research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India, and bDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 February 2020; accepted 17 April 2020; online 24 April 2020)

The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a di­methyl­formamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic mol­ecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Car­yl—CH2—NH—Car­yl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supra­molecular network, resulting from hydrogen-bonding inter­actions between the carb­oxy­lic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carb­oxy­lic group and additional C—H⋯π inter­actions. Hirshfeld surface analysis was performed to qu­antify the inter­molecular inter­actions.

1. Chemical context

Schiff bases belong to a class of organic compounds that are formed by the condensation reaction of a carbonyl carbon with an aliphatic/aromatic amine, resulting in the formation of a characteristic imine bond (–HC=N–). Many Schiff bases exhibit activities of biological and pharmaceutical significance. Moreover, Schiff bases are actively used as organic linkers for building metal complexes with inter­esting properties.

[Scheme 1]

Here we report the synthesis and crystal structure of a reduced Schiff base that was formed by a condensation reaction of anthraldehyde with 4-amino benzoic acid (PABA). The title compound crystallizes with a di­methyl­formamide (DMF) solvent mol­ecule in a 1:1: ratio. Both anthraldehyde and PABA have shown anti­cancer (Pavitha et al., 2017[Pavitha, P., Prashanth, J., Ramu, G., Ramesh, G., Mamatha, K. & Reddy, B. V. (2017). J. Mol. Struct. 1147, 406-426.]), fluorescence (Obali & Ucan, 2012[Obali, A. Y. & Ucan, H. I. (2012). J. Fluoresc. 22, 1357-1370.]; Singh et al., 2014[Singh, R., Mrozinski, J. & Bharadwaj, P. K. (2014). Cryst. Growth Des. 14, 3623-3633.]), sensing (Zhou et al., 2012[Zhou, Y., Zhou, H., Zhang, J., Zhang, L. & Niu, J. (2012). Spectrochim. Acta A, 98, 14-17.]), anti­microbial (Vidya, 2016[Vidya, V. G. (2016). Res. J. Recent Sci, 5, 41-43.]) and magnetic properties (Dianu et al., 2010[Dianu, L. M., Kriza, A., Stanica, N. & Musuc, M. A. (2010). J. Serb. Chem. Soc. 75, 1515-1531.]).

2. Structural commentary

The title mol­ecule is non-planar, with the tricyclic fragment nearly perpendicular to the phenyl ring of the PABA moiety, making a dihedral angle of 81.36 (8)° (Fig. 1[link]). The torsion angle of the Car­yl—CH2—NH—Car­yl backbone (C9—C8—N1—C5) is 175.9 (2)°. The C8—N1 bond length of 1.452 (3) Å is in agreement with the corresponding bond length of 1.457 (3) Å in the solvent-free compound [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode RUCJIL; Ahmed et al., 2020[Ahmed, A., Faizi, M. S. H., Ahmad, A., Ahmad, M. & Fritsky, I. O. (2020). Acta Cryst. E76, 62-65.]], just as the bond lengths in the carb­oxy­lic group of the title compound, C1—O2 = 1.230 (3), C1—O1 = 1.322 (3) Å, are virtually identical with those of the solvent-free compound [1.238 (3) and 1.325 (3) Å, respectively].

[Figure 1]
Figure 1
The mol­ecular structures of the components in the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Classical hydrogen-bonding inter­actions between the carb­oxy­lic OH group (O1) and the solvent O atom (O3) as well as between the amine functionality (N1) and the O atom of the carb­oxy­lic group (O2) lead to the formation of supra­molecular layers extending parallel to (10[\overline{1}]) (Fig. 2[link], Table 1[link]). C—H⋯π inter­actions involving the phenyl C—H groups of PABA as donor groups and the π system of the anthracene moiety link adjacent layers into a three-dimensional network (Fig. 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg7 are the centroids of the 10-membered ring system C9–C22 and of the 14-membered anthracene moiety, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 1.02 (4) 1.59 (4) 2.590 (3) 167 (4)
N1—H1A⋯O2i 0.88 (1) 2.13 (1) 2.973 (3) 160 (1)
C18—H18⋯O3ii 0.95 (1) 2.40 (1) 3.277 (4) 154 (1)
C6—H6⋯Cg7iii 0.95 2.80 (1) 3.552 (2) 137 (1)
C7—H7⋯Cg5iii 0.95 2.99 (1) 3.646 (3) 138 (1)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View along [010] showing a layer formed by hydrogen-bonding inter­actions between the mol­ecule and the solvent. Purple and blue dashed lines represent the N—H⋯O and O—H⋯O bonds, respectively.
[Figure 3]
Figure 3
The crystal packing showing C—H⋯π inter­actions between the layers, building up a three-dimensional network.

4. Hirshfeld Surface Analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, A. M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net]). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The positions of the O—H⋯O and N—H⋯O hydrogen bonds between the mol­ecules are indicated by the red regions on the Hirshfeld surface (Fig. 4[link]).

[Figure 4]
Figure 4
Hirshfeld surface of the two mol­ecules in the title compound mapped over dnorm, in the colour range −0. 461 to 1.471 a.u..

The two-dimensional fingerprint plot (Fig. 5[link]a) and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) O⋯H/H⋯O inter­actions reveal contributions of 47.9%, 34.2%, 0.6% and 13.7%, respectively, to the overall surface.

[Figure 5]
Figure 5
(a) Two-dimensional fingerprint plot of the title compound, and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) O⋯H/H⋯O inter­actions.

5. Database survey

Next to the solvent-free crystal structure (RUCJIL; Ahmed et al., 2020[Ahmed, A., Faizi, M. S. H., Ahmad, A., Ahmad, M. & Fritsky, I. O. (2020). Acta Cryst. E76, 62-65.]), a search of the Cambridge Structural Database (CSD,Version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the N-(anthracen-9-ylmeth­yl)aniline skeleton gave six hits, five polymeric metal complexes of the ligand 5-[(anthracen-9-ylmeth­yl)amino]­isophthalic acid containing gadolinium (VOLSOG, VOLSUM, VOLTAT, VOLTIB; Singh et al., 2014[Singh, R., Mrozinski, J. & Bharadwaj, P. K. (2014). Cryst. Growth Des. 14, 3623-3633.]) and cadmium (EYUMOC; Yan et al., 2016[Yan, Y., Chen, J., Zhang, N. N., Wang, M. S., Sun, C., Xing, X. S., Li, R., Xu, J. G., Zheng, F. K. & Guo, G. C. (2016). Dalton Trans. 45, 18074-18078.]) as well as an organic mol­ecule with a calix(4)arene ring (Bu et al., 2004[Bu, J. H., Zheng, Q. Y., Chen, C. F. & Huang, Z. T. (2004). Org. Lett. 6, 3301-3303.]). In these structures, the bridging C—N bond length varies from ≃ 1.389 to 1.494 Å, compared to the C8—N1 bond length of 1.452 (3) Å in the title structure.

6. Synthesis and crystallization

The Schiff base was synthesized and subsequently reduced by a reported procedure (Ahmed et al., 2020[Ahmed, A., Faizi, M. S. H., Ahmad, A., Ahmad, M. & Fritsky, I. O. (2020). Acta Cryst. E76, 62-65.]). To this reduced ligand (0.15 mmol), ethanol and di­methyl­formamide were added in an equal volume ratio, and the mixture was heated under reflux for 3–4 h at 353 K. The solution was then allowed to cool to room temperature, filtered and kept for slow evaporation. After 10 to 12 d, small colourless block-like crystals began to grow that were dried and characterized by single crystal X-ray diffraction.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bound to N or O atoms were located in a difference-Fourier map and were freely refined, while the C-bound hydrogen atoms were included in calculated positions and allowed to ride on their parent C atom: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C22H17NO2·C3H7NO
Mr 400.48
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.6878 (9), 8.9088 (7), 21.9503 (19)
β (°) 99.049 (3)
V3) 2064.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.36 × 0.28 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.368, 0.746
No. of measured, independent and observed [I ≥ 2u(I)] reflections 31593, 3668, 2477
Rint 0.139
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.184, 1.12
No. of reflections 3668
No. of parameters 278
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-{[(Anthracen-9-yl)methyl]amino}benzoic acid dimethylformamide monosolvate# top
Crystal data top
C22H17NO2·C3H7NOF(000) = 848.4030
Mr = 400.48Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6878 (9) ÅCell parameters from 4326 reflections
b = 8.9088 (7) Åθ = 3.2–28.1°
c = 21.9503 (19) ŵ = 0.09 mm1
β = 99.049 (3)°T = 100 K
V = 2064.0 (3) Å3Block, colourless
Z = 40.36 × 0.28 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2477 reflections with I 2u(I)
φ and ω scansRint = 0.139
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.1°, θmin = 3.0°
Tmin = 0.368, Tmax = 0.746h = 1414
31593 measured reflectionsk = 1111
3668 independent reflectionsl = 2929
Refinement top
Refinement on F241 constraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.3653P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3668 reflectionsΔρmax = 0.47 e Å3
278 parametersΔρmin = 0.37 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73134 (18)0.7445 (2)0.43603 (9)0.0355 (5)
O20.88916 (17)0.7377 (2)0.38033 (9)0.0323 (5)
O30.83886 (19)0.9615 (2)0.50335 (9)0.0400 (5)
N10.49557 (19)0.2754 (2)0.23347 (11)0.0271 (5)
H1a0.52980 (19)0.2410 (2)0.20230 (11)0.0326 (7)*
N20.8603 (2)1.1906 (2)0.46049 (11)0.0319 (6)
C10.7855 (2)0.6922 (3)0.39023 (13)0.0271 (6)
C20.7105 (2)0.5787 (3)0.35193 (12)0.0239 (6)
C30.7566 (2)0.5171 (3)0.30121 (12)0.0262 (6)
H30.8380 (2)0.5456 (3)0.29315 (12)0.0314 (7)*
C40.6864 (2)0.4164 (3)0.26299 (13)0.0270 (6)
H40.7197 (2)0.3763 (3)0.22878 (13)0.0324 (8)*
C50.5653 (2)0.3715 (3)0.27377 (12)0.0242 (6)
C60.5206 (2)0.4299 (3)0.32576 (12)0.0263 (6)
H60.4407 (2)0.3988 (3)0.33498 (12)0.0316 (7)*
C70.5920 (2)0.5320 (3)0.36341 (12)0.0251 (6)
H70.5597 (2)0.5715 (3)0.39801 (12)0.0302 (7)*
C80.3682 (2)0.2265 (3)0.23901 (13)0.0272 (6)
H8a0.3697 (2)0.1682 (3)0.27751 (13)0.0327 (8)*
H8b0.3128 (2)0.3149 (3)0.24074 (13)0.0327 (8)*
C90.3172 (2)0.1300 (3)0.18389 (12)0.0234 (6)
C100.2375 (2)0.1918 (3)0.13285 (12)0.0248 (6)
C110.1944 (3)0.3436 (3)0.13080 (14)0.0344 (7)
H110.2224 (3)0.4081 (3)0.16466 (14)0.0412 (9)*
C120.1145 (3)0.3979 (4)0.08172 (16)0.0452 (8)
H120.0856 (3)0.4987 (4)0.08225 (16)0.0543 (10)*
C130.0737 (3)0.3074 (4)0.03015 (16)0.0456 (9)
H130.0174 (3)0.3471 (4)0.00384 (16)0.0548 (10)*
C140.1141 (3)0.1640 (4)0.02867 (14)0.0372 (7)
H140.0880 (3)0.1048 (4)0.00706 (14)0.0447 (9)*
C150.1955 (2)0.0998 (3)0.07979 (12)0.0282 (6)
C160.2339 (2)0.0494 (3)0.07998 (13)0.0289 (7)
H160.2064 (2)0.1097 (3)0.04472 (13)0.0347 (8)*
C170.3112 (2)0.1129 (3)0.13030 (12)0.0266 (6)
C180.3469 (3)0.2670 (3)0.13064 (15)0.0350 (7)
H180.3170 (3)0.3283 (3)0.09599 (15)0.0420 (9)*
C190.4230 (3)0.3272 (3)0.17973 (16)0.0407 (8)
H190.4447 (3)0.4306 (3)0.17957 (16)0.0489 (10)*
C200.4701 (3)0.2375 (3)0.23099 (15)0.0368 (7)
H200.5252 (3)0.2804 (3)0.26469 (15)0.0441 (9)*
C210.4378 (2)0.0896 (3)0.23285 (13)0.0306 (7)
H210.4707 (2)0.0312 (3)0.26793 (13)0.0367 (8)*
C220.3555 (2)0.0209 (3)0.18322 (12)0.0235 (6)
C230.8782 (3)1.0922 (3)0.50634 (14)0.0318 (7)
H230.9249 (3)1.1247 (3)0.54448 (14)0.0381 (8)*
C240.9129 (3)1.3401 (3)0.46883 (15)0.0401 (8)
H24a0.8440 (3)1.4139 (3)0.4638 (9)0.0602 (12)*
H24b0.9620 (16)1.3491 (7)0.5103 (3)0.0602 (12)*
H24c0.9684 (15)1.3586 (9)0.4381 (6)0.0602 (12)*
C250.7882 (3)1.1510 (4)0.40096 (14)0.0445 (8)
H25a0.8462 (3)1.136 (2)0.3711 (3)0.0668 (12)*
H25b0.7411 (15)1.0580 (13)0.4049 (2)0.0668 (12)*
H25c0.7286 (14)1.2320 (11)0.3868 (5)0.0668 (12)*
H10.776 (4)0.836 (4)0.4571 (18)0.085 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (12)0.0387 (12)0.0343 (12)0.0078 (9)0.0132 (9)0.0087 (10)
O20.0293 (11)0.0377 (11)0.0307 (11)0.0076 (8)0.0071 (9)0.0032 (9)
O30.0511 (13)0.0329 (12)0.0356 (13)0.0006 (9)0.0058 (10)0.0041 (10)
N10.0206 (11)0.0305 (12)0.0311 (13)0.0044 (9)0.0066 (10)0.0092 (10)
N20.0321 (13)0.0264 (12)0.0366 (15)0.0015 (10)0.0039 (11)0.0002 (11)
C10.0242 (15)0.0293 (15)0.0288 (16)0.0008 (11)0.0071 (12)0.0040 (12)
C20.0220 (13)0.0238 (13)0.0260 (15)0.0027 (10)0.0043 (11)0.0031 (11)
C30.0201 (13)0.0254 (14)0.0331 (16)0.0019 (10)0.0045 (11)0.0012 (12)
C40.0240 (14)0.0272 (14)0.0311 (16)0.0007 (11)0.0088 (11)0.0040 (12)
C50.0215 (13)0.0230 (13)0.0278 (15)0.0016 (10)0.0030 (11)0.0018 (12)
C60.0199 (13)0.0284 (14)0.0316 (16)0.0005 (11)0.0070 (11)0.0012 (12)
C70.0230 (14)0.0275 (14)0.0255 (15)0.0017 (11)0.0055 (11)0.0011 (12)
C80.0197 (14)0.0317 (15)0.0309 (16)0.0039 (11)0.0060 (11)0.0039 (12)
C90.0166 (13)0.0278 (14)0.0267 (15)0.0037 (10)0.0064 (11)0.0007 (12)
C100.0179 (13)0.0265 (14)0.0311 (16)0.0033 (10)0.0075 (11)0.0036 (12)
C110.0327 (16)0.0330 (16)0.0387 (18)0.0027 (12)0.0097 (13)0.0042 (14)
C120.0374 (18)0.0412 (18)0.057 (2)0.0063 (14)0.0066 (16)0.0160 (17)
C130.0301 (17)0.058 (2)0.047 (2)0.0023 (15)0.0001 (15)0.0250 (17)
C140.0266 (15)0.0536 (19)0.0307 (17)0.0107 (14)0.0021 (13)0.0099 (15)
C150.0212 (14)0.0355 (15)0.0284 (16)0.0060 (11)0.0055 (11)0.0037 (13)
C160.0240 (14)0.0356 (16)0.0281 (16)0.0089 (11)0.0066 (12)0.0044 (13)
C170.0209 (13)0.0284 (14)0.0326 (16)0.0046 (11)0.0106 (12)0.0013 (12)
C180.0336 (16)0.0291 (15)0.045 (2)0.0057 (12)0.0159 (14)0.0033 (14)
C190.0361 (17)0.0262 (15)0.062 (2)0.0008 (13)0.0139 (16)0.0051 (15)
C200.0260 (15)0.0352 (16)0.048 (2)0.0010 (12)0.0036 (14)0.0132 (15)
C210.0217 (14)0.0340 (15)0.0358 (17)0.0047 (11)0.0040 (12)0.0039 (13)
C220.0168 (13)0.0256 (13)0.0290 (15)0.0029 (10)0.0065 (11)0.0027 (12)
C230.0307 (15)0.0281 (15)0.0360 (18)0.0041 (12)0.0036 (13)0.0066 (13)
C240.0380 (18)0.0304 (16)0.053 (2)0.0011 (13)0.0099 (15)0.0012 (15)
C250.047 (2)0.049 (2)0.0341 (18)0.0011 (15)0.0030 (15)0.0005 (15)
Geometric parameters (Å, º) top
O1—C11.322 (3)C11—H110.9500
O1—H11.02 (4)C11—C121.354 (4)
O2—C11.230 (3)C12—H120.9500
O3—C231.236 (3)C12—C131.402 (5)
N1—H1a0.8800C13—H130.9500
N1—C51.365 (3)C13—C141.351 (4)
N1—C81.452 (3)C14—H140.9500
N2—C231.326 (4)C14—C151.427 (4)
N2—C241.446 (3)C15—C161.391 (4)
N2—C251.452 (4)C16—H160.9500
C1—C21.470 (4)C16—C171.392 (4)
C2—C31.399 (4)C17—C181.424 (4)
C2—C71.393 (3)C17—C221.439 (4)
C3—H30.9500C18—H180.9500
C3—C41.368 (4)C18—C191.355 (4)
C4—H40.9500C19—H190.9500
C4—C51.410 (3)C19—C201.407 (4)
C5—C61.405 (4)C20—H200.9500
C6—H60.9500C20—C211.365 (4)
C6—C71.376 (4)C21—H210.9500
C7—H70.9500C21—C221.426 (4)
C8—H8a0.9900C23—H230.9500
C8—H8b0.9900C24—H24a0.9800
C8—C91.514 (4)C24—H24b0.9800
C9—C101.408 (4)C24—H24c0.9800
C9—C221.406 (3)C25—H25a0.9800
C10—C111.427 (4)C25—H25b0.9800
C10—C151.437 (4)C25—H25c0.9800
H1—O1—C1114 (2)H13—C13—C12119.91 (18)
C5—N1—H1a118.07 (14)C14—C13—C12120.2 (3)
C8—N1—H1a118.07 (14)C14—C13—H13119.91 (19)
C8—N1—C5123.9 (2)H14—C14—C13119.40 (19)
C24—N2—C23120.4 (2)C15—C14—C13121.2 (3)
C25—N2—C23121.1 (2)C15—C14—H14119.40 (18)
C25—N2—C24118.6 (2)C14—C15—C10118.9 (3)
O2—C1—O1122.2 (3)C16—C15—C10119.2 (2)
C2—C1—O1114.4 (2)C16—C15—C14121.9 (3)
C2—C1—O2123.4 (2)H16—C16—C15119.03 (16)
C3—C2—C1119.8 (2)C17—C16—C15121.9 (2)
C7—C2—C1122.1 (2)C17—C16—H16119.03 (16)
C7—C2—C3118.1 (2)C18—C17—C16121.4 (3)
H3—C3—C2119.41 (15)C22—C17—C16119.2 (2)
C4—C3—C2121.2 (2)C22—C17—C18119.4 (2)
C4—C3—H3119.41 (16)H18—C18—C17119.59 (17)
H4—C4—C3119.59 (16)C19—C18—C17120.8 (3)
C5—C4—C3120.8 (2)C19—C18—H18119.59 (17)
C5—C4—H4119.59 (15)H19—C19—C18119.81 (17)
C4—C5—N1119.4 (2)C20—C19—C18120.4 (3)
C6—C5—N1122.6 (2)C20—C19—H19119.81 (17)
C6—C5—C4118.0 (2)H20—C20—C19119.60 (17)
H6—C6—C5119.79 (15)C21—C20—C19120.8 (3)
C7—C6—C5120.4 (2)C21—C20—H20119.60 (18)
C7—C6—H6119.79 (15)H21—C21—C20119.32 (18)
C6—C7—C2121.5 (2)C22—C21—C20121.4 (3)
H7—C7—C2119.26 (15)C22—C21—H21119.32 (16)
H7—C7—C6119.26 (15)C17—C22—C9119.6 (2)
H8a—C8—N1109.85 (14)C21—C22—C9123.2 (2)
H8b—C8—N1109.85 (14)C21—C22—C17117.2 (2)
H8b—C8—H8a108.3N2—C23—O3125.1 (3)
C9—C8—N1109.2 (2)H23—C23—O3117.46 (17)
C9—C8—H8a109.85 (14)H23—C23—N2117.46 (16)
C9—C8—H8b109.85 (14)H24a—C24—N2109.5
C10—C9—C8120.7 (2)H24b—C24—N2109.5
C22—C9—C8118.8 (2)H24b—C24—H24a109.5
C22—C9—C10120.4 (2)H24c—C24—N2109.5
C11—C10—C9123.2 (2)H24c—C24—H24a109.5
C15—C10—C9119.7 (2)H24c—C24—H24b109.5
C15—C10—C11117.2 (2)H25a—C25—N2109.5
H11—C11—C10119.22 (16)H25b—C25—N2109.5
C12—C11—C10121.6 (3)H25b—C25—H25a109.5
C12—C11—H11119.22 (19)H25c—C25—N2109.5
H12—C12—C11119.52 (19)H25c—C25—H25a109.5
C13—C12—C11121.0 (3)H25c—C25—H25b109.5
C13—C12—H12119.52 (18)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg7 are the centroids of the 10-membered ring system C9–C22 and of the 14-membered anthracene moiety, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O31.02 (4)1.59 (4)2.590 (3)167 (4)
N1—H1A···O2i0.88 (1)2.13 (1)2.973 (3)160 (1)
C18—H18···O3ii0.95 (1)2.40 (1)3.277 (4)154 (1)
C6—H6···Cg7iii0.952.80 (1)3.552 (2)137 (1)
C7—H7···Cg5iii0.952.99 (1)3.646 (3)138 (1)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, U.P., India, for providing laboratory facilities.

Funding information

Funding for this research was provided by: University Grants Commission, India (TEQUIP grant, ZHCET, AMU, Aligarh, India).

References

First citationAhmed, A., Faizi, M. S. H., Ahmad, A., Ahmad, M. & Fritsky, I. O. (2020). Acta Cryst. E76, 62–65.  CSD CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, J. H., Zheng, Q. Y., Chen, C. F. & Huang, Z. T. (2004). Org. Lett. 6, 3301–3303.  CSD CrossRef PubMed CAS Google Scholar
First citationDianu, L. M., Kriza, A., Stanica, N. & Musuc, M. A. (2010). J. Serb. Chem. Soc. 75, 1515–1531.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationObali, A. Y. & Ucan, H. I. (2012). J. Fluoresc. 22, 1357–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPavitha, P., Prashanth, J., Ramu, G., Ramesh, G., Mamatha, K. & Reddy, B. V. (2017). J. Mol. Struct. 1147, 406–426.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, R., Mrozinski, J. & Bharadwaj, P. K. (2014). Cryst. Growth Des. 14, 3623–3633.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, A. M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net  Google Scholar
First citationVidya, V. G. (2016). Res. J. Recent Sci, 5, 41–43.  CAS Google Scholar
First citationYan, Y., Chen, J., Zhang, N. N., Wang, M. S., Sun, C., Xing, X. S., Li, R., Xu, J. G., Zheng, F. K. & Guo, G. C. (2016). Dalton Trans. 45, 18074–18078.  CSD CrossRef CAS PubMed Google Scholar
First citationZhou, Y., Zhou, H., Zhang, J., Zhang, L. & Niu, J. (2012). Spectrochim. Acta A, 98, 14–17.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds