research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld and thermal analysis of bis­[benzyl 2-(heptan-4-yl­­idene)hydrazine-1-carboxyl­ate-κ2N2,O]bis­(thio­cyanato)­nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India, bDepartment of Chemistry, J. J. College of Arts and Science, Pudukkottai, - 622 422, Tamil Nada, India, and cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 16 March 2020; accepted 28 March 2020; online 7 April 2020)

The title centrosymmetric NiII complex, [Ni(NCS)2(C15H22N2O2)2], crystallizes with one half mol­ecule in the asymmetric unit of the monoclinic unit cell. The complex adopts an octa­hedral coordination geometry with two mutually trans benzyl-2-(heptan-4-yl­idene)hydrazine-1-carboxyl­ate ligands in the equatorial plane with the axial positions occupied by N-bound thio­cyanato ligands. The overall conformation of the mol­ecule is also affected by two, inversion-related, intra­molecular C—H⋯O hydrogen bonds. The crystal structure features N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds together with C—H⋯π contacts that stack the complexes along the b-axis direction. The packing was further explored by Hirshfeld surface analysis. The thermal properties of the complex were also investigated by simultaneous TGA–DTA analyses.

1. Chemical context

Investigations of the Schiff base complexes of benzyl carbazate are scarce except for our own reports (Nithya et al., 2016[Nithya, P., Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. & Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220-231.], 2017a[Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017a). J. Therm. Anal. Calorim. 129, 1001-1019.],b[Nithya, P., Simpson, J. & Govindarajan, S. (2017b). Inorg. Chim. Acta, 467, 180-193.], 2018a[Nithya, P., Simpson, J. & Govindarajan, S. (2018a). Polyhedron, 141, 5-16.],b[Nithya, P., Rajamanikandan, R., Simpson, J., Ilanchelian, M. & Govindarajan, S. (2018b). Polyhedron, 145, 200-217.]). These complexes are formed by Schiff base carbazate ligands in their keto form with N,O chelation to give complexes with octa­hedral geometry. The coordination chemistry of benzyl carbazate Schiff base complexes has gained importance not only from the inorganic point of view, but also because of their biological and thermal properties. In the course of our recent studies on such complexes, we reported the cobalt(II) complex of a Schiff base derived from benzyl carbazate and heptan-4-one with thio­cyanates as the charge-compensating ligands (Nithya et al., 2019[Nithya, P., Govindarajan, S. & Simpson, J. (2019a). IUCrData, 4, x190812.]). In this work, we report the synthesis, mol­ecular and crystal structures, Hirshfeld surface analysis and thermal properties of the corresponding nickel complex, bis­[benzyl-2-(heptan-4-yl­idene)hydrazine-1-carboxyl­ate]bis­(thio­cyanato)­nickel(II), 1.

[Scheme 1]

2. Structural commentary

The title compound, 1, crystallizes in the space group P21/c with one half of the complex in the asymmetric unit as the NiII cation lies on an inversion centre, Fig. 1[link]. This contrasts with the previously determined CoII analogue (Nithya et al., 2019[Nithya, P., Govindarajan, S. & Simpson, J. (2019a). IUCrData, 4, x190812.]) that crystallizes with two unique, centrosymmetric complex mol­ecules in the asymmetric unit. Two inversion-related intra­molecular C13—H13A⋯O1 hydrogen bonds, Table 1[link], influence the conformation of the benzyl-2-(heptan-4-yl­idene)hydrazine-1-carboxyl­ate ligands and enclose R22(14) ring motifs. Two hydrazine-carboxyl­ate ligands chelate the Ni atom with N1 and O1 donor atoms; these chelating ligands lie trans to one another in the equatorial plane of the slightly distorted octa­hedral complex. The axial positions are occupied by two thio­cyanato ligands bound to the metal through their N3 atoms. The NCS ligands are kinked away from the alkane chains of the other ligands with C16—N3—Ni1 angles of 163.23 (11)°. Bond lengths and angles in the closely related Ni and Co complexes are generally similar, although the Ni1—N1 bond [2.1332 (12) Å] is significantly shorter here than the corresponding Co1—N11 and Co2—N21 vectors [2.206 (5) and 2.248 (6) Å respectively].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C3–C8 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.824 (17) 2.507 (17) 3.2830 (12) 157.3 (16)
C8—H8⋯S1i 0.95 2.94 3.7080 (16) 139
C10—H10A⋯S1i 0.99 3.00 3.9059 (14) 154
C10—H10B⋯S1ii 0.99 2.94 3.8464 (15) 153
C13—H13A⋯O1iii 0.99 2.35 3.1783 (18) 141
C2—H2ACg3iv 0.99 2.72 3.6041 (17) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) x, y-1, z; (iii) -x+1, -y, -z+2; (iv) -x, -y, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of 1 showing the atom numbering with ellipsoids drawn at the 50% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operationx + 1, −y, −z + 2. Intra­molecular hydrogen bonds are shown as dashed black lines.

3. Supra­molecular features

In the crystal structure, atom S1 acts as a trifurcated acceptor forming N2—H2N⋯S1 and weaker C8—H8⋯S1 and C10—H10A⋯S1 hydrogen bonds, Table 1[link], that form chains of complex mol­ecules along the bc diagonal, Fig. 2[link]. Inversion-related pairs of C10—H10B⋯S1 hydrogen bonds link adjacent mol­ecules into rows along the b-axis direction, Fig. 3[link], while rows also form along a, through C2—H2ACg3, C—H⋯π contacts, Fig. 4[link]; Cg3 is the centroid of the C3–C8 phenyl ring. These contacts combine to stack mol­ecules of the complex in a regular fashion along the b-axis direction, Fig. 5[link].

[Figure 2]
Figure 2
Chains of mol­ecules of 1 along the bc diagonal. Hydrogen bonds are drawn as dashed cyan lines.
[Figure 3]
Figure 3
Chains of inversion dimers of 1 along b.
[Figure 4]
Figure 4
Chains of mol­ecules of 1 along a. C—H⋯π contacts are drawn as dashed magenta lines with the centroids (Cg) of the C3–C8 rings shown as magenta spheres.
[Figure 5]
Figure 5
Overall packing of 1 viewed along the b-axis direction.

4. Hirshfeld surface analysis

Further details of the inter­molecular inter­actions in 1 were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with Hirshfeld surfaces and two-dimensional fingerprint plots generated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surfaces for opposite faces of 1 are shown in Fig. 6[link](a) and (b). Bold red circles on the Hirshfeld surfaces correspond to the N—H⋯S hydrogen bonds while the weaker C—H⋯S and C—H⋯π contacts appear as faint red circles. Fingerprint plots, Fig. 7[link], reveal that while H⋯H inter­actions make the greatest contributions to the surface contacts, as would be expected for a mol­ecule with such a predominance of H atoms, H⋯C/C⋯H and H⋯S/S⋯H contacts are also substantial, Table 2[link]. H⋯N/N⋯H and H⋯O/O⋯H contacts are less significant, with the O⋯C/C⋯O and O⋯S/S⋯O contacts being essentially trivial with contributions of 0.7% and 0.6%, respectively. These are not shown in Fig. 7[link] but are included in Table 3[link] for completeness.

Table 2
Percentage contributions to the Hirshfeld surface for 1

Contacts Included surface area %
H⋯H 55.5
H⋯C/C⋯H 18.8
H⋯S/S⋯H 16.6
H⋯N/N⋯H 4.3
H⋯O/O⋯H 3.2
O⋯C/C⋯O 0.7
O⋯S/S⋯O 0.6

Table 3
Experimental details

Crystal data
Chemical formula [Ni(NCS)2(C15H22N2O2)2]
Mr 699.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.6406 (3), 10.1280 (3), 15.7458 (4)
β (°) 108.647 (3)
V3) 1910.02 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.66
Crystal size (mm) 0.39 × 0.24 × 0.16
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.772, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12439, 4575, 3961
Rint 0.027
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.05
No. of reflections 4575
No. of parameters 210
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.39
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 6]
Figure 6
Hirshfeld surfaces for opposite faces (a) and (b) of 1 mapped over dnorm in the range −0.3928 to 2.1718 a.u. Cg3 is the centroid of the C3–C8 phenyl ring.
[Figure 7]
Figure 7
A full two-dimensional fingerprint plot for 1, (a), together with separate principal contact types for the mol­ecule (b)–(f). These were found to be H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, H⋯N/N⋯H and H⋯O/O⋯H contacts.

5. Thermal properties

Fig. 8[link] shows the thermal decomposition behaviour of 1. Simultaneous TGA–DTA analyses were recorded in air on a Perkin–Elmer SII Thermal Analyser over the temperature range 50–800°C. With the equipment used here, the TGA curve shows the temperature range but not the individual peak temperatures. However, peak temperatures can be seen in the DTA curve. In the first step of decomposition, the weight loss of 74% occurs over the temperature range 115–260°C (TGA). This corresponds to the loss of the Schiff base ligands to form NiII thio­cyanate as an inter­mediate. This was marked by both endothermic (170°C) and exothermic peaks (190 and 210°C) in the DTA curve. As the thermal analysis was carried out under a dynamic flowing air atmosphere, the S and N atoms are oxidized to SO2 and NO2, while nickel ultimately forms nickel oxide. Similar decomposition processes have been observed in our recent wok on numerous similar complexes, see for example (Nithya et al., 2017a[Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017a). J. Therm. Anal. Calorim. 129, 1001-1019.],b[Nithya, P., Simpson, J. & Govindarajan, S. (2017b). Inorg. Chim. Acta, 467, 180-193.], 2018a[Nithya, P., Simpson, J. & Govindarajan, S. (2018a). Polyhedron, 141, 5-16.],b[Nithya, P., Rajamanikandan, R., Simpson, J., Ilanchelian, M. & Govindarajan, S. (2018b). Polyhedron, 145, 200-217.], 2019a[Nithya, P., Govindarajan, S. & Simpson, J. (2019a). IUCrData, 4, x190812.],b[Nithya, P., Simpson, J. & Govindarajan, S. (2019b). J. Coord. Chem. 72, 1845-1864.]).

[Figure 8]
Figure 8
Simultaneous TGA–DTA analyses for 1. The heavy (darker) lines show the TGA plot with the DTA behaviour shown by the lighter curve.

6. Database survey

As mentioned previously, the most closely related structure to the one reported here is that of the CoII analogue (Nithya et al. 2019[Nithya, P., Govindarajan, S. & Simpson, J. (2019a). IUCrData, 4, x190812.]) while we have also reported the structures of 18 other Schiff base complexes of various transition metals with ligands based on benzyl carbazate (Nithya et al. 2016[Nithya, P., Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. & Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220-231.], 2017a[Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017a). J. Therm. Anal. Calorim. 129, 1001-1019.],b[Nithya, P., Simpson, J. & Govindarajan, S. (2017b). Inorg. Chim. Acta, 467, 180-193.], 2018a[Nithya, P., Simpson, J. & Govindarajan, S. (2018a). Polyhedron, 141, 5-16.],b[Nithya, P., Rajamanikandan, R., Simpson, J., Ilanchelian, M. & Govindarajan, S. (2018b). Polyhedron, 145, 200-217.]). A search in the Cambridge Structural Database (version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for other related transition-metal complexes produced no additional hits. The novelty of the ligands found in these complexes is reinforced by the fact that a search for organic compounds incorporating the PhCH2OC(O)NHN=C(CH2)2 unit produced only two hits. One was our own report of the ligand benzyl 2-cyclo­pentyl­idenehydrazine­carboxyl­ate (JENFAM; Nithya et al., 2017a[Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017a). J. Therm. Anal. Calorim. 129, 1001-1019.]). The other was (2E)-1-ethyl 8-methyl 7-(2-(benzyl­oxycarbon­yl)hydrazono)oct-2-enedioate, (VEWMOA; Gergely et al., 2006[Gergely, J., Morgan, J. B. & Overman, L. E. (2006). J. Org. Chem. 71, 9144-9152.]). In both cases, the bond distances and angles in the structures compare very favourably with those reported here.

7. Synthesis and crystallization

Equimolar amounts of ammonium thio­cyanate (0.076 g, 1 mmol) and benzyl carbazate (0.166 g, 1 mmol) were dissolved in methanol (10 mL). Nickel nitrate, Ni(NO3)2·6H2O, (0.146 g, 0.5 mmol) dissolved in 10 mL of doubly distilled water was added to this solution. The resulting blue solution was layered with heptan-4-one (dipropyl ketone) and the solution changed to a green colour. The final solution was left to evaporate at room temperature. After slow evaporation, bluish–green rhombus-shaped crystals suitable for X-ray diffraction analysis were collected, washed with doubly distilled water and air-dried.

Analysis calculated for NiC32H44N6O4S2: Ni, 8.40; C, 54.96; H, 6.30; N, 12.02; S, 9.16%. Found: Ni, 8.25; C, 54.76; H, 6.13; N, 11.80; S, 9.08%; conductance = 14 S cm2 mol−1. Yield based on the metal: 80%.

The FT–IR spectrum was recorded on a JASCO-4100 FT–IR spectrophotometer from 4000 to 400 cm−1 using KBr pellets: N—H stretch 3152 cm−1 C=O stretch 1675 cm−1 C=N stretch 1524 cm−1, N—N stretch 1058 cm−1. 2108 cm−1 C≡N stretch of the N-bound thio­cyanate ligands.

The electronic absorption spectrum was measured on a JASCO V-630 UV–vis spectrophotometer and recorded in methanol at room temperature: intense bands at 392, 678 and 732 nm were assigned to the 3A2g3T2g, 3A2g3T1g(F) and 3A2g(F) →3T1g(P) transitions, respectively, supporting the six-coordinate octa­hedral geometry around the NiII cation (Lever, 1984[Lever, A. B. P. (1984). Inorganic Electronic Spectroscopy, 2nd ed. Amsterdam: Elsevier.]).

The 1H NMR spectrum was recorded on a Bruker AV 400 (400 MHz) spectrometer using tetra­methyl­silane as an inter­nal reference. Chemical shifts are expressed in parts per million (ppm): 0.84–0.88 and 1.33–2.20 ppm: CH3 and CH2 groups, respectively; –OCH2 proton: 5.08 ppm; aromatic protons multiplets 7.29–7.34 ppm; NH: 9.882 ppm.

Simultaneous TGA–DTA analyses were recorded in air on a PerkinElmer SII Thermal Analyser over the temperature range 50-800°C.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N—H hydrogen atom was located in a difference-Fourier map and its coordinates refined with Uiso(H) = 1.2Ueq(N). All C-bound H atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic 0.99 Å, Uiso = 1.2Ueq(C) for CH2 and 0.98 Å, Uiso = 1.5Ueq(C) for CH3 H atoms.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2020) and publCIF (Westrip 2010).

Bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate-κ2N2,O]bis(thiocyanato)nickel(II) top
Crystal data top
[Ni(NCS)2(C15H22N2O2)2]F(000) = 740
Mr = 699.56Dx = 1.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6406 (3) ÅCell parameters from 6613 reflections
b = 10.1280 (3) Åθ = 3.6–29.2°
c = 15.7458 (4) ŵ = 0.66 mm1
β = 108.647 (3)°T = 100 K
V = 1910.02 (9) Å3Rectangular block, blue
Z = 20.39 × 0.24 × 0.16 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
4575 independent reflections
Radiation source: Agilent SuperNova (Mo) X-ray Source3961 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.027
ω scansθmax = 29.6°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
h = 1717
Tmin = 0.772, Tmax = 1.000k = 1313
12439 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.7321P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4575 reflectionsΔρmax = 0.33 e Å3
210 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One reflection with Fo >>> Fc was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.0000001.0000000.01311 (7)
O10.34390 (7)0.04585 (10)1.01346 (6)0.0166 (2)
C10.33197 (11)0.01165 (14)1.07823 (9)0.0159 (3)
O20.25009 (8)0.01215 (11)1.11267 (7)0.0210 (2)
C20.16396 (11)0.10284 (16)1.06322 (10)0.0208 (3)
H2A0.1377280.0789920.9988720.025*
H2B0.1936750.1940181.0691150.025*
C30.06895 (11)0.09413 (16)1.10129 (10)0.0207 (3)
C40.00906 (14)0.19554 (19)1.08242 (13)0.0357 (4)
H40.0003740.2689971.0477190.043*
C50.09990 (15)0.1901 (2)1.11410 (14)0.0428 (5)
H50.1530940.2596801.1007620.051*
C60.11294 (13)0.0844 (2)1.16464 (12)0.0338 (4)
H60.1748350.0810021.1864200.041*
C70.03610 (13)0.01634 (18)1.18350 (11)0.0277 (4)
H70.0449110.0892131.2186260.033*
C80.05482 (12)0.01236 (16)1.15143 (10)0.0226 (3)
H80.1070270.0829651.1640900.027*
N20.39863 (10)0.10797 (13)1.12383 (8)0.0187 (3)
H2N0.3879 (13)0.1414 (17)1.1681 (12)0.022*
N10.48528 (9)0.14754 (12)1.09226 (8)0.0156 (2)
C90.52823 (11)0.26137 (15)1.11779 (9)0.0170 (3)
C100.48835 (12)0.35599 (15)1.17505 (10)0.0194 (3)
H10A0.4709580.3066291.2232160.023*
H10B0.5481170.4203951.2034260.023*
C110.38364 (14)0.42957 (18)1.11758 (11)0.0308 (4)
H11A0.3216790.3657191.0949630.037*
H11B0.3987610.4693181.0651860.037*
C120.34816 (16)0.53771 (19)1.17007 (13)0.0375 (4)
H12A0.4067790.6050361.1883340.056*
H12B0.2786870.5782541.1322230.056*
H12C0.3362050.4994021.2234280.056*
C130.62074 (12)0.30822 (16)1.08489 (10)0.0209 (3)
H13A0.6188400.2578131.0305470.025*
H13B0.6088940.4025771.0681260.025*
C140.73513 (12)0.29144 (18)1.15569 (12)0.0290 (4)
H14A0.7343590.3329631.2124080.035*
H14B0.7510040.1962091.1671940.035*
C150.82738 (14)0.3542 (2)1.12562 (14)0.0391 (5)
H15A0.8143830.4494451.1178660.059*
H15B0.8999480.3382601.1711210.059*
H15C0.8269120.3149471.0685970.059*
N30.57102 (10)0.12673 (13)1.09988 (8)0.0189 (3)
C160.61615 (11)0.21720 (15)1.14054 (9)0.0162 (3)
S10.68148 (3)0.34303 (4)1.19984 (3)0.02219 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01222 (12)0.01537 (14)0.01307 (13)0.00022 (9)0.00589 (10)0.00050 (10)
O10.0141 (4)0.0200 (5)0.0175 (5)0.0017 (4)0.0076 (4)0.0030 (4)
C10.0132 (6)0.0193 (8)0.0164 (7)0.0004 (5)0.0066 (5)0.0015 (6)
O20.0172 (5)0.0278 (6)0.0224 (5)0.0092 (4)0.0126 (4)0.0091 (4)
C20.0168 (7)0.0233 (8)0.0227 (7)0.0063 (6)0.0069 (6)0.0052 (6)
C30.0163 (7)0.0258 (9)0.0207 (7)0.0031 (6)0.0071 (6)0.0024 (6)
C40.0322 (9)0.0337 (11)0.0487 (11)0.0130 (8)0.0233 (8)0.0116 (9)
C50.0314 (9)0.0460 (12)0.0597 (13)0.0201 (9)0.0269 (9)0.0074 (10)
C60.0204 (8)0.0495 (12)0.0376 (9)0.0033 (8)0.0177 (7)0.0030 (9)
C70.0189 (7)0.0404 (11)0.0251 (8)0.0020 (7)0.0087 (7)0.0017 (7)
C80.0147 (7)0.0306 (9)0.0229 (8)0.0023 (6)0.0066 (6)0.0004 (7)
N20.0181 (6)0.0228 (7)0.0201 (6)0.0053 (5)0.0128 (5)0.0060 (5)
N10.0134 (5)0.0196 (7)0.0161 (6)0.0022 (5)0.0081 (5)0.0003 (5)
C90.0167 (6)0.0184 (8)0.0164 (6)0.0002 (6)0.0060 (5)0.0006 (6)
C100.0228 (7)0.0173 (8)0.0209 (7)0.0022 (6)0.0109 (6)0.0010 (6)
C110.0372 (9)0.0278 (10)0.0280 (8)0.0102 (7)0.0110 (7)0.0019 (7)
C120.0428 (10)0.0303 (10)0.0407 (10)0.0142 (8)0.0154 (9)0.0007 (8)
C130.0241 (7)0.0185 (8)0.0244 (7)0.0047 (6)0.0139 (6)0.0030 (6)
C140.0216 (7)0.0288 (10)0.0385 (9)0.0033 (7)0.0124 (7)0.0056 (8)
C150.0280 (8)0.0395 (11)0.0571 (12)0.0144 (8)0.0237 (9)0.0214 (9)
N30.0196 (6)0.0213 (7)0.0167 (6)0.0013 (5)0.0072 (5)0.0016 (5)
C160.0157 (6)0.0195 (8)0.0162 (6)0.0031 (6)0.0090 (5)0.0028 (6)
S10.02393 (19)0.0196 (2)0.0279 (2)0.00579 (15)0.01512 (16)0.00852 (16)
Geometric parameters (Å, º) top
Ni1—N32.0059 (13)N2—H2N0.824 (17)
Ni1—N3i2.0059 (12)N1—C91.2829 (19)
Ni1—O1i2.1028 (9)C9—C131.4994 (18)
Ni1—O12.1028 (9)C9—C101.5086 (19)
Ni1—N1i2.1332 (12)C10—C111.536 (2)
Ni1—N12.1332 (12)C10—H10A0.9900
O1—C11.2249 (17)C10—H10B0.9900
C1—O21.3350 (15)C11—C121.523 (2)
C1—N21.3380 (19)C11—H11A0.9900
O2—C21.4467 (17)C11—H11B0.9900
C2—C31.5066 (18)C12—H12A0.9800
C2—H2A0.9900C12—H12B0.9800
C2—H2B0.9900C12—H12C0.9800
C3—C81.381 (2)C13—C141.527 (2)
C3—C41.389 (2)C13—H13A0.9900
C4—C51.392 (2)C13—H13B0.9900
C4—H40.9500C14—C151.530 (2)
C5—C61.375 (3)C14—H14A0.9900
C5—H50.9500C14—H14B0.9900
C6—C71.374 (2)C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C7—C81.396 (2)C15—H15C0.9800
C7—H70.9500N3—C161.1582 (19)
C8—H80.9500C16—S11.6386 (16)
N2—N11.3985 (15)
N3—Ni1—N3i180.00 (7)N1—N2—H2N122.8 (12)
N3—Ni1—O1i91.21 (4)C9—N1—N2116.57 (11)
N3i—Ni1—O1i88.79 (4)C9—N1—Ni1136.26 (9)
N3—Ni1—O188.79 (4)N2—N1—Ni1106.86 (8)
N3i—Ni1—O191.21 (4)N1—C9—C13118.34 (12)
O1i—Ni1—O1180.0N1—C9—C10124.70 (12)
N3—Ni1—N1i88.34 (5)C13—C9—C10116.88 (13)
N3i—Ni1—N1i91.66 (5)C9—C10—C11110.23 (12)
O1i—Ni1—N1i78.29 (4)C9—C10—H10A109.6
O1—Ni1—N1i101.71 (4)C11—C10—H10A109.6
N3—Ni1—N191.66 (5)C9—C10—H10B109.6
N3i—Ni1—N188.34 (5)C11—C10—H10B109.6
O1i—Ni1—N1101.71 (4)H10A—C10—H10B108.1
O1—Ni1—N178.29 (4)C12—C11—C10112.14 (14)
N1i—Ni1—N1180.0C12—C11—H11A109.2
C1—O1—Ni1110.38 (9)C10—C11—H11A109.2
O1—C1—O2124.76 (13)C12—C11—H11B109.2
O1—C1—N2124.70 (12)C10—C11—H11B109.2
O2—C1—N2110.53 (12)H11A—C11—H11B107.9
C1—O2—C2116.34 (11)C11—C12—H12A109.5
O2—C2—C3107.88 (12)C11—C12—H12B109.5
O2—C2—H2A110.1H12A—C12—H12B109.5
C3—C2—H2A110.1C11—C12—H12C109.5
O2—C2—H2B110.1H12A—C12—H12C109.5
C3—C2—H2B110.1H12B—C12—H12C109.5
H2A—C2—H2B108.4C9—C13—C14111.94 (12)
C8—C3—C4119.14 (13)C9—C13—H13A109.2
C8—C3—C2122.57 (13)C14—C13—H13A109.2
C4—C3—C2118.26 (14)C9—C13—H13B109.2
C3—C4—C5120.33 (17)C14—C13—H13B109.2
C3—C4—H4119.8H13A—C13—H13B107.9
C5—C4—H4119.8C13—C14—C15111.43 (15)
C6—C5—C4120.24 (16)C13—C14—H14A109.3
C6—C5—H5119.9C15—C14—H14A109.3
C4—C5—H5119.9C13—C14—H14B109.3
C7—C6—C5119.73 (14)C15—C14—H14B109.3
C7—C6—H6120.1H14A—C14—H14B108.0
C5—C6—H6120.1C14—C15—H15A109.5
C6—C7—C8120.48 (16)C14—C15—H15B109.5
C6—C7—H7119.8H15A—C15—H15B109.5
C8—C7—H7119.8C14—C15—H15C109.5
C3—C8—C7120.07 (15)H15A—C15—H15C109.5
C3—C8—H8120.0H15B—C15—H15C109.5
C7—C8—H8120.0C16—N3—Ni1163.23 (11)
C1—N2—N1116.66 (11)N3—C16—S1178.75 (14)
C1—N2—H2N120.5 (12)
Ni1—O1—C1—O2169.27 (11)O1—C1—N2—N12.4 (2)
Ni1—O1—C1—N211.39 (18)O2—C1—N2—N1177.07 (12)
O1—C1—O2—C26.7 (2)C1—N2—N1—C9160.49 (13)
N2—C1—O2—C2172.72 (12)C1—N2—N1—Ni114.19 (15)
C1—O2—C2—C3168.23 (12)N2—N1—C9—C13179.49 (12)
O2—C2—C3—C819.5 (2)Ni1—N1—C9—C136.9 (2)
O2—C2—C3—C4162.63 (15)N2—N1—C9—C103.0 (2)
C8—C3—C4—C50.4 (3)Ni1—N1—C9—C10169.67 (10)
C2—C3—C4—C5178.27 (17)N1—C9—C10—C1179.24 (18)
C3—C4—C5—C60.2 (3)C13—C9—C10—C1197.34 (15)
C4—C5—C6—C70.3 (3)C9—C10—C11—C12173.28 (14)
C5—C6—C7—C80.3 (3)N1—C9—C13—C14101.19 (16)
C4—C3—C8—C70.9 (2)C10—C9—C13—C1482.00 (17)
C2—C3—C8—C7178.70 (15)C9—C13—C14—C15173.33 (13)
C6—C7—C8—C30.8 (3)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C8 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1ii0.824 (17)2.507 (17)3.2830 (12)157.3 (16)
C8—H8···S1ii0.952.943.7080 (16)139
C10—H10A···S1ii0.993.003.9059 (14)154
C10—H10B···S1iii0.992.943.8464 (15)153
C13—H13A···O1i0.992.353.1783 (18)141
C2—H2A···Cg3iv0.992.723.6041 (17)149
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y1/2, z+5/2; (iii) x, y1, z; (iv) x, y, z+2.
Percentage contributions to the Hirshfeld surface for 1 top
ContactsIncluded surface area %
H···H55.5
H···C/C···H18.8
H···S/S···H16.6
H···N/N···H4.3
H···O/O···H3.2
O···C/C···O0.7
O···S/S···O0.6
 

Acknowledgements

We thank the University of Otago for the purchase of the diffractometer and the Chemistry Department, University of Otago for support of the work of JS.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGergely, J., Morgan, J. B. & Overman, L. E. (2006). J. Org. Chem. 71, 9144–9152.  CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationLever, A. B. P. (1984). Inorganic Electronic Spectroscopy, 2nd ed. Amsterdam: Elsevier.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNithya, P., Govindarajan, S. & Simpson, J. (2019a). IUCrData, 4, x190812.  Google Scholar
First citationNithya, P., Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. & Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220–231.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNithya, P., Rajamanikandan, R., Simpson, J., Ilanchelian, M. & Govindarajan, S. (2018b). Polyhedron, 145, 200–217.  CSD CrossRef CAS Google Scholar
First citationNithya, P., Simpson, J. & Govindarajan, S. (2017b). Inorg. Chim. Acta, 467, 180–193.  CSD CrossRef CAS Google Scholar
First citationNithya, P., Simpson, J. & Govindarajan, S. (2018a). Polyhedron, 141, 5–16.  CSD CrossRef CAS Google Scholar
First citationNithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017a). J. Therm. Anal. Calorim. 129, 1001–1019.  CSD CrossRef CAS Google Scholar
First citationNithya, P., Simpson, J. & Govindarajan, S. (2019b). J. Coord. Chem. 72, 1845–1864.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds