research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT computational studies of (E)-2,4-di-tert-butyl-6-{[3-(tri­fluoro­meth­yl)benz­yl]imino­meth­yl}phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts & Science, Amasya University, TR-05100, Amasya, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and cFaculty of Education, Department of Mathematics and, Science Education, Division of Physics Education, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: nihal_kan84@windowslive.com

Edited by S. Parkin, University of Kentucky, USA (Received 7 April 2020; accepted 16 April 2020; online 24 April 2020)

The title compound, C23H28F3NO, is an ortho-hy­droxy Schiff base compound, which adopts the enol–imine tautomeric form in the solid state. The mol­ecular structure is not planar and the dihedral angle between the planes of the aromatic rings is 85.52 (10)°. The tri­fluoro­methyl group shows rotational disorder over two sites, with occupancies of 0.798 (6) and 0.202 (6). An intra­molecular O—H⋯N hydrogen bonding generates an S(6) ring motif. The crystal structure is consolidated by C—H⋯π inter­actions. The mol­ecular structure was optimized via density functional theory (DFT) methods with the B3LYP functional and LanL2DZ basis set. The theoretical structure is in good agreement with the experimental data. The frontier orbitals and mol­ecular electrostatic potential map were also examined by DFT computations.

1. Chemical context

Schiff base ligands have played an important role in the development of coordination chemistry, specifically in relation to magnetism, enzymatic reactions (Moutet & Ourari, 1997[Moutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525-2531.]) and mol­ecular architectures (Kaynar et al., 2018[Kaynar, N. K., Ağar, E., Tanak, H., Şahin, S., Büyükgüngör, O. & Yavuz, M. (2018). Crystallogr. Rep. 63, 372-374.]). Schiff bases and their metal complexes have been used in anti­bacterial, anti­cancer, anti­fungal, anti­tubercular and hypothermic reagents (Marchant et al., 1981[Marchant, J. R., Martysen, G. & Venkatesh, N. S. (1981). Indian J. Chem. 20B, 493-495.]; Turwatker & Mahta, 2007[Turwatker, S. L. & Mahta, B. H. (2007). Asian J. Chem. 19, 3671-3676.]). Generally, ortho-hy­droxy Schiff base compounds display two tautomeric, enol–imine (OH) and keto–amine (NH), forms. Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in ortho-hy­droxy Schiff bases, namely, O—H⋯N in enol–imine and N—H⋯O in keto–amine tautomers (Tanak et al., 2009[Tanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.], 2010[Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577-587.]). In this study, we report the synthesis, crystal structure and density functional theory (DFT) calculations of the title Schiff base compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link](a). The crystal structure is monoclinic and has the space-group type P21/c. The CF3 group exhibits rotational disorder [Fig. 1[link](a)]. The site-occupancy factors are 0.798 (6) and 0.202 (6) for F1A/F2A/F3A and F1B/F2B/F3B, respectively. The DFT computations of the title compound were performed with the Gaussian 09W program package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]) using the B3LYP functional and the LanL2DZ basis set. The optimized mol­ecular structure is illustrated in Fig. 1[link](b). Some selected theoretical bond lengths, bond angles and torsion angles are given in Table 1[link] along with the experimental values. The mol­ecular structure of the title compound is not planar: the dihedral angle between the 2,4-di-tert-butyl­phenol and the tri­fluoro­methyl rings is 85.52 (10)°. This dihedral angle was calculated to be 65.73° for the B3LYP computationally derived structure. The imino group is nearly coplanar with the 2,4-di-tert-butyl­phenol ring, as indicated by the C1—C14—C15—N1 torsion angle [−3.9 (3)° for X-ray and −0.14° for B3LYP]. There is an intra­molecular O1—H1⋯N1 hydrogen bond present (Fig. 1[link] and Table 2[link]), generating an S(6) ring motif. The C1—O1 bond length [1.353 (2) Å for X-ray and 1.376 Å for B3LYP] indicates single-bond character. The imine C15=N1 bond length [1.273 (2) Å for X-ray and 1.308 Å for B3LYP] indicates double-bond character. In the title compound, the bond lengths and bond angles are within normal ranges and they are comparable with those in related Schiff base structures (Li et al., 2007[Li, J., Zhao, R. & Ma, C. (2007). Acta Cryst. E63, o4923.]; Sun et al., 2007[Sun, Y.-F., Wang, X.-L., Ma, S.-Y. & Chen, H.-J. (2007). Acta Cryst. E63, o3746.]; Çelik et al., 2009[Çelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786.]; Şahin et al., 2009[Şahin, Z. S., Gümüş, S., Macit, M. & Işık, Ş. (2009). Acta Cryst. E65, o2754.]; Kansiz et al., 2018[Kansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887-1890.]). The C1—O1 and C15=N1 bond lengths confirm the enol–imine form of the title compound (Tanak, 2011[Tanak, H. (2011). J. Phys. Chem. A, 115, 13865-13876.]; Kaynar et al., 2018[Kaynar, N. K., Ağar, E., Tanak, H., Şahin, S., Büyükgüngör, O. & Yavuz, M. (2018). Crystallogr. Rep. 63, 372-374.]).

Table 1
Some selected bond lengths, bond angles and torsion angles (Å, °) in the experimentally determined and computed mol­ecular structures

Parameters X-ray DFT
O1—C1 1.353 (2) 1.376
N1—C15 1.273 (2) 1.308
N1—C16 1.457 (3) 1.467
C14—C15 1.456 (3) 1.457
     
C15—N1—C16 118.68 (18) 120.83
O1—C1—C2 119.87 (16) 120.63
O1—C1—C14 119.60 (17) 119.16
N1—C15—C14 122.99 (18) 121.96
N1—C16—C17 113.09 (16) 112.67
     
O1—C1—C14—C15 2.2 (3) 0.28
C16—N1—C15—C14 178.67 (18) 178.34
C13—C14—C15—N1 175.7 (2) 179.87
C15—N1—C16—C17 107.5 (2) 130.42

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C2/C7/C8/C13/C14 and C17–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.92 (3) 1.73 (3) 2.587 (2) 154 (3)
C16—H16BCg2i 0.97 2.77 3.705 (3) 162
C21—H21⋯Cg1ii 0.93 2.85 3.631 (3) 143
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, 2-z.
[Figure 1]
Figure 1
(a) The mol­ecular structure of the title compound, showing the atom-numbering scheme and 20% probability displacement ellipsoids and (b) the optimized mol­ecular structure of the title compound generated at the DFT/B3LYP/LanL2DZ level.

3. Supra­molecular features

The crystal structure of the title compound is consolidated by C—H⋯π inter­actions (Fig. 2[link]), details of which are summarized in Table 2[link]. A packing diagram is shown in Fig. 3[link]. The only other inter­actions are van der Waals contacts.

[Figure 2]
Figure 2
A partial packing plot of the title crystal. Dashed lines indicate the O—H⋯N intra­molecular hydrogen bonding and C—H⋯π inter­actions.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the a axis.

4. Mol­ecular electrostatic potential (MEP)

The mol­ecular electrostatic potential (MEP) is a very useful descriptor for classifying and understanding regions that are susceptible to electrophilic versus nucleophilic attack. In order to analyse reactive regions for electrophilic and nucleophilic reactions for the investigated Schiff base mol­ecule, the MEP surface was computed using the B3LYP/LanL2DZ basis set for the optimized geometry. In the MEP surface, the negative potential regions (red areas) are associated with electrophilic reactivity, while the positive potential regions (blue areas) are related to nucleophilic reactivity. The MEP surface of the compound is shown in Fig. 4[link]. The negative MEP regions are mainly over the O1, F1, F2, and F3 atoms and have values of −0.049 a.u., −0.031 a.u., −0.032 a.u. and −0.035 a.u., respectively. The largest maximum positive MEP region is localized on atom H15, and has a value of +0.048 a.u. According to these results, the preferred sites for electrophilic attack are around the oxygen and fluorine atoms, while the preferred region for nucleophilic attack is the imine group C—H atom, H15.

[Figure 4]
Figure 4
The mol­ecular electrostatic potential map of the title compound.

5. Frontier mol­ecular orbitals

The highest occupied mol­ecular orbitals (HOMOs) and lowest unoccupied mol­ecular orbitals (LUMOs) are known as frontier mol­ecular orbitals. The electronic, optical and chemical reactivity properties of compounds are predicted by their frontier mol­ecular orbitals (Tanak, 2019[Tanak, H. (2019). ChemistrySelect 4, 10876-10883.]). The frontier mol­ecular orbitals of the title compound were obtained using the DFT/B3LYP method with the LanL2DZ basis set. The energy levels and distributions of the frontier mol­ecular orbitals are shown in Fig. 5[link]. The HOMO–LUMO gap is used to analyse the chemical reactivity and stability of a mol­ecule. If the mol­ecule has a large HOMO–LUMO gap, the mol­ecule is more stable and less chemically reactive. The term `hard mol­ecule' is used to describe such cases. The electron affinity (A = -EHOMO), the ionization potential (I = -ELUMO), HOMO–LUMO energy gap (ΔE), the chemical hardness (η) and softness (S) of the title compound were predicted based on the EHOMO and ELUMO energies (Tanak, 2019[Tanak, H. (2019). ChemistrySelect 4, 10876-10883.]). For the title compound, I = 5.912 eV, A= 1.807 eV, ΔE = 4.105 eV, η = 2.052 eV and S = 0.243 eV. As a result of the large ΔE and η values, the title compound can be classified as a hard mol­ecule.

[Figure 5]
Figure 5
The frontier mol­ecular orbitals.

6. Synthesis and crystallization

(E)-2,4-Di-tert-butyl-6-((3-(tri­fluoro­meth­yl)benzyl­imino)meth­yl)phenol was prepared by refluxing a mixture of a solution containing 3,5-di-tert-butyl-2-hy­droxy­benzaldehyde (46.8 mg, 0.2 mmol) in ethanol (30 ml) and a solution containing 3-(tri­fluoro­meth­yl)benzyl­amine (35.03 mg, 0.2 mmol) in ethanol (20 ml). The reaction mixture was stirred for 4 h under reflux. The title compound was obtained by slow evaporation of an ethanol solution (m.p. 401–403 K; yield 78%)

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C). The position of the H1 atom was obtained from a difference map of the electron density in the unit cell and was refined freely.

Table 3
Experimental details

Crystal data
Chemical formula C23H28F3NO
Mr 391.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.6783 (10), 15.7880 (14), 8.7054 (5)
β (°) 91.217 (5)
V3) 2154.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.72 × 0.56 × 0.09
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.938, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 24168, 4981, 2875
Rint 0.062
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.149, 1.01
No. of reflections 4981
No. of parameters 291
No. of restraints 67
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.14
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

(E)-2,4-Di-tert-butyl-6-{[3-(trifluoromethyl)benzyl]iminomethyl}phenol top
Crystal data top
C23H28F3NOF(000) = 832
Mr = 391.46Dx = 1.207 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6783 (10) ÅCell parameters from 19720 reflections
b = 15.7880 (14) Åθ = 1.8–28.0°
c = 8.7054 (5) ŵ = 0.09 mm1
β = 91.217 (5)°T = 296 K
V = 2154.4 (3) Å3Plate, orange
Z = 40.72 × 0.56 × 0.09 mm
Data collection top
STOE IPDS 2
diffractometer
4981 independent reflections
Radiation source: fine-focus sealed tube2875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 6.67 pixels mm-1θmax = 27.6°, θmin = 2.6°
rotation method scansh = 2020
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2020
Tmin = 0.938, Tmax = 0.992l = 1011
24168 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
4981 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.17 e Å3
67 restraintsΔρmin = 0.14 e Å3
Special details top

Experimental. 248 frames, detector distance = 80 mm

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1A0.82817 (19)0.75361 (18)1.1564 (8)0.1412 (18)0.798 (6)
F2A0.8487 (2)0.6371 (4)1.2628 (5)0.1492 (18)0.798 (6)
F3A0.86847 (16)0.6497 (4)1.0276 (5)0.1431 (18)0.798 (6)
F1B0.8509 (6)0.7243 (11)1.0355 (15)0.108 (4)0.202 (6)
F2B0.8298 (5)0.7109 (13)1.2651 (14)0.112 (4)0.202 (6)
F3B0.8690 (5)0.6084 (6)1.140 (2)0.119 (4)0.202 (6)
O10.42489 (9)0.60037 (10)0.54544 (18)0.0583 (4)
N10.47793 (10)0.69181 (11)0.77476 (19)0.0517 (4)
C10.34413 (11)0.61230 (12)0.5935 (2)0.0442 (4)
C20.27563 (12)0.57558 (12)0.5121 (2)0.0474 (5)
C30.28920 (14)0.52313 (15)0.3652 (2)0.0604 (6)
C40.3291 (2)0.57867 (19)0.2417 (3)0.0900 (9)
H4A0.38430.59770.27700.135*
H4B0.29310.62680.22160.135*
H4C0.33500.54640.14900.135*
C50.34662 (19)0.44671 (17)0.4018 (3)0.0866 (8)
H5A0.40100.46620.44050.130*
H5B0.35460.41420.31010.130*
H5C0.32020.41200.47790.130*
C60.20508 (18)0.4890 (2)0.2985 (3)0.0923 (9)
H6A0.21600.45650.20780.138*
H6B0.16800.53540.27280.138*
H6C0.17840.45350.37320.138*
C70.19492 (12)0.58784 (13)0.5719 (2)0.0520 (5)
H70.14870.56390.51920.062*
C80.17838 (12)0.63327 (13)0.7047 (2)0.0539 (5)
C90.08888 (13)0.64131 (16)0.7727 (3)0.0680 (6)
C100.02115 (17)0.5997 (3)0.6718 (5)0.1314 (15)
H10A0.03380.60800.71590.197*
H10B0.03270.54020.66420.197*
H10C0.02160.62460.57120.197*
C110.0905 (2)0.5998 (3)0.9306 (4)0.1116 (12)
H11A0.13380.62610.99420.167*
H11B0.10280.54060.92020.167*
H11C0.03590.60670.97700.167*
C120.06544 (18)0.7341 (2)0.7915 (4)0.1009 (10)
H12A0.06390.76110.69260.151*
H12B0.10730.76150.85650.151*
H12C0.01040.73840.83710.151*
C130.24757 (12)0.67031 (14)0.7790 (2)0.0550 (5)
H130.23880.70240.86680.066*
C140.32996 (11)0.66083 (12)0.7260 (2)0.0463 (5)
C150.40013 (12)0.70132 (13)0.8100 (2)0.0512 (5)
H150.38750.73570.89320.061*
C160.54326 (13)0.73660 (13)0.8642 (3)0.0547 (5)
H16A0.51620.77970.92580.066*
H16B0.58140.76500.79450.066*
C170.59483 (12)0.67922 (12)0.9685 (2)0.0456 (4)
C180.67935 (12)0.69802 (13)1.0007 (2)0.0509 (5)
H180.70440.74460.95430.061*
C190.72737 (13)0.64835 (15)1.1014 (2)0.0581 (5)
C200.81794 (16)0.6718 (2)1.1355 (4)0.0818 (7)
C210.69155 (16)0.57852 (15)1.1692 (3)0.0685 (6)
H210.72390.54451.23530.082*
C220.60725 (16)0.55961 (15)1.1381 (3)0.0706 (7)
H220.58240.51291.18450.085*
C230.55955 (14)0.60916 (14)1.0392 (2)0.0571 (5)
H230.50270.59551.01920.069*
H10.4592 (18)0.6288 (18)0.616 (3)0.088 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0791 (18)0.100 (2)0.242 (5)0.0161 (14)0.055 (3)0.027 (2)
F2A0.099 (2)0.203 (4)0.143 (3)0.021 (2)0.066 (2)0.050 (3)
F3A0.0563 (14)0.225 (5)0.149 (3)0.002 (2)0.0203 (16)0.047 (3)
F1B0.060 (5)0.146 (9)0.116 (7)0.030 (6)0.012 (5)0.022 (7)
F2B0.073 (5)0.162 (10)0.102 (6)0.002 (7)0.011 (5)0.046 (6)
F3B0.075 (5)0.130 (7)0.151 (10)0.046 (5)0.023 (7)0.009 (6)
O10.0422 (8)0.0723 (10)0.0606 (9)0.0033 (7)0.0091 (7)0.0136 (8)
N10.0455 (9)0.0569 (10)0.0526 (9)0.0018 (7)0.0032 (7)0.0023 (8)
C10.0407 (10)0.0457 (10)0.0465 (10)0.0016 (8)0.0054 (8)0.0020 (9)
C20.0491 (11)0.0469 (11)0.0462 (11)0.0004 (8)0.0016 (9)0.0005 (9)
C30.0616 (13)0.0663 (14)0.0532 (12)0.0070 (10)0.0051 (10)0.0139 (11)
C40.115 (2)0.105 (2)0.0502 (14)0.0252 (17)0.0177 (14)0.0142 (14)
C50.0966 (19)0.0724 (17)0.0909 (19)0.0110 (14)0.0060 (15)0.0301 (15)
C60.0825 (18)0.114 (2)0.0805 (17)0.0190 (16)0.0042 (14)0.0440 (17)
C70.0446 (11)0.0576 (12)0.0536 (11)0.0041 (9)0.0025 (9)0.0021 (10)
C80.0420 (10)0.0612 (13)0.0586 (12)0.0046 (9)0.0044 (9)0.0025 (10)
C90.0438 (11)0.0861 (17)0.0744 (15)0.0031 (11)0.0112 (10)0.0033 (13)
C100.0439 (14)0.200 (4)0.151 (3)0.0211 (19)0.0191 (17)0.066 (3)
C110.0784 (19)0.144 (3)0.114 (3)0.0155 (19)0.0436 (18)0.036 (2)
C120.0669 (17)0.107 (2)0.130 (3)0.0267 (16)0.0250 (17)0.003 (2)
C130.0492 (11)0.0631 (13)0.0528 (11)0.0048 (9)0.0041 (9)0.0113 (10)
C140.0426 (10)0.0490 (11)0.0473 (10)0.0027 (8)0.0008 (8)0.0026 (9)
C150.0521 (12)0.0519 (11)0.0494 (11)0.0026 (9)0.0001 (9)0.0063 (9)
C160.0508 (11)0.0525 (12)0.0607 (12)0.0066 (9)0.0058 (9)0.0001 (10)
C170.0476 (10)0.0460 (11)0.0433 (10)0.0035 (8)0.0035 (8)0.0069 (8)
C180.0475 (11)0.0524 (12)0.0530 (11)0.0068 (9)0.0040 (9)0.0036 (9)
C190.0515 (11)0.0658 (14)0.0569 (12)0.0044 (10)0.0030 (9)0.0076 (11)
C200.0551 (13)0.0978 (19)0.0921 (18)0.0080 (13)0.0109 (13)0.0007 (15)
C210.0743 (16)0.0650 (15)0.0655 (15)0.0072 (12)0.0106 (12)0.0095 (12)
C220.0817 (17)0.0594 (14)0.0706 (15)0.0142 (12)0.0044 (13)0.0155 (12)
C230.0558 (12)0.0585 (13)0.0570 (12)0.0127 (10)0.0018 (10)0.0007 (11)
Geometric parameters (Å, º) top
F1A—C201.313 (4)C7—C81.390 (3)
F2A—C201.318 (4)C8—C131.381 (3)
F3A—C201.290 (4)C8—C91.540 (3)
F1B—C201.315 (6)C9—C101.514 (4)
F2B—C201.296 (6)C9—C121.521 (4)
F3B—C201.282 (6)C9—C111.522 (4)
O1—C11.355 (2)C13—C141.389 (3)
N1—C151.273 (2)C14—C151.456 (3)
N1—C161.457 (3)C16—C171.506 (3)
C1—C21.400 (3)C17—C181.381 (3)
C1—C141.406 (3)C17—C231.387 (3)
C2—C71.392 (3)C18—C191.386 (3)
C2—C31.542 (3)C19—C211.376 (3)
C3—C61.528 (3)C19—C201.491 (3)
C3—C41.531 (3)C21—C221.376 (3)
C3—C51.535 (4)C22—C231.373 (3)
C15—N1—C16118.71 (18)C18—C17—C16119.59 (17)
O1—C1—C2119.84 (17)C23—C17—C16122.23 (17)
O1—C1—C14119.60 (17)C17—C18—C19120.85 (19)
C2—C1—C14120.55 (16)C21—C19—C18120.2 (2)
C7—C2—C1116.51 (17)C21—C19—C20120.6 (2)
C7—C2—C3121.84 (18)C18—C19—C20119.2 (2)
C1—C2—C3121.64 (17)F3B—C20—F3A54.5 (8)
C6—C3—C4107.3 (2)F3B—C20—F2B105.4 (10)
C6—C3—C5107.4 (2)F3A—C20—F2B133.2 (5)
C4—C3—C5110.5 (2)F3B—C20—F1A133.6 (5)
C6—C3—C2111.79 (18)F3A—C20—F1A107.0 (4)
C4—C3—C2109.91 (19)F2B—C20—F1A52.9 (9)
C5—C3—C2109.89 (19)F3B—C20—F1B105.1 (10)
C8—C7—C2124.77 (19)F3A—C20—F1B55.4 (8)
C13—C8—C7116.71 (17)F2B—C20—F1B103.0 (10)
C13—C8—C9119.89 (19)F1A—C20—F1B54.8 (7)
C7—C8—C9123.37 (19)F3B—C20—F2A55.3 (8)
C10—C9—C12108.2 (3)F3A—C20—F2A106.3 (3)
C10—C9—C11109.6 (3)F2B—C20—F2A54.8 (8)
C12—C9—C11108.5 (3)F1A—C20—F2A104.5 (4)
C10—C9—C8112.0 (2)F1B—C20—F2A132.6 (4)
C12—C9—C8110.2 (2)F3B—C20—C19113.8 (5)
C11—C9—C8108.3 (2)F3A—C20—C19112.6 (3)
C8—C13—C14121.71 (19)F2B—C20—C19114.2 (4)
C13—C14—C1119.70 (18)F1A—C20—C19112.7 (2)
C13—C14—C15118.93 (17)F1B—C20—C19114.2 (4)
C1—C14—C15121.36 (16)F2A—C20—C19113.2 (3)
N1—C15—C14123.01 (18)C19—C21—C22119.2 (2)
N1—C16—C17113.12 (16)C23—C22—C21120.5 (2)
C18—C17—C23118.13 (19)C22—C23—C17121.1 (2)
O1—C1—C2—C7177.52 (18)C16—N1—C15—C14178.69 (18)
C14—C1—C2—C71.8 (3)C13—C14—C15—N1175.7 (2)
O1—C1—C2—C31.6 (3)C1—C14—C15—N13.9 (3)
C14—C1—C2—C3179.11 (19)C15—N1—C16—C17107.5 (2)
C7—C2—C3—C60.3 (3)N1—C16—C17—C18148.23 (18)
C1—C2—C3—C6179.3 (2)N1—C16—C17—C2334.4 (3)
C7—C2—C3—C4119.4 (2)C23—C17—C18—C190.2 (3)
C1—C2—C3—C461.6 (3)C16—C17—C18—C19177.26 (19)
C7—C2—C3—C5118.9 (2)C17—C18—C19—C210.9 (3)
C1—C2—C3—C560.2 (3)C17—C18—C19—C20178.8 (2)
C1—C2—C7—C80.0 (3)C21—C19—C20—F3B42.0 (11)
C3—C2—C7—C8179.0 (2)C18—C19—C20—F3B138.3 (10)
C2—C7—C8—C131.8 (3)C21—C19—C20—F3A101.8 (4)
C2—C7—C8—C9176.4 (2)C18—C19—C20—F3A78.5 (4)
C13—C8—C9—C10177.7 (3)C21—C19—C20—F2B79.1 (12)
C7—C8—C9—C104.3 (4)C18—C19—C20—F2B100.6 (12)
C13—C8—C9—C1257.2 (3)C21—C19—C20—F1A137.1 (4)
C7—C8—C9—C12124.7 (3)C18—C19—C20—F1A42.6 (5)
C13—C8—C9—C1161.3 (3)C21—C19—C20—F1B162.7 (10)
C7—C8—C9—C11116.7 (3)C18—C19—C20—F1B17.6 (11)
C7—C8—C13—C141.6 (3)C21—C19—C20—F2A18.8 (5)
C9—C8—C13—C14176.5 (2)C18—C19—C20—F2A160.9 (4)
C8—C13—C14—C10.1 (3)C18—C19—C21—C221.2 (4)
C8—C13—C14—C15179.8 (2)C20—C19—C21—C22178.5 (2)
O1—C1—C14—C13177.42 (18)C19—C21—C22—C230.8 (4)
C2—C1—C14—C131.9 (3)C21—C22—C23—C170.1 (4)
O1—C1—C14—C152.3 (3)C18—C17—C23—C220.2 (3)
C2—C1—C14—C15178.41 (18)C16—C17—C23—C22177.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/C8/C13/C14 and C17–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.92 (3)1.73 (3)2.587 (2)154 (3)
C16—H16B···Cg2i0.972.773.705 (3)162
C21—H21···Cg1ii0.932.853.631 (3)143
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2.
Some selected bond lengths, bond angles and torsion angles (Å , °) in the experimentally determined and computed molecular structures top
ParametersX-rayDFT
O1—C11.353 (2)1.376
N1—C151.273 (2)1.308
N1—C161.457 (3)1.467
C14—C151.456 (3)1.457
C15—N1—C16118.68 (18)120.83
O1—C1—C2119.88 (16)120.63
O1—C1—C14119.60 (17)119.16
N1—C15—C14122.99 (18)121.96
N1—C16—C17113.09 (16)112.67
O1—C1—C14—C152.2 (3)0.28
C16—N1—C15—C14178.67 (18)178.34
C13—C14—C15—N1175.7 (2)179.87
C15—N1—C16—C17107.5 (2)130.42
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationÇelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationKansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887–1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaynar, N. K., Ağar, E., Tanak, H., Şahin, S., Büyükgüngör, O. & Yavuz, M. (2018). Crystallogr. Rep. 63, 372–374.  CSD CrossRef CAS Google Scholar
First citationLi, J., Zhao, R. & Ma, C. (2007). Acta Cryst. E63, o4923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarchant, J. R., Martysen, G. & Venkatesh, N. S. (1981). Indian J. Chem. 20B, 493–495.  Google Scholar
First citationMoutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531.  CrossRef CAS Web of Science Google Scholar
First citationŞahin, Z. S., Gümüş, S., Macit, M. & Işık, Ş. (2009). Acta Cryst. E65, o2754.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSun, Y.-F., Wang, X.-L., Ma, S.-Y. & Chen, H.-J. (2007). Acta Cryst. E63, o3746.  CSD CrossRef IUCr Journals Google Scholar
First citationTanak, H. (2011). J. Phys. Chem. A, 115, 13865–13876.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTanak, H. (2019). ChemistrySelect 4, 10876–10883.  CrossRef CAS Google Scholar
First citationTanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577–587.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurwatker, S. L. & Mahta, B. H. (2007). Asian J. Chem. 19, 3671–3676.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds