research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a penta­copper(II) 12-metallacrown-4: cis-di­aqua­tetra­kis­(di­methyl­formamide-κO)manganese(II) tetra­kis­(μ3-N,2-dioxido­benzene-1-carboximidate)penta­copper(II) di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, West Lafayette, Indiana 479070, USA
*Correspondence e-mail: cmzaleski@ship.edu

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 24 April 2020; accepted 26 April 2020; online 30 April 2020)

The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each penta­copper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octa­hedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water mol­ecules of the MnII ion. The water mol­ecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs.

1. Chemical context

Penta­copper(II) 12-metallacrown-4 complexes are ubiquitous in metallacrown (MC) chemistry (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Tegoni & Remelli, 2012[Tegoni, M. & Remelli, M. (2012). Coord. Chem. Rev. 256, 289-315.]; Ostrowska et al., 2016[Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327-328, 304-332.]). A survey of the Cambridge Structural Database (CSD version 5.41, update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that there are 35 different structures; however, even more Cu5 12-MC-4 complexes have been studied in solution to understand the thermodynamic properties of their self-assembly (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Tegoni & Remelli, 2012[Tegoni, M. & Remelli, M. (2012). Coord. Chem. Rev. 256, 289-315.]; Ostrowska et al., 2016[Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327-328, 304-332.]). Initially Cu5 12-MC-4 complexes were only produced with ligands that could form fused five- and six-membered chelate rings such as salicyl­hydroxamic acid or β-amino­hydroxamic acids (Orama et al., 1992[Orama, M., Saarinen, H., Korvenranta, J. & Raikas, T. (1992). Acta Chem. Scand. 46, 1083-1086.]; Gibney et al., 1994[Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840-4849.]; Halfen et al., 1998[Halfen, J. A., Bodwin, J. J. & Pecoraro, V. L. (1998). Inorg. Chem. 37, 5416-5417.]); however, it is now recognized that α- and γ-amino­hydroxamic acids can form Cu5 12-MC-4 complexes that have fused five- and five-membered chelate rings or fused five- and seven-membered chelate rings, respectively (Dallavalle et al., 2001[Dallavalle, F. & Tegoni, M. (2001). Polyhedron, 20, 2697-2704.]; Tegoni et al., 2004[Tegoni, M., Dallavalle, F., Belosi, B. & Remelli, M. (2004). Dalton Trans. pp. 1329-1333.], 2007[Tegoni, M., Ferretti, L., Sansone, F., Remelli, M., Bertolasi, V. & Dallavalle, F. (2007). Chem. Eur. J. 13, 1300-1308.], 2008[Tegoni, M., Remelli, M., Bacco, D., Marchiò, L. & Dallavalle, F. (2008). Dalton Trans. pp. 2693-2701.]). Penta­copper(II) 12-MC-4 complexes have applications as templates for the assembly of peptide bundles (Cal et al., 2013[Cal, M., Jaremko, Ł., Jaremko, M. & Stefanowicz, P. (2013). New J. Chem. 37, 3770-3777.]), for the sorption of gases and alcohols (Atzeri et al., 2016[Atzeri, C., Marchiò, L., Chow, C. Y., Kampf, J. W., Pecoraro, V. L. & Tegoni, M. (2016). Chem. Eur. J. 22, 6482-6486.]; Pavlishchuk et al., 2017[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017). Eur. J. Inorg. Chem. pp. 4866-4878.]), and as building blocks for one-, two-, and three-dimensional materials (Bodwin & Pecoraro, 2000[Bodwin, J. J. & Pecoraro, V. L. (2000). Inorg. Chem. 39, 3434-3435.]; Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozlowska, J. (2007). New J. Chem. 31, 1798-1805.]; Lago et al., 2011[Lago, A. B., Pasán, J., Cañadillas-Delgado, L., Fabelo, O., Casado, F. J. M., Julve, M., Lloret, F. & Ruiz-Pérez, C. (2011). New J. Chem. 35, 1817-1822.]; McDonald et al., 2013[McDonald, C., Whyte, T., Taylor, S. M., Sanz, S., Brechin, E. K., Gaynor, D. & Jones, L. F. (2013). CrystEngComm, 15, 6672-6681.]; Atzeri et al., 2016[Atzeri, C., Marchiò, L., Chow, C. Y., Kampf, J. W., Pecoraro, V. L. & Tegoni, M. (2016). Chem. Eur. J. 22, 6482-6486.]). To date only four other structures have been reported with the metallacrown framework ligand salicyl­hydroxamic acid (H3shi): A2{Cu[12-MCCu(II)N(shi)-4]}, where A is either tetra­methyl­ammonium (Gibney et al., 1994[Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840-4849.]), [Na(15-crown-5)]+ (Gibney et al., 1994[Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840-4849.]), tetra­ethyl­ammonium (Herring et al., 2011[Herring, J., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m419-m420.]), or tri­ethyl­ammonium (Happ & Rentschler, 2014[Happ, P. & Rentschler, E. (2014). Dalton Trans. 43, 15308-15312.]). Herein we report the first use of a 3d metallic counter-cation to the penta­copper(II) metallacrown: cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF.

[Scheme 1]

2. Structural commentary

Two crystallographically independent metallacrown anions are present in the structure, and both are located on crystallographic inversion centers with the central copper ions situated on the inversion center (Figs. 1[link] and 2[link]). Both anions exhibit minor main-mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with an occupancy ratio of 0.9010 (9) to 0.0990 (9) for the anion associated with Cu1 and an occupancy ratio 0.9497 (8) to 0.0503 (8) for the anion associated with Cu4. Thus, only the structures of the main moieties will be discussed. The metallacrowns have an overall square shape as a result of the fused five- and six-membered chelate rings of the salicyl­hydroximate (shi3−) ligands, and the MCs are slightly non-planar. In each MC, a copper ion is captured in the central cavity and surrounded by four copper ions of the MC ring. The MC ring has a Cu—N—O pattern that repeats four times to generate the MC central cavity. All five copper ions of each MC are assigned a 2+ oxidation state based on bond-valence-sum (BVS) values (Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]), average bond length distances, and overall charge-balance considerations (Table 1[link]). In addition, all five CuII ions of each MC are four-coordinate, and a SHAPE (SHAPE 2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.]) analysis of the geometry yields the lowest continuous shape measure (CShM) values for square planar (Table 2[link]), which is typical for a d9 electron configuration (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.]; Pinsky & Avnir, 1998[Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.]; Casanova et al., 2004[Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755-1763.]; Cirera et al., 2005[Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-1562.]). The coordination environment of the central CuII ions (Cu1 and Cu4) are composed of four oxime oxygens from four different shi3− ligands. The coordination environments of the ring CuII ions (Cu2, Cu3, Cu5, and Cu6) consist of trans five- and six-membered chelate rings: each five-membered chelate ring is formed by the carbonyl oxygen atom and the oxime oxygen atom of a shi3− ligand, and each six-membered chelate ring is formed by the phenolate oxygen atom and oxime nitro­gen atom of a different shi3− ligand.

Table 1
Average bond-length (Å) and bond-valence-sum (BVS; v.u.) values used to support the assigned oxidation states of the copper and manganese ions

  Avg. bond length BVS value Assigned oxidation state
Mn1 2.171 2.01 2+
Cu1 1.896 2.05 2+
Cu2 1.914 2.11 2+
Cu3 1.921 2.08 2+
Cu4 1.892 2.08 2+
Cu5 1.922 2.07 2+
Cu6 1.912 2.12 2+

Table 2
Continuous shape measurement (CShM) values (SHAPE 2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.]) for the four-coordinate copper(II) ions

  Square Tetra­hedron Seesaw Vacant trigonal bipyramid
Cu1 0.025 33.350 19.048 34.881
Cu2 1.870 22.459 11.479 23.026
Cu3 0.404 30.267 16.579 30.405
Cu4 0.027 33.352 19.058 34.887
Cu5 0.435 30.734 16.919 30.682
Cu6 0.606 28.098 15.366 28.580
[Figure 1]
Figure 1
The single-crystal X-ray structure of the ionic pair cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF associated with Cu1 and with displacement ellipsoids at the 50% probability level [symmetry code: (i) 2 − x, −y, 1 − z]. For clarity, only non-carbon atoms have been labeled, and the MC associated with Cu4, the lattice DMF mol­ecule, H atoms, and disorder have been omitted. Color scheme: yellow – CuII, green – MnII, red – oxygen, blue – nitro­gen, and gray – carbon. All figures were generated with the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 2]
Figure 2
The single-crystal X-ray structure of {Cu[12-MCCu(II)N(shi)-4]}2− associated with Cu4 with displacement ellipsoids at the 50% probability level [symmetry code: (ii) 1 − x, −y, 1 − z]. For clarity, only non-carbon atoms have been labeled, and the MC associated with Cu1, the MnII counter-cation, the lattice DMF mol­ecule, H atoms, and disorder have been omitted. See Fig. 1[link] for additional display details.

The use of the four trianionic shi3− ligands and five divalent CuII ions yields an MC with overall charge of 2−, {Cu[12-MCCu(II)N(shi)-4]}2−. This charge is balanced by the presence of a manganese cation in the lattice: cis-[Mn(H2O)2(DMF)4]2+. The manganese ion is assigned an oxidation state of 2+ based on the average bond length of 2.171 Å, a BVS value of 2.01 valence units (v.u.), and overall charge-balance considerations (Table 1[link]). A SHAPE analysis confirms the octa­hedral geometry of the cation (Table 3[link]). The coordination environment of the MnII ion consists of four DMF mol­ecules and two water mol­ecules in a cis configuration. Lastly, a DMF mol­ecule is located in the lattice.

Table 3
Continuous shape measurement (CShM) values (SHAPE 2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.]) for the six-coordinate manganese(II) ion

  Hexagon Penta­gonal pyramid Octa­hedron Trigonal prism Johnson pentagonal pyramid
Mn1 32.455 27.045 0.240 14.096 30.823

3. Supra­molecular features

No strong directional inter­molecular inter­actions are observed between the {Cu[12-MCCu(II)N(shi)-4]}2− anions, but a number of hydrogen bonds exist between the MCs and the counter-cation cis-[Mn(H2O)2(DMF)4]2+ and between the counter-cation and the lattice DMF mol­ecule (Table 4[link], Fig. 3[link]). The water mol­ecule associated with O18 of the MnII cation forms hydrogen bonds to both MC anions. The hydrogen bonds are to phenolate oxygen atoms (O18—H18C⋯O3 and O18—H18D⋯O9) of the neighboring MCs. The water mol­ecule associated with O19 of the MnII cation forms hydrogen bonds to a carbonyl oxygen atom of the MC associated with Cu1 (O19—H19C⋯O5) and to the carbonyl oxygen atom of the lattice DMF mol­ecule (O19—H19D⋯O17). These hydrogen-bonding inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 4
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18C⋯O3 0.83 (2) 2.07 (3) 2.847 (3) 156 (5)
O18—H18D⋯O9 0.84 (2) 1.95 (2) 2.778 (3) 169 (5)
O19—H19C⋯O5 0.83 (2) 1.93 (2) 2.746 (3) 167 (5)
O19—H19D⋯O17 0.84 (2) 1.88 (2) 2.713 (4) 175 (5)
[Figure 3]
Figure 3
The inter­molecular hydrogen bonds present between neighboring mol­ecules of cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF with displacement ellipsoids at the 50% probability level [symmetry codes: (i) 2 − x, −y, 1 − z and (ii) 1 − x, −y, 1 − z]. For clarity only the H atoms (white) involved in the hydrogen bonding are displayed. See Fig. 1[link] for additional display details.

4. Database survey

As stated above, the Cambridge Structural Database (CSD version 5.41, update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists 35 different penta­copper(II) 12-metallacrown-4 complexes with four ring CuII ions and one central CuII ion. A variety of different ligands are used to generate the MCs, but only four structures use the ligand salicyl­hydroximate to build the {CuII[12-MCCu(II)-4]}2− framework. The counter-cations in the four other structures are tetra­methyl­ammonium (YELTOY; Gibney et al., 1994[Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840-4849.]), [Na(15-crown-5)]+ (YELTIS; Gibney et al., 1994[Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840-4849.]), tetra­ethyl­ammonium (UNOTUN; Herring et al., 2011[Herring, J., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m419-m420.]), and tri­ethyl­ammonium (COLVAC; Happ & Rentschler, 2014[Happ, P. & Rentschler, E. (2014). Dalton Trans. 43, 15308-15312.]). For the structures with tetra­methyl­ammonium, tetra­ethyl­ammonium, tri­ethyl­ammonium, and cis-[Mn(H2O)2(DMF)4]2+, the cations are located in the lattice, and the {Cu[12-MCCu(II)N(shi)-4]}2− anions can be considered nearly planar with a `mol­ecular disk' configuration or slightly to significantly non-planar with a `sofa' configuration. As originally described by Pecoraro and coworkers (Gibney et al., 1994[Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840-4849.]), in the mol­ecular disk configuration the benzene rings of the shi3− ligands lie approximately in the same plane, and in the sofa configuration two of the benzene rings are tilted upwards relative to the MC central cavity and the two opposite benzene rings are tilted downwards. Lastly, for the structure with [Na(15-crown-5)]+, the two cations are bound to the phenolate and carbonyl oxygen atoms of the {Cu[12-MCCu(II)N(shi)-4]}2− anion. This causes the MC to become domed with the benzene rings pointing downwards relative to the MC central cavity and the [Na(15-crown-5)]+ cations bonded to the convex side of the MC.

5. Synthesis and crystallization

Manganese(II) chloride tetra­hydrate (Certified ACS) was purchased from Fisher Scientific. Copper(II) chloride dihydrate was purchased from J. T. Baker Chemical Company. Salicyl­hydroxamic acid (99%) was purchased from Alfa Aesar. Tri­ethano­lamine (98%) was purchased from Sigma–Aldrich. N,N-Di­methyl­formamide (DMF, Certified ACS) was purchased from BDH Chemicals. All reagents were used as received without further purification.

Salicyl­hydroxamic acid (H3shi; 0.1541 g, 1 mmol) and copper(II) chloride dihydrate (0.1705 g, 1 mmol) were dissolved in 10 mL of DMF resulting in a green–brown solution. Tri­ethano­lamine (0.3764 g, 2.5 mmol) was then added to the CuCl2/H3shi solution, resulting in a dark-green color. Separately, manganese(II) chloride tetra­hydrate (0.7891 g, 4 mmol) was dissolved in 20 mL of DMF, resulting in a clear and colorless solution. The MnCl2 solution was then added to the CuCl2/H3shi/tri­ethano­lamine solution and no color change was observed. The solution was stirred overnight and then gravity filtered the next day. A dark-green precipitate was recovered and discarded. The filtrate was a dark-green color. The solution was left for slow evaporation at room temperature, and after 26 days dark-green plate-shaped crystals were collected for X-ray analysis. The remaining crystals were collected, washed with cold DMF, and dried. The percentage yield of the reaction was 57% (0.1576 g, 0.1147 mmol) based on copper(II) chloride dihydrate.

6. Refinement

Two crystallographically independent metallacrown anions are present in the structure. Both are located on crystallographic inversion centers with the central of the five copper atoms situated on the inversion center. Both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation. A cis-[Mn(H2O)2(DMF)4]2+ cation and a solvate DMF mol­ecule are located in the lattice and are not disordered. The major and minor disordered moieties of both anions were each restrained to have similar geometries (SHELXL SAME commands). Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.9010 (9) to 0.0990 (9) for the anion associated with Cu1 and 0.9497 (8) to 0.0503 (8) for the anion associated with Cu4. Water hydrogen-atom positions were refined and O—H distances restrained to 0.84 (2) Å. Additional crystallographic data and experimental parameters are provided in Table 5[link] and the CIF of the compound.

Table 5
Experimental details

Crystal data
Chemical formula [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO
Mr 1374.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 19.0669 (9), 14.2943 (6), 19.3450 (8)
β (°) 95.1476 (18)
V3) 5251.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.30
Crystal size (mm) 0.45 × 0.41 × 0.25
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS2016/2; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.582, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 87027, 28700, 18767
Rint 0.043
(sin θ/λ)max−1) 0.879
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.143, 1.07
No. of reflections 28700
No. of parameters 1153
No. of restraints 1810
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.44, −2.18
Computer programs: APEX3 and SAINT(Bruker, 2016[Bruker (2016). Apex3 v2016.9-0, SAINT V8.37A, Bruker AXS Inc.: Madison (WI), USA, 2013/2014.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE Rev859 (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Hydrogen atoms attached to carbon atoms as well as hydroxyl hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms. Carbon–hydrogen bond distances were constrained to 0.95 Å for aromatic and aldehyde C—H moieties, and to 0.98 Å for CH3 moieties. Oxygen–hydrogen distances of alcohols were constrained to 0.84 Å and were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to kUeq(C,O) with k = 1.5 for CH3 and OH, and 1.2 for C—H units.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT(Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015), SHELXLE Rev859 (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

cis-Diaquatetrakis(dimethylformamide-κO)manganese(II) tetrakis(µ3-N,2-dioxidobenzene-1-carboximidate)pentacopper(II) dimethylformamide monosolvate top
Crystal data top
[Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NOF(000) = 2792
Mr = 1374.60Dx = 1.739 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 19.0669 (9) ÅCell parameters from 9700 reflections
b = 14.2943 (6) Åθ = 2.8–38.6°
c = 19.3450 (8) ŵ = 2.30 mm1
β = 95.1476 (18)°T = 100 K
V = 5251.2 (4) Å3Block, dark green
Z = 40.45 × 0.41 × 0.25 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
28700 independent reflections
Radiation source: sealed tube X-ray source18767 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.043
ω and phi scansθmax = 38.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS2016/2; Krause et al., 2015)
h = 3333
Tmin = 0.582, Tmax = 0.748k = 2525
87027 measured reflectionsl = 3331
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0001P)2 + 29.7569P]
where P = (Fo2 + 2Fc2)/3
28700 reflections(Δ/σ)max = 0.001
1153 parametersΔρmax = 2.44 e Å3
1810 restraintsΔρmin = 2.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Two crystallographically independent metallacrown anions are present in the structure. Both are located on crystallographic inversion centers, with the central of the five copper atoms situated on the inversion center. Both anions exhibit minor main molecule disorder, by an approximate (non- crystallographic) 180 degree rotation. Not disordered are the Mn(DMF)4(H2O)2 cation and a solvate DMF molecule.

The major and minor disordered moieties of both anions were each restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 1.7 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.9010 (9) to 0.0990 (9) for the first molecule and 0.9497 (8) to 0.0503 (8) for the second.

Water H atom positions were refined and O-H distances restrained to 0.84 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.0000000.0000000.5000000.01188 (8)
Cu20.93260 (2)0.11523 (3)0.62324 (2)0.01279 (7)0.9010 (9)
O10.93764 (10)0.00304 (15)0.57089 (11)0.0129 (3)0.9010 (9)
N10.87242 (17)0.0428 (3)0.5582 (3)0.0111 (6)0.9010 (9)
O20.83769 (11)0.06858 (15)0.63222 (11)0.0139 (3)0.9010 (9)
C10.82431 (14)0.00355 (19)0.59223 (14)0.0116 (4)0.9010 (9)
C20.75232 (14)0.0439 (2)0.58686 (15)0.0119 (4)0.9010 (9)
C30.70219 (15)0.0011 (2)0.62449 (15)0.0154 (5)0.9010 (9)
H30.7156060.0559720.6499980.019*0.9010 (9)
C40.6337 (2)0.0320 (3)0.6257 (2)0.0175 (7)0.9010 (9)
H40.6008720.0004130.6515150.021*0.9010 (9)
C50.61435 (18)0.1129 (3)0.5881 (2)0.0163 (6)0.9010 (9)
H50.5682460.1376610.5893640.020*0.9010 (9)
C60.66184 (15)0.1572 (2)0.54889 (15)0.0142 (4)0.9010 (9)
H60.6471430.2114570.5231180.017*0.9010 (9)
C70.73162 (14)0.12434 (19)0.54601 (14)0.0121 (4)0.9010 (9)
O30.77261 (11)0.17166 (15)0.50602 (11)0.0136 (3)0.9010 (9)
Cu30.86525 (2)0.13811 (2)0.48811 (2)0.01182 (7)0.9010 (9)
O40.96260 (10)0.11912 (15)0.47381 (11)0.0135 (3)0.9010 (9)
N20.98210 (16)0.1601 (2)0.41233 (15)0.0136 (6)0.9010 (9)
O50.87361 (11)0.22739 (15)0.41292 (11)0.0137 (3)0.9010 (9)
C80.93312 (14)0.21663 (19)0.38474 (14)0.0125 (4)0.9010 (9)
C90.94586 (16)0.2689 (2)0.32167 (15)0.0132 (4)0.9010 (9)
C100.89277 (17)0.3304 (2)0.29445 (15)0.0168 (5)0.9010 (9)
H100.8507880.3357270.3171590.020*0.9010 (9)
C110.8998 (2)0.3832 (3)0.2359 (2)0.0210 (7)0.9010 (9)
H110.8626230.4230500.2179130.025*0.9010 (9)
C120.9626 (3)0.3775 (4)0.2031 (3)0.0236 (8)0.9010 (9)
H120.9686740.4147140.1633920.028*0.9010 (9)
C131.01514 (18)0.3176 (2)0.22884 (18)0.0221 (6)0.9010 (9)
H131.0573720.3146080.2063280.027*0.9010 (9)
C141.00866 (16)0.2603 (2)0.28744 (15)0.0161 (5)0.9010 (9)
O61.06184 (12)0.20319 (17)0.30490 (12)0.0185 (4)0.9010 (9)
Cu40.5000000.0000000.5000000.01170 (8)
Cu50.36653 (2)0.14212 (2)0.49259 (2)0.01211 (6)0.9497 (8)
O70.46380 (10)0.12115 (14)0.47964 (11)0.0145 (3)0.9497 (8)
N30.48669 (13)0.1680 (2)0.42164 (17)0.0141 (5)0.9497 (8)
O80.37971 (11)0.23815 (15)0.42153 (11)0.0171 (4)0.9497 (8)
C150.44041 (13)0.22865 (18)0.39663 (14)0.0126 (4)0.9497 (8)
C160.45885 (14)0.28759 (19)0.33773 (14)0.0138 (4)0.9497 (8)
C170.40423 (15)0.3424 (2)0.30463 (15)0.0166 (5)0.9497 (8)
H170.3591490.3419050.3219390.020*0.9497 (8)
C180.41498 (19)0.3970 (2)0.2474 (2)0.0217 (7)0.9497 (8)
H180.3776090.4329080.2250740.026*0.9497 (8)
C190.4820 (2)0.3984 (5)0.2231 (2)0.0221 (7)0.9497 (8)
H190.4897390.4347540.1834290.026*0.9497 (8)
C200.53676 (16)0.3479 (2)0.25591 (16)0.0192 (5)0.9497 (8)
H200.5821960.3523670.2396360.023*0.9497 (8)
C210.52693 (15)0.28992 (19)0.31299 (15)0.0154 (4)0.9497 (8)
O90.58291 (11)0.24093 (15)0.33919 (11)0.0167 (4)0.9497 (8)
Cu60.57576 (2)0.12989 (2)0.39086 (2)0.01213 (6)0.9497 (8)
O100.56539 (10)0.01070 (13)0.43250 (10)0.0125 (3)0.9497 (8)
N40.62916 (14)0.0390 (2)0.4431 (3)0.0115 (4)0.9497 (8)
O110.66753 (10)0.07989 (14)0.37717 (11)0.0144 (3)0.9497 (8)
C220.67889 (13)0.00222 (18)0.41166 (13)0.0115 (4)0.9497 (8)
C230.74913 (13)0.04172 (19)0.41456 (14)0.0122 (4)0.9497 (8)
C240.79951 (14)0.0024 (2)0.37672 (15)0.0145 (4)0.9497 (8)
H240.7868180.0581420.3519270.017*0.9497 (8)
C250.86714 (15)0.0328 (3)0.37443 (19)0.0166 (5)0.9497 (8)
H250.9000910.0024020.3480160.020*0.9497 (8)
C260.88563 (15)0.1144 (2)0.41205 (17)0.0173 (5)0.9497 (8)
H260.9316560.1395080.4111620.021*0.9497 (8)
C270.83747 (14)0.1586 (2)0.45048 (15)0.0159 (5)0.9497 (8)
H270.8514640.2134950.4757620.019*0.9497 (8)
C280.76769 (13)0.12442 (19)0.45326 (14)0.0136 (4)0.9497 (8)
O120.72610 (10)0.17222 (15)0.49136 (11)0.0159 (4)0.9497 (8)
Cu2B1.11148 (18)0.0603 (2)0.38816 (17)0.0151 (7)0.0990 (9)
O1B1.0274 (8)0.0792 (14)0.4321 (9)0.018 (2)0.0990 (9)
N1B0.9811 (12)0.146 (2)0.4009 (14)0.014 (2)0.0990 (9)
O2B1.0686 (8)0.1604 (13)0.3283 (9)0.016 (2)0.0990 (9)
C1B1.0078 (9)0.1843 (15)0.3481 (11)0.0136 (19)0.0990 (9)
C2B0.9674 (11)0.2610 (18)0.3106 (13)0.016 (2)0.0990 (9)
C3B0.9973 (12)0.3032 (18)0.2545 (12)0.018 (2)0.0990 (9)
H3B1.0445390.2892570.2460450.022*0.0990 (9)
C4B0.958 (2)0.366 (4)0.211 (2)0.022 (3)0.0990 (9)
H4B0.9733480.3826930.1674630.027*0.0990 (9)
C5B0.895 (2)0.403 (3)0.232 (2)0.020 (3)0.0990 (9)
H5B0.8724750.4534750.2070680.024*0.0990 (9)
C6B0.8666 (13)0.3642 (17)0.2883 (12)0.018 (3)0.0990 (9)
H6B0.8233610.3881910.3015760.021*0.0990 (9)
C7B0.8996 (10)0.2904 (16)0.3273 (11)0.016 (2)0.0990 (9)
O3B0.8645 (9)0.2589 (12)0.3807 (8)0.015 (2)0.0990 (9)
Cu3B0.89646 (17)0.1672 (2)0.44622 (18)0.0156 (6)0.0990 (9)
O4B0.9298 (8)0.0870 (13)0.5213 (8)0.016 (2)0.0990 (9)
N2B0.8738 (14)0.055 (4)0.558 (3)0.014 (2)0.0990 (9)
O5B0.8101 (7)0.1663 (12)0.4959 (8)0.012 (2)0.0990 (9)
C8B0.8145 (9)0.0988 (15)0.5408 (11)0.0126 (18)0.0990 (9)
C9B0.7503 (9)0.0747 (16)0.5741 (12)0.0117 (19)0.0990 (9)
C10B0.6913 (9)0.1315 (15)0.5565 (12)0.013 (2)0.0990 (9)
H10B0.6949450.1841090.5270310.015*0.0990 (9)
C11B0.6279 (13)0.110 (3)0.582 (2)0.016 (3)0.0990 (9)
H11B0.5864400.1431060.5653920.019*0.0990 (9)
C12B0.6243 (16)0.040 (3)0.633 (2)0.017 (3)0.0990 (9)
H12B0.5829320.0328750.6566770.020*0.0990 (9)
C13B0.6816 (10)0.0164 (18)0.6486 (15)0.020 (3)0.0990 (9)
H13B0.6768280.0686180.6781490.023*0.0990 (9)
C14B0.7477 (9)0.0004 (15)0.6220 (12)0.015 (2)0.0990 (9)
O6B0.8013 (9)0.0544 (13)0.6467 (10)0.017 (2)0.0990 (9)
Cu5B0.5982 (4)0.1776 (5)0.5491 (4)0.0181 (14)0.0503 (8)
O7B0.5715 (11)0.0883 (18)0.4778 (15)0.012 (3)0.0503 (8)
N3B0.630 (2)0.050 (5)0.448 (5)0.013 (2)0.0503 (8)
O8B0.6873 (12)0.173 (2)0.5041 (18)0.017 (3)0.0503 (8)
C15B0.6861 (13)0.100 (2)0.464 (2)0.014 (2)0.0503 (8)
C16B0.7516 (13)0.075 (2)0.433 (2)0.012 (2)0.0503 (8)
C17B0.8066 (16)0.140 (3)0.447 (2)0.014 (2)0.0503 (8)
H17B0.7987810.1950590.4723200.017*0.0503 (8)
C18B0.8721 (18)0.124 (3)0.423 (3)0.016 (3)0.0503 (8)
H18B0.9099630.1668780.4331220.019*0.0503 (8)
C19B0.8803 (18)0.043 (4)0.384 (4)0.016 (3)0.0503 (8)
H19B0.9255340.0281770.3705880.019*0.0503 (8)
C20B0.8249 (14)0.016 (3)0.365 (2)0.014 (3)0.0503 (8)
H20B0.8328410.0687860.3376020.017*0.0503 (8)
C21B0.7566 (13)0.000 (2)0.386 (2)0.013 (2)0.0503 (8)
O9B0.7079 (10)0.065 (2)0.3686 (18)0.015 (2)0.0503 (8)
Cu6B0.6171 (3)0.0670 (4)0.3977 (3)0.0140 (11)0.0503 (8)
O10B0.5253 (11)0.0771 (18)0.4283 (18)0.014 (2)0.0503 (8)
N4B0.499 (2)0.169 (3)0.422 (3)0.013 (2)0.0503 (8)
O11B0.5872 (13)0.1851 (17)0.3533 (17)0.014 (3)0.0503 (8)
C22B0.5238 (15)0.206 (2)0.366 (2)0.013 (2)0.0503 (8)
C23B0.4866 (17)0.285 (3)0.330 (2)0.015 (2)0.0503 (8)
C24B0.522 (2)0.330 (3)0.279 (2)0.017 (2)0.0503 (8)
H24B0.5699230.3160210.2752080.020*0.0503 (8)
C25B0.488 (4)0.394 (9)0.234 (5)0.020 (3)0.0503 (8)
H25B0.5094850.4183790.1952930.024*0.0503 (8)
C26B0.419 (3)0.422 (5)0.247 (3)0.021 (3)0.0503 (8)
H26B0.3943470.4653320.2168090.025*0.0503 (8)
C27B0.387 (2)0.387 (3)0.303 (2)0.021 (3)0.0503 (8)
H27B0.3441280.4130360.3144450.025*0.0503 (8)
C28B0.4181 (17)0.313 (3)0.345 (2)0.017 (2)0.0503 (8)
O12B0.3842 (16)0.286 (3)0.3987 (17)0.016 (3)0.0503 (8)
C290.58473 (18)0.5419 (2)0.45772 (18)0.0263 (6)
H290.5982150.5563410.5049790.032*
C300.5058 (2)0.5667 (4)0.3558 (2)0.0458 (11)
H30A0.4997830.6268940.3317180.069*
H30B0.4610970.5324620.3513760.069*
H30C0.5419080.5299300.3351330.069*
C310.4857 (2)0.6472 (3)0.4664 (3)0.0419 (10)
H31A0.4931580.7113970.4508450.063*
H31B0.5004900.6421210.5160800.063*
H31C0.4356210.6313320.4581420.063*
C320.74497 (18)0.3618 (2)0.58878 (16)0.0227 (5)
H320.7771720.3236900.5667300.027*
C330.6892 (3)0.3988 (6)0.6927 (2)0.075 (2)
H33A0.6658260.4458930.6618250.112*
H33B0.7144790.4298800.7326300.112*
H33C0.6538970.3561640.7088380.112*
C340.7762 (3)0.2693 (3)0.6914 (2)0.0387 (9)
H34A0.7425530.2204540.7017460.058*
H34B0.8005630.2922730.7348840.058*
H34C0.8106200.2433540.6620210.058*
C350.75700 (17)0.6276 (2)0.53074 (16)0.0208 (5)
H350.7107550.6504300.5347280.025*
C360.8771 (2)0.6121 (4)0.5799 (2)0.0456 (11)
H36A0.8817110.5799990.5357300.068*
H36B0.8885630.5685920.6183560.068*
H36C0.9095730.6654100.5841560.068*
C370.78793 (19)0.6978 (3)0.64266 (19)0.0305 (7)
H37A0.8210250.7498650.6509140.046*
H37B0.7912710.6563990.6832210.046*
H37C0.7398740.7222430.6347350.046*
C380.7762 (2)0.5562 (3)0.30981 (18)0.0320 (7)
H380.8189990.5445990.2896610.038*
C390.6864 (2)0.6694 (3)0.3355 (3)0.0426 (10)
H39A0.6528160.6961080.2995280.064*
H39B0.6977260.7159990.3719400.064*
H39C0.6655380.6141520.3556110.064*
C400.7863 (3)0.7156 (3)0.2692 (2)0.0411 (10)
H40A0.8306340.6913740.2542690.062*
H40B0.7962460.7685040.3007840.062*
H40C0.7560050.7364520.2285070.062*
C410.9701 (2)0.5292 (3)0.3821 (2)0.0357 (8)
H410.9667550.4763970.3521480.043*
C421.0251 (3)0.6804 (3)0.4111 (3)0.0452 (10)
H42A1.0722490.6764040.4356950.068*
H42B0.9897630.6818720.4448550.068*
H42C1.0215080.7374590.3829670.068*
C431.0527 (3)0.5938 (4)0.3057 (3)0.0506 (12)
H43A1.0374180.5385320.2783240.076*
H43B1.1030510.5886420.3204810.076*
H43C1.0442060.6501010.2772710.076*
N50.52711 (15)0.5827 (2)0.42772 (16)0.0258 (5)
N60.73860 (16)0.3463 (2)0.65531 (14)0.0285 (6)
N70.80522 (14)0.64533 (19)0.58180 (15)0.0231 (5)
N80.75091 (17)0.6422 (2)0.30472 (16)0.0283 (6)
N91.01309 (17)0.5998 (2)0.36654 (19)0.0338 (7)
O130.62166 (13)0.48689 (18)0.42845 (15)0.0299 (5)
O140.71231 (13)0.42205 (18)0.55295 (12)0.0248 (4)
O150.76761 (14)0.58292 (17)0.47750 (13)0.0265 (5)
O160.74914 (17)0.48880 (18)0.33857 (13)0.0333 (6)
O170.93532 (18)0.5286 (2)0.4319 (2)0.0508 (9)
O180.70585 (12)0.30438 (16)0.41214 (13)0.0232 (4)
H18C0.728 (2)0.259 (2)0.428 (2)0.035*
H18D0.6671 (15)0.293 (3)0.390 (2)0.035*
O190.83912 (12)0.39926 (16)0.46351 (13)0.0218 (4)
H19C0.849 (2)0.351 (2)0.442 (2)0.033*
H19D0.8702 (19)0.439 (3)0.456 (2)0.033*
Mn10.73098 (2)0.44759 (3)0.44234 (2)0.01756 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01194 (17)0.01244 (17)0.01186 (17)0.00303 (14)0.00427 (13)0.00407 (14)
Cu20.01307 (14)0.01378 (14)0.01206 (14)0.00336 (11)0.00406 (11)0.00473 (11)
O10.0107 (7)0.0147 (8)0.0136 (8)0.0052 (6)0.0022 (6)0.0056 (7)
N10.0111 (9)0.0109 (15)0.0117 (9)0.0024 (8)0.0035 (8)0.0028 (11)
O20.0136 (8)0.0142 (8)0.0145 (9)0.0019 (7)0.0043 (7)0.0042 (7)
C10.0112 (9)0.0130 (10)0.0111 (9)0.0020 (8)0.0044 (8)0.0006 (8)
C20.0098 (9)0.0143 (11)0.0118 (10)0.0023 (8)0.0020 (8)0.0006 (9)
C30.0147 (11)0.0166 (11)0.0155 (11)0.0009 (9)0.0039 (9)0.0036 (9)
C40.0133 (13)0.0223 (15)0.0177 (15)0.0033 (10)0.0059 (10)0.0021 (12)
C50.0105 (12)0.0219 (13)0.0170 (13)0.0017 (11)0.0046 (10)0.0007 (11)
C60.0124 (10)0.0169 (11)0.0133 (11)0.0028 (9)0.0015 (8)0.0008 (9)
C70.0116 (9)0.0131 (10)0.0117 (10)0.0007 (8)0.0022 (8)0.0013 (8)
O30.0124 (8)0.0133 (8)0.0156 (9)0.0028 (6)0.0048 (7)0.0028 (7)
Cu30.01186 (13)0.01167 (13)0.01247 (14)0.00279 (11)0.00411 (11)0.00333 (11)
O40.0131 (8)0.0153 (8)0.0132 (8)0.0042 (6)0.0065 (6)0.0065 (7)
N20.0132 (9)0.0143 (12)0.0138 (12)0.0026 (8)0.0045 (8)0.0041 (9)
O50.0136 (8)0.0125 (8)0.0156 (9)0.0033 (6)0.0042 (7)0.0042 (7)
C80.0128 (10)0.0123 (10)0.0127 (10)0.0026 (8)0.0024 (8)0.0019 (8)
C90.0154 (11)0.0124 (10)0.0120 (10)0.0012 (9)0.0024 (8)0.0034 (8)
C100.0214 (12)0.0158 (11)0.0134 (11)0.0037 (10)0.0024 (9)0.0019 (9)
C110.0271 (15)0.0201 (18)0.0156 (13)0.0083 (13)0.0018 (11)0.0068 (12)
C120.0304 (16)0.024 (2)0.0168 (16)0.0056 (15)0.0060 (12)0.0094 (12)
C130.0239 (14)0.0229 (14)0.0201 (13)0.0037 (11)0.0054 (11)0.0089 (11)
C140.0177 (11)0.0159 (11)0.0147 (11)0.0021 (9)0.0018 (9)0.0058 (9)
O60.0169 (9)0.0208 (10)0.0180 (10)0.0052 (8)0.0037 (7)0.0114 (8)
Cu40.01144 (16)0.01056 (16)0.01369 (18)0.00205 (13)0.00444 (14)0.00307 (14)
Cu50.01072 (12)0.01202 (13)0.01408 (14)0.00163 (10)0.00377 (10)0.00281 (11)
O70.0128 (7)0.0136 (8)0.0182 (9)0.0037 (6)0.0063 (6)0.0064 (7)
N30.0106 (10)0.0137 (9)0.0190 (10)0.0021 (8)0.0063 (9)0.0061 (8)
O80.0137 (8)0.0176 (9)0.0208 (9)0.0029 (7)0.0065 (7)0.0077 (8)
C150.0121 (9)0.0124 (9)0.0135 (10)0.0011 (7)0.0024 (8)0.0024 (8)
C160.0142 (10)0.0146 (10)0.0129 (10)0.0010 (8)0.0031 (8)0.0027 (8)
C170.0140 (10)0.0193 (11)0.0167 (11)0.0034 (9)0.0018 (9)0.0051 (9)
C180.0217 (13)0.0238 (15)0.0195 (12)0.0049 (12)0.0012 (10)0.0100 (12)
C190.0242 (14)0.0262 (15)0.0166 (18)0.0055 (12)0.0062 (13)0.0101 (13)
C200.0201 (12)0.0199 (12)0.0183 (12)0.0059 (9)0.0061 (10)0.0098 (10)
C210.0176 (11)0.0131 (10)0.0158 (11)0.0009 (8)0.0027 (9)0.0031 (8)
O90.0144 (8)0.0153 (8)0.0205 (9)0.0027 (7)0.0029 (7)0.0077 (7)
Cu60.01220 (13)0.01163 (13)0.01306 (13)0.00194 (10)0.00392 (10)0.00294 (11)
O100.0103 (7)0.0125 (7)0.0152 (8)0.0043 (6)0.0035 (6)0.0042 (6)
N40.0092 (8)0.0110 (11)0.0148 (11)0.0026 (7)0.0034 (7)0.0019 (8)
O110.0133 (8)0.0147 (8)0.0158 (8)0.0029 (6)0.0044 (6)0.0037 (7)
C220.0107 (9)0.0139 (9)0.0103 (9)0.0011 (7)0.0037 (7)0.0001 (8)
C230.0108 (9)0.0138 (10)0.0121 (10)0.0011 (7)0.0024 (7)0.0007 (8)
C240.0128 (10)0.0151 (10)0.0162 (11)0.0004 (8)0.0042 (8)0.0011 (9)
C250.0122 (11)0.0193 (12)0.0191 (15)0.0000 (10)0.0058 (11)0.0001 (10)
C260.0115 (10)0.0206 (12)0.0206 (13)0.0003 (9)0.0055 (9)0.0002 (10)
C270.0124 (10)0.0183 (11)0.0174 (11)0.0035 (8)0.0030 (9)0.0017 (9)
C280.0118 (9)0.0144 (10)0.0150 (10)0.0010 (8)0.0037 (8)0.0003 (8)
O120.0110 (7)0.0162 (8)0.0213 (9)0.0030 (6)0.0061 (7)0.0058 (7)
Cu2B0.0154 (13)0.0172 (14)0.0129 (13)0.0043 (11)0.0018 (10)0.0038 (11)
O1B0.018 (4)0.022 (4)0.016 (4)0.003 (4)0.010 (4)0.008 (4)
N1B0.015 (4)0.014 (4)0.014 (4)0.002 (4)0.004 (4)0.008 (4)
O2B0.014 (4)0.020 (4)0.015 (4)0.004 (4)0.003 (4)0.007 (4)
C1B0.013 (3)0.014 (3)0.014 (3)0.003 (3)0.004 (3)0.006 (3)
C2B0.018 (4)0.016 (4)0.015 (4)0.004 (4)0.001 (3)0.004 (3)
C3B0.021 (4)0.019 (4)0.014 (4)0.000 (4)0.006 (4)0.008 (4)
C4B0.029 (5)0.021 (5)0.016 (5)0.003 (5)0.002 (4)0.008 (4)
C5B0.025 (5)0.019 (5)0.015 (5)0.005 (5)0.001 (4)0.006 (4)
C6B0.020 (5)0.018 (5)0.015 (5)0.011 (5)0.002 (5)0.002 (5)
C7B0.016 (4)0.015 (4)0.016 (4)0.006 (4)0.001 (4)0.001 (4)
O3B0.015 (4)0.015 (4)0.014 (4)0.003 (4)0.004 (4)0.005 (4)
Cu3B0.0142 (12)0.0160 (13)0.0174 (14)0.0048 (10)0.0053 (10)0.0035 (11)
O4B0.013 (4)0.017 (4)0.019 (4)0.006 (3)0.002 (3)0.003 (4)
N2B0.011 (4)0.015 (4)0.015 (4)0.003 (4)0.002 (4)0.001 (4)
O5B0.012 (4)0.014 (4)0.013 (4)0.006 (4)0.004 (4)0.001 (4)
C8B0.012 (3)0.015 (3)0.012 (3)0.003 (3)0.004 (3)0.001 (3)
C9B0.010 (3)0.013 (4)0.012 (3)0.005 (3)0.003 (3)0.002 (3)
C10B0.008 (4)0.015 (4)0.014 (4)0.000 (4)0.000 (3)0.002 (4)
C11B0.012 (5)0.021 (4)0.015 (5)0.002 (4)0.004 (4)0.002 (4)
C12B0.014 (5)0.019 (5)0.018 (5)0.002 (4)0.003 (4)0.000 (5)
C13B0.018 (5)0.021 (5)0.020 (5)0.001 (5)0.004 (5)0.003 (5)
C14B0.014 (4)0.017 (4)0.013 (4)0.001 (4)0.004 (4)0.002 (4)
O6B0.017 (4)0.019 (4)0.015 (4)0.000 (4)0.001 (4)0.007 (4)
Cu5B0.016 (3)0.018 (3)0.021 (3)0.008 (2)0.008 (2)0.000 (2)
O7B0.008 (5)0.013 (5)0.016 (5)0.004 (5)0.002 (5)0.001 (5)
N3B0.010 (4)0.015 (4)0.016 (4)0.003 (4)0.003 (4)0.001 (4)
O8B0.013 (6)0.016 (6)0.021 (6)0.007 (5)0.001 (6)0.003 (6)
C15B0.011 (4)0.015 (4)0.016 (4)0.001 (4)0.003 (4)0.001 (4)
C16B0.010 (4)0.013 (4)0.014 (4)0.002 (4)0.004 (4)0.002 (4)
C17B0.010 (4)0.015 (4)0.017 (4)0.002 (4)0.003 (4)0.003 (4)
C18B0.011 (5)0.017 (5)0.018 (5)0.003 (5)0.004 (5)0.001 (5)
C19B0.011 (5)0.018 (5)0.019 (5)0.000 (5)0.004 (5)0.000 (5)
C20B0.011 (5)0.018 (5)0.015 (5)0.002 (5)0.006 (5)0.001 (5)
C21B0.012 (4)0.014 (4)0.014 (4)0.002 (4)0.004 (4)0.000 (4)
O9B0.013 (4)0.016 (4)0.016 (4)0.001 (4)0.001 (4)0.003 (4)
Cu6B0.011 (2)0.015 (2)0.017 (2)0.0027 (17)0.0020 (17)0.0016 (18)
O10B0.013 (4)0.012 (4)0.017 (4)0.003 (4)0.003 (4)0.003 (4)
N4B0.013 (4)0.012 (4)0.015 (4)0.002 (4)0.004 (4)0.006 (4)
O11B0.013 (5)0.011 (5)0.017 (5)0.002 (5)0.005 (5)0.004 (5)
C22B0.013 (3)0.012 (3)0.014 (3)0.001 (3)0.005 (3)0.005 (3)
C23B0.015 (4)0.015 (4)0.015 (4)0.001 (4)0.003 (4)0.005 (4)
C24B0.018 (4)0.019 (4)0.014 (4)0.001 (4)0.007 (4)0.006 (4)
C25B0.022 (5)0.023 (5)0.017 (5)0.002 (5)0.005 (5)0.009 (5)
C26B0.019 (5)0.024 (5)0.019 (5)0.003 (5)0.001 (5)0.008 (5)
C27B0.020 (5)0.023 (5)0.019 (5)0.001 (5)0.001 (5)0.006 (5)
C28B0.016 (4)0.019 (4)0.016 (4)0.000 (4)0.000 (4)0.004 (4)
O12B0.015 (5)0.018 (5)0.018 (5)0.000 (5)0.008 (5)0.003 (5)
C290.0243 (14)0.0280 (15)0.0260 (15)0.0008 (12)0.0020 (11)0.0028 (12)
C300.039 (2)0.060 (3)0.036 (2)0.018 (2)0.0092 (17)0.002 (2)
C310.037 (2)0.0294 (18)0.061 (3)0.0047 (15)0.0089 (19)0.0162 (19)
C320.0326 (15)0.0191 (12)0.0171 (12)0.0015 (11)0.0066 (11)0.0000 (10)
C330.054 (3)0.151 (7)0.0213 (18)0.050 (4)0.0117 (19)0.013 (3)
C340.055 (3)0.0336 (19)0.0257 (17)0.0055 (17)0.0032 (16)0.0117 (15)
C350.0250 (13)0.0130 (10)0.0245 (13)0.0002 (9)0.0027 (10)0.0010 (10)
C360.0292 (18)0.066 (3)0.041 (2)0.0180 (19)0.0015 (16)0.012 (2)
C370.0275 (15)0.0373 (18)0.0272 (16)0.0010 (13)0.0052 (12)0.0123 (14)
C380.047 (2)0.0276 (16)0.0217 (14)0.0048 (15)0.0063 (14)0.0006 (12)
C390.037 (2)0.041 (2)0.052 (3)0.0086 (17)0.0178 (18)0.024 (2)
C400.055 (3)0.0300 (18)0.042 (2)0.0052 (17)0.0205 (19)0.0083 (16)
C410.0292 (17)0.0345 (19)0.044 (2)0.0054 (14)0.0054 (15)0.0069 (17)
C420.049 (3)0.0293 (19)0.057 (3)0.0010 (18)0.005 (2)0.0033 (19)
C430.059 (3)0.047 (3)0.049 (3)0.005 (2)0.019 (2)0.011 (2)
N50.0238 (12)0.0210 (11)0.0321 (14)0.0043 (9)0.0003 (10)0.0048 (11)
N60.0300 (14)0.0401 (16)0.0149 (11)0.0027 (12)0.0000 (10)0.0039 (11)
N70.0221 (11)0.0226 (11)0.0246 (12)0.0035 (9)0.0015 (9)0.0048 (10)
N80.0342 (15)0.0257 (13)0.0256 (13)0.0023 (11)0.0060 (11)0.0063 (11)
N90.0285 (14)0.0339 (16)0.0392 (17)0.0015 (12)0.0033 (13)0.0031 (14)
O130.0217 (10)0.0291 (12)0.0383 (14)0.0060 (9)0.0000 (10)0.0038 (11)
O140.0294 (11)0.0281 (11)0.0171 (9)0.0044 (9)0.0037 (8)0.0010 (8)
O150.0379 (13)0.0190 (10)0.0226 (11)0.0026 (9)0.0029 (9)0.0014 (8)
O160.0580 (18)0.0235 (11)0.0185 (10)0.0016 (11)0.0049 (11)0.0034 (9)
O170.0419 (17)0.0467 (18)0.068 (2)0.0145 (14)0.0273 (16)0.0118 (17)
O180.0238 (10)0.0173 (9)0.0271 (11)0.0008 (8)0.0059 (8)0.0037 (8)
O190.0211 (9)0.0178 (9)0.0269 (11)0.0012 (7)0.0051 (8)0.0014 (8)
Mn10.02177 (19)0.01436 (16)0.01645 (18)0.00213 (14)0.00120 (14)0.00085 (14)
Geometric parameters (Å, º) top
Cu1—O1B1.845 (15)O5B—C8B1.297 (16)
Cu1—O1Bi1.845 (15)C8B—C9B1.473 (15)
Cu1—O1i1.8945 (19)C9B—C10B1.405 (16)
Cu1—O11.8945 (19)C9B—C14B1.422 (16)
Cu1—O41.897 (2)C10B—C11B1.381 (18)
Cu1—O4i1.897 (2)C10B—H10B0.9500
Cu1—O4Bi1.899 (16)C11B—C12B1.412 (19)
Cu1—O4B1.899 (16)C11B—H11B0.9500
Cu2—O6i1.870 (2)C12B—C13B1.372 (18)
Cu2—O11.904 (2)C12B—H12B0.9500
Cu2—N2i1.932 (3)C13B—C14B1.423 (17)
Cu2—O21.951 (2)C13B—H13B0.9500
O1—N11.408 (4)C14B—O6B1.334 (16)
N1—C11.304 (4)Cu5B—O12Bii1.86 (3)
N1—Cu31.918 (3)Cu5B—O7B1.914 (16)
O2—C11.300 (3)Cu5B—O8B1.978 (17)
C1—C21.484 (4)Cu5B—N4Bii1.99 (3)
C2—C31.407 (4)O7B—N3B1.418 (18)
C2—C71.431 (4)N3B—C15B1.302 (17)
C3—C41.391 (4)N3B—Cu6B1.935 (15)
C3—H30.9500O8B—C15B1.297 (17)
C4—C51.398 (5)C15B—C16B1.480 (16)
C4—H40.9500C16B—C17B1.406 (18)
C5—C61.385 (4)C16B—C21B1.421 (17)
C5—H50.9500C17B—C18B1.385 (19)
C6—C71.417 (4)C17B—H17B0.9500
C6—H60.9500C18B—C19B1.399 (19)
C7—O31.332 (3)C18B—H18B0.9500
O3—Cu31.892 (2)C19B—C20B1.373 (19)
Cu3—O41.920 (2)C19B—H19B0.9500
Cu3—O51.952 (2)C20B—C21B1.411 (18)
O4—N21.405 (3)C20B—H20B0.9500
N2—C81.312 (4)C21B—O9B1.335 (17)
O5—C81.311 (3)O9B—Cu6B1.868 (15)
C8—C91.469 (4)Cu6B—O10B1.903 (16)
C9—C101.407 (4)Cu6B—O11B1.955 (15)
C9—C141.425 (4)O10B—N4B1.413 (19)
C10—C111.377 (5)N4B—C22B1.319 (19)
C10—H100.9500O11B—C22B1.292 (18)
C11—C121.408 (5)C22B—C23B1.465 (16)
C11—H110.9500C23B—C24B1.400 (18)
C12—C131.377 (5)C23B—C28B1.419 (17)
C12—H120.9500C24B—C25B1.393 (19)
C13—C141.413 (4)C24B—H24B0.9500
C13—H130.9500C25B—C26B1.408 (19)
C14—O61.322 (4)C25B—H25B0.9500
Cu4—O10Bii1.87 (2)C26B—C27B1.386 (19)
Cu4—O10B1.87 (2)C26B—H26B0.9500
Cu4—O10ii1.8908 (18)C27B—C28B1.424 (18)
Cu4—O101.8908 (18)C27B—H27B0.9500
Cu4—O7ii1.8925 (19)C28B—O12B1.331 (18)
Cu4—O71.8926 (19)C29—O131.227 (4)
Cu4—O7Bii1.93 (2)C29—N51.330 (4)
Cu4—O7B1.93 (2)C29—H290.9500
Cu5—O12ii1.8706 (19)C30—N51.432 (5)
Cu5—O71.9173 (19)C30—H30A0.9800
Cu5—N4ii1.926 (2)C30—H30B0.9800
Cu5—O81.975 (2)C30—H30C0.9800
O7—N31.409 (3)C31—N51.463 (5)
N3—C151.299 (4)C31—H31A0.9800
N3—Cu61.928 (2)C31—H31B0.9800
O8—C151.300 (3)C31—H31C0.9800
C15—C161.484 (4)C32—O141.238 (4)
C16—C171.411 (4)C32—N61.322 (4)
C16—C211.424 (4)C32—H320.9500
C17—C181.384 (4)C33—N61.447 (6)
C17—H170.9500C33—H33A0.9800
C18—C191.400 (5)C33—H33B0.9800
C18—H180.9500C33—H33C0.9800
C19—C201.377 (4)C34—N61.457 (5)
C19—H190.9500C34—H34A0.9800
C20—C211.407 (4)C34—H34B0.9800
C20—H200.9500C34—H34C0.9800
C21—O91.338 (3)C35—O151.244 (4)
O9—Cu61.887 (2)C35—N71.313 (4)
Cu6—O101.9024 (19)C35—H350.9500
Cu6—O111.9301 (19)C36—N71.455 (5)
O10—N41.408 (3)C36—H36A0.9800
N4—C221.311 (3)C36—H36B0.9800
O11—C221.303 (3)C36—H36C0.9800
C22—C231.476 (3)C37—N71.458 (4)
C23—C241.408 (4)C37—H37A0.9800
C23—C281.427 (4)C37—H37B0.9800
C24—C251.389 (4)C37—H37C0.9800
C24—H240.9500C38—O161.247 (5)
C25—C261.402 (4)C38—N81.321 (5)
C25—H250.9500C38—H380.9500
C26—C271.385 (4)C39—N81.466 (5)
C26—H260.9500C39—H39A0.9800
C27—C281.423 (4)C39—H39B0.9800
C27—H270.9500C39—H39C0.9800
C28—O121.321 (3)C40—N81.453 (5)
Cu2B—O6Bi1.851 (18)C40—H40A0.9800
Cu2B—O1B1.900 (12)C40—H40B0.9800
Cu2B—N2Bi1.96 (2)C40—H40C0.9800
Cu2B—O2B1.972 (14)C41—O171.218 (5)
O1B—N1B1.397 (17)C41—N91.351 (5)
N1B—C1B1.305 (16)C41—H410.9500
N1B—Cu3B1.929 (13)C42—N91.445 (6)
O2B—C1B1.300 (15)C42—H42A0.9800
C1B—C2B1.491 (15)C42—H42B0.9800
C2B—C3B1.407 (17)C42—H42C0.9800
C2B—C7B1.423 (16)C43—N91.457 (6)
C3B—C4B1.401 (19)C43—H43A0.9800
C3B—H3B0.9500C43—H43B0.9800
C4B—C5B1.396 (19)C43—H43C0.9800
C4B—H4B0.9500O13—Mn12.152 (2)
C5B—C6B1.381 (18)O14—Mn12.231 (2)
C5B—H5B0.9500O15—Mn12.146 (2)
C6B—C7B1.410 (16)O16—Mn12.150 (2)
C6B—H6B0.9500O18—Mn12.171 (2)
C7B—O3B1.357 (15)O18—H18C0.826 (19)
O3B—Cu3B1.886 (12)O18—H18D0.836 (19)
Cu3B—O4B1.913 (13)O19—Mn12.178 (2)
Cu3B—O5B1.980 (12)O19—H19C0.834 (19)
O4B—N2B1.413 (17)O19—H19D0.839 (19)
N2B—C8B1.306 (18)
O1i—Cu1—O1180.0N2B—O4B—Cu1119 (2)
O1i—Cu1—O491.80 (8)N2B—O4B—Cu3B111.2 (13)
O1—Cu1—O488.20 (8)Cu1—O4B—Cu3B114.9 (8)
O1i—Cu1—O4i88.20 (8)C8B—N2B—O4B113.2 (16)
O1—Cu1—O4i91.80 (8)C8B—O5B—Cu3B108.9 (10)
O4—Cu1—O4i180.0O5B—C8B—N2B121.9 (15)
O1i—Cu1—O4Bi50.0 (4)O5B—C8B—C9B117.4 (13)
O1—Cu1—O4Bi130.0 (4)N2B—C8B—C9B120.6 (15)
O4—Cu1—O4Bi141.7 (4)C10B—C9B—C14B121.4 (14)
O4i—Cu1—O4Bi38.3 (4)C10B—C9B—C8B115.9 (14)
O1B—Cu1—O4B90.1 (6)C14B—C9B—C8B122.7 (14)
O1Bi—Cu1—O4B89.9 (6)C11B—C10B—C9B119.6 (17)
O4Bi—Cu1—O4B180.0 (6)C11B—C10B—H10B120.2
O6i—Cu2—O1163.64 (11)C9B—C10B—H10B120.2
O6i—Cu2—N2i92.76 (11)C10B—C11B—C12B120 (2)
O1—Cu2—N2i90.34 (10)C10B—C11B—H11B119.8
O6i—Cu2—O298.90 (9)C12B—C11B—H11B119.8
O1—Cu2—O281.42 (8)C13B—C12B—C11B119 (2)
N2i—Cu2—O2164.29 (11)C13B—C12B—H12B120.6
N1—O1—Cu1117.7 (2)C11B—C12B—H12B120.6
N1—O1—Cu2113.54 (16)C12B—C13B—C14B122.8 (19)
Cu1—O1—Cu2117.99 (10)C12B—C13B—H13B118.6
C1—N1—O1111.2 (2)C14B—C13B—H13B118.6
C1—N1—Cu3130.9 (2)O6B—C14B—C9B126.8 (15)
O1—N1—Cu3117.4 (2)O6B—C14B—C13B117.0 (15)
C1—O2—Cu2110.62 (16)C9B—C14B—C13B116.1 (14)
O2—C1—N1122.2 (3)O12Bii—Cu5B—O7B165.6 (17)
O2—C1—C2118.7 (2)O12Bii—Cu5B—O8B98.4 (10)
N1—C1—C2119.1 (3)O7B—Cu5B—O8B81.0 (8)
C3—C2—C7119.1 (2)N3B—O7B—Cu5B112.8 (19)
C3—C2—C1117.0 (3)N3B—O7B—Cu4116 (3)
C7—C2—C1124.0 (2)Cu5B—O7B—Cu4115.0 (13)
C4—C3—C2122.4 (3)C15B—N3B—O7B110.1 (14)
C4—C3—H3118.8C15B—N3B—Cu6B131.7 (19)
C2—C3—H3118.8O7B—N3B—Cu6B118.0 (13)
C3—C4—C5118.5 (3)C15B—O8B—Cu5B108.6 (14)
C3—C4—H4120.7O8B—C15B—N3B124.1 (17)
C5—C4—H4120.7O8B—C15B—C16B117.9 (16)
C6—C5—C4120.5 (3)N3B—C15B—C16B118.0 (17)
C6—C5—H5119.7C17B—C16B—C21B121.9 (18)
C4—C5—H5119.7C17B—C16B—C15B114.0 (18)
C5—C6—C7122.1 (3)C21B—C16B—C15B123.6 (17)
C5—C6—H6118.9C18B—C17B—C16B121 (2)
C7—C6—H6118.9C18B—C17B—H17B119.6
O3—C7—C6117.1 (2)C16B—C17B—H17B119.6
O3—C7—C2125.6 (2)C17B—C18B—C19B117 (2)
C6—C7—C2117.3 (2)C17B—C18B—H18B121.4
C7—O3—Cu3125.70 (18)C19B—C18B—H18B121.4
O3—Cu3—N193.39 (11)C20B—C19B—C18B122 (2)
O3—Cu3—O4172.99 (10)C20B—C19B—H19B118.9
N1—Cu3—O489.59 (11)C18B—C19B—H19B118.9
O3—Cu3—O596.35 (9)C19B—C20B—C21B122 (2)
N1—Cu3—O5170.22 (11)C19B—C20B—H20B118.8
O4—Cu3—O580.83 (8)C21B—C20B—H20B118.8
N2—O4—Cu1118.59 (16)O9B—C21B—C20B117.4 (19)
N2—O4—Cu3113.29 (17)O9B—C21B—C16B127.0 (19)
Cu1—O4—Cu3115.68 (10)C20B—C21B—C16B114.5 (18)
C8—N2—O4111.6 (2)C21B—O9B—Cu6B125.3 (16)
C8—N2—Cu2i130.6 (2)O9B—Cu6B—O10B176.4 (14)
O4—N2—Cu2i117.27 (19)O9B—Cu6B—N3B93.3 (9)
C8—O5—Cu3111.38 (17)O10B—Cu6B—N3B89.5 (9)
O5—C8—N2120.9 (3)O9B—Cu6B—O11B97.0 (9)
O5—C8—C9119.9 (2)O10B—Cu6B—O11B80.3 (8)
N2—C8—C9119.1 (2)N3B—Cu6B—O11B169.7 (10)
C10—C9—C14119.1 (3)N4B—O10B—Cu4120.5 (18)
C10—C9—C8117.5 (3)N4B—O10B—Cu6B111.6 (16)
C14—C9—C8123.4 (3)Cu4—O10B—Cu6B119.5 (11)
C11—C10—C9122.1 (3)C22B—N4B—O10B108 (2)
C11—C10—H10119.0C22B—O11B—Cu6B111.1 (14)
C9—C10—H10119.0O11B—C22B—N4B118 (2)
C10—C11—C12119.2 (3)O11B—C22B—C23B120.7 (18)
C10—C11—H11120.4N4B—C22B—C23B119.9 (19)
C12—C11—H11120.4C24B—C23B—C28B121.2 (18)
C13—C12—C11119.6 (3)C24B—C23B—C22B116.4 (19)
C13—C12—H12120.2C28B—C23B—C22B122.4 (18)
C11—C12—H12120.2C25B—C24B—C23B122 (2)
C12—C13—C14122.5 (3)C25B—C24B—H24B119.2
C12—C13—H13118.8C23B—C24B—H24B119.2
C14—C13—H13118.8C24B—C25B—C26B117 (2)
O6—C14—C13116.3 (3)C24B—C25B—H25B121.3
O6—C14—C9126.3 (3)C26B—C25B—H25B121.3
C13—C14—C9117.4 (3)C27B—C26B—C25B121 (2)
C14—O6—Cu2i126.59 (19)C27B—C26B—H26B119.4
O10Bii—Cu4—O10B180.0C25B—C26B—H26B119.4
O10ii—Cu4—O10180.0C26B—C27B—C28B122 (2)
O10ii—Cu4—O7ii91.89 (8)C26B—C27B—H27B119.1
O10—Cu4—O7ii88.11 (8)C28B—C27B—H27B119.1
O10ii—Cu4—O788.11 (8)O12B—C28B—C23B126 (2)
O10—Cu4—O791.89 (8)O12B—C28B—C27B117 (2)
O7ii—Cu4—O7180.0C23B—C28B—C27B115.8 (19)
O10ii—Cu4—O7Bii51.5 (5)O13—C29—N5124.4 (3)
O10—Cu4—O7Bii128.5 (5)O13—C29—H29117.8
O7ii—Cu4—O7Bii143.3 (5)N5—C29—H29117.8
O7—Cu4—O7Bii36.7 (5)N5—C30—H30A109.5
O10Bii—Cu4—O7B90.8 (8)N5—C30—H30B109.5
O10B—Cu4—O7B89.2 (8)H30A—C30—H30B109.5
O7Bii—Cu4—O7B180.0 (12)N5—C30—H30C109.5
O12ii—Cu5—O7175.18 (10)H30A—C30—H30C109.5
O12ii—Cu5—N4ii93.15 (9)H30B—C30—H30C109.5
O7—Cu5—N4ii88.80 (9)N5—C31—H31A109.5
O12ii—Cu5—O897.86 (9)N5—C31—H31B109.5
O7—Cu5—O880.37 (8)H31A—C31—H31B109.5
N4ii—Cu5—O8168.84 (10)N5—C31—H31C109.5
N3—O7—Cu4117.88 (16)H31A—C31—H31C109.5
N3—O7—Cu5113.70 (15)H31B—C31—H31C109.5
Cu4—O7—Cu5117.06 (10)O14—C32—N6125.2 (3)
C15—N3—O7111.4 (2)O14—C32—H32117.4
C15—N3—Cu6131.4 (2)N6—C32—H32117.4
O7—N3—Cu6117.10 (17)N6—C33—H33A109.5
C15—O8—Cu5111.01 (17)N6—C33—H33B109.5
N3—C15—O8122.0 (2)H33A—C33—H33B109.5
N3—C15—C16117.7 (2)N6—C33—H33C109.5
O8—C15—C16120.3 (2)H33A—C33—H33C109.5
C17—C16—C21119.5 (2)H33B—C33—H33C109.5
C17—C16—C15116.6 (2)N6—C34—H34A109.5
C21—C16—C15123.9 (2)N6—C34—H34B109.5
C18—C17—C16121.3 (3)H34A—C34—H34B109.5
C18—C17—H17119.3N6—C34—H34C109.5
C16—C17—H17119.3H34A—C34—H34C109.5
C17—C18—C19118.8 (3)H34B—C34—H34C109.5
C17—C18—H18120.6O15—C35—N7124.6 (3)
C19—C18—H18120.6O15—C35—H35117.7
C20—C19—C18121.0 (3)N7—C35—H35117.7
C20—C19—H19119.5N7—C36—H36A109.5
C18—C19—H19119.5N7—C36—H36B109.5
C19—C20—C21121.4 (3)H36A—C36—H36B109.5
C19—C20—H20119.3N7—C36—H36C109.5
C21—C20—H20119.3H36A—C36—H36C109.5
O9—C21—C20116.6 (2)H36B—C36—H36C109.5
O9—C21—C16125.5 (2)N7—C37—H37A109.5
C20—C21—C16117.9 (3)N7—C37—H37B109.5
C21—O9—Cu6123.22 (18)H37A—C37—H37B109.5
O9—Cu6—O10173.05 (10)N7—C37—H37C109.5
O9—Cu6—N391.90 (10)H37A—C37—H37C109.5
O10—Cu6—N389.69 (9)H37B—C37—H37C109.5
O9—Cu6—O1197.43 (9)O16—C38—N8126.1 (4)
O10—Cu6—O1181.75 (8)O16—C38—H38116.9
N3—Cu6—O11168.97 (10)N8—C38—H38116.9
N4—O10—Cu4118.25 (18)N8—C39—H39A109.5
N4—O10—Cu6113.11 (15)N8—C39—H39B109.5
Cu4—O10—Cu6117.70 (10)H39A—C39—H39B109.5
C22—N4—O10110.9 (2)N8—C39—H39C109.5
C22—N4—Cu5ii130.8 (2)H39A—C39—H39C109.5
O10—N4—Cu5ii117.82 (16)H39B—C39—H39C109.5
C22—O11—Cu6110.87 (16)N8—C40—H40A109.5
O11—C22—N4121.8 (2)N8—C40—H40B109.5
O11—C22—C23119.4 (2)H40A—C40—H40B109.5
N4—C22—C23118.9 (2)N8—C40—H40C109.5
C24—C23—C28119.7 (2)H40A—C40—H40C109.5
C24—C23—C22116.7 (2)H40B—C40—H40C109.5
C28—C23—C22123.6 (2)O17—C41—N9124.4 (4)
C25—C24—C23122.2 (3)O17—C41—H41117.8
C25—C24—H24118.9N9—C41—H41117.8
C23—C24—H24118.9N9—C42—H42A109.5
C24—C25—C26118.4 (3)N9—C42—H42B109.5
C24—C25—H25120.8H42A—C42—H42B109.5
C26—C25—H25120.8N9—C42—H42C109.5
C27—C26—C25120.7 (3)H42A—C42—H42C109.5
C27—C26—H26119.7H42B—C42—H42C109.5
C25—C26—H26119.7N9—C43—H43A109.5
C26—C27—C28122.0 (3)N9—C43—H43B109.5
C26—C27—H27119.0H43A—C43—H43B109.5
C28—C27—H27119.0N9—C43—H43C109.5
O12—C28—C27117.0 (2)H43A—C43—H43C109.5
O12—C28—C23126.1 (2)H43B—C43—H43C109.5
C27—C28—C23117.0 (2)C29—N5—C30120.4 (3)
C28—O12—Cu5ii126.64 (18)C29—N5—C31121.1 (3)
O6Bi—Cu2B—O1B172.2 (10)C30—N5—C31118.5 (3)
O6Bi—Cu2B—O2B99.0 (7)C32—N6—C33121.3 (3)
O1B—Cu2B—O2B80.7 (6)C32—N6—C34120.6 (3)
N2Bi—Cu2B—O2B162.9 (14)C33—N6—C34117.8 (3)
N1B—O1B—Cu1121.1 (11)C35—N7—C36121.0 (3)
N1B—O1B—Cu2B115.4 (10)C35—N7—C37120.9 (3)
Cu1—O1B—Cu2B122.4 (8)C36—N7—C37118.1 (3)
C1B—N1B—O1B110.5 (12)C38—N8—C40121.7 (3)
C1B—N1B—Cu3B133.6 (13)C38—N8—C39122.0 (3)
O1B—N1B—Cu3B115.7 (11)C40—N8—C39116.3 (3)
C1B—O2B—Cu2B110.5 (11)C41—N9—C42122.0 (4)
O2B—C1B—N1B122.8 (14)C41—N9—C43120.3 (4)
O2B—C1B—C2B119.1 (13)C42—N9—C43117.6 (4)
N1B—C1B—C2B118.1 (14)C29—O13—Mn1134.3 (2)
C3B—C2B—C7B119.2 (14)C32—O14—Mn1122.4 (2)
C3B—C2B—C1B117.5 (14)C35—O15—Mn1130.7 (2)
C7B—C2B—C1B123.2 (14)C38—O16—Mn1137.4 (2)
C4B—C3B—C2B120.1 (18)Mn1—O18—H18C123 (3)
C4B—C3B—H3B119.9Mn1—O18—H18D119 (3)
C2B—C3B—H3B119.9H18C—O18—H18D117 (5)
C5B—C4B—C3B120 (2)Mn1—O19—H19C115 (3)
C5B—C4B—H4B120.0Mn1—O19—H19D115 (3)
C3B—C4B—H4B120.0H19C—O19—H19D106 (4)
C6B—C5B—C4B119 (2)O15—Mn1—O1688.50 (10)
C6B—C5B—H5B120.6O15—Mn1—O1395.06 (10)
C4B—C5B—H5B120.6O16—Mn1—O1392.71 (11)
C5B—C6B—C7B122.3 (18)O15—Mn1—O18173.20 (10)
C5B—C6B—H6B118.9O16—Mn1—O1893.28 (10)
C7B—C6B—H6B118.9O13—Mn1—O1891.41 (10)
O3B—C7B—C6B115.3 (15)O15—Mn1—O1987.17 (9)
O3B—C7B—C2B126.5 (14)O16—Mn1—O1991.91 (11)
C6B—C7B—C2B118.0 (14)O13—Mn1—O19174.92 (10)
C7B—O3B—Cu3B126.2 (12)O18—Mn1—O1986.21 (9)
O3B—Cu3B—O4B172.6 (9)O15—Mn1—O1485.35 (9)
O3B—Cu3B—N1B92.2 (7)O16—Mn1—O14173.51 (10)
O4B—Cu3B—N1B90.8 (7)O13—Mn1—O1485.78 (10)
O3B—Cu3B—O5B95.7 (6)O18—Mn1—O1493.07 (9)
O4B—Cu3B—O5B82.0 (6)O19—Mn1—O1489.86 (9)
N1B—Cu3B—O5B170.3 (9)
O4—Cu1—O1—N131.5 (3)Cu2B—O1B—N1B—C1B3 (4)
O4i—Cu1—O1—N1148.5 (3)Cu1—O1B—N1B—Cu3B13 (4)
O4—Cu1—O1—Cu2173.61 (13)Cu2B—O1B—N1B—Cu3B178.8 (16)
O4i—Cu1—O1—Cu26.39 (13)Cu2B—O2B—C1B—N1B0 (4)
Cu1—O1—N1—C1151.2 (3)Cu2B—O2B—C1B—C2B178 (2)
Cu2—O1—N1—C17.5 (5)O1B—N1B—C1B—O2B1 (5)
Cu1—O1—N1—Cu321.4 (5)Cu3B—N1B—C1B—O2B177 (3)
Cu2—O1—N1—Cu3165.1 (2)O1B—N1B—C1B—C2B177 (3)
Cu2—O2—C1—N17.2 (4)Cu3B—N1B—C1B—C2B1 (5)
Cu2—O2—C1—C2174.5 (2)O2B—C1B—C2B—C3B1 (4)
O1—N1—C1—O20.0 (6)N1B—C1B—C2B—C3B179 (3)
Cu3—N1—C1—O2171.4 (3)O2B—C1B—C2B—C7B178 (3)
O1—N1—C1—C2178.3 (3)N1B—C1B—C2B—C7B4 (5)
Cu3—N1—C1—C210.3 (7)C7B—C2B—C3B—C4B7 (6)
O2—C1—C2—C31.7 (4)C1B—C2B—C3B—C4B171 (4)
N1—C1—C2—C3179.9 (4)C2B—C3B—C4B—C5B15 (8)
O2—C1—C2—C7178.4 (3)C3B—C4B—C5B—C6B12 (9)
N1—C1—C2—C70.1 (5)C4B—C5B—C6B—C7B2 (7)
C7—C2—C3—C42.6 (5)C5B—C6B—C7B—O3B179 (4)
C1—C2—C3—C4177.6 (3)C5B—C6B—C7B—C2B6 (5)
C2—C3—C4—C50.0 (7)C3B—C2B—C7B—O3B178 (3)
C3—C4—C5—C61.9 (7)C1B—C2B—C7B—O3B5 (5)
C4—C5—C6—C71.1 (6)C3B—C2B—C7B—C6B3 (4)
C5—C6—C7—O3179.2 (3)C1B—C2B—C7B—C6B180 (3)
C5—C6—C7—C21.5 (5)C6B—C7B—O3B—Cu3B175.7 (19)
C3—C2—C7—O3177.5 (3)C2B—C7B—O3B—Cu3B1 (4)
C1—C2—C7—O32.3 (4)C7B—O3B—Cu3B—N1B3 (2)
C3—C2—C7—C63.2 (4)C7B—O3B—Cu3B—O5B177 (2)
C1—C2—C7—C6176.9 (3)O1B—Cu1—O4B—N2B161 (3)
C6—C7—O3—Cu3175.5 (2)O1Bi—Cu1—O4B—N2B19 (3)
C2—C7—O3—Cu35.2 (4)O1B—Cu1—O4B—Cu3B26.3 (12)
C7—O3—Cu3—N110.5 (3)O1Bi—Cu1—O4B—Cu3B153.7 (12)
C7—O3—Cu3—O5168.6 (2)Cu1—O4B—N2B—C8B147 (4)
O1i—Cu1—O4—N28.5 (2)Cu3B—O4B—N2B—C8B10 (6)
O1—Cu1—O4—N2171.5 (2)Cu1—O4B—N2B—Cu2Bi20 (5)
O1i—Cu1—O4—Cu3148.13 (12)Cu3B—O4B—N2B—Cu2Bi157 (3)
O1—Cu1—O4—Cu331.87 (12)Cu3B—O5B—C8B—N2B14 (5)
Cu1—O4—N2—C8152.2 (2)Cu3B—O5B—C8B—C9B168.8 (19)
Cu3—O4—N2—C811.7 (3)O4B—N2B—C8B—O5B3 (7)
Cu1—O4—N2—Cu2i20.6 (3)Cu2Bi—N2B—C8B—O5B169 (3)
Cu3—O4—N2—Cu2i161.17 (14)O4B—N2B—C8B—C9B180 (3)
Cu3—O5—C8—N28.1 (4)Cu2Bi—N2B—C8B—C9B14 (7)
Cu3—O5—C8—C9172.4 (2)O5B—C8B—C9B—C10B3 (4)
O4—N2—C8—O52.1 (4)N2B—C8B—C9B—C10B174 (4)
Cu2i—N2—C8—O5169.5 (2)O5B—C8B—C9B—C14B177 (3)
O4—N2—C8—C9177.4 (3)N2B—C8B—C9B—C14B5 (5)
Cu2i—N2—C8—C911.0 (5)C14B—C9B—C10B—C11B5 (5)
O5—C8—C9—C100.9 (4)C8B—C9B—C10B—C11B176 (3)
N2—C8—C9—C10178.6 (3)C9B—C10B—C11B—C12B9 (6)
O5—C8—C9—C14179.2 (3)C10B—C11B—C12B—C13B11 (8)
N2—C8—C9—C141.3 (5)C11B—C12B—C13B—C14B9 (7)
C14—C9—C10—C110.5 (5)C10B—C9B—C14B—O6B175 (3)
C8—C9—C10—C11179.5 (4)C8B—C9B—C14B—O6B4 (5)
C9—C10—C11—C121.6 (7)C10B—C9B—C14B—C13B2 (4)
C10—C11—C12—C131.7 (9)C8B—C9B—C14B—C13B179 (3)
C11—C12—C13—C140.3 (9)C12B—C13B—C14B—O6B173 (4)
C12—C13—C14—O6177.2 (5)C12B—C13B—C14B—C9B4 (5)
C12—C13—C14—C92.4 (6)C9B—C14B—O6B—Cu2Bi13 (4)
C10—C9—C14—O6177.2 (3)C13B—C14B—O6B—Cu2Bi170 (2)
C8—C9—C14—O62.9 (5)Cu5B—O7B—N3B—C15B15 (10)
C10—C9—C14—C132.4 (5)Cu4—O7B—N3B—C15B150 (6)
C8—C9—C14—C13177.5 (3)Cu5B—O7B—N3B—Cu6B161 (5)
C13—C14—O6—Cu2i176.9 (2)Cu4—O7B—N3B—Cu6B25 (9)
C9—C14—O6—Cu2i2.6 (5)Cu5B—O8B—C15B—N3B11 (9)
O10ii—Cu4—O7—N3171.7 (2)Cu5B—O8B—C15B—C16B172 (4)
O10—Cu4—O7—N38.3 (2)O7B—N3B—C15B—O8B2 (12)
O10ii—Cu4—O7—Cu530.35 (12)Cu6B—N3B—C15B—O8B173 (7)
O10—Cu4—O7—Cu5149.65 (12)O7B—N3B—C15B—C16B175 (6)
Cu4—O7—N3—C15154.1 (2)Cu6B—N3B—C15B—C16B10 (14)
Cu5—O7—N3—C1511.5 (3)O8B—C15B—C16B—C17B5 (7)
Cu4—O7—N3—Cu623.4 (3)N3B—C15B—C16B—C17B172 (7)
Cu5—O7—N3—Cu6165.93 (15)O8B—C15B—C16B—C21B177 (5)
O7—N3—C15—O83.6 (4)N3B—C15B—C16B—C21B0 (10)
Cu6—N3—C15—O8173.3 (2)C21B—C16B—C17B—C18B10 (8)
O7—N3—C15—C16176.5 (2)C15B—C16B—C17B—C18B177 (5)
Cu6—N3—C15—C166.5 (5)C16B—C17B—C18B—C19B1 (10)
Cu5—O8—C15—N35.6 (4)C17B—C18B—C19B—C20B5 (12)
Cu5—O8—C15—C16174.2 (2)C18B—C19B—C20B—C21B2 (12)
N3—C15—C16—C17170.6 (3)C19B—C20B—C21B—O9B175 (6)
O8—C15—C16—C179.2 (4)C19B—C20B—C21B—C16B6 (8)
N3—C15—C16—C218.2 (4)C17B—C16B—C21B—O9B180 (5)
O8—C15—C16—C21172.0 (3)C15B—C16B—C21B—O9B9 (8)
C21—C16—C17—C181.5 (5)C17B—C16B—C21B—C20B13 (7)
C15—C16—C17—C18177.4 (3)C15B—C16B—C21B—C20B176 (5)
C16—C17—C18—C191.0 (6)C20B—C21B—O9B—Cu6B173 (4)
C17—C18—C19—C201.1 (8)C16B—C21B—O9B—Cu6B6 (7)
C18—C19—C20—C212.9 (8)C21B—O9B—Cu6B—N3B2 (5)
C19—C20—C21—O9177.3 (4)C21B—O9B—Cu6B—O11B178 (4)
C19—C20—C21—C162.3 (6)O7Bii—Cu4—O10B—N4B11 (4)
C17—C16—C21—O9179.4 (3)O7B—Cu4—O10B—N4B169 (4)
C15—C16—C21—O90.6 (5)O7Bii—Cu4—O10B—Cu6B156 (2)
C17—C16—C21—C200.2 (4)O7B—Cu4—O10B—Cu6B24 (2)
C15—C16—C21—C20179.0 (3)Cu4—O10B—N4B—C22B178 (4)
C20—C21—O9—Cu6156.7 (2)Cu6B—O10B—N4B—C22B34 (5)
C16—C21—O9—Cu622.9 (4)Cu4—O10B—N4B—Cu5Bii34 (5)
C21—O9—Cu6—N327.1 (2)Cu6B—O10B—N4B—Cu5Bii178 (2)
C21—O9—Cu6—O11158.8 (2)Cu6B—O11B—C22B—N4B23 (6)
O7ii—Cu4—O10—N428.9 (3)Cu6B—O11B—C22B—C23B171 (4)
O7—Cu4—O10—N4151.1 (3)O10B—N4B—C22B—O11B37 (7)
O7ii—Cu4—O10—Cu6170.64 (12)Cu5Bii—N4B—C22B—O11B173 (4)
O7—Cu4—O10—Cu69.36 (12)O10B—N4B—C22B—C23B156 (5)
Cu4—O10—N4—C22153.5 (3)Cu5Bii—N4B—C22B—C23B20 (8)
Cu6—O10—N4—C2210.1 (5)O11B—C22B—C23B—C24B4 (8)
Cu4—O10—N4—Cu5ii19.0 (5)N4B—C22B—C23B—C24B170 (6)
Cu6—O10—N4—Cu5ii162.5 (2)O11B—C22B—C23B—C28B177 (5)
Cu6—O11—C22—N48.0 (4)N4B—C22B—C23B—C28B11 (8)
Cu6—O11—C22—C23173.11 (19)C28B—C23B—C24B—C25B10 (11)
O10—N4—C22—O111.2 (6)C22B—C23B—C24B—C25B169 (9)
Cu5ii—N4—C22—O11170.1 (3)C23B—C24B—C25B—C26B8 (17)
O10—N4—C22—C23177.7 (3)C24B—C25B—C26B—C27B0 (18)
Cu5ii—N4—C22—C2311.0 (6)C25B—C26B—C27B—C28B8 (14)
O11—C22—C23—C242.4 (4)C24B—C23B—C28B—O12B169 (5)
N4—C22—C23—C24176.5 (4)C22B—C23B—C28B—O12B13 (9)
O11—C22—C23—C28177.3 (2)C24B—C23B—C28B—C27B2 (8)
N4—C22—C23—C283.8 (5)C22B—C23B—C28B—C27B177 (5)
C28—C23—C24—C251.3 (4)C26B—C27B—C28B—O12B178 (6)
C22—C23—C24—C25179.0 (3)C26B—C27B—C28B—C23B7 (9)
C23—C24—C25—C260.9 (5)C23B—C28B—O12B—Cu5Bii23 (8)
C24—C25—C26—C270.1 (5)C27B—C28B—O12B—Cu5Bii167 (4)
C25—C26—C27—C280.5 (5)O13—C29—N5—C302.6 (6)
C26—C27—C28—O12179.8 (3)O13—C29—N5—C31179.7 (4)
C26—C27—C28—C230.1 (4)O14—C32—N6—C332.0 (6)
C24—C23—C28—O12179.3 (3)O14—C32—N6—C34175.9 (3)
C22—C23—C28—O120.3 (4)O15—C35—N7—C360.5 (5)
C24—C23—C28—C270.7 (4)O15—C35—N7—C37179.5 (3)
C22—C23—C28—C27179.6 (3)O16—C38—N8—C40179.2 (4)
C27—C28—O12—Cu5ii177.6 (2)O16—C38—N8—C391.8 (6)
C23—C28—O12—Cu5ii2.5 (4)O17—C41—N9—C423.9 (7)
O4Bi—Cu1—O1B—N1B156 (3)O17—C41—N9—C43179.9 (5)
O4B—Cu1—O1B—N1B24 (3)N5—C29—O13—Mn1153.2 (3)
O4Bi—Cu1—O1B—Cu2B11.3 (14)N6—C32—O14—Mn1176.8 (3)
O4B—Cu1—O1B—Cu2B168.7 (14)N7—C35—O15—Mn1111.5 (3)
Cu1—O1B—N1B—C1B171 (2)N8—C38—O16—Mn168.8 (6)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18C···O30.83 (2)2.07 (3)2.847 (3)156 (5)
O18—H18D···O90.84 (2)1.95 (2)2.778 (3)169 (5)
O19—H19C···O50.83 (2)1.93 (2)2.746 (3)167 (5)
O19—H19D···O170.84 (2)1.88 (2)2.713 (4)175 (5)
Average bond-length (Å) and bond-valence-sum (BVS; v.u.) values used to support the assigned oxidation states of the copper and manganese ions top
Avg. bond lengthBVS valueAssigned oxidation state
Mn12.1712.012+
Cu11.8962.052+
Cu21.9142.112+
Cu31.9212.082+
Cu41.8922.082+
Cu51.9222.072+
Cu61.9122.122+
Continuous shape measurement (CShM) values (SHAPE 2.1; Llunell et al., 2013) for the four-coordinate copper(II) ions top
SquareTetrahedronSeesawVacant trigonal bipyramid
Cu10.02533.35019.04834.881
Cu21.87022.45911.47923.026
Cu30.40430.26716.57930.405
Cu40.02733.35219.05834.887
Cu50.43530.73416.91930.682
Cu60.60628.09815.36628.580
Continuous shape measurement (CShM) values (SHAPE 2.1; Llunell et al., 2013) for the six-coordinate manganese(II) ion top
HexagonPentagonal PyramidOctahedronTrigonal PrismJohnson Pentagonal Pyramid
Mn132.45527.0450.24014.09630.823
 

Acknowledgements

CMZ would like to thank Logan Zaleski for useful discussions.

Funding information

Funding for this research was provided by: Shippensburg Universty Foundation Undergraduate Research Fund (grant to C. M. Zaleski, G. P. Van Trieste III); National Science Foundation (grant No. CHE 1625543 to M. Zeller).

References

First citationAtzeri, C., Marchiò, L., Chow, C. Y., Kampf, J. W., Pecoraro, V. L. & Tegoni, M. (2016). Chem. Eur. J. 22, 6482–6486.  CrossRef CAS PubMed Google Scholar
First citationBodwin, J. J. & Pecoraro, V. L. (2000). Inorg. Chem. 39, 3434–3435.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2016). Apex3 v2016.9-0, SAINT V8.37A, Bruker AXS Inc.: Madison (WI), USA, 2013/2014.  Google Scholar
First citationCal, M., Jaremko, Ł., Jaremko, M. & Stefanowicz, P. (2013). New J. Chem. 37, 3770–3777.  CrossRef CAS Google Scholar
First citationCasanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755–1763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.  CrossRef CAS Google Scholar
First citationDallavalle, F. & Tegoni, M. (2001). Polyhedron, 20, 2697–2704.  CrossRef CAS Google Scholar
First citationGibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840–4849.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozlowska, J. (2007). New J. Chem. 31, 1798–1805.  CAS Google Scholar
First citationHalfen, J. A., Bodwin, J. J. & Pecoraro, V. L. (1998). Inorg. Chem. 37, 5416–5417.  CrossRef PubMed CAS Google Scholar
First citationHapp, P. & Rentschler, E. (2014). Dalton Trans. 43, 15308–15312.  CrossRef CAS PubMed Google Scholar
First citationHerring, J., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m419–m420.  CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLago, A. B., Pasán, J., Cañadillas-Delgado, L., Fabelo, O., Casado, F. J. M., Julve, M., Lloret, F. & Ruiz-Pérez, C. (2011). New J. Chem. 35, 1817–1822.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcDonald, C., Whyte, T., Taylor, S. M., Sanz, S., Brechin, E. K., Gaynor, D. & Jones, L. F. (2013). CrystEngComm, 15, 6672–6681.  CrossRef CAS Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOrama, M., Saarinen, H., Korvenranta, J. & Raikas, T. (1992). Acta Chem. Scand. 46, 1083–1086.  CrossRef CAS Google Scholar
First citationOstrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.  Web of Science CrossRef CAS Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017). Eur. J. Inorg. Chem. pp. 4866–4878.  CrossRef Google Scholar
First citationPinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTegoni, M., Dallavalle, F., Belosi, B. & Remelli, M. (2004). Dalton Trans. pp. 1329–1333.  CrossRef Google Scholar
First citationTegoni, M., Ferretti, L., Sansone, F., Remelli, M., Bertolasi, V. & Dallavalle, F. (2007). Chem. Eur. J. 13, 1300–1308.  CrossRef PubMed CAS Google Scholar
First citationTegoni, M. & Remelli, M. (2012). Coord. Chem. Rev. 256, 289–315.  CrossRef CAS Google Scholar
First citationTegoni, M., Remelli, M., Bacco, D., Marchiò, L. & Dallavalle, F. (2008). Dalton Trans. pp. 2693–2701.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds