research communications
trans-dichlorido(1,4,8,11-tetraazacyclotetradecane-κ4N)chromium(III) bis(formamide-κO)(1,4,8,11-tetraazacyclotetradecane-κ4N)chromium(III) bis[tetrachloridozincate(II)]
ofaBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The structure of the title compound, [CrCl2(C10H24N4)][Cr(HCONH2)2(C10H24N4)][ZnCl4]2 (C10H24N4 = 1,4,8,11-tetraazacyclotetradecane, cyclam; HCONH2 = formamide, fa), has been determined from synchrotron X-ray data. The contains two independent halves of the [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations, and one tetrachloridozincate anion. In each complex cation, the CrIII ion is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and two Cl ligands or two O-bonded formamide molecules in a trans axial arrangement, displaying a distorted octahedral geometry with crystallographic inversion symmetry. The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, while the Cr—Cl and Cr—O(fa) bond distances are 2.3194 (7) and 1.9953 (19) Å, respectively. The macrocyclic cyclam moieties adopt the centrosymmetric trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The is stabilized by intermolecular hydrogen bonds involving the NH or CH groups of cyclam and the NH2 group of coordinated formamide as donors, and Cl atoms of the ZnCl42− anion as acceptors.
Keywords: crystal structure; cyclam; chloride; formamide; trans-isomer; chromium(III) complex; synchrotron radiation.
CCDC reference: 1995114
1. Chemical context
The 14-membered cyclam (1,4,8,11-tetraazacyclotetradecane, C10H24N4) has a moderately flexible structure, and its metal complexes can form either trans or cis-[ML2(cyclam)]n+ (L = a monodentate ligand) geometric isomers (Poon & Pun, 1980). Furthermore, the trans isomer can adopt five conformers, viz. trans-I (+ + + +), trans-II (+ − + +), trans-III (+ − − +), trans-IV (+ + − −) and trans-V (+ − + −), which differ in the of the sec-NH centres (Choi, 2009), and where the plus sign indicates the hydrogen atom of the NH group is above the plane of the macrocycle and the minus sign indicates that it is below. The trans-I, trans-II and trans-V conformations can also fold to form cis-I, cis-II and cis-V conformers, respectively (Subhan et al., 2011). Recently, it has been shown that cyclam derivatives and their metal complexes exhibit stem-cell mobilization and anti-HIV activity (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). The conformation of the macrocycle and the orientations of the N—H bonds in the complex are very important factors for co-receptor recognition. Therefore, knowledge of the conformation and the crystal packing in transition-metal compounds containing cyclam has become important in the development of new highly effective anti-HIV drugs (De Clercq, 2010). In addition, the formamide group can be coordinated to a metal ion through the oxygen or nitrogen atoms (Balahura & Jordan, 1970). It should be noted that the geometric assignment and determination of the coordination mode based on spectroscopic properties is not always conclusive. We describe here the synthesis and structural characterization of a new double complex, [CrCl2(cyclam)][Cr(fa-O)2(cyclam)][ZnCl4]2, (I), which was performed to elucidate and confirm its molecular structure unambiguously.
2. Structural commentary
Fig. 1 shows a displacement ellipsoid plot of (I) with the atom-numbering scheme. The crystallographic of (I) is composed of two halves of independent [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations and one tetrachloridozincate anion. The two Cr atoms are located on crystallographic centers of symmetry, so these complex cations both have molecular Ci symmetry. Each cyclam moiety in the two CrIII complex cations adopts the most stable trans-III conformation. The CrIII ions are six-coordinated in a distorted octahedral geometry with the four N atoms of the macrocyclic ligand in equatorial positions and two Cl ligands or two O atoms of formamide molecules in axial positions (Fig. 1). The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, in good agreement with those observed in trans-[Cr(ONO)2)(cyclam)]BF4 [2.064 (4)–2.073 (4) Å; De Leo et al., 2000], trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å; Moon & Choi, 2016a], trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [2.0614 (10)–2.0700 (10) Å; Moon et al., 2015], trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å; Friesen et al., 1997], trans-[Cr(nic-O)2(cyclam)]ClO4 [2.057 (4)–2.064 (4) Å; Choi, 2009], [Cr(ox)(cyclam)]ClO4 [2.062 (4)–2.085 (5) Å; Choi et al., 2004b], [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.065 (5)–2.089 (5) Å; Subhan et al., 2011] and cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å; Choi et al., 2004a]. However, the Cr—N bond lengths for the secondary amine of cyclam in the trans isomer are slightly shorter than those of the primary amine found in trans-[CrCl2(Me2tn)2]Cl [2.0861 (18)–2.1076 (18) Å; Choi et al., 2007] and trans-[CrCl2(Me2tn)2]2ZnCl4 [2.0741 (19)–2.0981 (18) Å; Choi et al., 2011]. The Cr—Cl and Cr–O (fa) bond lengths are 2.3194 (7) and 1.9953 (19) Å, respectively. The Cr—Cl distance is comparable to the values in trans-[CrCl2(cyclam)]Cl [2.3295 (6) Å; Solano-Peralta et al., 2004], trans-[CrCl2(cyclam)]2[ZnCl4] [2.3472 (9) Å; Flores-Vélez et al., 1991] and [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 [2.3358 (14) Å; Moon & Choi, 2016b]. As expected, the five-membered chelate rings adopt a gauche conformation, and the six-membered ring is in the chair conformation. The average bond angles of the five- and six-membered chelate rings around chromium(III) are 85.03 (9) and 94.97 (9)°, respectively. The uncoordinated ZnCl42− counter-anion remains outside the coordination sphere of the two CrIII ions and has a distorted tetrahedral geometry as a result of its involvement in hydrogen-bonding interactions. It exhibits Zn—Cl bond distances in the range 2.2555 (8) to 2.3035 (8) Å and Cl—Zn—Cl angles ranging from 104.84 (4)–114.54 (3)°.
3. Supramolecular features
Extensive C—H⋯Cl and N–H⋯Cl hydrogen-bonding interactions occur between the NH or CH groups of cyclam and the NH2 group of formamide, the Cl ligand and the Cl atoms of the tetrachlorozincate anion (Table 1). The ZnCl42− anion is linked to two [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations via a series of N—H⋯Cl and C—H⋯Cl hydrogen bonds. In addition, two CrIII complex cations are interconnected to each other via a C3—H3A⋯Cl1vi [symmetry code: (vi) −x + , y + , −z + ] hydrogen bond. The extensive array of these contacts generates a three-dimensional network and helps to consolidate the The crystal packing diagram of (I) viewed perpendicular to the bc plane is shown in Fig. 2.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016) indicated 76 hits for a [CrL2(C10H24N4)]n+ unit. More than 30 different ligand types L including halogenides, cyanide, azide, thiocyanate, oxalate, ammonia, sulfate, nitrite, DMSO and have been reported. It has been found that trans-[Cr(NCS)2(C10H24N4)]ClO4 (RAVGEA; Friesen et al., 1997), trans-[Cr(nic-O)2(C10H24N4)]ClO4 (NUKMUC; Choi, 2009) and trans-[Cr(ONO)2)(C10H24N4)]BF4 (MEMHAN; De Leo et al., 2000) adopt the trans-III conformations. On the other hand, cis-[Cr(NCS)2(C10H24N4)]ClO4 (RAVGOK; Friesen et al., 1997), [Cr(C2O4)(C10H24N4)]ClO4 (IHAFOM; Choi et al., 2004b), [Cr(CH3COCHCOCH3)(C10H24N4)](ClO4)2·0.5H2O (SAYSES; Subhan et al., 2011) and cis-[Cr(NCS)2(C10H24N4)]NCS (ADUXOO; Moon et al., 2013) have the folded cis-V conformations. A search of the CSD gave 698 hits for cyclam (C10H24N4) with any metal but no hit for uncomplexed cyclam. In addition, no compounds containing [Cr(HCONH2)2(C10H24N4)]3+ were known until now.
5. Synthesis and crystallization
The free ligand cyclam and formamide were purchased from Sigma–Aldrich. The formamide was purified and dried by standard methods. All other chemicals were reagent-grade materials and used without further purification. The starting material, trans-[Cr(CN)2(cyclam)]ClO4, was prepared according to the literature (Kane-Maguire et al., 1983). The yellow solid, trans-[Cr(CN)2(cyclam)]ClO4 (0.08 g) was dissolved in 5 mL of 0.01 M HCl, and heated for 2 h at 333 K. The solution was added to 3 mL of 6 M HCl containing 0.2 g of solid ZnCl2, and then 2 mL of formamide were added dropwise under magnetic stirring. The resulting solution was filtered, and allowed to stand at room temperature for a few weeks to give purple crystals of (I) suitable for X-ray structural analysis.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.94–0.98 Å and N—H = 0.87–0.99 Å and with Uiso(H) = 1.2Ueq(C,N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1995114
https://doi.org/10.1107/S2056989020004910/vm2231sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020004910/vm2231Isup2.hkl
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[CrCl2(C10H24N4)][Cr(CH3NO)2(C10H24N4)][ZnCl4]2 | F(000) = 1100 |
Mr = 1079.99 | Dx = 1.747 Mg m−3 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.610 Å |
a = 10.406 (2) Å | Cell parameters from 71380 reflections |
b = 13.212 (3) Å | θ = 0.4–33.7° |
c = 15.011 (3) Å | µ = 1.53 mm−1 |
β = 95.85 (3)° | T = 220 K |
V = 2053.0 (7) Å3 | Plate, purple |
Z = 2 | 0.13 × 0.11 × 0.08 mm |
Rayonix MX225HS CCD area detector diffractometer | 5424 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.065 |
ω scan | θmax = 25.0°, θmin = 1.8° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) | h = −14→14 |
Tmin = 0.856, Tmax = 1.000 | k = −18→18 |
20797 measured reflections | l = −20→20 |
5718 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0579P)2 + 2.3444P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
5718 reflections | Δρmax = 1.02 e Å−3 |
220 parameters | Δρmin = −1.05 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr1 | 0.500000 | 0.500000 | 0.500000 | 0.01905 (11) | |
O1 | 0.40779 (18) | 0.59415 (14) | 0.57570 (12) | 0.0304 (4) | |
N1 | 0.6599 (2) | 0.50926 (16) | 0.59314 (13) | 0.0263 (4) | |
H1 | 0.733309 | 0.478812 | 0.565654 | 0.032* | |
N2 | 0.5477 (2) | 0.62362 (15) | 0.42632 (14) | 0.0270 (4) | |
H2 | 0.612781 | 0.600675 | 0.387054 | 0.032* | |
N3 | 0.2731 (3) | 0.6910 (2) | 0.64216 (15) | 0.0381 (5) | |
H3AN | 0.332356 | 0.736628 | 0.655071 | 0.046* | |
H3BN | 0.195781 | 0.699839 | 0.657996 | 0.046* | |
C1 | 0.6336 (3) | 0.4436 (2) | 0.66990 (16) | 0.0335 (5) | |
H1A | 0.576230 | 0.478762 | 0.707614 | 0.040* | |
H1AB | 0.714487 | 0.427910 | 0.706529 | 0.040* | |
C2 | 0.6985 (3) | 0.6141 (2) | 0.62080 (19) | 0.0352 (6) | |
H2A | 0.776779 | 0.611563 | 0.662933 | 0.042* | |
H2AB | 0.629729 | 0.645040 | 0.651654 | 0.042* | |
C3 | 0.7237 (3) | 0.6793 (2) | 0.5405 (2) | 0.0399 (6) | |
H3A | 0.768805 | 0.740799 | 0.562773 | 0.048* | |
H3AB | 0.781941 | 0.642161 | 0.504919 | 0.048* | |
C4 | 0.6046 (3) | 0.7105 (2) | 0.4789 (2) | 0.0362 (6) | |
H4A | 0.539889 | 0.738832 | 0.514956 | 0.043* | |
H4AB | 0.628599 | 0.763302 | 0.437894 | 0.043* | |
C5 | 0.4294 (3) | 0.6526 (2) | 0.36674 (17) | 0.0343 (5) | |
H5A | 0.452908 | 0.695465 | 0.317621 | 0.041* | |
H5AB | 0.369790 | 0.690444 | 0.400752 | 0.041* | |
C6 | 0.3001 (3) | 0.60960 (19) | 0.59923 (15) | 0.0280 (5) | |
H6 | 0.235060 | 0.561016 | 0.585794 | 0.034* | |
Cr2 | 0.500000 | 0.500000 | 0.000000 | 0.02063 (12) | |
Cl1 | 0.53785 (6) | 0.37596 (5) | −0.10350 (4) | 0.03271 (14) | |
N4 | 0.3223 (2) | 0.52342 (16) | −0.07214 (13) | 0.0249 (4) | |
H4 | 0.312441 | 0.470207 | −0.118767 | 0.030* | |
N5 | 0.4335 (2) | 0.38790 (16) | 0.08048 (13) | 0.0259 (4) | |
H5 | 0.431725 | 0.324363 | 0.045410 | 0.031* | |
C7 | 0.3340 (2) | 0.62148 (19) | −0.11970 (16) | 0.0289 (5) | |
H7A | 0.326491 | 0.677919 | −0.078176 | 0.035* | |
H7AB | 0.264587 | 0.627579 | −0.168695 | 0.035* | |
C8 | 0.2067 (2) | 0.5165 (2) | −0.02153 (17) | 0.0307 (5) | |
H8A | 0.128505 | 0.524049 | −0.063273 | 0.037* | |
H8AB | 0.208634 | 0.572239 | 0.021703 | 0.037* | |
C9 | 0.2009 (3) | 0.4161 (2) | 0.02812 (19) | 0.0342 (5) | |
H9A | 0.210352 | 0.361121 | −0.014533 | 0.041* | |
H9AB | 0.114986 | 0.409655 | 0.048899 | 0.041* | |
C10 | 0.3022 (3) | 0.4014 (2) | 0.10863 (17) | 0.0319 (5) | |
H10A | 0.301640 | 0.460400 | 0.148121 | 0.038* | |
H10B | 0.279482 | 0.341775 | 0.142624 | 0.038* | |
C11 | 0.5356 (3) | 0.3751 (2) | 0.15662 (16) | 0.0297 (5) | |
H11A | 0.524570 | 0.310127 | 0.186461 | 0.036* | |
H11B | 0.529597 | 0.429393 | 0.200469 | 0.036* | |
Zn1 | 0.96538 (3) | 0.56371 (2) | 0.28510 (2) | 0.02620 (9) | |
Cl2 | 0.98118 (7) | 0.39522 (5) | 0.26256 (6) | 0.04267 (17) | |
Cl3 | 0.74908 (6) | 0.60423 (6) | 0.27489 (4) | 0.03418 (15) | |
Cl4 | 1.06521 (7) | 0.61932 (6) | 0.41833 (4) | 0.03892 (16) | |
Cl5 | 1.04313 (8) | 0.64946 (6) | 0.17226 (5) | 0.04333 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.0141 (2) | 0.0235 (2) | 0.0203 (2) | −0.00100 (17) | 0.00503 (17) | −0.00244 (16) |
O1 | 0.0269 (9) | 0.0323 (8) | 0.0318 (8) | −0.0007 (7) | 0.0021 (7) | −0.0048 (7) |
N1 | 0.0193 (9) | 0.0342 (10) | 0.0252 (9) | 0.0019 (8) | 0.0023 (7) | −0.0054 (7) |
N2 | 0.0258 (9) | 0.0278 (9) | 0.0290 (9) | −0.0009 (8) | 0.0112 (8) | −0.0015 (7) |
N3 | 0.0382 (12) | 0.0437 (12) | 0.0337 (11) | 0.0089 (11) | 0.0106 (9) | −0.0063 (9) |
C1 | 0.0319 (13) | 0.0465 (14) | 0.0219 (10) | 0.0058 (11) | 0.0012 (9) | −0.0015 (9) |
C2 | 0.0252 (12) | 0.0393 (13) | 0.0396 (13) | −0.0027 (11) | −0.0040 (10) | −0.0118 (11) |
C3 | 0.0270 (12) | 0.0382 (13) | 0.0551 (16) | −0.0124 (11) | 0.0073 (12) | −0.0071 (12) |
C4 | 0.0354 (14) | 0.0298 (11) | 0.0448 (14) | −0.0075 (11) | 0.0120 (11) | −0.0030 (10) |
C5 | 0.0367 (13) | 0.0367 (12) | 0.0302 (11) | 0.0044 (11) | 0.0076 (10) | 0.0056 (10) |
C6 | 0.0286 (11) | 0.0343 (11) | 0.0216 (9) | 0.0002 (10) | 0.0045 (8) | 0.0011 (8) |
Cr2 | 0.0185 (2) | 0.0252 (2) | 0.0181 (2) | 0.00430 (18) | 0.00144 (18) | −0.00252 (16) |
Cl1 | 0.0330 (3) | 0.0374 (3) | 0.0274 (3) | 0.0097 (3) | 0.0014 (2) | −0.0065 (2) |
N4 | 0.0218 (9) | 0.0307 (9) | 0.0218 (8) | 0.0056 (8) | 0.0000 (7) | −0.0043 (7) |
N5 | 0.0242 (9) | 0.0311 (9) | 0.0224 (8) | 0.0015 (8) | 0.0022 (7) | −0.0003 (7) |
C7 | 0.0258 (11) | 0.0338 (11) | 0.0264 (10) | 0.0108 (10) | −0.0003 (8) | 0.0010 (9) |
C8 | 0.0189 (10) | 0.0417 (13) | 0.0313 (11) | 0.0054 (10) | 0.0024 (9) | −0.0029 (10) |
C9 | 0.0216 (11) | 0.0435 (13) | 0.0375 (13) | −0.0062 (11) | 0.0029 (10) | −0.0013 (11) |
C10 | 0.0261 (11) | 0.0406 (13) | 0.0297 (11) | −0.0020 (10) | 0.0066 (9) | 0.0008 (10) |
C11 | 0.0301 (12) | 0.0351 (12) | 0.0235 (10) | 0.0041 (10) | 0.0011 (9) | 0.0028 (9) |
Zn1 | 0.02112 (15) | 0.03240 (16) | 0.02530 (14) | 0.00089 (11) | 0.00344 (11) | 0.00152 (10) |
Cl2 | 0.0293 (3) | 0.0332 (3) | 0.0636 (4) | 0.0034 (3) | −0.0047 (3) | −0.0042 (3) |
Cl3 | 0.0233 (3) | 0.0487 (4) | 0.0312 (3) | 0.0076 (3) | 0.0060 (2) | 0.0028 (2) |
Cl4 | 0.0373 (3) | 0.0493 (4) | 0.0288 (3) | 0.0094 (3) | −0.0033 (2) | −0.0059 (3) |
Cl5 | 0.0461 (4) | 0.0509 (4) | 0.0353 (3) | −0.0029 (3) | 0.0155 (3) | 0.0100 (3) |
Cr1—O1 | 1.9953 (19) | Cr2—N4 | 2.069 (2) |
Cr1—O1i | 1.9954 (19) | Cr2—N4ii | 2.069 (2) |
Cr1—N2 | 2.061 (2) | Cr2—N5ii | 2.074 (2) |
Cr1—N2i | 2.061 (2) | Cr2—N5 | 2.074 (2) |
Cr1—N1i | 2.065 (2) | Cr2—Cl1 | 2.3194 (7) |
Cr1—N1 | 2.065 (2) | Cr2—Cl1ii | 2.3194 (7) |
O1—C6 | 1.226 (3) | N4—C8 | 1.490 (3) |
N1—C1 | 1.489 (3) | N4—C7 | 1.490 (3) |
N1—C2 | 1.490 (3) | N4—H4 | 0.9900 |
N1—H1 | 0.9900 | N5—C10 | 1.482 (3) |
N2—C4 | 1.482 (3) | N5—C11 | 1.488 (3) |
N2—C5 | 1.495 (3) | N5—H5 | 0.9900 |
N2—H2 | 0.9900 | C7—C11ii | 1.519 (4) |
N3—C6 | 1.299 (3) | C7—H7A | 0.9800 |
N3—H3AN | 0.8700 | C7—H7AB | 0.9800 |
N3—H3BN | 0.8700 | C8—C9 | 1.526 (4) |
C1—C5i | 1.509 (4) | C8—H8A | 0.9800 |
C1—H1A | 0.9800 | C8—H8AB | 0.9800 |
C1—H1AB | 0.9800 | C9—C10 | 1.533 (4) |
C2—C3 | 1.525 (4) | C9—H9A | 0.9800 |
C2—H2A | 0.9800 | C9—H9AB | 0.9800 |
C2—H2AB | 0.9800 | C10—H10A | 0.9800 |
C3—C4 | 1.525 (4) | C10—H10B | 0.9800 |
C3—H3A | 0.9800 | C11—H11A | 0.9800 |
C3—H3AB | 0.9800 | C11—H11B | 0.9800 |
C4—H4A | 0.9800 | Zn1—Cl5 | 2.2555 (8) |
C4—H4AB | 0.9800 | Zn1—Cl2 | 2.2602 (9) |
C5—H5A | 0.9800 | Zn1—Cl4 | 2.2792 (9) |
C5—H5AB | 0.9800 | Zn1—Cl3 | 2.3035 (8) |
C6—H6 | 0.9400 | ||
O1—Cr1—O1i | 180.0 | N4—Cr2—N4ii | 180.0 |
O1—Cr1—N2 | 88.14 (8) | N4—Cr2—N5ii | 85.50 (8) |
O1i—Cr1—N2 | 91.86 (8) | N4ii—Cr2—N5ii | 94.49 (8) |
O1—Cr1—N2i | 91.86 (8) | N4—Cr2—N5 | 94.49 (8) |
O1i—Cr1—N2i | 88.14 (8) | N4ii—Cr2—N5 | 85.51 (8) |
N2—Cr1—N2i | 180.00 (7) | N5ii—Cr2—N5 | 180.0 |
O1—Cr1—N1i | 91.23 (8) | N4—Cr2—Cl1 | 87.64 (6) |
O1i—Cr1—N1i | 88.77 (8) | N4ii—Cr2—Cl1 | 92.36 (6) |
N2—Cr1—N1i | 84.54 (9) | N5ii—Cr2—Cl1 | 91.43 (6) |
N2i—Cr1—N1i | 95.46 (9) | N5—Cr2—Cl1 | 88.57 (6) |
O1—Cr1—N1 | 88.77 (8) | N4—Cr2—Cl1ii | 92.36 (6) |
O1i—Cr1—N1 | 91.23 (8) | N4ii—Cr2—Cl1ii | 87.64 (6) |
N2—Cr1—N1 | 95.45 (9) | N5ii—Cr2—Cl1ii | 88.57 (6) |
N2i—Cr1—N1 | 84.54 (9) | N5—Cr2—Cl1ii | 91.43 (6) |
N1i—Cr1—N1 | 180.0 | Cl1—Cr2—Cl1ii | 180.0 |
C6—O1—Cr1 | 140.79 (18) | C8—N4—C7 | 114.01 (19) |
C1—N1—C2 | 113.0 (2) | C8—N4—Cr2 | 116.69 (15) |
C1—N1—Cr1 | 106.88 (16) | C7—N4—Cr2 | 105.58 (15) |
C2—N1—Cr1 | 114.80 (16) | C8—N4—H4 | 106.6 |
C1—N1—H1 | 107.3 | C7—N4—H4 | 106.6 |
C2—N1—H1 | 107.3 | Cr2—N4—H4 | 106.6 |
Cr1—N1—H1 | 107.3 | C10—N5—C11 | 113.65 (19) |
C4—N2—C5 | 112.3 (2) | C10—N5—Cr2 | 116.90 (16) |
C4—N2—Cr1 | 115.64 (16) | C11—N5—Cr2 | 105.93 (15) |
C5—N2—Cr1 | 107.20 (15) | C10—N5—H5 | 106.6 |
C4—N2—H2 | 107.1 | C11—N5—H5 | 106.6 |
C5—N2—H2 | 107.1 | Cr2—N5—H5 | 106.6 |
Cr1—N2—H2 | 107.1 | N4—C7—C11ii | 108.69 (19) |
C6—N3—H3AN | 120.0 | N4—C7—H7A | 110.0 |
C6—N3—H3BN | 120.0 | C11ii—C7—H7A | 110.0 |
H3AN—N3—H3BN | 120.0 | N4—C7—H7AB | 110.0 |
N1—C1—C5i | 108.4 (2) | C11ii—C7—H7AB | 110.0 |
N1—C1—H1A | 110.0 | H7A—C7—H7AB | 108.3 |
C5i—C1—H1A | 110.0 | N4—C8—C9 | 112.1 (2) |
N1—C1—H1AB | 110.0 | N4—C8—H8A | 109.2 |
C5i—C1—H1AB | 110.0 | C9—C8—H8A | 109.2 |
H1A—C1—H1AB | 108.4 | N4—C8—H8AB | 109.2 |
N1—C2—C3 | 111.6 (2) | C9—C8—H8AB | 109.2 |
N1—C2—H2A | 109.3 | H8A—C8—H8AB | 107.9 |
C3—C2—H2A | 109.3 | C8—C9—C10 | 115.9 (2) |
N1—C2—H2AB | 109.3 | C8—C9—H9A | 108.3 |
C3—C2—H2AB | 109.3 | C10—C9—H9A | 108.3 |
H2A—C2—H2AB | 108.0 | C8—C9—H9AB | 108.3 |
C4—C3—C2 | 115.9 (2) | C10—C9—H9AB | 108.3 |
C4—C3—H3A | 108.3 | H9A—C9—H9AB | 107.4 |
C2—C3—H3A | 108.3 | N5—C10—C9 | 111.7 (2) |
C4—C3—H3AB | 108.3 | N5—C10—H10A | 109.3 |
C2—C3—H3AB | 108.3 | C9—C10—H10A | 109.3 |
H3A—C3—H3AB | 107.4 | N5—C10—H10B | 109.3 |
N2—C4—C3 | 111.7 (2) | C9—C10—H10B | 109.3 |
N2—C4—H4A | 109.3 | H10A—C10—H10B | 107.9 |
C3—C4—H4A | 109.3 | N5—C11—C7ii | 108.09 (19) |
N2—C4—H4AB | 109.3 | N5—C11—H11A | 110.1 |
C3—C4—H4AB | 109.3 | C7ii—C11—H11A | 110.1 |
H4A—C4—H4AB | 107.9 | N5—C11—H11B | 110.1 |
N2—C5—C1i | 107.6 (2) | C7ii—C11—H11B | 110.1 |
N2—C5—H5A | 110.2 | H11A—C11—H11B | 108.4 |
C1i—C5—H5A | 110.2 | Cl5—Zn1—Cl2 | 110.19 (3) |
N2—C5—H5AB | 110.2 | Cl5—Zn1—Cl4 | 109.31 (3) |
C1i—C5—H5AB | 110.2 | Cl2—Zn1—Cl4 | 114.54 (3) |
H5A—C5—H5AB | 108.5 | Cl5—Zn1—Cl3 | 104.84 (4) |
O1—C6—N3 | 122.1 (3) | Cl2—Zn1—Cl3 | 107.73 (3) |
O1—C6—H6 | 118.9 | Cl4—Zn1—Cl3 | 109.78 (4) |
N3—C6—H6 | 118.9 | ||
C2—N1—C1—C5i | 168.9 (2) | C8—N4—C7—C11ii | 171.66 (19) |
Cr1—N1—C1—C5i | 41.6 (2) | Cr2—N4—C7—C11ii | 42.3 (2) |
C1—N1—C2—C3 | −179.6 (2) | C7—N4—C8—C9 | −178.4 (2) |
Cr1—N1—C2—C3 | −56.6 (3) | Cr2—N4—C8—C9 | −54.8 (2) |
N1—C2—C3—C4 | 72.1 (3) | N4—C8—C9—C10 | 70.3 (3) |
C5—N2—C4—C3 | 179.0 (2) | C11—N5—C10—C9 | 179.0 (2) |
Cr1—N2—C4—C3 | 55.5 (3) | Cr2—N5—C10—C9 | 55.1 (3) |
C2—C3—C4—N2 | −71.2 (3) | C8—C9—C10—N5 | −70.4 (3) |
C4—N2—C5—C1i | −169.7 (2) | C10—N5—C11—C7ii | −171.3 (2) |
Cr1—N2—C5—C1i | −41.6 (2) | Cr2—N5—C11—C7ii | −41.7 (2) |
Cr1—O1—C6—N3 | −170.2 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl4iii | 0.99 | 2.46 | 3.346 (2) | 149 |
N2—H2···Cl3 | 0.99 | 2.31 | 3.255 (2) | 159 |
N3—H3AN···Cl5iv | 0.87 | 2.65 | 3.505 (3) | 167 |
N3—H3BN···Cl2i | 0.87 | 2.61 | 3.334 (3) | 141 |
C2—H2A···Cl2iii | 0.98 | 2.65 | 3.606 (3) | 165 |
N4—H4···Cl3ii | 0.99 | 2.56 | 3.493 (2) | 157 |
N5—H5···Cl4v | 0.99 | 2.76 | 3.549 (2) | 137 |
C3—H3A···Cl1vi | 0.98 | 2.71 | 3.650 (3) | 160 |
C4—H4A···Cl5iv | 0.98 | 2.78 | 3.555 (3) | 136 |
C7—H7AB···Cl2ii | 0.98 | 2.81 | 3.738 (3) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z+1; (iv) x−1/2, −y+3/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+3/2, y+1/2, −z+1/2. |
Funding information
This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.
References
Balahura, R. J. & Jordan, R. B. (1970). J. Am. Chem. Soc. 92, 1533–1539. CrossRef CAS Web of Science Google Scholar
Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796–801. Web of Science CSD CrossRef Google Scholar
Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44. Web of Science CSD CrossRef CAS Google Scholar
De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. Web of Science CrossRef PubMed CAS Google Scholar
De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950. Web of Science CSD CrossRef CAS Google Scholar
Flores-Vélez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247. Google Scholar
Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kane-Maguire, N. A. P., Bennett, J. A. & Miller, P. K. (1983). Inorg. Chim. Acta, 76, L123–L125. CAS Google Scholar
Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 456–459. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417–1420. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. CSD CrossRef IUCr Journals Google Scholar
Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540–543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Poon, C.-K. & Pun, K.-C. (1980). Inorg. Chem. 19, 568–569. CrossRef CAS Web of Science Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648. Web of Science CrossRef CAS Google Scholar
Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Solano-Peralta, A., Sosa-Torres, M. E., Flores-Alamo, M., El-Mkami, H., Smith, G. M., Toscano, R. A. & Nakamura, T. (2004). Dalton Trans. pp. 2444–2449. Google Scholar
Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.