research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of ABW-type SrFe1.40V0.60O4

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Institute of Mineralogy & Petrography, Innrain 52, A-6020 Innsbruck, Austria, and bUniversity of Innsbruck, Department of Physical Chemistry, Innrain 52c, A-6020 Innsbruck, Austria
*Correspondence e-mail: volker.kahlenberg@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 March 2020; accepted 8 April 2020; online 17 April 2020)

Single crystals of SrFe1.40V0.60O4, strontium tetra­oxidodi[ferrate(III)/vanad­ate(III)], have been obtained as a side product in the course of sinter experiments aimed at the synthesis of double perovskites in the system SrO–Fe2O3–V2O5. The crystal structure can be characterized by layers of six-membered rings of TO4-tetra­hedra (T: FeIII, VIII) perpendicular to [100]. Stacking of the layers along [100] results in a three-dimensional framework enclosing tunnel-like cavities in which SrII cations are incorporated for charge compensation. The sequence of directedness of up (U) and down (D) pointing vertices of neighboring tetra­hedra in a single six-membered ring is UUUDDD. The topology of the tetra­hedral framework belongs to the zeolite-type ABW.

1. Chemical context

Solid oxide fuel cell (SOFC) technology is considered as particularly promising for energy storage applications (Larminie et al., 2003[Larminie, J., Dicks, A. & McDonald, M. S. (2003). Fuel cells explained. Vol. 2. New York: Wiley.]). SOFCs are electrochemical devices that consist of three main parts: (i) a redox-capable porous cathode that reduces O2 to O2– anions, (ii) an electrolyte transporting these anions to the anode, and (iii) the anode, where the fuel (hydrogen or carbon-containing fuels) is electro-oxidized by the O2– anions to CO2 and H2O (Huang & Goodenough, 2009[Huang, K. & Goodenough, J. B. (2009). Solid Oxide Fuel Cell Technology: Principles, Performance and Operations. New York: Woodhead Publishing in Energy, CRC Press.]). Double perovskites with the general composition A2(BB′)O6 have been studied intensively as potential anode materials in SOFCs (Xu et al., 2019[Xu, X., Zhong, Y. & Shao, Z. (2019). Trends Chem. 1, 410-424.]). In the course of an explorative study on double perovskites combining mixed ionic-electronic conductivity with catalytic activity for fuel oxidation, we tried to synthesize Sr2FeVO6 using a ceramic synthesis route in the range between 1473 and 1573 K. For the highest reaction temperature, where partial melting occurred, a member of the previously unknown SrFexV2–xO4 solid-solution series was observed as a side-product, and the crystal structure of the member with x = 1.40 is reported here.

2. Structural commentary

SrFe1.40V0.60O4 exhibits a three-dimensional framework of corner-linked TO4-tetra­hedra (T: FeIII, VIII). Charge compensation is achieved by the incorporation of SrII cations residing in tunnel-like cavities running parallel to [100] (Fig. 1[link]). The compound is isostructural with SrFe2O4 (Kahlenberg & Fischer, 2001[Kahlenberg, V. & Fischer, R. X. (2001). Solid State Sci. 3, 433-439.]) and γ-SrGa2O4 (Kahlenberg et al., 2000[Kahlenberg, V., Fischer, R. X. & Shaw, C. S. J. (2000). J. Solid State Chem. 153, 294-300.]).

[Figure 1]
Figure 1
Projection of the framework structure along [100]. [TO4] tetra­hedra are shown in blue. Oxygen and strontium atoms are given in red and orange, respectively. Displacement ellipsoids are drawn at the 70% probability level.

All atoms occupy general positions. Fe <—> V substitutions occur on each of the four symmetrically non-equivalent T-sites occupying the centers of distorted tetra­hedra formed by oxygen atoms. Site-population refinements indicate no clear trend when comparing the individual Fe:V distributions. The Fe:V population at the T-sites is more or less balanced ranging from 64 (3) to 75 (3)% of iron. Individual T–-O distances adopt values between 1.820 (6) and 1.901 (5) Å. The distortion of the tetra­hedra is also reflected in the variation of the O—T—O bond angles scattering between 98.2 (2) and 129.9 (2)°. According to Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]), the distortions can be expressed numerically by means of the quadratic elongation λ and the angle variance σ2. These two parameters exhibit values between 1.009 and 1.016 for λ and 34.72 and 59.96 for σ2.

Each of the two symmetrically independent SrII cations is coordinated by seven oxygen atoms within the channels of the framework. They are located off-center and have irregular coordination spheres formed by the oxygen atoms of two adjacent six-membered tetra­hedral rings (Figs. 2[link], 3[link]). Bond-valence-sum calculations using the parameter sets for the Sr—O bonds given by Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) resulted in the following values (in v.u.) considering cation–anion inter­actions up to 3.2 Å: Sr1: 1.911 and Sr2: 1.692. The considerable underbonding of the Sr2 position indicates that the bonds are stretched and that this Sr site resides in a cavity that is too large. A similar situation has been observed in isostructural SrFe2O4 and γ-SrGa2O4.

[Figure 2]
Figure 2
Representation of the coordination polyhedron around Sr1. Displacement ellipsoids are drawn at the 70% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iii) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (iv) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z].
[Figure 3]
Figure 3
Representation of the coordination polyhedron around Sr2. Ellipsoids are drawn at the 70% level. [Symmetry codes: (i) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) [{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z; (iv) 1 − x, 1 − y, 1 − z; (v) x, 1 + y, z]

3. Topological features

SrFe1.40V0.60O4 belongs to the ABW zeolite structure type (Baerlocher et al., 2007[Baerlocher, Ch., McCusker, L. B. & Olson, D. H. (2007). Atlas of Zeolite Framework Types, 6th revised ed. Amsterdam: Elsevier.]). This class of materials comprises a large number of representatives and has been investigated in great detail because of the complex phase transitions and inter­esting ferroic effects (Bu et al., 1997[Bu, X., Feng, P., Gier, T. E. & Stucky, G. D. (1997). Zeolites, 19, 200-208.]). The polyhedral connectivity results in a three-dimensional network built from six-, four- and eight-membered rings. Perpendicular to [100], for example, the structure can be decomposed into layers consisting of six-membered rings (S6R) of [TO4]-tetra­hedra forming honeycomb nets (Fig. 4[link]). Within a single S6R, three tetra­hedra with vertices up (U) alternate with three tetra­hedra having their vertices down (D) (sequence of directedness: UUUDDD). Using the terminology of Flörke (1967[Flörke, O. (1967). Fortschr. Mineral, 44, 181-230.]), the relative orientation of paired tetra­hedra belonging to different adjacent layers can be approximately classified as a trans-configuration (Fig. 1[link]). Alternatively, the layers can be regarded as being constructed from the condensation of unbranched vierer single-chains via common corners. Perpendicular to [010] the network contains strongly corrugated layers of S4R and S8R (Fig. 5[link]). The S8Rs are highly elliptical. Subsequent layers are connected by bridging vertex oxygen atoms, forming eight-ring channels that propagate along [010]. The elliptical shape of the channels is also reflected in the high framework density (Brunner & Meyer, 1989[Brunner, G. O. & Meyer, W. M. (1989). Nature, 337, 146-147.]), with a value of 20.0 tetra­hedral atoms/1000 Å3.

[Figure 4]
Figure 4
Single tetra­hedral layer with six-membered rings in a projection along [100]. T-sites in the centres of the tetra­hedra are shown in blue. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 5]
Figure 5
Strongly folded tetra­hedral layer with four- and eight-membered rings in a projection along [010]. Displacement ellipsoids are drawn at the 70% probability level.

4. Synthesis and initial characterization

Single-crystals of SrFe1.40V0.60O4 were obtained in the course of a series of synthesis experiments aimed at the preparation of a possible double perovskite phase with composition Sr2FeVO6. Therefore, mixtures of the dried starting materials SrCO3, Fe2O3 and V2O5 were homogenized in the molar ratio 4:1:1 using a ball mill operated at 600 r.p.m. for 45 min under ethanol. The resulting slurry was dried for 24 h at 323 K and subsequently re-ground by hand. An amount of about 0.5 g was pressed into a pellet having a diameter of 12 mm. Thermal treatment was performed in a resistance-heated horizontal tube furnace in air. Therefore, the tablet was placed on a platinum foil contained in an alumina-ceramic combustion boat. The sample was heated from 298 K to 1473 K with a ramp of 100 K h−1, followed by 25 K h−1 to 1423 K and finally at 10 h K−1 to 1573 K. After annealing for 48 h at the maximum temperature, the container was quenched to room temperature. The partially melted pellet was removed from the foil, crushed in an agate mortar and transferred to a glass slide under a reflected-light microscope. A first optical inspection revealed the presence of at least two different crystalline phases: (a) larger, transparent–colorless crystals up to 150 µm in size and (b) considerably smaller, opaque black–brown specimens with maximum dimensions of about 50 µm. Preliminary single-crystal diffraction experiments revealed the larger crystals to be Sr3(VO4)2 (Carrillo-Cabrera & von Schnering, 1993[Carrillo-Cabrera, W. & von Schnering, H. G. (1993). Z. Kristallogr. 205, 271-276.]) while the second phase could be indexed with a monoclinic primitive unit cell similar to the one reported for SrFe2O4 (Kahlenberg & Fischer, 2001[Kahlenberg, V. & Fischer, R. X. (2001). Solid State Sci. 3, 433-439.]). Since the larger samples of the second phase always exhibited inter­growth of several crystals, we finally decided to focus on the fraction with smaller crystallites and to perform the relevant diffraction studies for structure elucidation using synchrotron radiation at the X06DA beamline of the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland. Therefore, a sample was mounted on the tip of a 0.25 mm diameter LithoLoop made by Mol­ecular Dimensions Inc. with a drop of Paratone-N oil (Hampton Research) and flash cooled in a 100 K nitro­gen gas stream.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Initial coordinates for the refinement calculations were taken from the crystal structure refinement of SrFe2O4 (Kahlenberg & Fischer, 2001[Kahlenberg, V. & Fischer, R. X. (2001). Solid State Sci. 3, 433-439.]) after transformation to monoclinic second setting. Site-population refinements of the Fe:V ratios on the T-sites indicated the presence of a member of the solid-solution series SrFexV2–xO4.

Table 1
Experimental details

Crystal data
Chemical formula SrFe1.40V0.60O4
Mr 260.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.0594 (8), 10.8768 (9), 9.1218 (8)
β (°) 91.544 (7)
V3) 799.33 (12)
Z 8
Radiation type Synchrotron, λ = 0.72931 Å
μ (mm−1) 20.91
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Aerotech
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.614, 0.871
No. of measured, independent and observed [I > 2σ(I)] reflections 5200, 1746, 1572
Rint 0.067
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.14
No. of reflections 1746
No. of parameters 131
Δρmax, Δρmin (e Å−3) 1.74, −1.37
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Strontium tetraoxidodi[ferrate(III)/vanadate(III)] top
Crystal data top
SrFe1.40V0.60O4F(000) = 961.6
Mr = 260.37Dx = 4.327 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.72931 Å
Hall symbol: -P 2ynCell parameters from 2398 reflections
a = 8.0594 (8) Åθ = 3.5–33.9°
b = 10.8768 (9) ŵ = 20.91 mm1
c = 9.1218 (8) ÅT = 100 K
β = 91.544 (7)°Fragment, brown-black
V = 799.33 (12) Å30.03 × 0.02 × 0.01 mm
Z = 8
Data collection top
Aerotech
diffractometer
1746 independent reflections
Radiation source: SLS super-bending magnet 2.9T, X06DA1572 reflections with I > 2σ(I)
Bartels Monochromator with dual channel cut crystals (DCCM) in (±) geometry monochromatorRint = 0.067
Detector resolution: 5.81 pixels mm-1θmax = 27.9°, θmin = 3.0°
rotation method scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1313
Tmin = 0.614, Tmax = 0.871l = 1111
5200 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: isomorphous structure methods
R[F2 > 2σ(F2)] = 0.050Secondary atom site location: notdet
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0821P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1746 reflectionsΔρmax = 1.74 e Å3
131 parametersΔρmin = 1.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.49713 (9)0.34684 (7)0.20513 (7)0.0190 (3)
Sr20.50716 (9)0.89165 (6)0.23511 (8)0.0193 (3)
Fe10.22326 (15)0.13896 (10)0.06706 (12)0.0163 (4)0.64 (3)
Fe20.29893 (14)0.13638 (10)0.40844 (12)0.0164 (4)0.75 (3)
Fe30.17887 (15)0.88717 (9)0.93230 (12)0.0166 (4)0.71 (4)
Fe40.74301 (15)0.11238 (9)0.40681 (12)0.0159 (4)0.70 (3)
V10.22326 (15)0.13896 (10)0.06706 (12)0.0163 (4)0.36 (3)
V20.29893 (14)0.13638 (10)0.40844 (12)0.0164 (4)0.25 (3)
V30.17887 (15)0.88717 (9)0.93230 (12)0.0166 (4)0.29 (4)
V40.74301 (15)0.11238 (9)0.40681 (12)0.0159 (4)0.30 (3)
O10.0192 (7)0.1337 (5)0.9770 (6)0.0218 (11)
O20.5181 (7)0.1144 (5)0.3576 (6)0.0235 (12)
O30.2158 (6)0.2238 (5)0.2460 (5)0.0208 (11)
O40.8217 (6)0.0290 (5)0.2457 (5)0.0209 (11)
O50.8530 (6)0.2590 (5)0.4510 (5)0.0196 (10)
O60.2367 (6)0.7187 (5)0.9126 (5)0.0193 (11)
O70.7805 (7)0.0230 (5)0.5784 (5)0.0238 (12)
O80.3105 (6)0.9810 (5)0.0607 (6)0.0217 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0171 (4)0.0186 (4)0.0210 (4)0.0003 (3)0.0052 (3)0.0001 (2)
Sr20.0184 (5)0.0167 (4)0.0226 (4)0.0007 (2)0.0058 (3)0.0016 (2)
Fe10.0162 (7)0.0141 (6)0.0182 (6)0.0007 (4)0.0042 (4)0.0008 (4)
Fe20.0161 (7)0.0146 (6)0.0183 (6)0.0005 (4)0.0038 (4)0.0007 (4)
Fe30.0163 (7)0.0148 (7)0.0184 (6)0.0006 (4)0.0051 (4)0.0002 (4)
Fe40.0154 (7)0.0140 (6)0.0182 (6)0.0002 (4)0.0047 (4)0.0005 (4)
V10.0162 (7)0.0141 (6)0.0182 (6)0.0007 (4)0.0042 (4)0.0008 (4)
V20.0161 (7)0.0146 (6)0.0183 (6)0.0005 (4)0.0038 (4)0.0007 (4)
V30.0163 (7)0.0148 (7)0.0184 (6)0.0006 (4)0.0051 (4)0.0002 (4)
V40.0154 (7)0.0140 (6)0.0182 (6)0.0002 (4)0.0047 (4)0.0005 (4)
O10.024 (3)0.022 (3)0.019 (3)0.003 (2)0.002 (2)0.001 (2)
O20.024 (3)0.020 (3)0.027 (3)0.002 (2)0.002 (2)0.004 (2)
O30.025 (3)0.018 (3)0.019 (2)0.001 (2)0.0046 (19)0.0019 (19)
O40.022 (3)0.018 (3)0.023 (2)0.005 (2)0.003 (2)0.002 (2)
O50.018 (3)0.019 (2)0.022 (2)0.001 (2)0.0044 (18)0.001 (2)
O60.016 (3)0.020 (3)0.021 (2)0.002 (2)0.0041 (18)0.0004 (19)
O70.031 (3)0.018 (3)0.022 (3)0.002 (2)0.009 (2)0.0020 (19)
O80.021 (3)0.015 (3)0.028 (3)0.000 (2)0.009 (2)0.001 (2)
Geometric parameters (Å, º) top
Sr1—O1i2.490 (5)Fe4—O51.863 (5)
Sr1—O4ii2.495 (5)O1—V1xiii1.820 (6)
Sr1—O7iii2.506 (5)O1—Fe1xiii1.820 (6)
Sr1—O6iv2.527 (5)O1—V3xii1.832 (6)
Sr1—O32.668 (5)O1—Fe3xii1.832 (6)
Sr1—O5iii2.811 (5)O1—Sr1xiv2.490 (5)
Sr1—O22.889 (5)O2—Sr2ix2.668 (5)
Sr2—O82.419 (5)O3—Sr2xv2.571 (5)
Sr2—O5ii2.517 (5)O4—V3iv1.862 (5)
Sr2—O3v2.571 (5)O4—Fe3iv1.862 (5)
Sr2—O2vi2.668 (5)O4—Sr1xvi2.495 (5)
Sr2—O6vii2.706 (5)O4—Sr2ix2.942 (5)
Sr2—O4vi2.942 (5)O5—V1xvii1.872 (5)
Sr2—O7iv3.057 (6)O5—Fe1xvii1.872 (5)
Fe1—O1viii1.820 (6)O5—Sr2xvi2.517 (5)
Fe1—O8ix1.858 (5)O5—Sr1xvii2.811 (5)
Fe1—O5iii1.872 (5)O6—V2xviii1.891 (5)
Fe1—O31.877 (5)O6—Fe2xviii1.891 (5)
Fe2—O7x1.853 (6)O6—Sr1iv2.527 (5)
Fe2—O21.854 (6)O6—Sr2xix2.706 (5)
Fe2—O31.869 (5)O7—V2x1.853 (6)
Fe2—O6xi1.891 (5)O7—Fe2x1.853 (6)
Fe3—O1xii1.832 (6)O7—Sr1xvii2.506 (5)
Fe3—O4iv1.862 (5)O7—Sr2iv3.057 (6)
Fe3—O8xiii1.863 (5)O8—V1vi1.858 (5)
Fe3—O61.901 (5)O8—Fe1vi1.858 (5)
Fe4—O41.853 (5)O8—V3viii1.863 (5)
Fe4—O21.855 (6)O8—Fe3viii1.863 (5)
Fe4—O71.860 (5)
O1i—Sr1—O4ii74.21 (17)V1xiii—O1—Fe3xii126.0 (3)
O1i—Sr1—O7iii116.19 (18)Fe1xiii—O1—Fe3xii126.0 (3)
O4ii—Sr1—O7iii91.79 (17)V3xii—O1—Fe3xii0.00 (7)
O1i—Sr1—O6iv114.11 (17)V1xiii—O1—Sr1xiv119.1 (3)
O4ii—Sr1—O6iv78.52 (16)Fe1xiii—O1—Sr1xiv119.1 (3)
O7iii—Sr1—O6iv123.51 (17)V3xii—O1—Sr1xiv114.9 (3)
O1i—Sr1—O386.65 (17)Fe3xii—O1—Sr1xiv114.9 (3)
O4ii—Sr1—O3150.33 (16)Fe2—O2—Fe4150.7 (3)
O7iii—Sr1—O376.34 (16)Fe2—O2—Sr2ix101.6 (2)
O6iv—Sr1—O3130.71 (16)Fe4—O2—Sr2ix96.4 (2)
O1i—Sr1—O5iii150.77 (17)Fe2—O2—Sr187.9 (2)
O4ii—Sr1—O5iii134.45 (15)Fe4—O2—Sr199.8 (2)
O7iii—Sr1—O5iii65.40 (15)Sr2ix—O2—Sr1126.3 (2)
O6iv—Sr1—O5iii82.57 (15)Fe2—O3—Fe1114.8 (3)
O3—Sr1—O5iii64.90 (14)Fe2—O3—Sr2xv123.0 (2)
O1i—Sr1—O266.00 (15)Fe1—O3—Sr2xv116.5 (2)
O4ii—Sr1—O2125.61 (16)Fe2—O3—Sr194.5 (2)
O7iii—Sr1—O2138.40 (18)Fe1—O3—Sr194.5 (2)
O6iv—Sr1—O285.32 (17)Sr2xv—O3—Sr1104.54 (18)
O3—Sr1—O262.13 (16)Fe4—O4—V3iv117.3 (3)
O5iii—Sr1—O293.22 (15)Fe4—O4—Fe3iv117.3 (3)
O8—Sr2—O5ii94.82 (17)V3iv—O4—Fe3iv0.00 (6)
O8—Sr2—O3v83.26 (16)Fe4—O4—Sr1xvi117.2 (2)
O5ii—Sr2—O3v87.97 (16)V3iv—O4—Sr1xvi122.2 (2)
O8—Sr2—O2vi85.67 (18)Fe3iv—O4—Sr1xvi122.2 (2)
O5ii—Sr2—O2vi142.41 (18)Fe4—O4—Sr2ix87.81 (19)
O3v—Sr2—O2vi129.21 (18)V3iv—O4—Sr2ix103.8 (2)
O8—Sr2—O6vii175.50 (17)Fe3iv—O4—Sr2ix103.8 (2)
O5ii—Sr2—O6vii80.68 (15)Sr1xvi—O4—Sr2ix95.86 (17)
O3v—Sr2—O6vii96.47 (15)Fe4—O5—V1xvii111.1 (3)
O2vi—Sr2—O6vii97.91 (16)Fe4—O5—Fe1xvii111.1 (3)
O8—Sr2—O4vi111.49 (16)V1xvii—O5—Fe1xvii0.00 (8)
O5ii—Sr2—O4vi84.97 (15)Fe4—O5—Sr2xvi124.3 (2)
O3v—Sr2—O4vi164.10 (15)V1xvii—O5—Sr2xvi108.0 (2)
O2vi—Sr2—O4vi60.41 (16)Fe1xvii—O5—Sr2xvi108.0 (2)
O6vii—Sr2—O4vi68.34 (14)Fe4—O5—Sr1xvii90.66 (18)
O8—Sr2—O7iv75.56 (16)V1xvii—O5—Sr1xvii90.07 (17)
O5ii—Sr2—O7iv155.43 (15)Fe1xvii—O5—Sr1xvii90.07 (17)
O3v—Sr2—O7iv68.68 (15)Sr2xvi—O5—Sr1xvii127.46 (19)
O2vi—Sr2—O7iv60.55 (17)V2xviii—O6—Fe2xviii0.00 (9)
O6vii—Sr2—O7iv108.56 (14)V2xviii—O6—Fe3109.4 (2)
O4vi—Sr2—O7iv119.55 (14)Fe2xviii—O6—Fe3109.4 (2)
O1viii—Fe1—O8ix107.2 (2)V2xviii—O6—Sr1iv112.6 (2)
O1viii—Fe1—O5iii106.0 (2)Fe2xviii—O6—Sr1iv112.6 (2)
O8ix—Fe1—O5iii108.2 (2)Fe3—O6—Sr1iv121.7 (2)
O1viii—Fe1—O3111.0 (2)V2xviii—O6—Sr2xix100.9 (2)
O8ix—Fe1—O3120.2 (2)Fe2xviii—O6—Sr2xix100.9 (2)
O5iii—Fe1—O3103.4 (2)Fe3—O6—Sr2xix108.6 (2)
O7x—Fe2—O2103.2 (2)Sr1iv—O6—Sr2xix101.25 (16)
O7x—Fe2—O3114.2 (2)V2x—O7—Fe2x0.00 (7)
O2—Fe2—O3101.0 (2)V2x—O7—Fe4119.6 (3)
O7x—Fe2—O6xi109.0 (2)Fe2x—O7—Fe4119.6 (3)
O2—Fe2—O6xi116.4 (2)V2x—O7—Sr1xvii137.4 (2)
O3—Fe2—O6xi112.6 (2)Fe2x—O7—Sr1xvii137.4 (2)
O1xii—Fe3—O4iv118.2 (2)Fe4—O7—Sr1xvii100.9 (2)
O1xii—Fe3—O8xiii105.8 (2)V2x—O7—Sr2iv88.8 (2)
O4iv—Fe3—O8xiii105.6 (2)Fe2x—O7—Sr2iv88.8 (2)
O1xii—Fe3—O698.2 (2)Fe4—O7—Sr2iv101.6 (2)
O4iv—Fe3—O6112.6 (2)Sr1xvii—O7—Sr2iv95.81 (17)
O8xiii—Fe3—O6116.8 (2)V1vi—O8—Fe1vi0.00 (10)
O4—Fe4—O299.6 (2)V1vi—O8—V3viii108.4 (2)
O4—Fe4—O7111.1 (2)Fe1vi—O8—V3viii108.4 (2)
O2—Fe4—O7110.2 (3)V1vi—O8—Fe3viii108.4 (2)
O4—Fe4—O5114.8 (2)Fe1vi—O8—Fe3viii108.4 (2)
O2—Fe4—O5119.9 (2)V3viii—O8—Fe3viii0.00 (6)
O7—Fe4—O5101.5 (2)V1vi—O8—Sr2126.4 (2)
V1xiii—O1—Fe1xiii0.00 (6)Fe1vi—O8—Sr2126.4 (2)
V1xiii—O1—V3xii126.0 (3)V3viii—O8—Sr2123.1 (2)
Fe1xiii—O1—V3xii126.0 (3)Fe3viii—O8—Sr2123.1 (2)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+1, z; (vii) x+1/2, y+3/2, z1/2; (viii) x, y, z1; (ix) x, y1, z; (x) x+1, y, z+1; (xi) x+1/2, y1/2, z+3/2; (xii) x, y+1, z+2; (xiii) x, y, z+1; (xiv) x1/2, y+1/2, z+1/2; (xv) x+1/2, y1/2, z+1/2; (xvi) x+3/2, y1/2, z+1/2; (xvii) x+1/2, y+1/2, z+1/2; (xviii) x+1/2, y+1/2, z+3/2; (xix) x1/2, y+3/2, z+1/2.
 

Acknowledgements

Anuschka Pauluhn is thanked for her help during the data collections at the X06DA beamline. The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 730872, project CALIPSOplus.

References

First citationBaerlocher, Ch., McCusker, L. B. & Olson, D. H. (2007). Atlas of Zeolite Framework Types, 6th revised ed. Amsterdam: Elsevier.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrunner, G. O. & Meyer, W. M. (1989). Nature, 337, 146–147.  CAS Google Scholar
First citationBu, X., Feng, P., Gier, T. E. & Stucky, G. D. (1997). Zeolites, 19, 200–208.  CrossRef ICSD CAS Web of Science Google Scholar
First citationCarrillo-Cabrera, W. & von Schnering, H. G. (1993). Z. Kristallogr. 205, 271–276.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlörke, O. (1967). Fortschr. Mineral, 44, 181–230.  Google Scholar
First citationHuang, K. & Goodenough, J. B. (2009). Solid Oxide Fuel Cell Technology: Principles, Performance and Operations. New York: Woodhead Publishing in Energy, CRC Press.  Google Scholar
First citationKahlenberg, V. & Fischer, R. X. (2001). Solid State Sci. 3, 433–439.  CrossRef ICSD CAS Google Scholar
First citationKahlenberg, V., Fischer, R. X. & Shaw, C. S. J. (2000). J. Solid State Chem. 153, 294–300.  CrossRef ICSD CAS Google Scholar
First citationLarminie, J., Dicks, A. & McDonald, M. S. (2003). Fuel cells explained. Vol. 2. New York: Wiley.  Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, X., Zhong, Y. & Shao, Z. (2019). Trends Chem. 1, 410–424.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds