research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 6-bromo-3-(12-bromo­dodec­yl)-2-(4-nitro­phen­yl)-4H-imidazo[4,5-b]pyridine

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: khalidmisbahifst@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 March 2020; accepted 13 April 2020; online 21 April 2020)

The title compound, C24H30Br2N4O2, consists of a 2-(4-nitro­phen­yl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromo­dodecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolo­pyridine moiety, giving the mol­ecule a V-shape. In the crystal, the imidazolo­pyridine units are associated through slipped ππ stacking inter­actions together with weak C—HPyr⋯ONtr and C—HBrmdc­yl⋯ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromo­dodec­yl) hydrogen bonds. The 12-bromo­dodecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.1%), H⋯Br/Br⋯H (15.0%) and H⋯O/O⋯H (12.8%) inter­actions. The optimized mol­ecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Imidazole derivatives are a class of heterocyclic compounds exhibiting pharmacological activities across a wide range of therapeutic targets (El Kazzouli et al., 2011[El Kazzouli, S., Griffon du Bellay, A., Berteina-Raboin, S., Delagrange, P., Caignard, D. H. & Guillaumet, G. (2011). Eur. J. Med. Chem. 46, 4252-4257.]; Martínez-Urbina et al., 2010[Martínez-Urbina, M. A., Zentella, A., Vilchis-Reyes, M. A., Guzmán, A., Vargas, O., Ramírez Apan, M. T., Ventura Gallegos, J. L. & Díaz, E. (2010). Eur. J. Med. Chem. 45, 1211-1219.]). Imidazo­pyridine derivatives are used in medicinal chemistry because of their biological and pharmacological properties, in particular as anti-inflammatory, anti-cancer, anti­viral, anti-osteoporotic, anti-parasitic and anti­hypertensive agents. Certain compounds with an imidazo­pyridine skeleton are used to treat psychiatric and autoimmune disorders (Dymínska, 2015[Dymińska, L. (2015). Bioorg. Med. Chem. 23, 6087-6099.]; Bababdani & Mousavi, 2013[Bababdani, B. M. & Mousavi, M. (2013). Chemometrics & Intelligent Lab. Syst. 122, 1-11.]). They have also been approved as effective anti­fungal agents and exhibit anti­microbial activities (Devi et al., 2018[Devi, N., Jana, A. K. & Singh, V. (2018). Karbala Int. J. Modern Sci. 1-7.]), some of which can be used for the treatment of disorders characterized by activation of the Wnt signaling pathway (cancer, abnormal cell proliferation, angiogenesis, fibrous disorders, bone or cartilage and arthritis), as well as genetic and neurological diseases. On the other hand, imidazo­pyridine compounds, which have a specificity to GPR4 as negative allosteric modulators (Tobo et al., 2015[Tobo, A., Tobo, M., Nakakura, T., Ebara, M., Tomura, H., Mogi, C., Im, D., Murata, N., Kuwabara, A., Ito, S., Fukuda, H., Arisawa, M., Shuto, S., Nakaya, M., Kurose, H., Sato, K. & Okajima, F. (2015). PLoS One, 10, e0129334.]), can also be used for the treatment of gastric and/or duodenal ulcers. Several imidazo[4,5-b]pyridine derivatives have also been reported as corrosion inhibitors of steel in an acidic environment (Bouayad et al., 2018[Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22-34.]; Sikine et al., 2016[Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620-4632.]; Yadav et al., 2014[Yadav, M., Behera, D. & Kumar, S. (2014). Surf. Interface Anal. 46, 640-652.]), and also as inhibitors of a nanomolar rhodesaine (Ehmke et al., 2013[Ehmke, V., Winkler, E. W., Banner, D., Haap, W., Schweizer, W. B., Rottmann, M., Kaiser, M., Freymond, C., Schirmeister, T. & Diederich, F. (2013). ChemMedChem, 8, 967-975.]) or the Et-PKG enzyme (Cheng et al., 2010[Cheng, Z., Zhang, Y. & Zhang, W. (2010). Med. Chem. Res. 19, 1307-1325.]).

[Scheme 1]

Following our research work directed at obtaining new heterocyclic compounds having an imidazo[4,5-b]pyridine moiety, we were inter­ested in the condensation of imidazo[4,5-b]pyridine derivatives with di-halogenated chains under phase-transfer catalysis (PTC) conditions. We report herein the synthesis and the mol­ecular and crystal structures of the title compound (I)[link] together with Hirshfeld surface analysis and DFT calculations for comparison with the experimentally determined mol­ecular structure in the solid state.

2. Structural commentary

The mol­ecule of (I)[link] consists of an imidazolo­pyridine moiety to which a nitro­phenyl group is attached to the C atom (C6) of the five-membered ring. The 12-bromo­dodecyl side chain is attached to one of the two N atoms (N1). The imidazolo­pyridine moiety is planar to within 0.0208 (15) Å (r.m.s. deviation = 0.0122 Å) with atom C3 being the most distant from the least-squares plane. The phenyl ring (C7–C12) is inclined to the above plane by only 1.6 (1)°, making the two ring systems essentially planar. The C4—N1—C13—C14 torsion angle (C13 and C14 are the first two atoms of the 12-bromo­dodecyl chain) is 95.7 (2)°. The C15–C22 portion of the 12-bromo­dodecyl chain is approximately planar [maximum deviation from the least-squares plane running through the eight C atoms is 0.09 (1) Å for C20], and this plane is inclined to that of the imidazolo­pyridine moiety by 21.9 (8)°, giving the mol­ecule an overall V-shape (Fig. 1[link]). The terminal C24—Br2 portion of the 12-bromo­dodecyl chain is disordered over two resolved sites in a refined ratio of 0.902 (3):0.098 (3).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major part of the disordered –CH2Br group is shown.

3. Supra­molecular features

In the crystal, sloped stacks of mol­ecules extending along the a-axis direction are formed by slipped ππ stacking inter­actions between the N1/C1–C5 and C7–C12 rings, with a centroid-to-centroid distance of 3.5308 (13) Å, a dihedral angle of 1.83 (9)° and a slippage of 1.192 Å. The angle between the plane defined by the relevant centroids in the stack and (001) is 19.210 (11)°. The stacks are connected by weak C—HPyr⋯ONtr (Pyr = pyridine and Ntr = nitro) hydrogen bonds (Table 1[link], Fig. 2[link]). Additional linkage is accomplished by C—HBrmdc­yl⋯ONtr (Brmdcyl = bromo­dodec­yl) hydrogen bonds that influence the arrangement of the 12-bromo­dodecyl chains between adjacent stacks (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.43 3.171 (3) 135
C24—H24A⋯O2ii 0.99 2.53 3.372 (3) 142
Symmetry codes: (i) x+1, y+1, z; (ii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions viewed along the c-axis direction. The weak C—HPyr⋯ONtr and C—HBrmdc­yl⋯ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromo­dodec­yl) hydrogen bonds and ππ stacking inter­actions are depicted, respectively, by black and orange dashed lines.
[Figure 3]
Figure 3
A partial packing diagram projected onto (581) with inter­molecular inter­actions depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

In order to qu­antify and visualize the inter­molecular inter­actions in the crystal of (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625-636.]). The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into H⋯H, H⋯Br/Br⋯H, H⋯O/O⋯H, H⋯C/C⋯H, H⋯N/N⋯H, C⋯C, C⋯Br/Br⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]bi, respectively, together with their relative contributions to the HS. The large number of these contacts suggests that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The most important inter­action is H⋯H contributing 48.1% to the overall crystal packing, Fig. 5[link]b, followed by H⋯Br/Br⋯H, Fig. 5[link]c, contacts at 15.0%, H⋯O/O⋯H, Fig. 5[link]d, contacts at 12.8%, H⋯C/C⋯H, Fig. 5[link]e, contacts at 6.0%, H⋯/N⋯H, Fig. 5[link]f, contacts at 5.8%, C⋯C, Fig. 5[link]g contacts at 3.7%, C⋯Br/Br⋯C, Fig. 5[link]h, contacts at 3.5%, and C⋯N/N⋯C, Fig. 5[link]i, contacts at 1.6%.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1956 to 1.3971 a.u..
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯Br/Br⋯H, (d) H⋯O/O⋯H, (e) H⋯C/C⋯H, (f) H ⋯N/N⋯H, (g) C⋯C, (h) C⋯Br/Br⋯C and (i) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. DFT calculations

The optimized structure of the mol­ecule in the gas phase was calculated via density functional theory (DFT) using the standard B3LYP functional and 6–311G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US.]). The theoretical and experimental bond lengths and angles are in good agreement (Table 2[link]). Results for EHOMO and ELUMO energies, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are collated in Table 3[link]. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6[link]. The energy band gap [ΔE = ELUMOEHOMO] of the mol­ecule is 1.6731 eV, and the calculated frontier mol­ecular orbital energies, EHOMO and ELUMO, are −4.0238 and −2.3507 eV, respectively.

Table 2
Comparison of selected (X-ray and DFT) geometric data (Å, °) for (I)

Bonds/angles X-ray B3LYP/6–311G(d,p)
Br1—C1 1.8954 (19) 1.94573
Br2—C24 1.953 (3) 2.02642
O1—N4 1.224 (2) 1.28476
O2—N4 1.233 (2) 1.28545
N1—C5 1.357 (2) 1.36426
N1—C4 1.361 (2) 1.42977
N1—C13 1.473 (3) 1.47563
N2—C5 1.336 (2) 1.35689
N2—C6 1.372 (3) 1.40945
N3—C6 1.346 (2) 1.40939
N3—C1 1.372 (2) 1.38222
N4—C10 1.465 (2) 1.42118
C5—N1—C4 118.57 (17) 117.37
C5—N1—C13 119.67 (16) 119.58
C4—N1—C13 121.75 (17) 120.96
C5—N2—C6 100.79 (16) 101.37
C6—N3—C1 102.17 (16) 101.96
O1—N4—O2 123.30 (19) 122.47
O1—N4—C10 118.48 (18) 118.78
O2—N4—C10 118.22 (18) 118.74
N3—C1—C2 132.04 (18) 133.14
N3—C1—C5 107.59 (16) 105.38
C2—C1—C5 120.37 (18) 121.46

Table 3
Calculated mol­ecular energies for (I)

Total Energy, TE (eV) −175539.349
EHOMO (eV) −4.0238
ELUMO (eV) −2.3507
Gap, ΔE (eV) 1.6731
Dipole moment, μ (Debye) 15.7142
Ionization potential, I (eV) 4.0238
Electron affinity, A 2.3507
Electronegativity, χ 3.1872
Hardness, η 0.8366
Electrophilicity index, ω 3.0715
Softness, σ 1.1954
Fraction of electron transferred, ΔN 2.2788
[Figure 6]
Figure 6
Shapes of HOMO and LUMO of (I)[link] and the energy band gap between them.

6. Database survey

The importance of benzimidazole derivatives is highlighted by a search of the Cambridge Structural Database (CSD, updated to November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a fragment allowing for substituents at the 6-position and having a single carbon atom at the 3- and 4-positions, which resulted in over 1900 hits. Restricting the search to exclude metal complexes and using the fragment (II) (Fig. 7[link]) yielded eight hits most comparable to (I)[link]. These are of the general type (III) (Fig. 7[link]) with R′′ = H, R = 4-[Ph2C=C(Ph)]C6H4, R′ = n-Bu (VEDKEX; Zhang et al., 2018[Zhang, T., Zhang, R., Zhao, Y. & Ni, Z. (2018). Dyes Pigments, 148, 276-285.]), n-hexyl (VEDHUK; Zhang et al., 2018[Zhang, T., Zhang, R., Zhao, Y. & Ni, Z. (2018). Dyes Pigments, 148, 276-285.]) and R′ = 6-(9H-carbazol-9-yl)hexyl, R = Ph (DUKJAV; Zhao et al., 2009[Zhao, Y.-L., Yu, T.-Z. & Meng, J. (2009). Acta Cryst. E65, o3076.]). Additional ones have R′′ = COOMe, R′ = n-Bu, R = 3,4-Cl2C6H3 (ABEJAT; Arslan et al., 2004[Arslan, B., Kazak, C., Karataş, H. & Özden, S. (2004). Acta Cryst. E60, o1535-o1537.]), 2-[2-(cinnamyl­thio)­benzo[d]oxazol-5-yl (TAPVIR; Chanda et al., 2012[Chanda, K., Maiti, B., Tseng, C.-C. & Sun, C.-M. (2012). ACS Comb. Sci. 14, 115-123.]), and the set is completed by those with R′ = n-Bu, R′′ = CN, R = 3-ClC6H4 (WEWVIE; Kazak et al., 2006[Kazak, C., Yilmaz, V. T., Goker, H. & Kus, C. (2006). Cryst. Res. Technol. 41, 528-532.]) or R= 3,4-(MeO)2C6H3 (WEWVOK; Kazak et al., 2006[Kazak, C., Yilmaz, V. T., Goker, H. & Kus, C. (2006). Cryst. Res. Technol. 41, 528-532.]) and R′′ = NO2, R′ = n-Bu, R = 2-(pTosNH)C6H4 (BUXDUV; Burlov et al., 2016[Burlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. V. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7-13.]). In all of the matches where R′ is an alkyl chain, the base of the chain is approximately perpendicular to the benzimidazole plane but not all of them have the remainder of the chain in a fully extended conformation and in no instances are structures seen in which the alkyl chains overlap. Part of the reason is that the butyl group is not long enough to counteract the packing inter­actions involving the benzimidazole moiety and the substituents in the 2-position. The possible exception is in DUKJAV where ππ stacking inter­actions appear to occur between the benzimidazole units and between the carbazole units. Also, all of the related mol­ecules identified have a dihedral angle between the plane of the benzimidazole unit and the plane of the aromatic ring in the 2-position of 28–48° while in (I)[link] the two are nearly coplanar [1.6 (1)°]. This is likely due to packing considerations.

[Figure 7]
Figure 7
Lewis structures of fragments (II) and (III) used in the database search.

7. Synthesis and crystallization

To a solution of 6-bromo-2-(4′-nitro­phen­yl)-3H-imidazo[4,5-b]pyridine (0.4 g, 1.25 mmol), potassium carbonate (2.2 equivalents; 0.38 g, 2.75 mmol) and tetra-n-butyl­ammonium bromide (0.2 equivalents; 0.061 g, 0.187 mmo)l in 40 ml of DMF were added in small portions to 1.5 equivalents of 1,12-di­bromo­dodecane. The resulting mixture was stirred magnetically at room temperature for 48 h. After removal of the salts and evaporation of DMF under reduced pressure, the product was separated by chromatography on a column of silica gel using a mixture of hexa­ne/di­chloro­methane: 1/4 (v/v) as the mobile phase. Orange single crystals suitable for X-ray diffraction were obtained by slow evaporation of the eluant.

8. Refinement

Crystal, data collection and refinement details are presented in Table 4[link]. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms. The terminal C24—Br2 portion of the 12-bromo­dodecyl chain is disordered over two resolved sites in a 0.902 (3)/0.098 (3) ratio. The two components of the disorder were refined with restraints so that their bond lengths and angles are comparable.

Table 4
Experimental details

Crystal data
Chemical formula C24H30Br2N4O2
Mr 566.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 6.3291 (11), 9.8911 (17), 21.133 (4)
α, β, γ (°) 76.480 (2), 84.965 (3), 73.891 (2)
V3) 1235.4 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.31
Crystal size (mm) 0.48 × 0.23 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.23, 0.56
No. of measured, independent and observed [I > 2σ(I)] reflections 24139, 6598, 5337
Rint 0.040
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.03
No. of reflections 6598
No. of parameters 293
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.80
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Bromo-3-(12-bromododecyl)-2-(4-nitrophenyl)-3H-imidazo[4,5-b]pyridine top
Crystal data top
C24H30Br2N4O2Z = 2
Mr = 566.34F(000) = 576
Triclinic, P1Dx = 1.522 Mg m3
a = 6.3291 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8911 (17) ÅCell parameters from 9900 reflections
c = 21.133 (4) Åθ = 2.2–29.0°
α = 76.480 (2)°µ = 3.31 mm1
β = 84.965 (3)°T = 150 K
γ = 73.891 (2)°Column, light orange
V = 1235.4 (4) Å30.48 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6598 independent reflections
Radiation source: fine-focus sealed tube5337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 2.0°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.23, Tmax = 0.56l = 2929
24139 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.370P]
where P = (Fo2 + 2Fc2)/3
6598 reflections(Δ/σ)max = 0.002
293 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.80 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Br2 is disordered over two sites in a 0.902 (3)/0.098 (32) ratio with the two components refined with restraints that they have comparable geometries.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.82823 (3)0.88087 (2)0.00828 (2)0.02928 (7)
Br20.34993 (9)0.51084 (14)0.63610 (3)0.05439 (19)0.902 (3)
Br2A0.3773 (9)0.5733 (11)0.6273 (3)0.05439 (19)0.098 (3)
O10.4691 (3)0.16270 (19)0.13274 (10)0.0470 (4)
O20.3734 (3)0.2314 (2)0.22339 (9)0.0468 (4)
N11.3755 (3)0.79656 (18)0.15128 (8)0.0244 (3)
N21.1281 (3)0.64593 (18)0.16156 (8)0.0239 (3)
N31.2508 (3)0.55633 (18)0.06847 (8)0.0234 (3)
N40.4845 (3)0.23168 (19)0.17246 (10)0.0317 (4)
C11.3664 (3)0.6514 (2)0.07409 (9)0.0222 (4)
C21.5326 (3)0.6991 (2)0.03550 (10)0.0241 (4)
H21.5889460.6659560.0029110.029*
C31.6108 (3)0.7989 (2)0.05705 (10)0.0241 (4)
C41.5370 (3)0.8446 (2)0.11371 (10)0.0250 (4)
H41.5995440.9104840.1267340.030*
C51.2880 (3)0.7032 (2)0.13151 (9)0.0223 (4)
C61.1134 (3)0.5596 (2)0.12076 (9)0.0225 (4)
C70.9500 (3)0.4757 (2)0.13404 (9)0.0223 (4)
C80.9326 (3)0.3904 (2)0.09185 (10)0.0256 (4)
H81.0274790.3862900.0545380.031*
C90.7781 (3)0.3117 (2)0.10385 (10)0.0266 (4)
H90.7649060.2539650.0749980.032*
C100.6431 (3)0.3189 (2)0.15897 (10)0.0249 (4)
C110.6535 (3)0.4038 (2)0.20136 (10)0.0272 (4)
H110.5572760.4078350.2383840.033*
C120.8083 (3)0.4831 (2)0.18856 (10)0.0254 (4)
H120.8179630.5426290.2169540.031*
C131.2921 (3)0.8451 (2)0.21174 (10)0.0277 (4)
H13A1.4075830.8752350.2292590.033*
H13B1.2591120.7636050.2445030.033*
C141.0856 (4)0.9702 (2)0.20091 (10)0.0303 (4)
H14A0.9794740.9469020.1762340.036*
H14B1.1240051.0574480.1746680.036*
C150.9786 (4)1.0010 (2)0.26569 (11)0.0354 (5)
H15A1.0937871.0033770.2939310.042*
H15B0.8725691.0975740.2573080.042*
C160.8594 (4)0.8905 (3)0.30167 (12)0.0422 (6)
H16A0.7668000.8736980.2704340.051*
H16B0.9702880.7982110.3175240.051*
C170.7154 (5)0.9319 (3)0.35888 (13)0.0481 (7)
H17A0.6087841.0264300.3437100.058*
H17B0.8087260.9431660.3915080.058*
C180.5895 (5)0.8219 (3)0.39151 (13)0.0498 (7)
H18A0.4993820.8093730.3583990.060*
H18B0.6970610.7279920.4070380.060*
C190.4406 (5)0.8604 (3)0.44815 (14)0.0551 (8)
H19A0.3349760.9555150.4332290.066*
H19B0.5305370.8693410.4822270.066*
C200.3130 (5)0.7502 (3)0.47773 (13)0.0511 (7)
H20A0.4184870.6539150.4894180.061*
H20B0.2152320.7467210.4444090.061*
C210.1746 (5)0.7810 (3)0.53790 (14)0.0504 (7)
H21A0.2688870.7946900.5695700.060*
H21B0.0579090.8720000.5253710.060*
C220.0687 (5)0.6614 (3)0.57043 (12)0.0434 (6)
H22A0.1827020.5680380.5773610.052*
H22B0.0416270.6569110.5410780.052*
C230.0432 (5)0.6828 (3)0.63564 (12)0.0434 (6)
H23A0.0594620.7059090.6616350.052*
H23B0.1739000.7667260.6275510.052*
C240.1145 (4)0.5542 (3)0.67503 (11)0.0404 (5)0.902 (3)
H24A0.1647840.5719890.7187830.049*0.902 (3)
H24B0.0141900.4688010.6807130.049*0.902 (3)
C24A0.1145 (4)0.5542 (3)0.67503 (11)0.0404 (5)0.098 (3)
H24C0.1507740.5619260.7208110.049*0.098 (3)
H24D0.0018100.4625870.6738470.049*0.098 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02318 (11)0.02607 (11)0.04000 (13)0.01178 (8)0.00655 (8)0.00638 (8)
Br20.0548 (2)0.0723 (6)0.04320 (19)0.0293 (3)0.00326 (15)0.0109 (3)
Br2A0.0548 (2)0.0723 (6)0.04320 (19)0.0293 (3)0.00326 (15)0.0109 (3)
O10.0496 (11)0.0440 (10)0.0645 (12)0.0309 (8)0.0154 (9)0.0294 (9)
O20.0465 (10)0.0549 (11)0.0518 (11)0.0357 (9)0.0175 (8)0.0171 (9)
N10.0216 (8)0.0245 (8)0.0304 (8)0.0099 (6)0.0014 (7)0.0087 (7)
N20.0224 (8)0.0255 (8)0.0276 (8)0.0119 (7)0.0019 (6)0.0073 (7)
N30.0196 (8)0.0236 (8)0.0301 (8)0.0089 (6)0.0003 (6)0.0082 (7)
N40.0279 (9)0.0267 (9)0.0437 (11)0.0140 (7)0.0035 (8)0.0074 (8)
C10.0182 (9)0.0219 (9)0.0274 (9)0.0062 (7)0.0007 (7)0.0063 (7)
C20.0187 (9)0.0224 (9)0.0306 (10)0.0058 (7)0.0013 (7)0.0053 (8)
C30.0170 (9)0.0210 (9)0.0334 (10)0.0066 (7)0.0015 (7)0.0033 (8)
C40.0216 (9)0.0211 (9)0.0344 (10)0.0091 (7)0.0002 (8)0.0066 (8)
C50.0202 (9)0.0219 (9)0.0266 (9)0.0080 (7)0.0005 (7)0.0059 (7)
C60.0194 (9)0.0228 (9)0.0263 (9)0.0072 (7)0.0020 (7)0.0049 (7)
C70.0188 (9)0.0211 (9)0.0274 (9)0.0065 (7)0.0014 (7)0.0044 (7)
C80.0218 (9)0.0252 (9)0.0322 (10)0.0091 (8)0.0033 (8)0.0088 (8)
C90.0232 (10)0.0243 (9)0.0366 (11)0.0095 (8)0.0006 (8)0.0114 (8)
C100.0207 (9)0.0214 (9)0.0340 (10)0.0098 (7)0.0004 (8)0.0039 (8)
C110.0231 (10)0.0302 (10)0.0292 (10)0.0108 (8)0.0020 (8)0.0050 (8)
C120.0245 (10)0.0275 (10)0.0274 (10)0.0109 (8)0.0010 (8)0.0070 (8)
C130.0288 (11)0.0302 (10)0.0292 (10)0.0116 (8)0.0019 (8)0.0129 (8)
C140.0322 (11)0.0288 (10)0.0312 (10)0.0111 (9)0.0041 (8)0.0073 (9)
C150.0383 (13)0.0298 (11)0.0386 (12)0.0096 (9)0.0092 (10)0.0117 (9)
C160.0457 (14)0.0465 (14)0.0412 (13)0.0219 (12)0.0138 (11)0.0168 (11)
C170.0528 (16)0.0397 (14)0.0486 (15)0.0129 (12)0.0184 (12)0.0102 (11)
C180.0584 (17)0.0536 (16)0.0413 (14)0.0229 (14)0.0172 (12)0.0148 (12)
C190.0665 (19)0.0431 (15)0.0488 (15)0.0142 (13)0.0258 (14)0.0070 (12)
C200.0589 (18)0.0568 (17)0.0365 (13)0.0198 (14)0.0158 (12)0.0089 (12)
C210.0590 (17)0.0378 (14)0.0466 (15)0.0096 (12)0.0208 (13)0.0058 (11)
C220.0490 (15)0.0473 (14)0.0335 (12)0.0146 (12)0.0101 (11)0.0101 (11)
C230.0486 (15)0.0449 (14)0.0370 (12)0.0135 (12)0.0122 (11)0.0129 (11)
C240.0434 (14)0.0483 (14)0.0307 (11)0.0158 (11)0.0009 (10)0.0069 (10)
C24A0.0434 (14)0.0483 (14)0.0307 (11)0.0158 (11)0.0009 (10)0.0069 (10)
Geometric parameters (Å, º) top
Br1—C31.8954 (19)C14—H14A0.9900
Br2—C241.953 (3)C14—H14B0.9900
Br2A—C24A1.962 (5)C15—C161.520 (3)
O1—N41.224 (2)C15—H15A0.9900
O2—N41.233 (2)C15—H15B0.9900
N1—C51.357 (2)C16—C171.514 (3)
N1—C41.361 (2)C16—H16A0.9900
N1—C131.473 (3)C16—H16B0.9900
N2—C51.336 (2)C17—C181.526 (4)
N2—C61.372 (3)C17—H17A0.9900
N3—C61.346 (2)C17—H17B0.9900
N3—C11.372 (2)C18—C191.511 (4)
N4—C101.465 (2)C18—H18A0.9900
C1—C21.392 (3)C18—H18B0.9900
C1—C51.423 (3)C19—C201.520 (4)
C2—C31.396 (3)C19—H19A0.9900
C2—H20.9500C19—H19B0.9900
C3—C41.376 (3)C20—C211.521 (4)
C4—H40.9500C20—H20A0.9900
C6—C71.467 (3)C20—H20B0.9900
C7—C81.393 (3)C21—C221.517 (4)
C7—C121.400 (3)C21—H21A0.9900
C8—C91.383 (3)C21—H21B0.9900
C8—H80.9500C22—C231.526 (3)
C9—C101.387 (3)C22—H22A0.9900
C9—H90.9500C22—H22B0.9900
C10—C111.380 (3)C23—C24A1.507 (3)
C11—C121.389 (3)C23—C241.507 (3)
C11—H110.9500C23—H23A0.9900
C12—H120.9500C23—H23B0.9900
C13—C141.521 (3)C24—H24A0.9900
C13—H13A0.9900C24—H24B0.9900
C13—H13B0.9900C24A—H24C0.9900
C14—C151.531 (3)C24A—H24D0.9900
C5—N1—C4118.57 (17)C17—C16—C15115.0 (2)
C5—N1—C13119.67 (16)C17—C16—H16A108.5
C4—N1—C13121.75 (17)C15—C16—H16A108.5
C5—N2—C6100.79 (16)C17—C16—H16B108.5
C6—N3—C1102.17 (16)C15—C16—H16B108.5
O1—N4—O2123.30 (19)H16A—C16—H16B107.5
O1—N4—C10118.48 (18)C16—C17—C18113.4 (2)
O2—N4—C10118.22 (18)C16—C17—H17A108.9
N3—C1—C2132.04 (18)C18—C17—H17A108.9
N3—C1—C5107.59 (16)C16—C17—H17B108.9
C2—C1—C5120.37 (18)C18—C17—H17B108.9
C1—C2—C3115.51 (18)H17A—C17—H17B107.7
C1—C2—H2122.2C19—C18—C17115.1 (2)
C3—C2—H2122.2C19—C18—H18A108.5
C4—C3—C2123.24 (18)C17—C18—H18A108.5
C4—C3—Br1115.85 (15)C19—C18—H18B108.5
C2—C3—Br1120.92 (15)C17—C18—H18B108.5
N1—C4—C3120.73 (18)H18A—C18—H18B107.5
N1—C4—H4119.6C18—C19—C20113.3 (3)
C3—C4—H4119.6C18—C19—H19A108.9
N2—C5—N1126.94 (18)C20—C19—H19A108.9
N2—C5—C1111.52 (17)C18—C19—H19B108.9
N1—C5—C1121.53 (17)C20—C19—H19B108.9
N3—C6—N2117.92 (17)H19A—C19—H19B107.7
N3—C6—C7121.76 (17)C19—C20—C21114.2 (3)
N2—C6—C7120.31 (17)C19—C20—H20A108.7
C8—C7—C12119.67 (18)C21—C20—H20A108.7
C8—C7—C6120.18 (18)C19—C20—H20B108.7
C12—C7—C6120.14 (18)C21—C20—H20B108.7
C9—C8—C7120.52 (19)H20A—C20—H20B107.6
C9—C8—H8119.7C22—C21—C20113.0 (2)
C7—C8—H8119.7C22—C21—H21A109.0
C8—C9—C10118.46 (19)C20—C21—H21A109.0
C8—C9—H9120.8C22—C21—H21B109.0
C10—C9—H9120.8C20—C21—H21B109.0
C11—C10—C9122.63 (18)H21A—C21—H21B107.8
C11—C10—N4119.21 (18)C21—C22—C23112.7 (2)
C9—C10—N4118.16 (18)C21—C22—H22A109.0
C10—C11—C12118.37 (19)C23—C22—H22A109.0
C10—C11—H11120.8C21—C22—H22B109.0
C12—C11—H11120.8C23—C22—H22B109.0
C11—C12—C7120.34 (19)H22A—C22—H22B107.8
C11—C12—H12119.8C24A—C23—C22114.3 (2)
C7—C12—H12119.8C24—C23—C22114.3 (2)
N1—C13—C14112.14 (17)C24—C23—H23A108.7
N1—C13—H13A109.2C22—C23—H23A108.7
C14—C13—H13A109.2C24—C23—H23B108.7
N1—C13—H13B109.2C22—C23—H23B108.7
C14—C13—H13B109.2H23A—C23—H23B107.6
H13A—C13—H13B107.9C23—C24—Br2114.01 (18)
C13—C14—C15111.20 (18)C23—C24—H24A108.8
C13—C14—H14A109.4Br2—C24—H24A108.8
C15—C14—H14A109.4C23—C24—H24B108.8
C13—C14—H14B109.4Br2—C24—H24B108.8
C15—C14—H14B109.4H24A—C24—H24B107.6
H14A—C14—H14B108.0C23—C24A—Br2A99.5 (3)
C16—C15—C14113.51 (19)C23—C24A—H24C111.9
C16—C15—H15A108.9Br2A—C24A—H24C111.9
C14—C15—H15A108.9C23—C24A—H24D111.9
C16—C15—H15B108.9Br2A—C24A—H24D111.9
C14—C15—H15B108.9H24C—C24A—H24D109.6
H15A—C15—H15B107.7
C6—N3—C1—C2179.2 (2)C6—C7—C8—C9179.63 (18)
C6—N3—C1—C50.9 (2)C7—C8—C9—C100.5 (3)
N3—C1—C2—C3179.6 (2)C8—C9—C10—C111.5 (3)
C5—C1—C2—C30.4 (3)C8—C9—C10—N4178.13 (18)
C1—C2—C3—C42.3 (3)O1—N4—C10—C11176.3 (2)
C1—C2—C3—Br1177.37 (13)O2—N4—C10—C113.8 (3)
C5—N1—C4—C30.3 (3)O1—N4—C10—C94.1 (3)
C13—N1—C4—C3179.31 (18)O2—N4—C10—C9175.81 (19)
C2—C3—C4—N12.0 (3)C9—C10—C11—C121.0 (3)
Br1—C3—C4—N1177.68 (14)N4—C10—C11—C12178.54 (18)
C6—N2—C5—N1178.66 (19)C10—C11—C12—C70.3 (3)
C6—N2—C5—C10.1 (2)C8—C7—C12—C111.2 (3)
C4—N1—C5—N2179.38 (18)C6—C7—C12—C11179.94 (18)
C13—N1—C5—N20.4 (3)C5—N1—C13—C1483.3 (2)
C4—N1—C5—C12.2 (3)C4—N1—C13—C1495.7 (2)
C13—N1—C5—C1178.80 (18)N1—C13—C14—C15169.76 (17)
N3—C1—C5—N20.5 (2)C13—C14—C15—C1674.4 (3)
C2—C1—C5—N2179.53 (17)C14—C15—C16—C17168.7 (2)
N3—C1—C5—N1178.14 (17)C15—C16—C17—C18177.0 (2)
C2—C1—C5—N11.8 (3)C16—C17—C18—C19179.0 (3)
C1—N3—C6—N21.0 (2)C17—C18—C19—C20178.2 (3)
C1—N3—C6—C7178.18 (17)C18—C19—C20—C21175.8 (3)
C5—N2—C6—N30.7 (2)C19—C20—C21—C22173.9 (3)
C5—N2—C6—C7178.50 (17)C20—C21—C22—C23172.0 (3)
N3—C6—C7—C80.5 (3)C21—C22—C23—C24A169.6 (2)
N2—C6—C7—C8178.74 (18)C21—C22—C23—C24169.6 (2)
N3—C6—C7—C12179.32 (18)C22—C23—C24—Br266.7 (3)
N2—C6—C7—C120.1 (3)C22—C23—C24A—Br2A76.3 (3)
C12—C7—C8—C90.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.433.171 (3)135
C24—H24A···O2ii0.992.533.372 (3)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
Comparison of selected (X-ray and DFT) geometric data (Å, °) for (I) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
Br1—C11.8954 (19)1.94573
Br2—C241.953 (3)2.02642
O1—N41.224 (2)1.28476
O2—N41.233 (2)1.28545
N1—C51.357 (2)1.36426
N1—C41.361 (2)1.42977
N1—C131.473 (3)1.47563
N2—C51.336 (2)1.35689
N2—C61.372 (3)1.40945
N3—C61.346 (2)1.40939
N3—C11.372 (2)1.38222
N4—C101.465 (2)1.42118
C5—N1—C4118.57 (17)117.37
C5—N1—C13119.67 (16)119.58
C4—N1—C13121.75 (17)120.96
C5—N2—C6100.79 (16)101.37
C6—N3—C1102.17 (16)101.96
O1—N4—O2123.30 (19)122.47
O1—N4—C10118.48 (18)118.78
O2—N4—C10118.22 (18)118.74
N3—C1—C2132.04 (18)133.14
N3—C1—C5107.59 (16)105.38
C2—C1—C5120.37 (18)121.46
Calculated molecular energies for (I) top
Total Energy, TE (eV)-175539.349
EHOMO (eV)-4.0238
ELUMO (eV)-2.3507
Gap, ΔE (eV)1.6731
Dipole moment, µ (Debye)15.7142
Ionization potential, I (eV)4.0238
Electron affinity, A2.3507
Electronegativity, χ3.1872
Hardness, η0.8366
Electrophilicity index, ω3.0715
Softness, σ1.1954
Fraction of electron transferred, ΔN2.2788
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationArslan, B., Kazak, C., Karataş, H. & Özden, S. (2004). Acta Cryst. E60, o1535–o1537.  CSD CrossRef IUCr Journals Google Scholar
First citationBababdani, B. M. & Mousavi, M. (2013). Chemometrics & Intelligent Lab. Syst. 122, 1–11.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22–34.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. V. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7–13.  CSD CrossRef CAS Google Scholar
First citationChanda, K., Maiti, B., Tseng, C.-C. & Sun, C.-M. (2012). ACS Comb. Sci. 14, 115–123.  CSD CrossRef CAS PubMed Google Scholar
First citationCheng, Z., Zhang, Y. & Zhang, W. (2010). Med. Chem. Res. 19, 1307–1325.  CrossRef CAS Google Scholar
First citationDevi, N., Jana, A. K. & Singh, V. (2018). Karbala Int. J. Modern Sci. 1–7.  Google Scholar
First citationDymińska, L. (2015). Bioorg. Med. Chem. 23, 6087–6099.  PubMed Google Scholar
First citationEhmke, V., Winkler, E. W., Banner, D., Haap, W., Schweizer, W. B., Rottmann, M., Kaiser, M., Freymond, C., Schirmeister, T. & Diederich, F. (2013). ChemMedChem, 8, 967–975.  CSD CrossRef CAS PubMed Google Scholar
First citationEl Kazzouli, S., Griffon du Bellay, A., Berteina-Raboin, S., Delagrange, P., Caignard, D. H. & Guillaumet, G. (2011). Eur. J. Med. Chem. 46, 4252–4257.  CrossRef CAS PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKazak, C., Yilmaz, V. T., Goker, H. & Kus, C. (2006). Cryst. Res. Technol. 41, 528–532.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMartínez-Urbina, M. A., Zentella, A., Vilchis-Reyes, M. A., Guzmán, A., Vargas, O., Ramírez Apan, M. T., Ventura Gallegos, J. L. & Díaz, E. (2010). Eur. J. Med. Chem. 45, 1211–1219.  PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTobo, A., Tobo, M., Nakakura, T., Ebara, M., Tomura, H., Mogi, C., Im, D., Murata, N., Kuwabara, A., Ito, S., Fukuda, H., Arisawa, M., Shuto, S., Nakaya, M., Kurose, H., Sato, K. & Okajima, F. (2015). PLoS One, 10, e0129334.  CrossRef PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625–636.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, M., Behera, D. & Kumar, S. (2014). Surf. Interface Anal. 46, 640–652.  CrossRef CAS Google Scholar
First citationZhang, T., Zhang, R., Zhao, Y. & Ni, Z. (2018). Dyes Pigments, 148, 276–285.  CSD CrossRef CAS Google Scholar
First citationZhao, Y.-L., Yu, T.-Z. & Meng, J. (2009). Acta Cryst. E65, o3076.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds