (9)0.0014 (7)0.0045 (7)0.0059 (7)
C340.0305 (8)0.0340 (9)0.0330 (9)0.0010 (7)0.0051 (7)0.0062 (7)
C350.0306 (9)0.0330 (9)0.0359 (9)0.0003 (7)0.0046 (7)0.0033 (7)
C3110.0488 (11)0.0342 (9)0.0317 (9)0.0091 (8)0.0076 (8)0.0055 (7)
C3120.0551 (13)0.0560 (13)0.0395 (11)0.0168 (10)0.0017 (9)0.0015 (9)
C3130.0885 (19)0.0621 (15)0.0411 (12)0.0254 (14)0.0089 (12)0.0017 (11)
C3140.111 (2)0.0559 (15)0.0355 (12)0.0270 (15)0.0143 (14)0.0046 (10)
C3150.0897 (19)0.0548 (14)0.0540 (14)0.0181 (13)0.0390 (14)0.0136 (11)
C3160.0553 (13)0.0459 (12)0.0455 (12)0.0062 (10)0.0177 (10)0.0104 (9)
C3310.0481 (12)0.0482 (12)0.0439 (11)0.0120 (9)0.0045 (9)0.0027 (9)
O3510.0352 (7)0.0334 (7)0.0484 (8)0.0014 (5)0.0065 (6)0.0024 (6)
C3510.0350 (9)0.0334 (9)0.0314 (9)0.0010 (7)0.0026 (7)0.0027 (7)
C3520.0432 (11)0.0320 (10)0.0518 (12)0.0024 (8)0.0019 (9)0.0028 (8)
C3530.0460 (11)0.0387 (11)0.0490 (12)0.0073 (9)0.0020 (9)0.0009 (9)
C3540.0363 (10)0.0530 (12)0.0333 (10)0.0000 (9)0.0001 (8)0.0024 (8)
Cl540.0371 (3)0.0877 (5)0.0605 (4)0.0021 (3)0.0037 (2)0.0001 (3)
C3550.0422 (11)0.0451 (11)0.0500 (12)0.0100 (9)0.0022 (9)0.0000 (9)
C3560.0428 (11)0.0324 (10)0.0494 (11)0.0010 (8)0.0022 (9)0.0002 (8)
Geometric parameters (Å, º) top
C1—O11.229 (2)C33—C3311.493 (3)
C1—C21.474 (3)C34—C351.378 (3)
C1—C111.483 (2)C35—O3511.360 (2)
C2—C31.327 (3)C311—C3161.380 (3)
C2—H20.9300C311—C3121.380 (3)
C3—C341.452 (2)C312—C3131.385 (3)
C3—H30.9300C312—H3120.9300
C11—C121.385 (3)C313—C3141.367 (4)
C11—C161.394 (3)C313—H3130.9300
C12—C131.378 (3)C314—C3151.377 (4)
C12—H120.9300C314—H3140.9300
C13—C141.390 (3)C315—C3161.389 (3)
C13—H130.9300C315—H3150.9300
C14—O141.362 (2)C316—H3160.9300
C14—C151.382 (3)C331—H33A0.9600
C15—C161.376 (3)C331—H33B0.9600
C15—H150.9300C331—H33C0.9600
C16—H160.9300O351—C3511.396 (2)
O14—C171.421 (2)C351—C3561.375 (3)
C17—C181.456 (3)C351—C3521.380 (3)
C17—H17A0.9700C352—C3531.391 (3)
C17—H17B0.9700C352—H3520.9300
C18—C191.172 (3)C353—C3541.374 (3)
C19—H190.9300C353—H3530.9300
N31—C351.347 (2)C354—C3551.370 (3)
N31—N321.373 (2)C354—Cl541.741 (2)
N31—C3111.427 (2)C355—C3561.393 (3)
N32—C331.327 (2)C355—H3550.9300
C33—C341.418 (2)C356—H3560.9300
O1—C1—C2121.66 (17)N31—C35—O351118.65 (16)
O1—C1—C11120.01 (16)N31—C35—C34108.52 (15)
C2—C1—C11118.32 (16)O351—C35—C34132.30 (16)
C3—C2—C1122.56 (18)C316—C311—C312120.78 (19)
C3—C2—H2118.7C316—C311—N31119.17 (19)
C1—C2—H2118.7C312—C311—N31120.03 (18)
C2—C3—C34126.73 (18)C311—C312—C313119.0 (2)
C2—C3—H3116.6C311—C312—H312120.5
C34—C3—H3116.6C313—C312—H312120.5
C12—C11—C16118.11 (16)C314—C313—C312121.0 (3)
C12—C11—C1119.13 (16)C314—C313—H313119.5
C16—C11—C1122.75 (16)C312—C313—H313119.5
C13—C12—C11121.74 (17)C313—C314—C315119.5 (2)
C13—C12—H12119.1C313—C314—H314120.2
C11—C12—H12119.1C315—C314—H314120.2
C12—C13—C14119.29 (17)C314—C315—C316120.6 (2)
C12—C13—H13120.4C314—C315—H315119.7
C14—C13—H13120.4C316—C315—H315119.7
O14—C14—C15115.58 (16)C311—C316—C315119.0 (2)
O14—C14—C13124.66 (17)C311—C316—H316120.5
C15—C14—C13119.77 (16)C315—C316—H316120.5
C16—C15—C14120.34 (17)C33—C331—H33A109.5
C16—C15—H15119.8C33—C331—H33B109.5
C14—C15—H15119.8H33A—C331—H33B109.5
C15—C16—C11120.75 (17)C33—C331—H33C109.5
C15—C16—H16119.6H33A—C331—H33C109.5
C11—C16—H16119.6H33B—C331—H33C109.5
C14—O14—C17117.27 (15)C35—O351—C351119.84 (14)
O14—C17—C18108.51 (17)C356—C351—C352121.22 (18)
O14—C17—H17A110.0C356—C351—O351123.80 (16)
C18—C17—H17A110.0C352—C351—O351114.98 (16)
O14—C17—H17B110.0C351—C352—C353119.14 (19)
C18—C17—H17B110.0C351—C352—H352120.4
H17A—C17—H17B108.4C353—C352—H352120.4
C19—C18—C17177.6 (2)C354—C353—C352119.52 (19)
C18—C19—H19180.0C354—C353—H353120.2
C35—N31—N32110.96 (15)C352—C353—H353120.2
C35—N31—C311129.06 (16)C355—C354—C353121.34 (19)
N32—N31—C311119.96 (15)C355—C354—Cl54119.29 (17)
C33—N32—N31104.91 (14)C353—C354—Cl54119.37 (16)
N32—C33—C34112.02 (16)C354—C355—C356119.44 (19)
N32—C33—C331120.58 (17)C354—C355—H355120.3
C34—C33—C331127.39 (17)C356—C355—H355120.3
C35—C34—C33103.56 (15)C351—C356—C355119.34 (18)
C35—C34—C3130.35 (17)C351—C356—H356120.3
C33—C34—C3126.06 (17)C355—C356—H356120.3
O1—C1—C2—C313.1 (3)N32—N31—C35—C341.2 (2)
C11—C1—C2—C3168.12 (19)C311—N31—C35—C34179.14 (18)
C1—C2—C3—C34179.02 (18)C33—C34—C35—N310.2 (2)
O1—C1—C11—C1215.4 (3)C3—C34—C35—N31178.15 (19)
C2—C1—C11—C12163.41 (18)C33—C34—C35—O351171.11 (19)
O1—C1—C11—C16163.3 (2)C3—C34—C35—O3516.8 (3)
C2—C1—C11—C1617.9 (3)C35—N31—C311—C316136.4 (2)
C16—C11—C12—C130.4 (3)N32—N31—C311—C31641.4 (3)
C1—C11—C12—C13179.10 (18)C35—N31—C311—C31245.3 (3)
C11—C12—C13—C140.4 (3)N32—N31—C311—C312137.0 (2)
C12—C13—C14—O14179.64 (18)C316—C311—C312—C3131.0 (3)
C12—C13—C14—C150.1 (3)N31—C311—C312—C313179.3 (2)
O14—C14—C15—C16179.76 (19)C311—C312—C313—C3141.1 (4)
C13—C14—C15—C160.6 (3)C312—C313—C314—C3150.2 (4)
C14—C15—C16—C110.7 (3)C313—C314—C315—C3160.8 (4)
C12—C11—C16—C150.2 (3)C312—C311—C316—C3150.0 (3)
C1—C11—C16—C15178.48 (19)N31—C311—C316—C315178.35 (19)
C15—C14—O14—C17176.97 (19)C314—C315—C316—C3110.9 (3)
C13—C14—O14—C173.5 (3)N31—C35—O351—C351120.05 (18)
C14—O14—C17—C18177.14 (18)C34—C35—O351—C35169.3 (3)
C35—N31—N32—C331.7 (2)C35—O351—C351—C35610.4 (3)
C311—N31—N32—C33179.86 (16)C35—O351—C351—C352169.43 (17)
N31—N32—C33—C341.6 (2)C356—C351—C352—C3530.6 (3)
N31—N32—C33—C331179.10 (18)O351—C351—C352—C353179.26 (18)
N32—C33—C34—C350.9 (2)C351—C352—C353—C3540.1 (3)
C331—C33—C34—C35179.9 (2)C352—C353—C354—C3550.4 (3)
N32—C33—C34—C3177.16 (18)C352—C353—C354—Cl54178.92 (16)
C331—C33—C34—C32.1 (3)C353—C354—C355—C3560.4 (3)
C2—C3—C34—C3511.4 (3)Cl54—C354—C355—C356178.93 (16)
C2—C3—C34—C33166.1 (2)C352—C351—C356—C3550.6 (3)
N32—N31—C35—O351171.48 (15)O351—C351—C356—C355179.23 (18)
C311—N31—C35—O3516.4 (3)C354—C355—C356—C3510.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.932.253.161 (3)165
C16—H16···Cg20.932.983.882 (2)165
C356—H356···Cg1ii0.932.883.685 (2)146
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+2.
3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) top
Crystal data top
C32H24N2O3Z = 2
Mr = 484.53F(000) = 508
Triclinic, P1Dx = 1.307 Mg m3
a = 8.8615 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4973 (7) ÅCell parameters from 4376 reflections
c = 13.6588 (10) Åθ = 3.0–25.2°
α = 79.006 (3)°µ = 0.08 mm1
β = 89.412 (3)°T = 297 K
γ = 80.971 (3)°Block, brown
V = 1231.54 (15) Å30.20 × 0.16 × 0.16 mm
Data collection top
Bruker APEXII
diffractometer
4373 independent reflections
Radiation source: fine focussealed tube3474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 25.2°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.898, Tmax = 0.987k = 1212
30613 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.0694P)2 + 1.3194P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.187(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.85 e Å3
4373 reflectionsΔρmin = 0.29 e Å3
336 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.114 (12)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4597 (3)0.2692 (3)0.9522 (2)0.0466 (6)
O10.5161 (3)0.1921 (2)1.02722 (15)0.0682 (7)
C20.5008 (3)0.2472 (3)0.8514 (2)0.0479 (7)
H20.47100.31450.79700.057*
C30.5789 (3)0.1344 (3)0.8354 (2)0.0456 (6)
H30.60580.06940.89160.055*
C110.3503 (3)0.3873 (3)0.96264 (18)0.0421 (6)
C120.3407 (3)0.4290 (3)1.0532 (2)0.0491 (7)
H120.40320.38151.10630.059*
C130.2408 (3)0.5392 (3)1.0669 (2)0.0501 (7)
H130.23760.56641.12790.060*
C140.1454 (3)0.6086 (3)0.9883 (2)0.0463 (6)
C150.1510 (3)0.5671 (3)0.8978 (2)0.0539 (7)
H150.08540.61260.84570.065*
C160.2528 (3)0.4595 (3)0.8848 (2)0.0516 (7)
H160.25720.43400.82320.062*
O140.0419 (2)0.7179 (2)0.99303 (15)0.0600 (6)
C170.0309 (4)0.7627 (3)1.0852 (2)0.0584 (8)
H17A0.12580.79101.09990.070*
H17B0.01290.69181.13870.070*
C180.0948 (4)0.8721 (3)1.0781 (2)0.0584 (8)
C190.1963 (4)0.9573 (4)1.0761 (3)0.0695 (9)
H190.27761.02561.07450.083*
N310.6678 (2)0.0973 (2)0.58075 (16)0.0441 (5)
N320.7581 (3)0.0141 (2)0.63236 (16)0.0481 (6)
C330.7313 (3)0.0118 (3)0.72742 (19)0.0439 (6)
C340.6271 (3)0.1007 (3)0.74080 (19)0.0415 (6)
C350.5907 (3)0.1663 (2)0.64457 (19)0.0423 (6)
C3110.6675 (3)0.1256 (3)0.47431 (19)0.0435 (6)
C3120.5324 (3)0.1747 (3)0.4211 (2)0.0591 (8)
H3120.44080.18890.45420.071*
C3130.5349 (4)0.2025 (4)0.3179 (2)0.0681 (9)
H3130.44440.23720.28190.082*
C3140.6679 (4)0.1798 (3)0.2679 (2)0.0631 (9)
H3140.66830.19900.19860.076*
C3150.8004 (4)0.1285 (3)0.3216 (2)0.0640 (9)
H3150.89100.11140.28810.077*
C3160.8019 (3)0.1014 (3)0.4253 (2)0.0535 (7)
H3160.89270.06740.46100.064*
C3310.8082 (4)0.1185 (3)0.8078 (2)0.0595 (8)
H33A0.86060.18890.77860.089*
H33B0.73310.15080.85290.089*
H33C0.88050.08430.84350.089*
O3510.5097 (2)0.28760 (18)0.60811 (15)0.0528 (5)
C3510.2781 (4)0.4338 (3)0.6115 (2)0.0550 (7)
H3510.33560.50170.59710.066*
C3520.3475 (3)0.3071 (3)0.62206 (19)0.0507 (7)
C3530.2669 (4)0.2018 (3)0.6420 (2)0.0595 (8)
H3530.31750.11600.64830.071*
C3540.1103 (4)0.2270 (3)0.6523 (3)0.0669 (9)
H3540.05530.15730.66540.080*
C3550.1287 (4)0.3815 (4)0.6550 (3)0.0695 (10)
H3550.18640.31370.66860.083*
C3560.1961 (4)0.5079 (4)0.6457 (3)0.0737 (10)
H3560.30130.52570.65330.088*
C3570.1145 (5)0.6132 (4)0.6250 (3)0.0791 (11)
H3570.16480.69910.61880.095*
C3580.0361 (4)0.5891 (4)0.6142 (3)0.0722 (10)
H3580.08980.65960.60050.087*
C3590.0346 (4)0.3537 (3)0.6434 (2)0.0589 (8)
C3600.1159 (3)0.4629 (3)0.62260 (19)0.0447 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0466 (15)0.0465 (15)0.0434 (15)0.0048 (12)0.0025 (12)0.0100 (12)
O10.0799 (15)0.0664 (14)0.0440 (12)0.0306 (12)0.0081 (10)0.0086 (10)
C20.0506 (16)0.0482 (15)0.0404 (14)0.0053 (12)0.0009 (12)0.0081 (12)
C30.0443 (14)0.0458 (15)0.0430 (14)0.0025 (12)0.0013 (11)0.0073 (11)
C110.0435 (14)0.0418 (14)0.0369 (13)0.0038 (11)0.0001 (11)0.0057 (11)
C120.0500 (16)0.0516 (16)0.0394 (14)0.0096 (13)0.0072 (12)0.0066 (12)
C130.0572 (17)0.0491 (16)0.0403 (14)0.0077 (13)0.0031 (12)0.0125 (12)
C140.0474 (15)0.0408 (14)0.0455 (15)0.0065 (11)0.0018 (12)0.0064 (11)
C150.0555 (17)0.0577 (17)0.0395 (15)0.0138 (14)0.0085 (12)0.0047 (12)
C160.0578 (17)0.0541 (17)0.0371 (14)0.0104 (13)0.0051 (12)0.0098 (12)
O140.0669 (13)0.0537 (12)0.0499 (12)0.0219 (10)0.0050 (10)0.0115 (9)
C170.0588 (18)0.0567 (18)0.0560 (18)0.0116 (14)0.0046 (14)0.0186 (14)
C180.0595 (18)0.0551 (18)0.0574 (18)0.0067 (15)0.0010 (14)0.0154 (14)
C190.069 (2)0.069 (2)0.065 (2)0.0181 (18)0.0005 (16)0.0209 (17)
N310.0445 (12)0.0460 (12)0.0375 (12)0.0039 (10)0.0017 (9)0.0063 (9)
N320.0472 (13)0.0491 (13)0.0411 (12)0.0104 (10)0.0011 (10)0.0058 (10)
C330.0415 (14)0.0466 (15)0.0399 (14)0.0034 (11)0.0016 (11)0.0070 (11)
C340.0405 (13)0.0416 (14)0.0402 (14)0.0016 (11)0.0006 (11)0.0093 (11)
C350.0400 (13)0.0393 (13)0.0442 (14)0.0031 (11)0.0019 (11)0.0073 (11)
C3110.0474 (15)0.0425 (14)0.0391 (14)0.0045 (11)0.0006 (11)0.0063 (11)
C3120.0474 (16)0.080 (2)0.0448 (16)0.0008 (15)0.0030 (13)0.0073 (15)
C3130.068 (2)0.082 (2)0.0475 (18)0.0024 (18)0.0128 (15)0.0033 (16)
C3140.088 (2)0.0583 (19)0.0422 (16)0.0131 (17)0.0016 (16)0.0058 (14)
C3150.071 (2)0.064 (2)0.0561 (19)0.0086 (16)0.0194 (16)0.0115 (15)
C3160.0483 (16)0.0547 (17)0.0538 (17)0.0009 (13)0.0028 (13)0.0084 (13)
C3310.0629 (19)0.0568 (18)0.0476 (16)0.0169 (15)0.0012 (14)0.0034 (13)
O3510.0560 (12)0.0400 (10)0.0550 (12)0.0056 (9)0.0027 (9)0.0010 (8)
C3510.0598 (18)0.0475 (16)0.0546 (17)0.0006 (13)0.0104 (14)0.0086 (13)
C3520.0560 (17)0.0508 (16)0.0369 (14)0.0199 (13)0.0108 (12)0.0100 (12)
C3530.0554 (18)0.0525 (17)0.067 (2)0.0013 (14)0.0014 (15)0.0078 (14)
C3540.064 (2)0.0564 (19)0.078 (2)0.0105 (16)0.0048 (17)0.0048 (16)
C3550.0440 (17)0.097 (3)0.064 (2)0.0023 (17)0.0037 (14)0.0123 (18)
C3560.0541 (19)0.099 (3)0.061 (2)0.009 (2)0.0034 (16)0.0163 (19)
C3570.077 (3)0.087 (3)0.065 (2)0.025 (2)0.0158 (18)0.0249 (19)
C3580.084 (3)0.062 (2)0.065 (2)0.0198 (18)0.0179 (18)0.0212 (16)
C3590.0627 (19)0.067 (2)0.0421 (16)0.0060 (15)0.0094 (13)0.0100 (14)
C3600.0479 (15)0.0489 (15)0.0351 (13)0.0018 (12)0.0072 (11)0.0094 (11)
Geometric parameters (Å, º) top
C1—O11.233 (3)C311—C3121.382 (4)
C1—C21.472 (4)C312—C3131.384 (4)
C1—C111.478 (4)C312—H3120.9300
C2—C31.330 (4)C313—C3141.367 (5)
C2—H20.9300C313—H3130.9300
C3—C341.446 (4)C314—C3151.369 (5)
C3—H30.9300C314—H3140.9300
C11—C121.385 (4)C315—C3161.390 (4)
C11—C161.399 (4)C315—H3150.9300
C12—C131.384 (4)C316—H3160.9300
C12—H120.9300C331—H33A0.9600
C13—C141.387 (4)C331—H33B0.9600
C13—H130.9300C331—H33C0.9600
C14—O141.363 (3)O351—C3521.435 (3)
C14—C151.384 (4)C351—C3521.356 (4)
C15—C161.370 (4)C351—C3601.434 (4)
C15—H150.9300C351—H3510.9300
C16—H160.9300C352—C3531.391 (4)
O14—C171.423 (3)C353—C3541.382 (5)
C17—C181.459 (4)C353—H3530.9300
C17—H17A0.9700C354—C3591.376 (5)
C17—H17B0.9700C354—H3540.9300
C18—C191.161 (4)C355—C3561.350 (5)
C19—H190.9300C355—C3591.444 (4)
N31—C351.351 (3)C355—H3550.9300
N31—N321.382 (3)C356—C3571.397 (6)
N31—C3111.427 (3)C356—H3560.9300
N32—C331.322 (3)C357—C3581.331 (5)
C33—C341.420 (4)C357—H3570.9300
C33—C3311.494 (4)C358—C3601.385 (4)
C34—C351.378 (4)C358—H3580.9300
C35—O3511.365 (3)C359—C3601.430 (4)
C311—C3161.372 (4)
O1—C1—C2121.3 (2)C311—C312—C313119.2 (3)
O1—C1—C11120.0 (2)C311—C312—H312120.4
C2—C1—C11118.8 (2)C313—C312—H312120.4
C3—C2—C1122.2 (3)C314—C313—C312121.2 (3)
C3—C2—H2118.9C314—C313—H313119.4
C1—C2—H2118.9C312—C313—H313119.4
C2—C3—C34127.7 (3)C313—C314—C315119.0 (3)
C2—C3—H3116.2C313—C314—H314120.5
C34—C3—H3116.2C315—C314—H314120.5
C12—C11—C16117.6 (2)C314—C315—C316121.2 (3)
C12—C11—C1119.5 (2)C314—C315—H315119.4
C16—C11—C1122.8 (2)C316—C315—H315119.4
C13—C12—C11121.9 (2)C311—C316—C315119.1 (3)
C13—C12—H12119.0C311—C316—H316120.4
C11—C12—H12119.0C315—C316—H316120.4
C12—C13—C14119.1 (3)C33—C331—H33A109.5
C12—C13—H13120.5C33—C331—H33B109.5
C14—C13—H13120.5H33A—C331—H33B109.5
O14—C14—C15115.7 (2)C33—C331—H33C109.5
O14—C14—C13124.4 (2)H33A—C331—H33C109.5
C15—C14—C13119.9 (2)H33B—C331—H33C109.5
C16—C15—C14120.2 (2)C35—O351—C352118.0 (2)
C16—C15—H15119.9C352—C351—C360119.9 (3)
C14—C15—H15119.9C352—C351—H351120.0
C15—C16—C11121.2 (3)C360—C351—H351120.0
C15—C16—H16119.4C351—C352—C353122.5 (3)
C11—C16—H16119.4C351—C352—O351116.0 (3)
C14—O14—C17117.5 (2)C353—C352—O351121.5 (2)
O14—C17—C18109.2 (2)C354—C353—C352118.9 (3)
O14—C17—H17A109.8C354—C353—H353120.6
C18—C17—H17A109.8C352—C353—H353120.6
O14—C17—H17B109.8C359—C354—C353121.0 (3)
C18—C17—H17B109.8C359—C354—H354119.5
H17A—C17—H17B108.3C353—C354—H354119.5
C19—C18—C17177.5 (4)C356—C355—C359118.8 (4)
C18—C19—H19180.0C356—C355—H355120.6
C35—N31—N32110.6 (2)C359—C355—H355120.6
C35—N31—C311129.4 (2)C355—C356—C357122.7 (3)
N32—N31—C311119.9 (2)C355—C356—H356118.6
C33—N32—N31104.8 (2)C357—C356—H356118.6
N32—C33—C34112.5 (2)C358—C357—C356119.3 (4)
N32—C33—C331120.9 (2)C358—C357—H357120.4
C34—C33—C331126.6 (2)C356—C357—H357120.4
C35—C34—C33103.3 (2)C357—C358—C360122.4 (4)
C35—C34—C3130.6 (2)C357—C358—H358118.8
C33—C34—C3126.0 (2)C360—C358—H358118.8
N31—C35—O351119.2 (2)C354—C359—C360120.8 (3)
N31—C35—C34108.7 (2)C354—C359—C355121.6 (3)
O351—C35—C34131.6 (2)C360—C359—C355117.6 (3)
C316—C311—C312120.3 (3)C358—C360—C359119.3 (3)
C316—C311—N31119.5 (2)C358—C360—C351123.7 (3)
C312—C311—N31120.2 (2)C359—C360—C351117.0 (3)
O1—C1—C2—C311.5 (5)C3—C34—C35—O3516.6 (5)
C11—C1—C2—C3169.4 (3)C35—N31—C311—C316140.2 (3)
C1—C2—C3—C34179.5 (3)N32—N31—C311—C31639.0 (4)
O1—C1—C11—C1216.3 (4)C35—N31—C311—C31240.9 (4)
C2—C1—C11—C12162.8 (3)N32—N31—C311—C312139.9 (3)
O1—C1—C11—C16162.8 (3)C316—C311—C312—C3131.7 (5)
C2—C1—C11—C1618.0 (4)N31—C311—C312—C313179.4 (3)
C16—C11—C12—C131.1 (4)C311—C312—C313—C3141.3 (5)
C1—C11—C12—C13179.7 (3)C312—C313—C314—C3150.1 (5)
C11—C12—C13—C141.3 (5)C313—C314—C315—C3161.1 (5)
C12—C13—C14—O14179.6 (3)C312—C311—C316—C3150.7 (4)
C12—C13—C14—C150.1 (5)N31—C311—C316—C315179.6 (3)
O14—C14—C15—C16179.0 (3)C314—C315—C316—C3110.7 (5)
C13—C14—C15—C161.5 (5)N31—C35—O351—C352118.5 (3)
C14—C15—C16—C111.6 (5)C34—C35—O351—C35270.6 (4)
C12—C11—C16—C150.3 (5)C360—C351—C352—C3531.1 (4)
C1—C11—C16—C15178.8 (3)C360—C351—C352—O351179.0 (2)
C15—C14—O14—C17179.1 (3)C35—O351—C352—C351161.8 (2)
C13—C14—O14—C170.4 (4)C35—O351—C352—C35320.2 (4)
C14—O14—C17—C18174.7 (3)C351—C352—C353—C3540.5 (5)
C35—N31—N32—C331.2 (3)O351—C352—C353—C354178.4 (3)
C311—N31—N32—C33179.5 (2)C352—C353—C354—C3590.2 (5)
N31—N32—C33—C341.3 (3)C359—C355—C356—C3570.2 (5)
N31—N32—C33—C331179.5 (3)C355—C356—C357—C3580.2 (6)
N32—C33—C34—C350.8 (3)C356—C357—C358—C3600.1 (5)
C331—C33—C34—C35180.0 (3)C353—C354—C359—C3600.5 (5)
N32—C33—C34—C3177.6 (3)C353—C354—C359—C355179.4 (3)
C331—C33—C34—C31.6 (5)C356—C355—C359—C354179.8 (3)
C2—C3—C34—C359.1 (5)C356—C355—C359—C3600.0 (5)
C2—C3—C34—C33168.9 (3)C357—C358—C360—C3590.1 (5)
N32—N31—C35—O351172.1 (2)C357—C358—C360—C351179.9 (3)
C311—N31—C35—O3517.1 (4)C354—C359—C360—C358180.0 (3)
N32—N31—C35—C340.7 (3)C355—C359—C360—C3580.2 (4)
C311—N31—C35—C34180.0 (3)C354—C359—C360—C3510.0 (4)
C33—C34—C35—N310.1 (3)C355—C359—C360—C351179.9 (3)
C3—C34—C35—N31178.3 (3)C352—C351—C360—C358179.2 (3)
C33—C34—C35—O351171.7 (3)C352—C351—C360—C3590.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.932.323.233 (5)165
C353—H353···Cg1ii0.932.863.708 (3)152
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1.
1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) top
Crystal data top
C26H21N5O2Z = 2
Mr = 435.48F(000) = 456
Triclinic, P1Dx = 1.255 Mg m3
a = 9.8432 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7441 (7) ÅCell parameters from 4051 reflections
c = 12.3005 (7) Åθ = 3.2–25.1°
α = 114.120 (2)°µ = 0.08 mm1
β = 111.139 (2)°T = 297 K
γ = 96.537 (2)°Block, brown
V = 1152.06 (12) Å30.20 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII
diffractometer
4050 independent reflections
Radiation source: fine focussealed tube2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 25.1°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.868, Tmax = 0.985k = 1313
17379 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4937P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.19 e Å3
4050 reflectionsΔρmin = 0.21 e Å3
301 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.179 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6025 (2)0.4013 (2)0.8884 (2)0.0473 (5)
O10.66955 (18)0.33036 (17)0.9214 (2)0.0733 (5)
C20.4353 (2)0.3679 (2)0.8333 (2)0.0465 (5)
H20.38620.42290.80900.056*
C30.3533 (2)0.2591 (2)0.8180 (2)0.0459 (5)
H30.40980.21110.84890.055*
C110.6922 (2)0.52181 (19)0.90264 (19)0.0415 (5)
C120.8501 (2)0.5646 (2)0.9800 (2)0.0462 (5)
H120.89400.51931.02290.055*
C130.9434 (2)0.6725 (2)0.9947 (2)0.0471 (5)
H131.04870.69911.04630.057*
C140.8781 (2)0.7402 (2)0.9317 (2)0.0480 (5)
C150.7212 (2)0.7008 (2)0.8556 (2)0.0557 (6)
H150.67760.74730.81420.067*
C160.6292 (2)0.5923 (2)0.8413 (2)0.0519 (5)
H160.52390.56620.79000.062*
N140.9637 (2)0.85203 (19)0.9401 (2)0.0656 (6)
N151.1040 (3)0.8907 (2)1.0131 (2)0.0693 (6)
N161.2312 (3)0.9373 (3)1.0751 (3)0.1029 (10)
N310.06215 (19)0.16164 (16)0.66089 (17)0.0471 (4)
N320.0398 (2)0.05926 (17)0.68563 (18)0.0511 (5)
C330.1109 (2)0.0864 (2)0.7460 (2)0.0469 (5)
C340.1897 (2)0.20522 (19)0.7604 (2)0.0433 (5)
C350.0727 (2)0.24912 (19)0.7052 (2)0.0442 (5)
C3110.2141 (2)0.1559 (2)0.5825 (2)0.0471 (5)
C3120.2664 (3)0.2627 (2)0.6210 (3)0.0611 (6)
H3120.20340.34060.69880.073*
C3130.4142 (3)0.2524 (3)0.5418 (3)0.0711 (7)
H3130.45060.32390.56670.085*
C3140.5075 (3)0.1371 (3)0.4269 (3)0.0735 (7)
H3140.60630.13120.37410.088*
C3150.4550 (3)0.0308 (3)0.3900 (3)0.0719 (7)
H3150.51840.04720.31240.086*
C3160.3082 (3)0.0397 (2)0.4679 (2)0.0578 (6)
H3160.27280.03240.44330.069*
C3310.1796 (3)0.0017 (2)0.7929 (3)0.0645 (6)
H33A0.10190.06220.78960.097*
H33B0.25870.04980.88290.097*
H33C0.22250.04950.73650.097*
O3510.07382 (17)0.36198 (13)0.69897 (15)0.0522 (4)
C3510.1292 (2)0.38472 (19)0.6168 (2)0.0434 (5)
C3520.1738 (2)0.5152 (2)0.6479 (2)0.0522 (5)
C3530.2282 (3)0.5403 (3)0.5678 (3)0.0690 (7)
H3530.25990.62640.58550.083*
C3540.2367 (3)0.4418 (3)0.4633 (3)0.0780 (8)
H3540.27410.46180.41160.094*
C3550.1900 (3)0.3135 (3)0.4344 (3)0.0699 (7)
H3550.19520.24690.36300.084*
C3560.1353 (3)0.2839 (2)0.5119 (2)0.0547 (6)
H3560.10320.19760.49340.066*
C3570.1657 (4)0.6222 (2)0.7625 (3)0.0777 (8)
H35A0.18760.70310.76080.116*
H35B0.23930.63140.84460.116*
H35C0.06490.60100.75590.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0414 (11)0.0494 (12)0.0507 (12)0.0123 (9)0.0182 (9)0.0266 (10)
O10.0471 (9)0.0702 (11)0.1105 (14)0.0170 (8)0.0231 (9)0.0615 (11)
C20.0378 (11)0.0456 (11)0.0520 (12)0.0110 (9)0.0178 (9)0.0227 (9)
C30.0441 (11)0.0436 (11)0.0474 (11)0.0122 (9)0.0214 (9)0.0194 (9)
C110.0362 (10)0.0439 (11)0.0414 (10)0.0110 (8)0.0166 (8)0.0192 (9)
C120.0382 (11)0.0490 (12)0.0531 (12)0.0147 (9)0.0193 (9)0.0270 (10)
C130.0364 (10)0.0470 (11)0.0531 (12)0.0111 (9)0.0171 (9)0.0231 (10)
C140.0467 (12)0.0430 (11)0.0500 (12)0.0074 (9)0.0213 (9)0.0207 (9)
C150.0478 (12)0.0569 (13)0.0614 (13)0.0119 (10)0.0157 (10)0.0366 (11)
C160.0375 (11)0.0573 (13)0.0544 (12)0.0091 (9)0.0127 (9)0.0298 (11)
N140.0517 (12)0.0558 (12)0.0775 (14)0.0002 (9)0.0136 (10)0.0397 (11)
N150.0585 (14)0.0588 (13)0.0799 (14)0.0032 (10)0.0187 (12)0.0388 (11)
N160.0565 (15)0.0956 (19)0.130 (2)0.0054 (13)0.0099 (15)0.0668 (18)
N310.0417 (9)0.0424 (9)0.0551 (10)0.0076 (7)0.0203 (8)0.0245 (8)
N320.0485 (11)0.0443 (10)0.0612 (11)0.0080 (8)0.0232 (9)0.0291 (9)
C330.0492 (12)0.0416 (11)0.0514 (12)0.0091 (9)0.0252 (10)0.0228 (9)
C340.0422 (11)0.0403 (10)0.0463 (11)0.0090 (8)0.0219 (9)0.0191 (9)
C350.0463 (11)0.0375 (10)0.0512 (11)0.0100 (9)0.0256 (9)0.0212 (9)
C3110.0418 (11)0.0519 (12)0.0499 (11)0.0116 (9)0.0236 (9)0.0246 (10)
C3120.0542 (14)0.0539 (14)0.0674 (15)0.0149 (11)0.0269 (12)0.0235 (12)
C3130.0613 (16)0.0702 (17)0.0894 (19)0.0309 (13)0.0369 (15)0.0399 (15)
C3140.0505 (14)0.090 (2)0.0758 (17)0.0230 (14)0.0233 (13)0.0408 (16)
C3150.0518 (14)0.0762 (18)0.0609 (15)0.0108 (13)0.0165 (12)0.0197 (13)
C3160.0495 (13)0.0558 (13)0.0584 (13)0.0142 (10)0.0248 (11)0.0193 (11)
C3310.0663 (15)0.0588 (14)0.0765 (16)0.0175 (12)0.0304 (13)0.0418 (13)
O3510.0583 (9)0.0427 (8)0.0694 (10)0.0185 (7)0.0374 (8)0.0310 (7)
C3510.0370 (10)0.0452 (11)0.0485 (11)0.0107 (8)0.0155 (9)0.0269 (9)
C3520.0491 (12)0.0476 (12)0.0575 (13)0.0125 (10)0.0163 (10)0.0307 (10)
C3530.0742 (17)0.0632 (16)0.0749 (17)0.0127 (13)0.0264 (14)0.0464 (14)
C3540.089 (2)0.091 (2)0.0798 (18)0.0248 (16)0.0440 (16)0.0589 (17)
C3550.0818 (18)0.0828 (18)0.0608 (15)0.0339 (15)0.0380 (14)0.0411 (14)
C3560.0580 (13)0.0497 (12)0.0547 (13)0.0166 (10)0.0219 (11)0.0267 (11)
C3570.104 (2)0.0467 (14)0.0809 (18)0.0248 (14)0.0384 (16)0.0318 (13)
Geometric parameters (Å, º) top
C1—O11.226 (3)C311—C3161.380 (3)
C1—C21.468 (3)C312—C3131.386 (3)
C1—C111.488 (3)C312—H3120.9300
C2—C31.334 (3)C313—C3141.375 (4)
C2—H20.9300C313—H3130.9300
C3—C341.440 (3)C314—C3151.373 (4)
C3—H30.9300C314—H3140.9300
C11—C161.389 (3)C315—C3161.379 (3)
C11—C121.392 (3)C315—H3150.9300
C12—C131.382 (3)C316—H3160.9300
C12—H120.9300C331—H33A0.9600
C13—C141.380 (3)C331—H33B0.9600
C13—H130.9300C331—H33C0.9600
C14—C151.384 (3)O351—C3511.405 (2)
C14—N141.422 (3)C351—C3561.377 (3)
C15—C161.383 (3)C351—C3521.391 (3)
C15—H150.9300C352—C3531.389 (3)
C16—H160.9300C352—C3571.493 (3)
N14—N151.245 (3)C353—C3541.372 (4)
N15—N161.124 (3)C353—H3530.9300
N31—C351.351 (3)C354—C3551.377 (4)
N31—N321.378 (2)C354—H3540.9300
N31—C3111.433 (3)C355—C3561.385 (3)
N32—C331.326 (3)C355—H3550.9300
C33—C341.426 (3)C356—H3560.9300
C33—C3311.493 (3)C357—H35A0.9600
C34—C351.382 (3)C357—H35B0.9600
C35—O3511.358 (2)C357—H35C0.9600
C311—C3121.379 (3)
O1—C1—C2120.91 (19)C311—C312—H312120.5
O1—C1—C11119.34 (19)C313—C312—H312120.5
C2—C1—C11119.74 (18)C314—C313—C312120.5 (2)
C3—C2—C1120.4 (2)C314—C313—H313119.8
C3—C2—H2119.8C312—C313—H313119.8
C1—C2—H2119.8C315—C314—C313120.1 (2)
C2—C3—C34129.2 (2)C315—C314—H314119.9
C2—C3—H3115.4C313—C314—H314119.9
C34—C3—H3115.4C314—C315—C316120.0 (2)
C16—C11—C12118.03 (19)C314—C315—H315120.0
C16—C11—C1124.29 (18)C316—C315—H315120.0
C12—C11—C1117.66 (18)C315—C316—C311119.9 (2)
C13—C12—C11121.75 (19)C315—C316—H316120.1
C13—C12—H12119.1C311—C316—H316120.1
C11—C12—H12119.1C33—C331—H33A109.5
C14—C13—C12119.10 (19)C33—C331—H33B109.5
C14—C13—H13120.5H33A—C331—H33B109.5
C12—C13—H13120.5C33—C331—H33C109.5
C13—C14—C15120.35 (19)H33A—C331—H33C109.5
C13—C14—N14123.5 (2)H33B—C331—H33C109.5
C15—C14—N14116.1 (2)C35—O351—C351119.16 (15)
C16—C15—C14120.0 (2)C356—C351—C352123.0 (2)
C16—C15—H15120.0C356—C351—O351121.83 (18)
C14—C15—H15120.0C352—C351—O351115.11 (18)
C15—C16—C11120.80 (19)C353—C352—C351116.3 (2)
C15—C16—H16119.6C353—C352—C357122.0 (2)
C11—C16—H16119.6C351—C352—C357121.7 (2)
N15—N14—C14116.1 (2)C354—C353—C352121.9 (2)
N16—N15—N14171.8 (3)C354—C353—H353119.1
C35—N31—N32111.11 (17)C352—C353—H353119.1
C35—N31—C311129.06 (18)C353—C354—C355120.3 (2)
N32—N31—C311119.38 (16)C353—C354—H354119.8
C33—N32—N31104.82 (16)C355—C354—H354119.8
N32—C33—C34112.21 (18)C354—C355—C356119.8 (3)
N32—C33—C331120.41 (18)C354—C355—H355120.1
C34—C33—C331127.4 (2)C356—C355—H355120.1
C35—C34—C33103.40 (17)C351—C356—C355118.7 (2)
C35—C34—C3131.01 (19)C351—C356—H356120.7
C33—C34—C3125.58 (19)C355—C356—H356120.7
N31—C35—O351119.52 (18)C352—C357—H35A109.5
N31—C35—C34108.45 (18)C352—C357—H35B109.5
O351—C35—C34131.82 (18)H35A—C357—H35B109.5
C312—C311—C316120.5 (2)C352—C357—H35C109.5
C312—C311—N31121.14 (19)H35A—C357—H35C109.5
C316—C311—N31118.35 (19)H35B—C357—H35C109.5
C311—C312—C313119.0 (2)
O1—C1—C2—C30.1 (3)C311—N31—C35—C34171.57 (19)
C11—C1—C2—C3178.86 (19)C33—C34—C35—N310.9 (2)
C1—C2—C3—C34176.53 (19)C3—C34—C35—N31178.1 (2)
O1—C1—C11—C16164.2 (2)C33—C34—C35—O351173.7 (2)
C2—C1—C11—C1614.8 (3)C3—C34—C35—O3517.3 (4)
O1—C1—C11—C1214.2 (3)C35—N31—C311—C31253.4 (3)
C2—C1—C11—C12166.82 (18)N32—N31—C311—C312135.1 (2)
C16—C11—C12—C131.0 (3)C35—N31—C311—C316127.5 (2)
C1—C11—C12—C13177.49 (19)N32—N31—C311—C31644.0 (3)
C11—C12—C13—C140.4 (3)C316—C311—C312—C3130.9 (4)
C12—C13—C14—C150.4 (3)N31—C311—C312—C313180.0 (2)
C12—C13—C14—N14179.8 (2)C311—C312—C313—C3140.2 (4)
C13—C14—C15—C160.7 (3)C312—C313—C314—C3150.4 (4)
N14—C14—C15—C16179.5 (2)C313—C314—C315—C3160.3 (4)
C14—C15—C16—C110.1 (4)C314—C315—C316—C3110.4 (4)
C12—C11—C16—C150.7 (3)C312—C311—C316—C3151.0 (3)
C1—C11—C16—C15177.7 (2)N31—C311—C316—C315179.9 (2)
C13—C14—N14—N152.7 (3)N31—C35—O351—C351115.8 (2)
C15—C14—N14—N15177.1 (2)C34—C35—O351—C35170.1 (3)
C35—N31—N32—C330.1 (2)C35—O351—C351—C35621.6 (3)
C311—N31—N32—C33173.08 (17)C35—O351—C351—C352159.61 (18)
N31—N32—C33—C340.7 (2)C356—C351—C352—C3531.0 (3)
N31—N32—C33—C331177.90 (19)O351—C351—C352—C353179.69 (19)
N32—C33—C34—C351.0 (2)C356—C351—C352—C357180.0 (2)
C331—C33—C34—C35177.5 (2)O351—C351—C352—C3571.3 (3)
N32—C33—C34—C3178.03 (18)C351—C352—C353—C3540.4 (4)
C331—C33—C34—C33.5 (3)C357—C352—C353—C354179.4 (3)
C2—C3—C34—C350.2 (4)C352—C353—C354—C3550.3 (4)
C2—C3—C34—C33179.0 (2)C353—C354—C355—C3560.4 (4)
N32—N31—C35—O351174.87 (17)C352—C351—C356—C3550.8 (3)
C311—N31—C35—O35113.1 (3)O351—C351—C356—C355179.5 (2)
N32—N31—C35—C340.5 (2)C354—C355—C356—C3510.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C357—H35B···O1i0.962.513.396 (4)154
Symmetry code: (i) x+1, y+1, z+2.
1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) top
Crystal data top
C25H17Cl2N5O2F(000) = 2016
Mr = 490.33Dx = 1.377 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.1916 (17) ÅCell parameters from 4176 reflections
b = 8.0537 (5) Åθ = 2.9–25.0°
c = 22.0446 (12) ŵ = 0.31 mm1
β = 109.070 (1)°T = 297 K
V = 4730.5 (5) Å3Block, colourless
Z = 80.18 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII
diffractometer
4174 independent reflections
Radiation source: fine focussealed tube3181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 3333
Tmin = 0.881, Tmax = 0.955k = 99
31508 measured reflectionsl = 2621
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.086 w = 1/[σ2(Fo2) + (0.0265P)2 + 10.5248P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155(Δ/σ)max < 0.001
S = 1.36Δρmax = 0.21 e Å3
4174 reflectionsΔρmin = 0.23 e Å3
382 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
291 restraintsExtinction coefficient: 0.0018 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.42395 (14)0.7441 (5)0.5060 (2)0.0497 (10)
O10.42708 (11)0.8068 (4)0.55744 (16)0.0731 (10)
C20.46893 (14)0.7129 (5)0.48791 (19)0.0509 (10)
H20.46580.65240.45090.061*
C30.51394 (14)0.7686 (5)0.52294 (19)0.0505 (10)
H30.51540.82570.56020.061*
C110.37362 (14)0.6992 (5)0.45998 (19)0.0472 (10)
C120.33110 (15)0.7460 (6)0.4740 (2)0.0637 (12)
H120.33460.80360.51180.076*
C130.28398 (17)0.7089 (7)0.4332 (2)0.0741 (14)
H130.25580.74150.44330.089*
C140.27855 (15)0.6239 (6)0.3778 (2)0.0624 (12)
C150.31991 (16)0.5748 (6)0.3626 (2)0.0665 (13)
H150.31620.51640.32500.080*
C160.36695 (15)0.6129 (6)0.4038 (2)0.0616 (12)
H160.39500.57960.39350.074*
N140.22805 (15)0.5915 (6)0.3381 (2)0.0911 (15)
N150.22323 (16)0.4999 (7)0.2916 (3)0.0912 (15)
N160.2133 (2)0.4157 (9)0.2483 (3)0.128 (2)
N310.61980 (11)0.6957 (4)0.46689 (15)0.0498 (9)
N320.64431 (12)0.7692 (5)0.52519 (15)0.0577 (10)
C330.60890 (15)0.8028 (5)0.55055 (19)0.0539 (11)
C340.56086 (13)0.7514 (5)0.51031 (18)0.0455 (9)
C350.56997 (13)0.6852 (5)0.45798 (18)0.0449 (9)
C3110.64806 (14)0.6459 (5)0.42690 (18)0.0489 (10)
C3120.63370 (15)0.5118 (6)0.3859 (2)0.0576 (11)
H3120.60470.45270.38320.069*
C3130.66276 (18)0.4666 (6)0.3491 (2)0.0702 (13)
H3130.65300.37810.32070.084*
C3140.70616 (19)0.5516 (7)0.3541 (2)0.0782 (15)
H3140.72570.51990.32930.094*
C3150.72076 (17)0.6827 (7)0.3955 (3)0.0784 (15)
H3150.75050.73830.39930.094*
C3160.69143 (16)0.7326 (6)0.4316 (2)0.0672 (13)
H3160.70080.82370.45880.081*
C3310.62281 (17)0.8821 (7)0.6150 (2)0.0720 (14)
H33A0.61930.80290.64570.108*
H33B0.60110.97520.61330.108*
H33C0.65700.91940.62740.108*
O3510.53813 (9)0.6158 (3)0.40327 (12)0.0483 (7)0.55 (4)
C3510.5093 (7)0.7253 (10)0.3559 (10)0.030 (5)0.55 (4)
C3520.4689 (8)0.6575 (11)0.3090 (11)0.038 (5)0.55 (4)
Cl520.4590 (5)0.4465 (11)0.3077 (7)0.118 (4)0.55 (4)
C3530.4349 (9)0.7567 (14)0.2647 (12)0.048 (6)0.55 (4)
H3530.41040.71080.22950.058*0.55 (4)
C3540.4384 (7)0.9280 (13)0.2743 (10)0.039 (5)0.55 (4)
Cl540.3988 (2)1.0506 (7)0.2131 (2)0.067 (3)0.55 (4)
C3550.4787 (8)0.9973 (14)0.3206 (11)0.043 (5)0.55 (4)
H3550.48321.11190.32250.051*0.55 (4)
C3560.5125 (8)0.8960 (12)0.3640 (12)0.047 (6)0.55 (4)
H3560.53740.94200.39870.056*0.55 (4)
O4510.53813 (9)0.6158 (3)0.40327 (12)0.0483 (7)0.45 (4)
C4510.5023 (8)0.7239 (13)0.3633 (11)0.031 (5)0.45 (4)
C4520.4619 (10)0.6533 (14)0.3172 (14)0.040 (7)0.45 (4)
Cl620.4539 (3)0.4410 (9)0.3133 (5)0.058 (3)0.45 (4)
C4530.4287 (11)0.7504 (17)0.2708 (15)0.047 (6)0.45 (4)
H4530.39800.70850.24500.056*0.45 (4)
C4540.4429 (9)0.913 (2)0.2639 (13)0.050 (7)0.45 (4)
Cl640.3977 (4)1.0402 (17)0.2112 (5)0.128 (6)0.45 (4)
C4550.4832 (9)0.9854 (19)0.3095 (14)0.045 (6)0.45 (4)
H4550.48891.09890.30860.054*0.45 (4)
C4560.5150 (8)0.8875 (16)0.3564 (13)0.036 (5)0.45 (4)
H4560.54500.93100.38350.043*0.45 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (2)0.045 (2)0.056 (3)0.0079 (19)0.016 (2)0.003 (2)
O10.0606 (19)0.091 (3)0.072 (2)0.0197 (17)0.0267 (16)0.0303 (19)
C20.048 (2)0.056 (3)0.047 (2)0.0035 (19)0.0118 (19)0.003 (2)
C30.051 (2)0.053 (2)0.045 (2)0.004 (2)0.0127 (19)0.0012 (19)
C110.048 (2)0.043 (2)0.051 (2)0.0000 (18)0.0167 (19)0.0025 (19)
C120.051 (3)0.079 (3)0.061 (3)0.006 (2)0.018 (2)0.008 (2)
C130.049 (3)0.100 (4)0.071 (3)0.011 (3)0.017 (2)0.004 (3)
C140.045 (2)0.069 (3)0.065 (3)0.001 (2)0.006 (2)0.007 (2)
C150.051 (3)0.079 (3)0.063 (3)0.001 (2)0.011 (2)0.016 (3)
C160.044 (2)0.072 (3)0.070 (3)0.002 (2)0.019 (2)0.010 (3)
N140.053 (3)0.113 (4)0.091 (3)0.001 (2)0.003 (2)0.017 (3)
N150.061 (3)0.122 (4)0.077 (3)0.009 (3)0.004 (3)0.003 (3)
N160.105 (4)0.175 (6)0.087 (4)0.023 (4)0.009 (3)0.030 (4)
N310.0388 (18)0.061 (2)0.0452 (19)0.0027 (16)0.0082 (15)0.0027 (16)
N320.0398 (18)0.081 (3)0.044 (2)0.0093 (18)0.0023 (15)0.0002 (18)
C330.045 (2)0.066 (3)0.046 (2)0.008 (2)0.0093 (19)0.002 (2)
C340.038 (2)0.049 (2)0.044 (2)0.0037 (18)0.0057 (17)0.0053 (19)
C350.037 (2)0.047 (2)0.044 (2)0.0005 (17)0.0041 (17)0.0081 (19)
C3110.038 (2)0.057 (3)0.046 (2)0.0033 (19)0.0063 (18)0.012 (2)
C3120.047 (2)0.059 (3)0.065 (3)0.004 (2)0.016 (2)0.010 (2)
C3130.063 (3)0.074 (3)0.072 (3)0.015 (3)0.020 (3)0.002 (3)
C3140.065 (3)0.103 (4)0.073 (3)0.016 (3)0.032 (3)0.006 (3)
C3150.052 (3)0.105 (4)0.081 (4)0.010 (3)0.025 (3)0.006 (3)
C3160.051 (3)0.083 (3)0.064 (3)0.007 (2)0.015 (2)0.001 (3)
C3310.057 (3)0.103 (4)0.050 (3)0.017 (3)0.010 (2)0.012 (3)
O3510.0413 (14)0.0446 (15)0.0480 (16)0.0012 (12)0.0005 (12)0.0026 (12)
C3510.019 (5)0.035 (6)0.043 (8)0.004 (4)0.018 (5)0.006 (4)
C3520.035 (6)0.041 (6)0.043 (8)0.001 (4)0.017 (7)0.008 (5)
Cl520.132 (7)0.064 (4)0.115 (6)0.019 (4)0.018 (4)0.012 (4)
C3530.035 (7)0.067 (9)0.039 (8)0.011 (6)0.008 (6)0.013 (6)
C3540.042 (6)0.046 (6)0.030 (7)0.028 (5)0.013 (6)0.010 (5)
Cl540.058 (3)0.068 (4)0.051 (3)0.033 (2)0.014 (3)0.020 (2)
C3550.046 (6)0.045 (6)0.039 (7)0.009 (5)0.017 (7)0.007 (5)
C3560.052 (10)0.049 (8)0.035 (7)0.000 (6)0.010 (7)0.016 (6)
O4510.0413 (14)0.0446 (15)0.0480 (16)0.0012 (12)0.0005 (12)0.0026 (12)
C4510.026 (8)0.057 (9)0.018 (5)0.000 (5)0.017 (6)0.000 (5)
C4520.040 (9)0.050 (8)0.037 (8)0.011 (6)0.021 (7)0.006 (6)
Cl620.052 (4)0.036 (3)0.073 (4)0.012 (2)0.001 (2)0.013 (2)
C4530.035 (8)0.067 (10)0.039 (8)0.002 (7)0.011 (8)0.000 (7)
C4540.042 (8)0.077 (11)0.036 (9)0.005 (8)0.020 (6)0.008 (7)
Cl640.103 (8)0.150 (10)0.130 (9)0.036 (6)0.037 (7)0.023 (6)
C4550.057 (9)0.041 (8)0.047 (10)0.009 (6)0.032 (7)0.003 (7)
C4560.020 (7)0.047 (10)0.043 (10)0.009 (7)0.012 (6)0.002 (8)
Geometric parameters (Å, º) top
C1—O11.218 (5)C313—H3130.9300
C1—C21.470 (5)C314—C3151.367 (7)
C1—C111.494 (5)C314—H3140.9300
C2—C31.329 (5)C315—C3161.382 (6)
C2—H20.9300C315—H3150.9300
C3—C341.445 (5)C316—H3160.9300
C3—H30.9300C331—H33A0.9600
C11—C161.378 (6)C331—H33B0.9600
C11—C121.385 (5)C331—H33C0.9600
C12—C131.372 (6)O351—C3511.405 (7)
C12—H120.9300C351—C3521.377 (7)
C13—C141.365 (6)C351—C3561.385 (11)
C13—H130.9300C352—C3531.377 (8)
C14—C151.372 (6)C352—Cl521.721 (7)
C14—N141.431 (6)C353—C3541.395 (13)
C15—C161.375 (6)C353—H3530.9300
C15—H150.9300C354—C3551.374 (8)
C16—H160.9300C354—Cl541.748 (6)
N14—N151.233 (7)C355—C3561.375 (8)
N15—N161.128 (7)C355—H3550.9300
N31—C351.356 (5)C356—H3560.9300
N31—N321.378 (4)C451—C4521.378 (8)
N31—C3111.425 (5)C451—C4561.387 (12)
N32—C331.322 (5)C452—C4531.381 (8)
C33—C341.417 (5)C452—Cl621.723 (7)
C33—C3311.488 (6)C453—C4541.394 (15)
C34—C351.369 (5)C453—H4530.9300
C35—O3511.366 (4)C454—C4551.376 (9)
C311—C3121.381 (6)C454—Cl641.746 (8)
C311—C3161.382 (6)C455—C4561.373 (8)
C312—C3131.378 (6)C455—H4550.9300
C312—H3120.9300C456—H4560.9300
C313—C3141.374 (7)
O1—C1—C2121.1 (4)C315—C314—C313120.3 (5)
O1—C1—C11119.8 (4)C315—C314—H314119.8
C2—C1—C11119.1 (4)C313—C314—H314119.8
C3—C2—C1121.9 (4)C314—C315—C316120.1 (5)
C3—C2—H2119.0C314—C315—H315119.9
C1—C2—H2119.0C316—C315—H315119.9
C2—C3—C34128.0 (4)C315—C316—C311119.4 (5)
C2—C3—H3116.0C315—C316—H316120.3
C34—C3—H3116.0C311—C316—H316120.3
C16—C11—C12117.7 (4)C33—C331—H33A109.5
C16—C11—C1123.5 (4)C33—C331—H33B109.5
C12—C11—C1118.8 (4)H33A—C331—H33B109.5
C13—C12—C11121.2 (4)C33—C331—H33C109.5
C13—C12—H12119.4H33A—C331—H33C109.5
C11—C12—H12119.4H33B—C331—H33C109.5
C14—C13—C12119.8 (4)C35—O351—C351117.0 (5)
C14—C13—H13120.1C352—C351—C356119.5 (7)
C12—C13—H13120.1C352—C351—O351116.5 (6)
C13—C14—C15120.5 (4)C356—C351—O351122.0 (9)
C13—C14—N14115.9 (4)C351—C352—C353121.1 (6)
C15—C14—N14123.6 (5)C351—C352—Cl52119.6 (6)
C14—C15—C16119.2 (4)C353—C352—Cl52119.3 (6)
C14—C15—H15120.4C352—C353—C354117.9 (8)
C16—C15—H15120.4C352—C353—H353121.1
C15—C16—C11121.6 (4)C354—C353—H353121.1
C15—C16—H16119.2C355—C354—C353121.0 (8)
C11—C16—H16119.2C355—C354—Cl54120.5 (6)
N15—N14—C14115.8 (5)C353—C354—Cl54116.5 (8)
N16—N15—N14172.3 (6)C354—C355—C356119.5 (7)
C35—N31—N32110.0 (3)C354—C355—H355120.3
C35—N31—C311130.9 (3)C356—C355—H355120.3
N32—N31—C311119.1 (3)C355—C356—C351119.9 (8)
C33—N32—N31105.3 (3)C355—C356—H356120.0
N32—C33—C34112.0 (4)C351—C356—H356120.0
N32—C33—C331119.4 (4)C452—C451—C456119.5 (9)
C34—C33—C331128.5 (4)C451—C452—C453120.6 (8)
C35—C34—C33103.7 (3)C451—C452—Cl62120.6 (7)
C35—C34—C3129.5 (3)C453—C452—Cl62118.6 (7)
C33—C34—C3126.8 (4)C452—C453—C454117.7 (11)
N31—C35—O351120.3 (3)C452—C453—H453121.1
N31—C35—C34108.9 (3)C454—C453—H453121.1
O351—C35—C34130.8 (3)C455—C454—C453121.0 (10)
C312—C311—C316120.5 (4)C455—C454—Cl64119.3 (9)
C312—C311—N31121.4 (4)C453—C454—Cl64116.8 (11)
C316—C311—N31118.1 (4)C456—C455—C454119.2 (8)
C313—C312—C311119.2 (4)C456—C455—H455120.4
C313—C312—H312120.4C454—C455—H455120.4
C311—C312—H312120.4C455—C456—C451120.0 (9)
C314—C313—C312120.4 (5)C455—C456—H456120.0
C314—C313—H313119.8C451—C456—H456120.0
C312—C313—H313119.8
O1—C1—C2—C38.0 (6)N32—N31—C311—C312149.6 (4)
C11—C1—C2—C3171.4 (4)C35—N31—C311—C316151.0 (4)
C1—C2—C3—C34178.2 (4)N32—N31—C311—C31628.4 (5)
O1—C1—C11—C16173.2 (4)C316—C311—C312—C3130.9 (6)
C2—C1—C11—C167.4 (6)N31—C311—C312—C313178.8 (4)
O1—C1—C11—C126.7 (6)C311—C312—C313—C3141.5 (7)
C2—C1—C11—C12172.7 (4)C312—C313—C314—C3150.4 (8)
C16—C11—C12—C130.5 (7)C313—C314—C315—C3161.3 (8)
C1—C11—C12—C13179.6 (4)C314—C315—C316—C3111.9 (7)
C11—C12—C13—C140.2 (8)C312—C311—C316—C3150.8 (7)
C12—C13—C14—C150.2 (8)N31—C311—C316—C315177.2 (4)
C12—C13—C14—N14179.7 (5)N31—C35—O351—C351102.1 (15)
C13—C14—C15—C160.3 (8)C34—C35—O351—C35178.3 (16)
N14—C14—C15—C16179.6 (5)C35—O351—C351—C352164 (2)
C14—C15—C16—C110.0 (7)C35—O351—C351—C3560 (4)
C12—C11—C16—C150.4 (7)C356—C351—C352—C3538 (5)
C1—C11—C16—C15179.7 (4)O351—C351—C352—C353172 (3)
C13—C14—N14—N15172.6 (5)C356—C351—C352—Cl52169 (3)
C15—C14—N14—N157.5 (8)O351—C351—C352—Cl524 (4)
C35—N31—N32—C330.3 (4)C351—C352—C353—C3549 (5)
C311—N31—N32—C33179.3 (4)Cl52—C352—C353—C354168 (3)
N31—N32—C33—C340.6 (5)C352—C353—C354—C35510 (5)
N31—N32—C33—C331179.2 (4)C352—C353—C354—Cl54174 (3)
N32—C33—C34—C350.6 (5)C353—C354—C355—C3569 (5)
C331—C33—C34—C35179.1 (5)Cl54—C354—C355—C356173 (3)
N32—C33—C34—C3180.0 (4)C354—C355—C356—C3518 (5)
C331—C33—C34—C31.5 (7)C352—C351—C356—C3558 (5)
C2—C3—C34—C355.1 (7)O351—C351—C356—C355171 (3)
C2—C3—C34—C33175.7 (4)C456—C451—C452—C45311 (6)
N32—N31—C35—O351179.8 (3)C456—C451—C452—Cl62164 (3)
C311—N31—C35—O3510.7 (6)C451—C452—C453—C45413 (6)
N32—N31—C35—C340.1 (5)Cl62—C452—C453—C454163 (4)
C311—N31—C35—C34179.6 (4)C452—C453—C454—C45513 (6)
C33—C34—C35—N310.4 (4)C452—C453—C454—Cl64173 (3)
C3—C34—C35—N31179.8 (4)C453—C454—C455—C45611 (6)
C33—C34—C35—O351179.9 (4)Cl64—C454—C455—C456171 (3)
C3—C34—C35—O3510.5 (7)C454—C455—C456—C45110 (6)
C35—N31—C311—C31231.0 (6)C452—C451—C456—C45510 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C356—H356···O1i0.932.323.115 (18)143
C456—H456···O1i0.932.473.21 (2)137
Symmetry code: (i) x+1, y+2, z+1.
1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) top
Crystal data top
C29H21N5O2F(000) = 984
Mr = 471.51Dx = 1.324 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8460 (8) ÅCell parameters from 4197 reflections
b = 22.4303 (18) Åθ = 3.1–25.1°
c = 11.0490 (9) ŵ = 0.09 mm1
β = 104.157 (2)°T = 297 K
V = 2366.0 (3) Å3Block, orange
Z = 40.22 × 0.21 × 0.16 mm
Data collection top
Bruker APEXII
diffractometer
4196 independent reflections
Radiation source: fine focussealed tube2463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
φ and ω scansθmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.930, Tmax = 0.986k = 2626
43217 measured reflectionsl = 1213
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.0268P)2 + 3.4386P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.154(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.23 e Å3
4196 reflectionsΔρmin = 0.27 e Å3
327 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0143 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3799 (4)0.50783 (16)0.2247 (3)0.0478 (9)
O10.2646 (3)0.49934 (13)0.1526 (2)0.0673 (8)
C20.5060 (4)0.47779 (16)0.2070 (3)0.0489 (9)
H20.59040.48300.26620.059*
C30.5026 (4)0.44316 (15)0.1078 (3)0.0465 (9)
H30.41640.44060.05020.056*
C110.3908 (3)0.54796 (15)0.3332 (3)0.0433 (8)
C120.2693 (4)0.56999 (17)0.3595 (4)0.0543 (10)
H120.18310.55880.30880.065*
C130.2725 (4)0.60784 (17)0.4580 (4)0.0552 (10)
H130.18960.62120.47480.066*
C140.3990 (4)0.62554 (16)0.5309 (3)0.0486 (9)
C150.5220 (4)0.6051 (2)0.5074 (4)0.0656 (12)
H150.60780.61740.55720.079*
C160.5169 (4)0.56643 (19)0.4095 (4)0.0595 (11)
H160.60010.55240.39440.071*
N140.4149 (4)0.66594 (16)0.6335 (3)0.0655 (10)
N150.3037 (4)0.68821 (16)0.6481 (3)0.0621 (9)
N160.2126 (4)0.71190 (18)0.6714 (4)0.0877 (13)
N310.8165 (3)0.36482 (13)0.0799 (3)0.0495 (8)
N320.7208 (3)0.33982 (14)0.0191 (3)0.0551 (8)
C330.6012 (4)0.36732 (16)0.0196 (3)0.0487 (9)
C340.6151 (4)0.40921 (15)0.0783 (3)0.0444 (9)
C350.7544 (4)0.40565 (15)0.1390 (3)0.0446 (9)
C3110.9557 (4)0.34178 (17)0.1152 (3)0.0491 (9)
C3121.0685 (4)0.37933 (18)0.1521 (3)0.0530 (10)
H3121.05550.42040.15360.064*
C3131.2010 (4)0.3553 (2)0.1870 (4)0.0634 (11)
H3131.27780.38050.21160.076*
C3141.2215 (5)0.2949 (2)0.1861 (4)0.0762 (13)
H3141.31150.27920.21020.091*
C3151.1087 (5)0.2577 (2)0.1496 (5)0.0831 (15)
H3151.12270.21670.14960.100*
C3160.9736 (4)0.28021 (19)0.1125 (4)0.0704 (13)
H3160.89710.25490.08660.084*
C3310.4703 (4)0.35114 (19)0.1150 (4)0.0665 (12)
H33A0.49240.32330.17340.100*
H33B0.42980.38640.15850.100*
H33C0.40470.33330.07430.100*
O3510.8283 (2)0.42967 (10)0.2482 (2)0.0485 (6)
C3510.8655 (3)0.51795 (16)0.3666 (3)0.0455 (9)
H3510.85890.49530.43550.055*
C3520.8523 (3)0.49169 (15)0.2527 (3)0.0423 (8)
C3530.8651 (4)0.52368 (17)0.1473 (3)0.0498 (9)
H3530.85580.50460.07090.060*
C3540.8917 (4)0.58332 (18)0.1585 (3)0.0551 (10)
H3540.90210.60470.08930.066*
C3550.9276 (4)0.67581 (18)0.2850 (4)0.0664 (12)
H3550.94100.69770.21750.080*
C3560.9309 (5)0.7037 (2)0.3951 (5)0.0732 (13)
H3560.94460.74470.40170.088*
C3570.9139 (4)0.6714 (2)0.4975 (4)0.0685 (12)
H3570.91520.69130.57160.082*
C3580.8951 (4)0.61082 (19)0.4919 (4)0.0570 (10)
H3580.88620.58970.56200.068*
C3590.9037 (4)0.61317 (16)0.2727 (3)0.0498 (9)
C3600.8896 (3)0.58065 (16)0.3779 (3)0.0437 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.052 (2)0.048 (2)0.0016 (18)0.0093 (17)0.0008 (18)
O10.0452 (16)0.089 (2)0.0630 (17)0.0038 (15)0.0042 (14)0.0216 (16)
C20.037 (2)0.058 (2)0.050 (2)0.0027 (17)0.0077 (16)0.0056 (19)
C30.041 (2)0.051 (2)0.047 (2)0.0013 (17)0.0080 (16)0.0021 (18)
C110.0349 (19)0.048 (2)0.046 (2)0.0009 (16)0.0098 (16)0.0019 (17)
C120.036 (2)0.064 (3)0.062 (2)0.0024 (18)0.0092 (18)0.011 (2)
C130.042 (2)0.063 (3)0.061 (2)0.0017 (19)0.0130 (18)0.014 (2)
C140.048 (2)0.051 (2)0.045 (2)0.0011 (18)0.0082 (17)0.0036 (18)
C150.037 (2)0.093 (3)0.061 (3)0.002 (2)0.0013 (19)0.019 (2)
C160.039 (2)0.082 (3)0.056 (2)0.007 (2)0.0096 (18)0.013 (2)
N140.054 (2)0.078 (2)0.064 (2)0.0027 (19)0.0129 (17)0.0171 (19)
N150.066 (2)0.058 (2)0.061 (2)0.0092 (19)0.0140 (19)0.0108 (18)
N160.076 (3)0.085 (3)0.107 (3)0.002 (2)0.032 (2)0.036 (2)
N310.0454 (18)0.0521 (19)0.0493 (18)0.0013 (15)0.0080 (15)0.0150 (15)
N320.0519 (19)0.057 (2)0.0527 (19)0.0057 (16)0.0061 (15)0.0154 (16)
C330.048 (2)0.049 (2)0.047 (2)0.0067 (18)0.0065 (17)0.0048 (18)
C340.045 (2)0.045 (2)0.042 (2)0.0008 (17)0.0099 (16)0.0052 (17)
C350.046 (2)0.044 (2)0.042 (2)0.0012 (17)0.0079 (17)0.0064 (17)
C3110.046 (2)0.056 (2)0.047 (2)0.0025 (19)0.0137 (17)0.0074 (19)
C3120.050 (2)0.056 (2)0.053 (2)0.000 (2)0.0148 (18)0.0016 (19)
C3130.048 (2)0.084 (3)0.058 (3)0.001 (2)0.0133 (19)0.006 (2)
C3140.054 (3)0.089 (4)0.086 (3)0.017 (3)0.018 (2)0.013 (3)
C3150.072 (3)0.069 (3)0.109 (4)0.019 (3)0.024 (3)0.021 (3)
C3160.062 (3)0.059 (3)0.093 (3)0.003 (2)0.023 (2)0.023 (2)
C3310.060 (3)0.068 (3)0.066 (3)0.009 (2)0.004 (2)0.014 (2)
O3510.0554 (15)0.0442 (14)0.0417 (14)0.0010 (12)0.0042 (11)0.0085 (12)
C3510.040 (2)0.053 (2)0.040 (2)0.0020 (17)0.0057 (16)0.0060 (18)
C3520.0357 (19)0.043 (2)0.044 (2)0.0003 (16)0.0026 (15)0.0079 (18)
C3530.052 (2)0.056 (3)0.040 (2)0.0036 (18)0.0078 (17)0.0031 (18)
C3540.058 (2)0.060 (3)0.045 (2)0.005 (2)0.0081 (18)0.005 (2)
C3550.070 (3)0.053 (3)0.071 (3)0.002 (2)0.007 (2)0.001 (2)
C3560.074 (3)0.055 (3)0.083 (3)0.006 (2)0.005 (3)0.014 (3)
C3570.056 (3)0.072 (3)0.072 (3)0.000 (2)0.007 (2)0.029 (3)
C3580.050 (2)0.070 (3)0.049 (2)0.003 (2)0.0093 (18)0.018 (2)
C3590.045 (2)0.052 (2)0.047 (2)0.0021 (18)0.0028 (17)0.0025 (19)
C3600.0306 (18)0.055 (2)0.042 (2)0.0002 (16)0.0034 (15)0.0121 (18)
Geometric parameters (Å, º) top
C1—O11.232 (4)C312—H3120.9300
C1—C21.467 (5)C313—C3141.371 (6)
C1—C111.482 (5)C313—H3130.9300
C2—C31.337 (5)C314—C3151.368 (6)
C2—H20.9300C314—H3140.9300
C3—C341.446 (5)C315—C3161.387 (6)
C3—H30.9300C315—H3150.9300
C11—C161.382 (5)C316—H3160.9300
C11—C121.389 (5)C331—H33A0.9600
C12—C131.375 (5)C331—H33B0.9600
C12—H120.9300C331—H33C0.9600
C13—C141.367 (5)O351—C3521.410 (4)
C13—H130.9300C351—C3521.367 (5)
C14—C151.377 (5)C351—C3601.427 (5)
C14—N141.430 (5)C351—H3510.9300
C15—C161.378 (5)C352—C3531.400 (5)
C15—H150.9300C353—C3541.363 (5)
C16—H160.9300C353—H3530.9300
N14—N151.249 (5)C354—C3591.407 (5)
N15—N161.126 (5)C354—H3540.9300
N31—C351.353 (4)C355—C3561.360 (6)
N31—N321.376 (4)C355—C3591.426 (5)
N31—C3111.427 (4)C355—H3550.9300
N32—C331.327 (4)C356—C3571.388 (6)
C33—C341.414 (5)C356—H3560.9300
C33—C3311.497 (5)C357—C3581.371 (6)
C34—C351.374 (5)C357—H3570.9300
C35—O3511.359 (4)C358—C3601.419 (5)
C311—C3121.374 (5)C358—H3580.9300
C311—C3161.394 (5)C359—C3601.408 (5)
C312—C3131.377 (5)
O1—C1—C2121.3 (3)C314—C313—H313119.5
O1—C1—C11119.3 (3)C312—C313—H313119.5
C2—C1—C11119.4 (3)C315—C314—C313119.6 (4)
C3—C2—C1121.6 (3)C315—C314—H314120.2
C3—C2—H2119.2C313—C314—H314120.2
C1—C2—H2119.2C314—C315—C316121.0 (4)
C2—C3—C34128.6 (3)C314—C315—H315119.5
C2—C3—H3115.7C316—C315—H315119.5
C34—C3—H3115.7C315—C316—C311118.2 (4)
C16—C11—C12117.2 (3)C315—C316—H316120.9
C16—C11—C1123.5 (3)C311—C316—H316120.9
C12—C11—C1119.3 (3)C33—C331—H33A109.5
C13—C12—C11122.1 (3)C33—C331—H33B109.5
C13—C12—H12119.0H33A—C331—H33B109.5
C11—C12—H12119.0C33—C331—H33C109.5
C14—C13—C12119.2 (3)H33A—C331—H33C109.5
C14—C13—H13120.4H33B—C331—H33C109.5
C12—C13—H13120.4C35—O351—C352118.1 (3)
C13—C14—C15120.6 (4)C352—C351—C360118.8 (3)
C13—C14—N14124.0 (3)C352—C351—H351120.6
C15—C14—N14115.5 (3)C360—C351—H351120.6
C14—C15—C16119.5 (3)C351—C352—C353122.5 (3)
C14—C15—H15120.2C351—C352—O351115.8 (3)
C16—C15—H15120.2C353—C352—O351121.7 (3)
C15—C16—C11121.5 (3)C354—C353—C352118.8 (3)
C15—C16—H16119.3C354—C353—H353120.6
C11—C16—H16119.3C352—C353—H353120.6
N15—N14—C14115.2 (3)C353—C354—C359121.4 (4)
N16—N15—N14172.4 (4)C353—C354—H354119.3
C35—N31—N32110.9 (3)C359—C354—H354119.3
C35—N31—C311129.0 (3)C356—C355—C359120.4 (4)
N32—N31—C311119.6 (3)C356—C355—H355119.8
C33—N32—N31104.3 (3)C359—C355—H355119.8
N32—C33—C34112.7 (3)C355—C356—C357120.5 (4)
N32—C33—C331120.0 (3)C355—C356—H356119.7
C34—C33—C331127.2 (3)C357—C356—H356119.7
C35—C34—C33103.4 (3)C358—C357—C356121.5 (4)
C35—C34—C3130.5 (3)C358—C357—H357119.3
C33—C34—C3126.0 (3)C356—C357—H357119.3
N31—C35—O351119.3 (3)C357—C358—C360119.2 (4)
N31—C35—C34108.6 (3)C357—C358—H358120.4
O351—C35—C34131.6 (3)C360—C358—H358120.4
C312—C311—C316121.1 (4)C354—C359—C360119.4 (3)
C312—C311—N31120.8 (3)C354—C359—C355122.0 (4)
C316—C311—N31118.1 (3)C360—C359—C355118.6 (4)
C311—C312—C313119.0 (4)C359—C360—C358119.7 (3)
C311—C312—H312120.5C359—C360—C351119.1 (3)
C313—C312—H312120.5C358—C360—C351121.2 (4)
C314—C313—C312121.1 (4)
O1—C1—C2—C34.4 (6)C35—N31—C311—C31247.2 (5)
C11—C1—C2—C3177.2 (3)N32—N31—C311—C312140.9 (3)
C1—C2—C3—C34178.0 (3)C35—N31—C311—C316132.0 (4)
O1—C1—C11—C16171.1 (4)N32—N31—C311—C31639.9 (5)
C2—C1—C11—C1610.4 (5)C316—C311—C312—C3130.0 (6)
O1—C1—C11—C127.1 (5)N31—C311—C312—C313179.2 (3)
C2—C1—C11—C12171.4 (3)C311—C312—C313—C3140.5 (6)
C16—C11—C12—C131.0 (6)C312—C313—C314—C3150.3 (7)
C1—C11—C12—C13179.3 (4)C313—C314—C315—C3160.4 (7)
C11—C12—C13—C141.5 (6)C314—C315—C316—C3110.9 (7)
C12—C13—C14—C150.9 (6)C312—C311—C316—C3150.7 (6)
C12—C13—C14—N14178.3 (4)N31—C311—C316—C315178.5 (4)
C13—C14—C15—C160.1 (6)N31—C35—O351—C352118.1 (3)
N14—C14—C15—C16179.4 (4)C34—C35—O351—C35271.1 (5)
C14—C15—C16—C110.6 (7)C360—C351—C352—C3531.7 (5)
C12—C11—C16—C150.1 (6)C360—C351—C352—O351179.8 (3)
C1—C11—C16—C15178.2 (4)C35—O351—C352—C351150.9 (3)
C13—C14—N14—N155.0 (6)C35—O351—C352—C35330.7 (4)
C15—C14—N14—N15174.2 (4)C351—C352—C353—C3540.1 (5)
C35—N31—N32—C331.2 (4)O351—C352—C353—C354178.4 (3)
C311—N31—N32—C33174.5 (3)C352—C353—C354—C3591.2 (5)
N31—N32—C33—C341.1 (4)C359—C355—C356—C3571.3 (6)
N31—N32—C33—C331179.2 (3)C355—C356—C357—C3580.8 (7)
N32—C33—C34—C350.5 (4)C356—C357—C358—C3601.6 (6)
C331—C33—C34—C35178.6 (4)C353—C354—C359—C3600.7 (5)
N32—C33—C34—C3175.5 (3)C353—C354—C359—C355178.2 (4)
C331—C33—C34—C32.5 (6)C356—C355—C359—C354176.3 (4)
C2—C3—C34—C353.7 (7)C356—C355—C359—C3602.6 (6)
C2—C3—C34—C33171.2 (4)C354—C359—C360—C358177.1 (3)
N32—N31—C35—O351171.8 (3)C355—C359—C360—C3581.8 (5)
C311—N31—C35—O3510.6 (6)C354—C359—C360—C3510.9 (5)
N32—N31—C35—C340.9 (4)C355—C359—C360—C351179.9 (3)
C311—N31—C35—C34173.4 (3)C357—C358—C360—C3590.2 (5)
C33—C34—C35—N310.2 (4)C357—C358—C360—C351177.8 (3)
C3—C34—C35—N31176.0 (3)C352—C351—C360—C3592.1 (5)
C33—C34—C35—O351171.3 (4)C352—C351—C360—C358175.9 (3)
C3—C34—C35—O3514.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C353—H353···O1i0.932.473.288 (4)147
C12—H12···Cg3ii0.932.933.761 (4)150
C13—H13···Cg4ii0.932.733.547 (4)148
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z.
Selected torsional angles (°) for compounds (Ib), (Ic), (Ie), (IIa), (IId) and (IIe) top
Parameter(Ib)(Ic)(Ie)(IIa)(IId)(IIe)
N32—N31—C311—C312151.1 (3)137.0 (2)139.9 (3)135.1 (2)149.6 (4)140.9 (3)
C2—C1—C11—C12168.8 (2)-163.4 (2)-162.8 (3)166.8 (2)-172.7 (4)-171.4 (3)
C13—C14—O14—C17169.8 (2)3.5 (3)-0.4 (4)
C14—O14—C17—C18-68.7 (3)-177.1 (2)-174.7 (3)
C13—C14—N14—N15-2.7 (3)-172.6 (5)-5.0 (6)
C34—C35—O351—C351-76.7 (3)-69.3 (3)70.1 (3)78.3 (16)
C34—C35—O451—C45165.0 (12)
C35—O351—C351—C352157.6 (2)169.5 (2)-159.6 (2)-164 (2)
C35—O451—C451—C45-163.6 (18)
C34—C35—O351—C352-70.6 (4)-71.1 (5)
C35—O351—C352—C351161.8 (2)150.9 (3)
Hydrogen bonds and short intra- and inter-molecular contacts (Å, °) for compounds (Ib), (Ic), (Ie), (IIa), (IId) and (IIe) top
Cg1, Cg2, Cg3 and Cg4 represent the centroids of the rings C311–C316), (C351–C356), (C351–C354/C359/C360) and (C355–C360), respectively
CompoundD—H···ADAH···AD···AD—H···A
(Ib)C355—H355···O14i0.932.593.468 (4)158
C356—H356···O1ii0.932.513.360 (4)152
(Ic)C19—H19···O1iii0.932.253.161 (3)165
C16—H16···Cg20.932.983.882 (2)165
C356—H356···Cg1iv0.932.883.685 (2)146
(Ie)C19—H19···O1v0.932.323.233 (5)165
C353—H353···Cg1vi0.932.863.708 (3)152
(IIa)C357—H35B···O1vii0.962.513.396 (4)154
(IId)C356—H356···O1viii0.932.323.115 (18)143
C456—H456···O1viii0.932.473.21 (2)137
(IIe)C353—H353···O1ix0.932.473.288 (4)147
C12—H12···Cg3x0.932.933.761 (4)150
C13—H13···Cg4x0.932.733.547 (4)148
Symmmetry codes: (i) 2 - x, -y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) 1 + x, 1 + y, z; (iv) 1 - x, -y, 2 - z; (v) -1 + x, 1 + y, z; (vi) 1 - x, -y, 1 - z; (vii) 1 - x, 1 - y, 2 - z; (viii) 1 - x, 2 - y, 1 - z; (ix) 1 - x, 1 - y, -z; (x) -1 + x, y, z.
 

Acknowledgements

HKK thanks the UGC-BSR for a stipend and the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho, S. A., Feitosa, L. O., Soares, M., Costa, T. E. M. M., Henriques, M. G., Salomão, K., de Castro, S. L., Kaiser, M., Brun, R., Wardell, J. L., Wardell, S. M. S. V., Trossini, G. H. G., Andricopulo, A. D., da Silva, E. F. & Fraga, C. A. M. (2012). Eur. J. Med. Chem. 54, 512–521.  CrossRef CAS PubMed Google Scholar
First citationCuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 784–790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30–54.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGlidewell, C., Kalluraya, B., Rathore, R. S. & Yathirajan, H. S. (2019). CSD Communication (deposition number 1897876). CCDC, Cambridge, UK.  Google Scholar
First citationImai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKharb, R., Sharma, P. C. & Yar, M. S. (2011). J. Enzyme Inhib. Med. Chem. 26, 1–21.  CrossRef CAS PubMed Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768–776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurthy, Y. L. N., Suhasini, K. P., Pathania, A. S., Bhushan, S. & Sastry, Y. N. (2013). Eur. J. Med. Chem. 62, 545–555.  CrossRef CAS PubMed Google Scholar
First citationNaylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057–1060.  CrossRef CAS Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.  CrossRef Web of Science Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48–52.  CSD CrossRef IUCr Journals Google Scholar
First citationSharma, H., Patil, S., Sanchez, T. W., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2011). Bioorg. Med. Chem. 19, 2030–2045.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSunitha, V. M., Manju, N., Naveen, S., Kalluraya, B., Lokanath, N. K. & Manjunath, H. R. (2016). IUCrData, 1, x161593.  Google Scholar
First citationTannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42–47.  CrossRef CAS Web of Science Google Scholar
First citationVinutha, N., Kumar, S. M., Shobhitha, S., Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, o560.  CSD CrossRef IUCr Journals Google Scholar
First citationYadav, N., Dixit, S. K., Bhattacharya, A., Mishra, L. C., Sharma, M., Awasthi, S. K. & Bhasin, V. K. (2012). Chem. Biol. Drug Des. 80, 340–347.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds