research communications
E)-2,4-di-tert-butyl-6-{[3-(trifluoromethyl)benzyl]iminomethyl}phenol
and DFT computational studies of (aDepartment of Physics, Faculty of Arts & Science, Amasya University, TR-05100, Amasya, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and cFaculty of Education, Department of Mathematics and, Science Education, Division of Physics Education, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: nihal_kan84@windowslive.com
The title compound, C23H28F3NO, is an ortho-hydroxy Schiff base compound, which adopts the enol–imine tautomeric form in the solid state. The molecular structure is not planar and the dihedral angle between the planes of the aromatic rings is 85.52 (10)°. The trifluoromethyl group shows rotational disorder over two sites, with occupancies of 0.798 (6) and 0.202 (6). An intramolecular O—H⋯N hydrogen bonding generates an S(6) ring motif. The is consolidated by C—H⋯π interactions. The molecular structure was optimized via density functional theory (DFT) methods with the B3LYP functional and LanL2DZ basis set. The theoretical structure is in good agreement with the experimental data. The and molecular electrostatic potential map were also examined by DFT computations.
Keywords: Schiff base; rotational disorder; enol–imine; tert-butyl; DFT; crystal structure.
CCDC reference: 1997654
1. Chemical context
Schiff base ligands have played an important role in the development of coordination chemistry, specifically in relation to magnetism, enzymatic reactions (Moutet & Ourari, 1997) and molecular architectures (Kaynar et al., 2018). and their metal complexes have been used in antibacterial, anticancer, antifungal, antitubercular and hypothermic reagents (Marchant et al., 1981; Turwatker & Mahta, 2007). Generally, ortho-hydroxy Schiff base compounds display two tautomeric, enol–imine (OH) and keto–amine (NH), forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in ortho-hydroxy namely, O—H⋯N in enol–imine and N—H⋯O in keto–amine tautomers (Tanak et al., 2009, 2010). In this study, we report the synthesis, and density functional theory (DFT) calculations of the title Schiff base compound.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1(a). The is monoclinic and has the space-group type P21/c. The CF3 group exhibits rotational disorder [Fig. 1(a)]. The site-occupancy factors are 0.798 (6) and 0.202 (6) for F1A/F2A/F3A and F1B/F2B/F3B, respectively. The DFT computations of the title compound were performed with the Gaussian 09W program package (Frisch et al., 2009) using the B3LYP functional and the LanL2DZ basis set. The optimized molecular structure is illustrated in Fig. 1(b). Some selected theoretical bond lengths, bond angles and torsion angles are given in Table 1 along with the experimental values. The molecular structure of the title compound is not planar: the dihedral angle between the 2,4-di-tert-butylphenol and the trifluoromethyl rings is 85.52 (10)°. This dihedral angle was calculated to be 65.73° for the B3LYP computationally derived structure. The imino group is nearly coplanar with the 2,4-di-tert-butylphenol ring, as indicated by the C1—C14—C15—N1 torsion angle [−3.9 (3)° for X-ray and −0.14° for B3LYP]. There is an intramolecular O1—H1⋯N1 hydrogen bond present (Fig. 1 and Table 2), generating an S(6) ring motif. The C1—O1 bond length [1.353 (2) Å for X-ray and 1.376 Å for B3LYP] indicates single-bond character. The imine C15=N1 bond length [1.273 (2) Å for X-ray and 1.308 Å for B3LYP] indicates double-bond character. In the title compound, the bond lengths and bond angles are within normal ranges and they are comparable with those in related Schiff base structures (Li et al., 2007; Sun et al., 2007; Çelik et al., 2009; Şahin et al., 2009; Kansiz et al., 2018). The C1—O1 and C15=N1 bond lengths confirm the enol–imine form of the title compound (Tanak, 2011; Kaynar et al., 2018).
|
3. Supramolecular features
The π interactions (Fig. 2), details of which are summarized in Table 2. A packing diagram is shown in Fig. 3. The only other interactions are van der Waals contacts.
of the title compound is consolidated by C—H⋯4. Molecular electrostatic potential (MEP)
The molecular electrostatic potential (MEP) is a very useful descriptor for classifying and understanding regions that are susceptible to electrophilic versus nucleophilic attack. In order to analyse reactive regions for electrophilic and nucleophilic reactions for the investigated Schiff base molecule, the MEP surface was computed using the B3LYP/LanL2DZ basis set for the optimized geometry. In the MEP surface, the negative potential regions (red areas) are associated with electrophilic reactivity, while the positive potential regions (blue areas) are related to nucleophilic reactivity. The MEP surface of the compound is shown in Fig. 4. The negative MEP regions are mainly over the O1, F1, F2, and F3 atoms and have values of −0.049 a.u., −0.031 a.u., −0.032 a.u. and −0.035 a.u., respectively. The largest maximum positive MEP region is localized on atom H15, and has a value of +0.048 a.u. According to these results, the preferred sites for electrophilic attack are around the oxygen and fluorine atoms, while the preferred region for nucleophilic attack is the imine group C—H atom, H15.
5. Frontier molecular orbitals
The highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) are known as frontier molecular orbitals. The electronic, optical and chemical reactivity properties of compounds are predicted by their frontier molecular orbitals (Tanak, 2019). The frontier molecular orbitals of the title compound were obtained using the DFT/B3LYP method with the LanL2DZ basis set. The energy levels and distributions of the frontier molecular orbitals are shown in Fig. 5. The HOMO–LUMO gap is used to analyse the chemical reactivity and stability of a molecule. If the molecule has a large HOMO–LUMO gap, the molecule is more stable and less chemically reactive. The term `hard molecule' is used to describe such cases. The (A = -EHOMO), the (I = -ELUMO), HOMO–LUMO energy gap (ΔE), the chemical hardness (η) and softness (S) of the title compound were predicted based on the EHOMO and ELUMO energies (Tanak, 2019). For the title compound, I = 5.912 eV, A= 1.807 eV, ΔE = 4.105 eV, η = 2.052 eV and S = 0.243 eV. As a result of the large ΔE and η values, the title compound can be classified as a hard molecule.
6. Synthesis and crystallization
(E)-2,4-Di-tert-butyl-6-((3-(trifluoromethyl)benzylimino)methyl)phenol was prepared by refluxing a mixture of a solution containing 3,5-di-tert-butyl-2-hydroxybenzaldehyde (46.8 mg, 0.2 mmol) in ethanol (30 ml) and a solution containing 3-(trifluoromethyl)benzylamine (35.03 mg, 0.2 mmol) in ethanol (20 ml). The reaction mixture was stirred for 4 h under reflux. The title compound was obtained by slow evaporation of an ethanol solution (m.p. 401–403 K; yield 78%)
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C). The position of the H1 atom was obtained from a difference map of the electron density in the and was refined freely.
details are summarized in Table 3Supporting information
CCDC reference: 1997654
https://doi.org/10.1107/S205698902000537X/pk2624sup1.cif
contains datablocks I, namiko43. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902000537X/pk2624Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902000537X/pk2624Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C23H28F3NO | F(000) = 832 |
Mr = 391.46 | Dx = 1.207 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.6783 (10) Å | Cell parameters from 19720 reflections |
b = 15.7880 (14) Å | θ = 1.8–28.0° |
c = 8.7054 (5) Å | µ = 0.09 mm−1 |
β = 91.217 (5)° | T = 296 K |
V = 2154.4 (3) Å3 | Plate, orange |
Z = 4 | 0.72 × 0.56 × 0.09 mm |
STOE IPDS 2 diffractometer | 4981 independent reflections |
Radiation source: fine-focus sealed tube | 2875 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.6°, θmin = 2.6° |
rotation method scans | h = −20→20 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −20→20 |
Tmin = 0.938, Tmax = 0.992 | l = −10→11 |
24168 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.072P)2] where P = (Fo2 + 2Fc2)/3 |
4981 reflections | (Δ/σ)max < 0.001 |
291 parameters | Δρmax = 0.17 e Å−3 |
67 restraints | Δρmin = −0.14 e Å−3 |
Experimental. 248 frames, detector distance = 80 mm |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
F1A | 0.82817 (19) | 0.75361 (18) | 1.1564 (8) | 0.1412 (18) | 0.798 (6) |
F2A | 0.8487 (2) | 0.6371 (4) | 1.2628 (5) | 0.1492 (18) | 0.798 (6) |
F3A | 0.86847 (16) | 0.6497 (4) | 1.0276 (5) | 0.1431 (18) | 0.798 (6) |
F1B | 0.8509 (6) | 0.7243 (11) | 1.0355 (15) | 0.108 (4) | 0.202 (6) |
F2B | 0.8298 (5) | 0.7109 (13) | 1.2651 (14) | 0.112 (4) | 0.202 (6) |
F3B | 0.8690 (5) | 0.6084 (6) | 1.140 (2) | 0.119 (4) | 0.202 (6) |
O1 | 0.42489 (9) | 0.60037 (10) | 0.54544 (18) | 0.0583 (4) | |
N1 | 0.47793 (10) | 0.69181 (11) | 0.77476 (19) | 0.0517 (4) | |
C1 | 0.34413 (11) | 0.61230 (12) | 0.5935 (2) | 0.0442 (4) | |
C2 | 0.27563 (12) | 0.57558 (12) | 0.5121 (2) | 0.0474 (5) | |
C3 | 0.28920 (14) | 0.52313 (15) | 0.3652 (2) | 0.0604 (6) | |
C4 | 0.3291 (2) | 0.57867 (19) | 0.2417 (3) | 0.0900 (9) | |
H4A | 0.3843 | 0.5977 | 0.2770 | 0.135* | |
H4B | 0.2931 | 0.6268 | 0.2216 | 0.135* | |
H4C | 0.3350 | 0.5464 | 0.1490 | 0.135* | |
C5 | 0.34662 (19) | 0.44671 (17) | 0.4018 (3) | 0.0866 (8) | |
H5A | 0.4010 | 0.4662 | 0.4405 | 0.130* | |
H5B | 0.3546 | 0.4142 | 0.3101 | 0.130* | |
H5C | 0.3202 | 0.4120 | 0.4779 | 0.130* | |
C6 | 0.20508 (18) | 0.4890 (2) | 0.2985 (3) | 0.0923 (9) | |
H6A | 0.2160 | 0.4565 | 0.2078 | 0.138* | |
H6B | 0.1680 | 0.5354 | 0.2728 | 0.138* | |
H6C | 0.1784 | 0.4535 | 0.3732 | 0.138* | |
C7 | 0.19492 (12) | 0.58784 (13) | 0.5719 (2) | 0.0520 (5) | |
H7 | 0.1487 | 0.5639 | 0.5192 | 0.062* | |
C8 | 0.17838 (12) | 0.63327 (13) | 0.7047 (2) | 0.0539 (5) | |
C9 | 0.08888 (13) | 0.64131 (16) | 0.7727 (3) | 0.0680 (6) | |
C10 | 0.02115 (17) | 0.5997 (3) | 0.6718 (5) | 0.1314 (15) | |
H10A | −0.0338 | 0.6080 | 0.7159 | 0.197* | |
H10B | 0.0327 | 0.5402 | 0.6642 | 0.197* | |
H10C | 0.0216 | 0.6246 | 0.5712 | 0.197* | |
C11 | 0.0905 (2) | 0.5998 (3) | 0.9306 (4) | 0.1116 (12) | |
H11A | 0.1338 | 0.6261 | 0.9942 | 0.167* | |
H11B | 0.1028 | 0.5406 | 0.9202 | 0.167* | |
H11C | 0.0359 | 0.6067 | 0.9770 | 0.167* | |
C12 | 0.06544 (18) | 0.7341 (2) | 0.7915 (4) | 0.1009 (10) | |
H12A | 0.0639 | 0.7611 | 0.6926 | 0.151* | |
H12B | 0.1073 | 0.7615 | 0.8565 | 0.151* | |
H12C | 0.0104 | 0.7384 | 0.8371 | 0.151* | |
C13 | 0.24757 (12) | 0.67031 (14) | 0.7790 (2) | 0.0550 (5) | |
H13 | 0.2388 | 0.7024 | 0.8668 | 0.066* | |
C14 | 0.32996 (11) | 0.66083 (12) | 0.7260 (2) | 0.0463 (5) | |
C15 | 0.40013 (12) | 0.70132 (13) | 0.8100 (2) | 0.0512 (5) | |
H15 | 0.3875 | 0.7357 | 0.8932 | 0.061* | |
C16 | 0.54326 (13) | 0.73660 (13) | 0.8642 (3) | 0.0547 (5) | |
H16A | 0.5162 | 0.7797 | 0.9258 | 0.066* | |
H16B | 0.5814 | 0.7650 | 0.7945 | 0.066* | |
C17 | 0.59483 (12) | 0.67922 (12) | 0.9685 (2) | 0.0456 (4) | |
C18 | 0.67935 (12) | 0.69802 (13) | 1.0007 (2) | 0.0509 (5) | |
H18 | 0.7044 | 0.7446 | 0.9543 | 0.061* | |
C19 | 0.72737 (13) | 0.64835 (15) | 1.1014 (2) | 0.0581 (5) | |
C20 | 0.81794 (16) | 0.6718 (2) | 1.1355 (4) | 0.0818 (7) | |
C21 | 0.69155 (16) | 0.57852 (15) | 1.1692 (3) | 0.0685 (6) | |
H21 | 0.7239 | 0.5445 | 1.2353 | 0.082* | |
C22 | 0.60725 (16) | 0.55961 (15) | 1.1381 (3) | 0.0706 (7) | |
H22 | 0.5824 | 0.5129 | 1.1845 | 0.085* | |
C23 | 0.55955 (14) | 0.60916 (14) | 1.0392 (2) | 0.0571 (5) | |
H23 | 0.5027 | 0.5955 | 1.0192 | 0.069* | |
H1 | 0.4592 (18) | 0.6288 (18) | 0.616 (3) | 0.088 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1A | 0.0791 (18) | 0.100 (2) | 0.242 (5) | −0.0161 (14) | −0.055 (3) | −0.027 (2) |
F2A | 0.099 (2) | 0.203 (4) | 0.143 (3) | −0.021 (2) | −0.066 (2) | 0.050 (3) |
F3A | 0.0563 (14) | 0.225 (5) | 0.149 (3) | −0.002 (2) | 0.0203 (16) | −0.047 (3) |
F1B | 0.060 (5) | 0.146 (9) | 0.116 (7) | −0.030 (6) | −0.012 (5) | 0.022 (7) |
F2B | 0.073 (5) | 0.162 (10) | 0.102 (6) | −0.002 (7) | −0.011 (5) | −0.046 (6) |
F3B | 0.075 (5) | 0.130 (7) | 0.151 (10) | 0.046 (5) | −0.023 (7) | −0.009 (6) |
O1 | 0.0422 (8) | 0.0723 (10) | 0.0606 (9) | −0.0033 (7) | 0.0091 (7) | −0.0136 (8) |
N1 | 0.0455 (9) | 0.0569 (10) | 0.0526 (9) | −0.0018 (7) | −0.0032 (7) | −0.0023 (8) |
C1 | 0.0407 (10) | 0.0457 (10) | 0.0465 (10) | 0.0016 (8) | 0.0054 (8) | 0.0020 (9) |
C2 | 0.0491 (11) | 0.0469 (11) | 0.0462 (11) | −0.0004 (8) | 0.0016 (9) | −0.0005 (9) |
C3 | 0.0616 (13) | 0.0663 (14) | 0.0532 (12) | −0.0070 (10) | 0.0051 (10) | −0.0139 (11) |
C4 | 0.115 (2) | 0.105 (2) | 0.0502 (14) | −0.0252 (17) | 0.0177 (14) | −0.0142 (14) |
C5 | 0.0966 (19) | 0.0724 (17) | 0.0909 (19) | 0.0110 (14) | 0.0060 (15) | −0.0301 (15) |
C6 | 0.0825 (18) | 0.114 (2) | 0.0805 (17) | −0.0190 (16) | −0.0042 (14) | −0.0440 (17) |
C7 | 0.0446 (11) | 0.0576 (12) | 0.0536 (11) | −0.0041 (9) | −0.0025 (9) | −0.0021 (10) |
C8 | 0.0420 (10) | 0.0612 (13) | 0.0586 (12) | 0.0046 (9) | 0.0044 (9) | −0.0025 (10) |
C9 | 0.0438 (11) | 0.0861 (17) | 0.0744 (15) | 0.0031 (11) | 0.0112 (10) | −0.0033 (13) |
C10 | 0.0439 (14) | 0.200 (4) | 0.151 (3) | −0.0211 (19) | 0.0191 (17) | −0.066 (3) |
C11 | 0.0784 (19) | 0.144 (3) | 0.114 (3) | 0.0155 (19) | 0.0436 (18) | 0.036 (2) |
C12 | 0.0669 (17) | 0.107 (2) | 0.130 (3) | 0.0267 (16) | 0.0250 (17) | −0.003 (2) |
C13 | 0.0492 (11) | 0.0631 (13) | 0.0528 (11) | 0.0048 (9) | 0.0041 (9) | −0.0113 (10) |
C14 | 0.0426 (10) | 0.0490 (11) | 0.0473 (10) | 0.0027 (8) | 0.0008 (8) | −0.0026 (9) |
C15 | 0.0521 (12) | 0.0519 (11) | 0.0494 (11) | 0.0026 (9) | 0.0001 (9) | −0.0063 (9) |
C16 | 0.0508 (11) | 0.0525 (12) | 0.0607 (12) | −0.0066 (9) | −0.0058 (9) | 0.0001 (10) |
C17 | 0.0476 (10) | 0.0460 (11) | 0.0433 (10) | −0.0035 (8) | 0.0035 (8) | −0.0069 (8) |
C18 | 0.0475 (11) | 0.0524 (12) | 0.0530 (11) | −0.0068 (9) | 0.0040 (9) | −0.0036 (9) |
C19 | 0.0515 (11) | 0.0658 (14) | 0.0569 (12) | 0.0044 (10) | −0.0030 (9) | −0.0076 (11) |
C20 | 0.0551 (13) | 0.0978 (19) | 0.0921 (18) | 0.0080 (13) | −0.0109 (13) | −0.0007 (15) |
C21 | 0.0743 (16) | 0.0650 (15) | 0.0655 (15) | 0.0072 (12) | −0.0106 (12) | 0.0095 (12) |
C22 | 0.0817 (17) | 0.0594 (14) | 0.0706 (15) | −0.0142 (12) | −0.0044 (13) | 0.0155 (12) |
C23 | 0.0558 (12) | 0.0585 (13) | 0.0570 (12) | −0.0127 (10) | −0.0018 (10) | 0.0007 (11) |
F1A—C20 | 1.313 (4) | C7—C8 | 1.390 (3) |
F2A—C20 | 1.318 (4) | C8—C13 | 1.381 (3) |
F3A—C20 | 1.290 (4) | C8—C9 | 1.540 (3) |
F1B—C20 | 1.315 (6) | C9—C10 | 1.514 (4) |
F2B—C20 | 1.296 (6) | C9—C12 | 1.521 (4) |
F3B—C20 | 1.282 (6) | C9—C11 | 1.522 (4) |
O1—C1 | 1.355 (2) | C13—C14 | 1.389 (3) |
N1—C15 | 1.273 (2) | C14—C15 | 1.456 (3) |
N1—C16 | 1.457 (3) | C16—C17 | 1.506 (3) |
C1—C2 | 1.400 (3) | C17—C18 | 1.381 (3) |
C1—C14 | 1.406 (3) | C17—C23 | 1.387 (3) |
C2—C7 | 1.392 (3) | C18—C19 | 1.386 (3) |
C2—C3 | 1.542 (3) | C19—C21 | 1.376 (3) |
C3—C6 | 1.528 (3) | C19—C20 | 1.491 (3) |
C3—C4 | 1.531 (3) | C21—C22 | 1.376 (3) |
C3—C5 | 1.535 (4) | C22—C23 | 1.373 (3) |
C15—N1—C16 | 118.71 (18) | C18—C17—C16 | 119.59 (17) |
O1—C1—C2 | 119.84 (17) | C23—C17—C16 | 122.23 (17) |
O1—C1—C14 | 119.60 (17) | C17—C18—C19 | 120.85 (19) |
C2—C1—C14 | 120.55 (16) | C21—C19—C18 | 120.2 (2) |
C7—C2—C1 | 116.51 (17) | C21—C19—C20 | 120.6 (2) |
C7—C2—C3 | 121.84 (18) | C18—C19—C20 | 119.2 (2) |
C1—C2—C3 | 121.64 (17) | F3B—C20—F3A | 54.5 (8) |
C6—C3—C4 | 107.3 (2) | F3B—C20—F2B | 105.4 (10) |
C6—C3—C5 | 107.4 (2) | F3A—C20—F2B | 133.2 (5) |
C4—C3—C5 | 110.5 (2) | F3B—C20—F1A | 133.6 (5) |
C6—C3—C2 | 111.79 (18) | F3A—C20—F1A | 107.0 (4) |
C4—C3—C2 | 109.91 (19) | F2B—C20—F1A | 52.9 (9) |
C5—C3—C2 | 109.89 (19) | F3B—C20—F1B | 105.1 (10) |
C8—C7—C2 | 124.77 (19) | F3A—C20—F1B | 55.4 (8) |
C13—C8—C7 | 116.71 (17) | F2B—C20—F1B | 103.0 (10) |
C13—C8—C9 | 119.89 (19) | F1A—C20—F1B | 54.8 (7) |
C7—C8—C9 | 123.37 (19) | F3B—C20—F2A | 55.3 (8) |
C10—C9—C12 | 108.2 (3) | F3A—C20—F2A | 106.3 (3) |
C10—C9—C11 | 109.6 (3) | F2B—C20—F2A | 54.8 (8) |
C12—C9—C11 | 108.5 (3) | F1A—C20—F2A | 104.5 (4) |
C10—C9—C8 | 112.0 (2) | F1B—C20—F2A | 132.6 (4) |
C12—C9—C8 | 110.2 (2) | F3B—C20—C19 | 113.8 (5) |
C11—C9—C8 | 108.3 (2) | F3A—C20—C19 | 112.6 (3) |
C8—C13—C14 | 121.71 (19) | F2B—C20—C19 | 114.2 (4) |
C13—C14—C1 | 119.70 (18) | F1A—C20—C19 | 112.7 (2) |
C13—C14—C15 | 118.93 (17) | F1B—C20—C19 | 114.2 (4) |
C1—C14—C15 | 121.36 (16) | F2A—C20—C19 | 113.2 (3) |
N1—C15—C14 | 123.01 (18) | C19—C21—C22 | 119.2 (2) |
N1—C16—C17 | 113.12 (16) | C23—C22—C21 | 120.5 (2) |
C18—C17—C23 | 118.13 (19) | C22—C23—C17 | 121.1 (2) |
O1—C1—C2—C7 | 177.52 (18) | C16—N1—C15—C14 | 178.69 (18) |
C14—C1—C2—C7 | −1.8 (3) | C13—C14—C15—N1 | 175.7 (2) |
O1—C1—C2—C3 | −1.6 (3) | C1—C14—C15—N1 | −3.9 (3) |
C14—C1—C2—C3 | 179.11 (19) | C15—N1—C16—C17 | 107.5 (2) |
C7—C2—C3—C6 | 0.3 (3) | N1—C16—C17—C18 | 148.23 (18) |
C1—C2—C3—C6 | 179.3 (2) | N1—C16—C17—C23 | −34.4 (3) |
C7—C2—C3—C4 | 119.4 (2) | C23—C17—C18—C19 | −0.2 (3) |
C1—C2—C3—C4 | −61.6 (3) | C16—C17—C18—C19 | 177.26 (19) |
C7—C2—C3—C5 | −118.9 (2) | C17—C18—C19—C21 | 0.9 (3) |
C1—C2—C3—C5 | 60.2 (3) | C17—C18—C19—C20 | −178.8 (2) |
C1—C2—C7—C8 | 0.0 (3) | C21—C19—C20—F3B | 42.0 (11) |
C3—C2—C7—C8 | 179.0 (2) | C18—C19—C20—F3B | −138.3 (10) |
C2—C7—C8—C13 | 1.8 (3) | C21—C19—C20—F3A | 101.8 (4) |
C2—C7—C8—C9 | −176.4 (2) | C18—C19—C20—F3A | −78.5 (4) |
C13—C8—C9—C10 | 177.7 (3) | C21—C19—C20—F2B | −79.1 (12) |
C7—C8—C9—C10 | −4.3 (4) | C18—C19—C20—F2B | 100.6 (12) |
C13—C8—C9—C12 | 57.2 (3) | C21—C19—C20—F1A | −137.1 (4) |
C7—C8—C9—C12 | −124.7 (3) | C18—C19—C20—F1A | 42.6 (5) |
C13—C8—C9—C11 | −61.3 (3) | C21—C19—C20—F1B | 162.7 (10) |
C7—C8—C9—C11 | 116.7 (3) | C18—C19—C20—F1B | −17.6 (11) |
C7—C8—C13—C14 | −1.6 (3) | C21—C19—C20—F2A | −18.8 (5) |
C9—C8—C13—C14 | 176.5 (2) | C18—C19—C20—F2A | 160.9 (4) |
C8—C13—C14—C1 | −0.1 (3) | C18—C19—C21—C22 | −1.2 (4) |
C8—C13—C14—C15 | −179.8 (2) | C20—C19—C21—C22 | 178.5 (2) |
O1—C1—C14—C13 | −177.42 (18) | C19—C21—C22—C23 | 0.8 (4) |
C2—C1—C14—C13 | 1.9 (3) | C21—C22—C23—C17 | −0.1 (4) |
O1—C1—C14—C15 | 2.3 (3) | C18—C17—C23—C22 | −0.2 (3) |
C2—C1—C14—C15 | −178.41 (18) | C16—C17—C23—C22 | −177.6 (2) |
Cg1 and Cg2 are the centroids of the C1/C2/C7/C8/C13/C14 and C17–C23 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.92 (3) | 1.73 (3) | 2.587 (2) | 154 (3) |
C16—H16B···Cg2i | 0.97 | 2.77 | 3.705 (3) | 162 |
C21—H21···Cg1ii | 0.93 | 2.85 | 3.631 (3) | 143 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+2. |
Parameters | X-ray | DFT |
O1—C1 | 1.353 (2) | 1.376 |
N1—C15 | 1.273 (2) | 1.308 |
N1—C16 | 1.457 (3) | 1.467 |
C14—C15 | 1.456 (3) | 1.457 |
C15—N1—C16 | 118.68 (18) | 120.83 |
O1—C1—C2 | 119.88 (16) | 120.63 |
O1—C1—C14 | 119.60 (17) | 119.16 |
N1—C15—C14 | 122.99 (18) | 121.96 |
N1—C16—C17 | 113.09 (16) | 112.67 |
O1—C1—C14—C15 | 2.2 (3) | 0.28 |
C16—N1—C15—C14 | 178.67 (18) | 178.34 |
C13—C14—C15—N1 | 175.7 (2) | 179.87 |
C15—N1—C16—C17 | 107.5 (2) | 130.42 |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).
References
Çelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Kansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887–1890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaynar, N. K., Ağar, E., Tanak, H., Şahin, S., Büyükgüngör, O. & Yavuz, M. (2018). Crystallogr. Rep. 63, 372–374. CSD CrossRef CAS Google Scholar
Li, J., Zhao, R. & Ma, C. (2007). Acta Cryst. E63, o4923. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marchant, J. R., Martysen, G. & Venkatesh, N. S. (1981). Indian J. Chem. 20B, 493–495. Google Scholar
Moutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531. CrossRef CAS Web of Science Google Scholar
Şahin, Z. S., Gümüş, S., Macit, M. & Işık, Ş. (2009). Acta Cryst. E65, o2754. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Sun, Y.-F., Wang, X.-L., Ma, S.-Y. & Chen, H.-J. (2007). Acta Cryst. E63, o3746. CSD CrossRef IUCr Journals Google Scholar
Tanak, H. (2011). J. Phys. Chem. A, 115, 13865–13876. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tanak, H. (2019). ChemistrySelect 4, 10876–10883. CrossRef CAS Google Scholar
Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577–587. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turwatker, S. L. & Mahta, B. H. (2007). Asian J. Chem. 19, 3671–3676. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.