research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bDepartment of Fundamental Sciences, Faculty of Engineering, Samsun University, Samsun 55420, Turkey, cMoroccan Foundation for Advanced Science Innovation and Research (Mascir), Department of Nanotechnology, Rabat Design Center, Rue Mohamed Al Jazouli-Madinat Al Irfane, Rabat 10 100, Morocco, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, and fLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco
*Correspondence e-mail: younos.bouzian19@gmail.com, sevgi.kansiz85@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 February 2020; accepted 1 April 2020; online 9 April 2020)

The asymmetric unit of the title compound, C22H31NO3, comprises of one mol­ecule. The mol­ecule is not planar, with the carboxyl­ate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual mol­ecules are linked by aromaticC—H⋯Ocarbon­yl hydrogen bonds into chains running parallel to [001]. Slipped ππ stacking inter­actions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and mol­ecular electrostatic potential surfaces were used to qu­antify the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) inter­actions.

1. Chemical context

Quinoline derivatives represent an important class of heterocyclic compounds utilized as pharmaceuticals (Chu et al., 2019[Chu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101-117.]). They possess various biological properties such as anti­bacterial (Panda et al., 2015[Panda, S. S., Liaqat, S., Girgis, A. S., Samir, A., Hall, C. D. & Katritzky, A. R. (2015). Bioorg. Med. Chem. Lett. 25, 3816-3821.]), anti­cancer (Tang et al., 2018[Tang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201-213.]), anti­tubercular (Xu et al., 2017[Xu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429-440.]), anti­viral (Sekgota et al., 2017[Sekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310-316.]), anti-HCV (Cannalire et al., 2016[Cannalire, R., Barreca, M. L., Manfroni, G. & Cecchetti, V. (2016). J. Med. Chem. 59, 16-41.]), anti­malarial (Hu et al., 2017[Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22-47.]), anti-Alzheimer's (Bolognesi et al., 2007[Bolognesi, M. L., Cavalli, A., Valgimigli, L., Bartolini, M., Rosini, M., Andrisano, V., Recanatini, M. & Melchiorre, C. (2007). J. Med. Chem. 50, 6446-6449.]), anti­leishmanial (Palit et al., 2009[Palit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845-853.]) and anti-inflammatory (Pinz et al., 2016[Pinz, M., Reis, A. S., Duarte, V., da Rocha, M. J., Goldani, B. S., Alves, D., Savegnago, L., Luchese, C. & Wilhelm, E. A. (2016). Eur. J. Pharmacol. 780, 122-128.]) activities.

[Scheme 1]

In view of the biological importance of quinoline, and in a continuation of our research work devoted to the syntheses and crystal structures of quinoline derivatives (Bouzian et al., 2019a[Bouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980-983.],b[Bouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912-916.]), we report herein on the mol­ecular and crystal structures of hexyl 1-hexyl-2-oxo-1,2-di­hydro­quinoline-4-carb­oxyl­ate, (I)[link], which was prepared by reacting ethyl 6-chloro-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate with 1-bromo­hexane in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide. Inter­molecular inter­actions were qu­anti­fied by Hirshfeld surface analysis.

2. Structural commentary

The mol­ecule of (I)[link] is shown in Fig. 1[link]. It is non-planar, with the carboxyl ester group inclined by 33.47 (4)° to the heterocyclic ring (r.m.s. deviation of the ten atoms = 0.0174 Å). The hexyl chain attached to N1 is twisted out of this plane by 14.2 (2)° whereas the hexyl chain attached to O1 is twisted by 23.1 (2)° from this plane.

[Figure 1]
Figure 1
The title mol­ecule with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, C4—H4⋯O1 hydrogen bonds between the phenyl ring and the carbonyl group of an adjacent mol­ecule lead to the formation of chains running parallel to [001] (Table 1[link], Fig. 2[link]). These chains are connected in pairs along [010] through slipped ππ stacking inter­actions between inversion-related di­hydro­quinoline moieties [Cg1⋯Cg2i = 3.5472 (9) Å with a slippage of 0.957 Å; Cg1 and Cg2 are the centroids of the N1/C6/C1/C9/C8/C7 and C1–C6 rings; symmetry code: (i) 1 − x, −y, 1 − z] (Figs. 2[link], 3[link]). This way, (100) layers with a width corresponding to the length of the a axis are formed. Unlike the packing features of similar mol­ecules, the hexyl chains are not oriented in parallel. This is possibly a consequence of the ππ stacking inter­actions, which result in a `crossed' orientation of neighbouring hexyl groups (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.960 (17) 2.475 (17) 3.3670 (19) 154.7 (15)
Symmetry code: (i) x, y, z+1.
[Figure 2]
Figure 2
The crystal packing viewed along [010], with C—H⋯O hydrogen bonds and ππ stacking inter­actions indicated by black and orange dashed lines, respectively.
[Figure 3]
Figure 3
The crystal packing viewed along [001], with ππ stacking inter­actions indicated by orange dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid as the main skeleton revealed five structures similar to the title compound. They contain the oxo­quinoline moiety with different substit­uents, viz. 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid monohydrate (EQAVAV; Filali Baba et al., 2016[Filali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160997.]), ethyl 1H-3-hy­droxy-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (RAV­JAA01; Paterna et al., 2013[Paterna, R., André, V., Duarte, M. T., Veiros, L. F., Candeias, N. R. & Gois, P. M. P. (2013). Eur. J. Org. Chem. 2013, 6280-6290.]), ethyl 1-methyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (SECCAH; Filali Baba et al., 2017a[Filali Baba, Y., Kandri Rodi, Y., Hayani, S., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017a). IUCrData, 2, x170917.]), prop-2-yn-1-yl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate (XILYUP; Filali Baba et al., 2017b[Filali Baba, Y., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017b). IUCrData, 2, x171072.]) and ethyl 1-benzyl-3-hy­droxy-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (ZINHEL; Paterna et al., 2013[Paterna, R., André, V., Duarte, M. T., Veiros, L. F., Candeias, N. R. & Gois, P. M. P. (2013). Eur. J. Org. Chem. 2013, 6280-6290.]). The layers present in EQAVAV are linked together by pairwise N—H⋯O inter­actions. In SECCAH, weak C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along [100]. A single weak C—H⋯O inter­molecular inter­action links the mol­ecules into [001] chains in XILYUP.

5. Hirshfeld surface analysis

To investigate the inter­molecular inter­actions, Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots were generated for the mol­ecule using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surface analysis depicts inter­molecular inter­actions by different colours, representing short or long contacts and further the relative strength of the inter­action. The generated Hirshfeld surface mapped over dnorm is shown in Fig. 4[link]a. A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential, highlighting the C—H⋯O contacts, is given in Fig. 4[link]b. As revealed by the two-dimensional fingerprint plots (Fig. 5[link]), the crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (72% contribution to the overall surface), followed by O⋯H and C⋯H inter­actions, which contribute with 14.5% and 5.6%, respectively. The contributions of the C⋯C (5.4%), C⋯O (0.8%), C⋯N (0.7%) and N⋯H (0.6%) inter­actions are less significant.

[Figure 4]
Figure 4
(a) The Hirshfeld surfaces of the title compound mapped over dnorm, with a fixed colour scale of −0.1822 (red) to 1.3083 (blue) a.u., and (b) the Hirshfeld surface mapped over mol­ecular electrostatic potential showing C—H⋯O hydrogen bonds, with a fixed colour scale of −0.0733 (red) to 0.0381(blue) a.u..
[Figure 5]
Figure 5
Two-dimensional fingerprint plots to the Hirshfeld surface with (a) a dnorm view for (I)[link] and delineated into relative contributions for (b) H⋯H, (c) O⋯H/H⋯H and (d) C⋯H/H⋯C inter­actions.

6. Synthesis and crystallization

A mixture of 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid (0.5 g, 2.6 mmol), K2CO3 (0.73 g, 5.29 mmol), 1-bromo­hexane (0.66 g, 4 mmol) and tetra-n-butyl­ammonium bromide as catalyst in DMF (25 ml) was stirred at room temperature for 48 h. The solution was filtered by suction, and the solvent was removed under reduced pressure. The residue was chromatographed on a silica-gel column using hexane and ethyl acetate (v/v, 95/5) as eluents to afford (I)[link]. Single crystals were obtained by slow evaporation of an ethano­lic solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference-Fourier maps and were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C22H31NO3
Mr 357.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 17.6928 (7), 13.2512 (5), 8.5916 (3)
β (°) 90.184 (2)
V3) 2014.30 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.61
Crystal size (mm) 0.25 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.82, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 14697, 3924, 3044
Rint 0.048
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.105, 1.07
No. of reflections 3924
No. of parameters 359
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hexyl 1-hexyl-2-oxo-1,2-dihydroquinoline-4-carboxylate top
Crystal data top
C22H31NO3F(000) = 776
Mr = 357.48Dx = 1.179 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 17.6928 (7) ÅCell parameters from 9350 reflections
b = 13.2512 (5) Åθ = 5.0–72.3°
c = 8.5916 (3) ŵ = 0.61 mm1
β = 90.184 (2)°T = 150 K
V = 2014.30 (13) Å3Block, colourless
Z = 40.25 × 0.17 × 0.10 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3924 independent reflections
Radiation source: INCOATEC IµS micro–focus source3044 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.2°
ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1615
Tmin = 0.82, Tmax = 0.94l = 910
14697 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.105All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.028P)2 + 0.8763P]
where P = (Fo2 + 2Fc2)/3
3924 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38830 (7)0.40574 (9)0.54321 (12)0.0338 (3)
O20.68998 (7)0.45106 (10)0.80686 (14)0.0384 (3)
O30.66596 (7)0.37452 (8)0.57906 (13)0.0308 (3)
N10.40867 (8)0.38809 (9)0.80434 (14)0.0254 (3)
C10.53672 (9)0.37846 (11)0.90859 (17)0.0251 (3)
C20.58415 (10)0.36524 (11)1.03887 (19)0.0281 (4)
H20.6393 (11)0.3633 (14)1.024 (2)0.034 (5)*
C30.55465 (10)0.35284 (12)1.18543 (19)0.0303 (4)
H30.5872 (10)0.3427 (14)1.279 (2)0.039 (5)*
C40.47679 (10)0.35250 (12)1.20670 (18)0.0298 (4)
H40.4558 (10)0.3457 (14)1.309 (2)0.032 (5)*
C50.42866 (10)0.36311 (12)1.08128 (18)0.0277 (4)
H50.3734 (10)0.3620 (13)1.098 (2)0.031 (5)*
C60.45761 (9)0.37626 (11)0.93073 (17)0.0246 (3)
C70.43350 (10)0.39750 (11)0.65289 (17)0.0270 (3)
C80.51480 (10)0.40045 (11)0.63199 (18)0.0269 (3)
H80.5319 (10)0.4116 (14)0.529 (2)0.036 (5)*
C90.56382 (9)0.39364 (11)0.75165 (17)0.0260 (3)
C100.32666 (10)0.39452 (12)0.83043 (19)0.0285 (4)
H10A0.3196 (10)0.4370 (13)0.927 (2)0.029 (4)*
H10B0.3059 (10)0.4312 (14)0.736 (2)0.033 (5)*
C110.28830 (10)0.29203 (12)0.8470 (2)0.0295 (4)
H11A0.3155 (10)0.2489 (14)0.924 (2)0.027 (4)*
H11B0.2890 (10)0.2551 (14)0.742 (2)0.035 (5)*
C120.20666 (10)0.30564 (14)0.8979 (2)0.0351 (4)
H12A0.2056 (11)0.3463 (15)1.001 (2)0.046 (6)*
H12B0.1785 (11)0.3465 (16)0.818 (2)0.046 (6)*
C130.16396 (11)0.20777 (15)0.9228 (2)0.0390 (4)
H13A0.1920 (11)0.1658 (16)1.009 (2)0.049 (6)*
H13B0.1668 (11)0.1653 (16)0.826 (2)0.045 (6)*
C140.08281 (12)0.22432 (18)0.9724 (3)0.0485 (5)
H14A0.0815 (13)0.2635 (19)1.075 (3)0.070 (7)*
H14B0.0564 (13)0.2674 (19)0.896 (3)0.068 (7)*
C150.03901 (15)0.1279 (2)0.9986 (4)0.0656 (7)
H15A0.0625 (16)0.085 (2)1.085 (3)0.086 (9)*
H15B0.0159 (16)0.1416 (19)1.031 (3)0.076 (8)*
H15C0.0378 (15)0.089 (2)0.895 (3)0.086 (9)*
C160.64634 (10)0.40936 (12)0.71935 (18)0.0280 (4)
C170.74124 (10)0.40261 (14)0.5285 (2)0.0329 (4)
H17A0.7783 (11)0.3728 (14)0.602 (2)0.036 (5)*
H17B0.7456 (11)0.4763 (17)0.533 (2)0.044 (6)*
C180.75172 (10)0.36435 (13)0.3648 (2)0.0325 (4)
H18A0.7468 (11)0.2897 (16)0.365 (2)0.046 (6)*
H18B0.7102 (11)0.3912 (14)0.299 (2)0.037 (5)*
C190.82624 (11)0.39951 (15)0.2953 (2)0.0352 (4)
H19A0.8683 (12)0.3685 (16)0.350 (2)0.050 (6)*
H19B0.8308 (11)0.4748 (17)0.311 (2)0.049 (6)*
C200.83340 (11)0.37729 (15)0.1223 (2)0.0385 (4)
H20A0.8297 (12)0.3045 (18)0.106 (2)0.052 (6)*
H20B0.7894 (12)0.4082 (16)0.068 (2)0.047 (6)*
C210.90568 (12)0.41679 (18)0.0503 (2)0.0440 (5)
H21A0.9504 (13)0.3819 (17)0.102 (3)0.059 (7)*
H21B0.9100 (14)0.490 (2)0.075 (3)0.069 (7)*
C220.90816 (15)0.4025 (2)0.1249 (3)0.0579 (6)
H22A0.9029 (15)0.332 (2)0.154 (3)0.080 (9)*
H22B0.8651 (16)0.439 (2)0.178 (3)0.077 (8)*
H22C0.9566 (14)0.4306 (19)0.170 (3)0.069 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0371 (7)0.0385 (7)0.0258 (6)0.0021 (5)0.0026 (5)0.0022 (5)
O20.0351 (7)0.0463 (7)0.0337 (6)0.0085 (6)0.0025 (5)0.0066 (5)
O30.0322 (7)0.0304 (6)0.0301 (6)0.0038 (5)0.0069 (5)0.0041 (5)
N10.0296 (8)0.0219 (6)0.0248 (7)0.0008 (5)0.0015 (5)0.0004 (5)
C10.0335 (9)0.0164 (7)0.0253 (8)0.0021 (6)0.0003 (6)0.0015 (5)
C20.0324 (10)0.0213 (7)0.0307 (8)0.0010 (7)0.0018 (7)0.0003 (6)
C30.0402 (10)0.0247 (8)0.0260 (8)0.0032 (7)0.0036 (7)0.0005 (6)
C40.0443 (11)0.0228 (8)0.0223 (8)0.0037 (7)0.0036 (7)0.0014 (6)
C50.0352 (10)0.0221 (7)0.0259 (8)0.0025 (7)0.0037 (7)0.0018 (6)
C60.0344 (9)0.0166 (7)0.0230 (7)0.0006 (6)0.0006 (6)0.0009 (5)
C70.0363 (10)0.0198 (7)0.0249 (8)0.0010 (6)0.0004 (7)0.0009 (6)
C80.0346 (9)0.0223 (8)0.0240 (8)0.0023 (6)0.0044 (7)0.0001 (6)
C90.0336 (9)0.0177 (7)0.0267 (8)0.0012 (6)0.0033 (7)0.0027 (6)
C100.0293 (9)0.0266 (8)0.0297 (8)0.0024 (7)0.0027 (7)0.0014 (7)
C110.0302 (9)0.0276 (8)0.0308 (8)0.0008 (7)0.0016 (7)0.0002 (7)
C120.0316 (10)0.0358 (9)0.0380 (10)0.0001 (7)0.0033 (8)0.0040 (8)
C130.0340 (10)0.0405 (10)0.0426 (10)0.0039 (8)0.0017 (8)0.0051 (8)
C140.0342 (11)0.0584 (13)0.0530 (13)0.0058 (10)0.0038 (10)0.0092 (10)
C150.0428 (14)0.0811 (18)0.0730 (18)0.0203 (13)0.0015 (13)0.0178 (15)
C160.0335 (9)0.0224 (7)0.0282 (8)0.0006 (7)0.0025 (7)0.0001 (6)
C170.0296 (10)0.0343 (10)0.0347 (9)0.0024 (7)0.0053 (7)0.0017 (7)
C180.0326 (10)0.0319 (9)0.0332 (9)0.0029 (7)0.0027 (8)0.0019 (7)
C190.0304 (10)0.0415 (10)0.0336 (9)0.0011 (8)0.0037 (8)0.0016 (7)
C200.0372 (11)0.0432 (11)0.0350 (10)0.0033 (8)0.0038 (8)0.0031 (8)
C210.0374 (12)0.0568 (13)0.0379 (10)0.0043 (10)0.0080 (9)0.0041 (9)
C220.0516 (15)0.0812 (18)0.0410 (12)0.0106 (13)0.0126 (11)0.0032 (12)
Geometric parameters (Å, º) top
O1—C71.2388 (19)C12—H12A1.04 (2)
O2—C161.2096 (19)C12—H12B1.01 (2)
O3—C161.3376 (19)C13—C141.515 (3)
O3—C171.451 (2)C13—H13A1.05 (2)
N1—C71.380 (2)C13—H13B1.00 (2)
N1—C61.395 (2)C14—C151.511 (3)
N1—C101.471 (2)C14—H14A1.02 (3)
C1—C21.408 (2)C14—H14B0.98 (3)
C1—C61.413 (2)C15—H15A1.02 (3)
C1—C91.447 (2)C15—H15B1.03 (3)
C2—C31.374 (2)C15—H15C1.02 (3)
C2—H20.985 (19)C17—C181.507 (2)
C3—C41.390 (2)C17—H17A0.992 (19)
C3—H30.998 (19)C17—H17B0.98 (2)
C4—C51.378 (2)C18—C191.522 (2)
C4—H40.956 (18)C18—H18A0.99 (2)
C5—C61.404 (2)C18—H18B0.99 (2)
C5—H50.988 (18)C19—C201.521 (2)
C7—C81.451 (2)C19—H19A0.97 (2)
C8—C91.346 (2)C19—H19B1.01 (2)
C8—H80.945 (19)C20—C211.515 (3)
C9—C161.502 (2)C20—H20A0.98 (2)
C10—C111.525 (2)C20—H20B0.99 (2)
C10—H10A1.011 (18)C21—C221.518 (3)
C10—H10B1.015 (18)C21—H21A1.02 (2)
C11—C121.521 (2)C21—H21B1.00 (3)
C11—H11A0.997 (17)C22—H22A0.97 (3)
C11—H11B1.022 (18)C22—H22B1.01 (3)
C12—C131.516 (3)C22—H22C1.01 (3)
C16—O3—C17115.00 (13)C12—C13—H13B109.7 (12)
C7—N1—C6123.04 (14)H13A—C13—H13B105.0 (16)
C7—N1—C10117.09 (13)C15—C14—C13114.0 (2)
C6—N1—C10119.84 (13)C15—C14—H14A106.8 (14)
C2—C1—C6118.59 (14)C13—C14—H14A109.8 (14)
C2—C1—C9124.05 (15)C15—C14—H14B110.3 (14)
C6—C1—C9117.37 (14)C13—C14—H14B110.2 (14)
C3—C2—C1121.07 (16)H14A—C14—H14B105 (2)
C3—C2—H2119.7 (11)C14—C15—H15A111.5 (16)
C1—C2—H2119.3 (11)C14—C15—H15B112.2 (15)
C2—C3—C4120.01 (16)H15A—C15—H15B106 (2)
C2—C3—H3122.4 (11)C14—C15—H15C107.7 (16)
C4—C3—H3117.5 (11)H15A—C15—H15C111 (2)
C5—C4—C3120.45 (16)H15B—C15—H15C108 (2)
C5—C4—H4118.9 (11)O2—C16—O3123.42 (15)
C3—C4—H4120.6 (11)O2—C16—C9124.59 (15)
C4—C5—C6120.45 (16)O3—C16—C9111.96 (13)
C4—C5—H5119.7 (10)O3—C17—C18108.01 (14)
C6—C5—H5119.9 (10)O3—C17—H17A108.2 (11)
N1—C6—C5120.25 (15)C18—C17—H17A112.2 (11)
N1—C6—C1120.34 (14)O3—C17—H17B108.5 (12)
C5—C6—C1119.41 (14)C18—C17—H17B111.1 (11)
O1—C7—N1121.22 (15)H17A—C17—H17B108.8 (16)
O1—C7—C8122.79 (15)C17—C18—C19111.86 (15)
N1—C7—C8115.96 (14)C17—C18—H18A108.8 (11)
C9—C8—C7122.71 (15)C19—C18—H18A112.4 (12)
C9—C8—H8121.0 (11)C17—C18—H18B108.6 (11)
C7—C8—H8116.2 (11)C19—C18—H18B107.9 (11)
C8—C9—C1120.44 (15)H18A—C18—H18B107.1 (15)
C8—C9—C16118.29 (14)C20—C19—C18113.51 (15)
C1—C9—C16121.13 (14)C20—C19—H19A109.0 (12)
N1—C10—C11113.70 (13)C18—C19—H19A110.2 (12)
N1—C10—H10A106.4 (10)C20—C19—H19B108.3 (11)
C11—C10—H10A111.3 (10)C18—C19—H19B108.6 (12)
N1—C10—H10B105.1 (10)H19A—C19—H19B107.0 (17)
C11—C10—H10B110.0 (10)C21—C20—C19113.87 (16)
H10A—C10—H10B110.2 (14)C21—C20—H20A109.8 (13)
C12—C11—C10110.15 (14)C19—C20—H20A109.0 (12)
C12—C11—H11A109.5 (10)C21—C20—H20B109.1 (12)
C10—C11—H11A111.0 (10)C19—C20—H20B108.0 (12)
C12—C11—H11B108.9 (10)H20A—C20—H20B106.7 (17)
C10—C11—H11B109.7 (11)C20—C21—C22112.87 (18)
H11A—C11—H11B107.6 (14)C20—C21—H21A108.7 (13)
C13—C12—C11114.40 (15)C22—C21—H21A110.7 (13)
C13—C12—H12A108.3 (11)C20—C21—H21B108.2 (14)
C11—C12—H12A109.1 (11)C22—C21—H21B109.4 (14)
C13—C12—H12B108.1 (12)H21A—C21—H21B106.7 (19)
C11—C12—H12B109.7 (12)C21—C22—H22A112.0 (16)
H12A—C12—H12B107.0 (16)C21—C22—H22B111.1 (15)
C14—C13—C12112.89 (17)H22A—C22—H22B106 (2)
C14—C13—H13A109.1 (11)C21—C22—H22C111.1 (14)
C12—C13—H13A108.5 (11)H22A—C22—H22C110 (2)
C14—C13—H13B111.3 (12)H22B—C22—H22C107 (2)
C6—C1—C2—C31.6 (2)C7—C8—C9—C16173.12 (13)
C9—C1—C2—C3178.89 (14)C2—C1—C9—C8176.52 (15)
C1—C2—C3—C40.5 (2)C6—C1—C9—C83.0 (2)
C2—C3—C4—C50.9 (2)C2—C1—C9—C167.8 (2)
C3—C4—C5—C61.2 (2)C6—C1—C9—C16172.65 (13)
C7—N1—C6—C5177.49 (14)C7—N1—C10—C1199.07 (16)
C10—N1—C6—C54.7 (2)C6—N1—C10—C1182.96 (17)
C7—N1—C6—C13.2 (2)N1—C10—C11—C12171.38 (14)
C10—N1—C6—C1174.68 (13)C10—C11—C12—C13178.17 (15)
C4—C5—C6—N1179.30 (14)C11—C12—C13—C14179.66 (16)
C4—C5—C6—C10.1 (2)C12—C13—C14—C15179.8 (2)
C2—C1—C6—N1179.37 (13)C17—O3—C16—O28.3 (2)
C9—C1—C6—N10.2 (2)C17—O3—C16—C9169.68 (13)
C2—C1—C6—C51.3 (2)C8—C9—C16—O2143.61 (17)
C9—C1—C6—C5179.14 (13)C1—C9—C16—O232.2 (2)
C6—N1—C7—O1178.45 (14)C8—C9—C16—O334.38 (19)
C10—N1—C7—O13.6 (2)C1—C9—C16—O3149.83 (14)
C6—N1—C7—C83.5 (2)C16—O3—C17—C18175.71 (14)
C10—N1—C7—C8174.39 (13)O3—C17—C18—C19174.17 (14)
O1—C7—C8—C9178.56 (15)C17—C18—C19—C20170.54 (17)
N1—C7—C8—C90.6 (2)C18—C19—C20—C21177.03 (17)
C7—C8—C9—C12.7 (2)C19—C20—C21—C22174.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.960 (17)2.475 (17)3.3670 (19)154.7 (15)
Symmetry code: (i) x, y, z+1.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBolognesi, M. L., Cavalli, A., Valgimigli, L., Bartolini, M., Rosini, M., Andrisano, V., Recanatini, M. & Melchiorre, C. (2007). J. Med. Chem. 50, 6446–6449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980–983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912–916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannalire, R., Barreca, M. L., Manfroni, G. & Cecchetti, V. (2016). J. Med. Chem. 59, 16–41.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101–117.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFilali Baba, Y., Kandri Rodi, Y., Hayani, S., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017a). IUCrData, 2, x170917.  Google Scholar
First citationFilali Baba, Y., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017b). IUCrData, 2, x171072.  Google Scholar
First citationFilali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160997.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22–47.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPanda, S. S., Liaqat, S., Girgis, A. S., Samir, A., Hall, C. D. & Katritzky, A. R. (2015). Bioorg. Med. Chem. Lett. 25, 3816–3821.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPaterna, R., André, V., Duarte, M. T., Veiros, L. F., Candeias, N. R. & Gois, P. M. P. (2013). Eur. J. Org. Chem. 2013, 6280–6290.  Web of Science CSD CrossRef CAS Google Scholar
First citationPinz, M., Reis, A. S., Duarte, V., da Rocha, M. J., Goldani, B. S., Alves, D., Savegnago, L., Luchese, C. & Wilhelm, E. A. (2016). Eur. J. Pharmacol. 780, 122–128.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310–316.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201–213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429–440.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds