research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A five-coordinate cobalt bis­­(di­thiol­ene)–phosphine complex [Co(pdt)2(PTA)] (pdt = phenyl­di­thiol­ene; PTA = 1,3,5-tri­aza-7-phosphaadamantane)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Lamar University, 4400 S. M.L.K. King Jr. Pkwy, Beaumont, TX 77705, USA, and bDepartment of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA
*Correspondence e-mail: pchandraseka@lamar.edu, sestieber@cpp.edu

Edited by M. Zeller, Purdue University, USA (Received 30 March 2020; accepted 18 April 2020; online 24 April 2020)

The title compound, bis­(1,2-diphenyl-2-sulfanyl­idene­ethane­thiol­ato-κ2S,S′)(1,3,5-tri­aza-7-phosphaadamantane-κP)cobalt(II) dichloromethane hemisolvate, [Co(pdt)2(PTA)]·0.5C2H4Cl2 or [Co(C14H10S2)2(C6H12N3P)]·0.5C2H4Cl2, contains two phenyl­dithiol­ene (pdt) ligands and a 1,3,5-tri­aza-7-phosphaadamantane (PTA) ligand bound to cobalt with the solvent 1,2-di­chloro­ethane mol­ecule located on an inversion center. The cobalt core exhibits an approximately square-pyramidal geometry with partially reduced thienyl radical monoanionic ligands. The supra­molecular network is consolidated by hydrogen-bonding inter­actions primarily with nitro­gen, sulfur and chlorine atoms, as well as parallel displaced π-stacking of the aryl rings. The UV–vis, IR, and CV data are also consistent with monoanionic di­thiol­ene ligands and an overall CoII oxidation state.

1. Chemical context

Transition-metal complexes of 1,3,5-tri­aza-7-phosphaadamantane (PTA) and related ligands have attracted much attention because of their potential as water-soluble catalysts, materials, and therapeutic agents (Guerriero et al., 2018[Guerriero, A., Peruzzini, M. & Gonsalvi, L. (2018). Coord. Chem. Rev. 355, 328-361.]). The small cone angle (103°) of the PTA ligand combined with the high thermal and chemical stability, and high hydro­philicity makes it unique among phosphine ligands (Phillips et al., 2004[Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955-993.]). Electronically, the PTA ligand is much less electron donating than PMe3, while a slightly better electron donor than PPh3 (Darensbourg et al., 1999[Darensbourg, D. J., Robertson, J. B., Larkins, D. L. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 2473-2481.]). However, the formation of heteroleptic di­thiol­ene-phosphine complexes from the corresponding homoleptic metal-di­thiol­ene has not been fully explored (Natarajan et al., 2017[Natarajan, M., Faujdar, H., Mobin, S. M., Stein, M. & Kaur-Ghumaan, S. (2017). Dalton Trans. 46, 10050-10056.]). Reactions of homoleptic metal-di­thiol­enes with phosphines to produce heteroleptic complexes have exhibited inter­esting metal–ligand redox inter­play as a result of the redox-active or non-innocent nature of di­thiol­ene ligands (Chandrasekaran et al., 2014[Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192-9205.]). In this context, phosphine-induced cleavage of the iron and cobalt bis­(di­thiol­ene) dimer to yield five-coordinate bis­(di­thiol­ene)phosphine has been explored in depth with PPh3 and PMe3 ligands (Selby-Karney et al., 2017[Selby-Karney, T., Grossie, D. A., Arumugam, K., Wright, E. & Chandrasekaran, P. (2017). J. Mol. Struct. 1141, 477-483.]; Yu et al., 2007[Yu, R., Arumugam, K., Manepalli, A., Tran, Y., Schmehl, R., Jacobsen, H. & Donahue, J. P. (2007). Inorg. Chem. 46, 5131-5133.]). These complexes were all synthesized from the corresponding bis(di­thiol­ene) metal dimer complexes followed by addition of an excess of phosphine ligand to form bis­(di­thiol­ene) metal complexes bound to an additional phosphine ligand. The resulting [M(adt)2(PR3)] (M = Co, Fe; adt = para-anisyl­phenyl­dithiol­ene­; PR3 = PMe3 or PPh3) complexes have approximately square-pyramidal geometries at the metal center.

[Scheme 1]

Herein, we report the synthesis and crystal structure of a five-coordinate cobalt di­thiol­ene-phosphine complex [Co(pdt)2(PTA)] (pdt = phenyl­dithiol­ene, S2C2Ph2), produced by PTA ligand-induced cleavage of the cobalt bis­(di­thiol­ene) dimer [Co2(pdt)4].

2. Structural commentary

[Co(pdt)2(PTA)] co-crystallizes with one mol­ecule of 1,2-di­chloro­ethane where half of the solvent mol­ecule is symmetry generated, as shown in Fig. 1[link]. The structure without hydrogen atoms is depicted in Fig. 2[link] for clarity. Each di­thiol­ene ligand coordinates to the cobalt center in a κ2 fashion via the sulfur atoms, and PTA coordinates via the apical phospho­rous atom. The cobalt di­thiol­ene core is approximately planar, with angles of 89.73 (2)° for S1—Co1—S2, 88.93 (2)° for S1—Co1—S3, 88.41 (2)° for S2—Co1—S4, and 89.90 (2)° for S3—Co1—S4. The sum of the angles is 356.97 (4)°, consistent with only a slight distortion from planarity. The PTA ligand occupies a 5th coordination site with angles of 101.94 (2)° for P1—Co1—S1, 98.12 (2)° for P1—Co1—S2, 90.97 (2)° for P1—Co1—S3, and 97.22 (2)° for P1–Co1—S4. Therefore, the overall geometry of [Co(pdt)2(PTA)] is approximately square pyramidal.

[Figure 1]
Figure 1
View of [Co(C14H10S2)2(C6H12N3P)]·0.5C2H4Cl2 with 50% probability ellipsoids.
[Figure 2]
Figure 2
View of [Co(C14H10S2)2(C6H12N3P)]·0.5C2H4Cl2 with 50% probability ellipsoids. H atoms omitted for clarity.

The distances from the cobalt atom to the sulfur ligands are 2.1620 (5) Å for Co1—S1, 2.1669 (6) Å for Co1—S2, 2.1685 (5) Å for Co1—S3, and 2.1487 (5) Å for Co1—S4. These are mostly within the range of Co—S distances of 2.1659 (9)–2.1765 (9) Å reported for the p-anisyl-substituted analogues with PMe3 and PPh3 (Selby-Karney et al., 2017[Selby-Karney, T., Grossie, D. A., Arumugam, K., Wright, E. & Chandrasekaran, P. (2017). J. Mol. Struct. 1141, 477-483.]; Yu et al., 2007[Yu, R., Arumugam, K., Manepalli, A., Tran, Y., Schmehl, R., Jacobsen, H. & Donahue, J. P. (2007). Inorg. Chem. 46, 5131-5133.]). The Co1—P1 distance is 2.1424 (5) Å, which is shorter than the distances of 2.163 (1) and 2.192 (1) Å reported for the p-anisyl-substituted analogues with PMe3 and PPh3, respectively (Selby-Karney et al., 2017[Selby-Karney, T., Grossie, D. A., Arumugam, K., Wright, E. & Chandrasekaran, P. (2017). J. Mol. Struct. 1141, 477-483.]; Yu et al., 2007[Yu, R., Arumugam, K., Manepalli, A., Tran, Y., Schmehl, R., Jacobsen, H. & Donahue, J. P. (2007). Inorg. Chem. 46, 5131-5133.]). The decreasing length of the Co1—P1 bond for PPh3 > PMe3 > PTA is not consistent with the σ-donating ability of the phosphine which increases from PPh3 < PTA < PMe3. Instead, the short Co1—P1 bond for [Co(pdt)2(PTA)] is attributed to the small cone angle of 103° (Phillips et al., 2004[Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955-993.]) as compared to the cone angle of 118° for PMe3 and 145° for PPh3 (Bilbrey et al., 2013[Bilbrey, J. A., Kazez, A. H., Locklin, J. & Allen, W. D. (2013). J. Comput. Chem. 34, 1189-1197.]).

The sulfur–carbon distances are consistent with a partially reduced ligand thienyl radical monoanion with distances of 1.728 (2) Å for S1—C7, 1.719 (2) Å for S2—C8, 1.729 (2) Å for S3—C21, and 1.731 (2) Å for S4—C22. These are mostly within the range of S—C distances of 1.721 (2)–1.726 (3) and 1.730 (3)–1.742 (3) Å reported for the p-anisyl-substituted analogues with PMe3 and PPh3, respectively (Selby-Karney et al., 2017[Selby-Karney, T., Grossie, D. A., Arumugam, K., Wright, E. & Chandrasekaran, P. (2017). J. Mol. Struct. 1141, 477-483.]; Yu et al., 2007[Yu, R., Arumugam, K., Manepalli, A., Tran, Y., Schmehl, R., Jacobsen, H. & Donahue, J. P. (2007). Inorg. Chem. 46, 5131-5133.]). The C7—C8 distance of 1.372 (3) Å and the C21—C22 distance of 1.365 (3) Å are also consistent with this description.

3. Supra­molecular features

Two mol­ecules of [Co(pdt)2(PTA)] and one mol­ecule of 1,2-dicholorethane are present in the unit cell, as depicted in Fig. 3[link]. The two metal complexes in the unit cell are related by an inversion operation with the inversion center on the 1,2-di­chloro­ethane and the cobalt di­thiol­ene cores being approximately parallel to each other. Six close contacts within the supra­molecular framework were identified (Fig. 3[link], Table 1[link]), resulting primarily from hydrogen-bonding inter­actions with nitro­gen, sulfur and chlorine. Hydrogen bonds with sulfur and nitro­gen include the C19—H19⋯S4ii distance of 2.78 Å (Figs. 3[link], #2[link]) and the C35—H35a⋯N2 distance of 2.69 Å (Figs. 3[link], #4[link]). Weaker hydrogen bonds with chlorine include the C2—H2a⋯Cl1iii distance of 2.88 Å (Figs. 3[link], #3[link]) and the C26—H26⋯Cl1iv distance of 2.95 Å (Figs. 3[link], #5). Close contacts with carbon and hydrogen atoms include a C28—H28⋯C11i distance of 2.83 Å (Figs. 3[link], #1[link]; see Table 1[link] for symmetry operators).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯C11i 0.95 2.83 3.575 (3) 136
C19—H19⋯S4ii 0.95 2.78 3.513 (3) 135
C2—H2a⋯Cl1iii 0.99 2.88 3.582 (2) 129
C35—H35a⋯N2 0.99 2.69 3.297 (3) 120
C26—H26⋯Cl1iv 0.95 2.95 3.824 (2) 154
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+2, -z+1.
[Figure 3]
Figure 3
View of two mol­ecules of [Co(C14H10S2)2(C6H12N3P)]·0.5C2H4Cl2 within the unit cell and one additional translation of the unit cell along b, at 50% probability ellipsoids. Close contacts, including hydrogen bonds are labeled 1–6 with distances given in Table 1[link].
[Figure 4]
Figure 4
View of two mol­ecules of [Co(C14H10S2)2(C6H12N3P)]·0.5C2H4Cl2 within the unit cell and one additional translation of the unit cell along b, at 50% probability ellipsoids. Planes defined by aryl rings containing C15–C20 along with the corresponding centroids are depicted to highlight parallel displaced π-stacking of aryl rings.

When the unit cell is grown along the b axis, parallel displaced π-stacking of the aryl rings is revealed (Fig. 4[link]). Planes defined by atoms C15–C20 (Fig. 4[link], blue) and C15v–C20v [Fig. 4[link], purple; symmetry code: (v) 1 − x, −y, 1 − z] within the unit cell are parallel, with a distance of 2.928 Å between planes and a distance of 4.961 Å between the respective centroids defined by the same atoms. The shortest atomic distance is between the carbon atoms of the aryl rings between unit cells with C17⋯C18v being 3.343 (3) Å apart (Figs. 3[link], #6; Fig. 4[link]).

4. Database survey

A survey of the Cambridge Structural Database (Web accessed March 26, 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and SciFinder (SciFinder, 2020[SciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 26, 2020).]) yielded no exact matches for reported structures of this complex. Structures with two di­thiol­ene ligands with p-anisyl substitution bound to Co and an additional coordinated phosphine ligand were reported with PMe3 coordination (Selby-Karney et al., 2017[Selby-Karney, T., Grossie, D. A., Arumugam, K., Wright, E. & Chandrasekaran, P. (2017). J. Mol. Struct. 1141, 477-483.]), and PPh3 coordination (Yu et al., 2007[Yu, R., Arumugam, K., Manepalli, A., Tran, Y., Schmehl, R., Jacobsen, H. & Donahue, J. P. (2007). Inorg. Chem. 46, 5131-5133.]). Both reported complexes also have approximately square pyramidal geometry at the cobalt center with slight deviations. The PPh3 complex exhibits the largest distortion from planarity with a sum of angles around cobalt of 353.89 (6)°, while the sum of the angles is 356.97 (6)° for the PMe3 complex. Similarly, the phosphine in PPh3 is axially distorted because of the steric bulk of the phenyl groups, resulting in two more obtuse bond angles for S2—Co1—P1 and S3—Co1—P1 of 101.31 (3) and 106.6 (3)°, respectively. The other bond angles of 92.81 (3)° for S1—Co1–P1 and 97.13 (3)° for S4—Co1—P1 are within the range of S—Co1—P1 angles of 91.19 (3) to 99.65 (3)° observed for the PMe3 complex.

5. Spectroscopic analysis

The UV–vis characterization of [Co(pdt)2(PTA)] was conducted in di­chloro­methane (Fig. 5[link]) and revealed a strong absorption at 877 nm with a molar absorptivitiy of 6428 M−1cm−1. In the related p-anisyl-substituted cobalt complex bound to PMe3 a similar absorption was observed at 905 nm. This is attributed to a ligand-to-ligand charge-transfer (LLCT) transition, based on comparison with the related iron complex with PPh3 (Yu et al., 2007[Yu, R., Arumugam, K., Manepalli, A., Tran, Y., Schmehl, R., Jacobsen, H. & Donahue, J. P. (2007). Inorg. Chem. 46, 5131-5133.]) and related di­thiol­ene metal complexes (Ray et al., 2005[Ray, K., Weyhermüller, T., Neese, F. & Wieghardt, K. (2005). Inorg. Chem. 44, 5345-5360.]). In the iron PPh3 complex, the absorption occurred at 720 nm and disappeared upon conversion to the homoleptic iron bis­(di­thiol­ene) complex. The IR signal for [Co(pdt)2(PTA)] at 1157.61 cm−1 is characteristic of monoanionic di­thiol­enes with a π-radical when coordinated to metals, and is attributed to ν(C=S·) (Patra et al., 2006[Patra, A. K., Bill, E., Weyhermüller, T., Stobie, K., Bell, Z., Ward, M. D., McCleverty, J. A. & Wieghardt, K. (2006). Inorg. Chem. 45, 6541-6548.]). Combined, the IR and UV–vis characterization are consistent with two monoanionic di­thiol­ene ligands bound to a CoII center.

[Figure 5]
Figure 5
UV–vis spectrum of [Co(pdt)2(PTA)] in di­chloro­methane solution at 25°C.

6. Electrochemical analysis

The cyclic voltammogram (CV) of [Co(pdt)2(PTA)] was collected in a solution of dichoro­methane with a platinum working electrode (Fig. 6[link]) and a glassy carbon working electrode (Fig. 7[link]). Both CVs display two reversible waves with the first one at E1/2 = +0.62 with both electrodes, and a second one at E1/2 = −0.17 V with the platinum electrode and E1/2 = −0.16 V with the glassy carbon electrode. The reversible oxidation wave at +0.62 V is attributed to a metal-centered redox event. The second oxidation at −0.17 V is attributed to ligand oxidation, by comparison to other metal di­thiol­ene complexes (Patra et al., 2006[Patra, A. K., Bill, E., Weyhermüller, T., Stobie, K., Bell, Z., Ward, M. D., McCleverty, J. A. & Wieghardt, K. (2006). Inorg. Chem. 45, 6541-6548.]).

[Figure 6]
Figure 6
Cyclic voltammetry of [Co(pdt)2(PTA)] in CH2Cl2 recorded using a platinum working electrode and [nBu4N][PF6] as electrolyte with a scan rate of 100 mV s−1 at 25°C.
[Figure 7]
Figure 7
Cyclic voltammetry of [Co(pdt)2(PTA)] in CH2Cl2 recorded using a glassy carbon working electrode and [nBu4N][PF6] as electrolyte with a scan rate of 100 mV s−1 at 25°C.

7. Synthesis and crystallization

A 50 mL Schlenk flask containing a stir bar was charged with [Co2(pdt)4] (0.300 g, 0.275 mmol) and PTA (0.144 g; 0.551 mmol) under an N2 atmosphere. To this mixture of solids, 20 mL of CH2Cl2 were added and stirred for 4 h at room temperature. The solvent was removed under reduced pressure and the resulting dark-orange solid was washed with 3 × 5 mL of Et2O and dried under vacuum. The product was stable under reduced pressure and at room temperature. Yield: 92% (0.357 g, 0.509 mmol). Crystals suitable for X-ray diffraction were grown by the vapor diffusion method with diffusion of pentane over a 1,2-di­chloro­ethane solution of the compound. UV–Vis spectra were obtained at ambient temperature with a Varian Cary 50 diode array spectrometer, while IR spectra were taken neat with an ALPHA FTIR instrument. Electrochemical measurements were performed with a CHI600E electroanalyzer workstation using an Ag/AgCl reference electrode, a platinum disk working electrode, a platinum wire auxiliary electrode, and [nBu4N][PF6] as the supporting electrolyte in CH2Cl2. Under these conditions, the [Cp2Fe]+/ Cp2Fe couple consistently occurred at +440 mV. UV–vis in CH2Cl2: [λmax, nm (M, M−1cm−1)]: 301 nm (17881), 877 nm (6428). IR spectroscopy (cm−1): 3366.53 (w), 3054.34 (w), 2928.02 (w), 2869.68 (w), 1592.50 (w), 1440.63 (m), 1415.07 (s), 1275.25 (m), 1240.54 (w), 1157.61 (m), 1091.56 (s), 1012.49 (m), 969.10 (s), 940.65 (vs), 739.50 (s), 693.31 (s).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in calculated positions with C—H distances of 0.95 and 0.99 Å for CH and CH2, respectively, and refined using a riding model with Uiso(H) = 1.2 Ueq(C) for CH and CH2.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C14H10S2)2(C6H12N3P)·0.5C2H4Cl2
Mr 750.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 113
a, b, c (Å) 9.0954 (7), 13.4319 (9), 14.7905 (10)
α, β, γ (°) 97.074 (3), 94.680 (3), 107.354 (3)
V3) 1698.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.57 × 0.32 × 0.14
 
Data collection
Diffractometer Bruker D8 Venture Kappa
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 46909, 7487, 6778
Rint 0.045
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.06
No. of reflections 7487
No. of parameters 406
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.73, −0.40
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009) and SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(1,2-diphenyl-2-sulfanylideneethanethiolato-κ2S,S')(1,3,5-triaza-7-phosphaadamantane-κP)cobalt(II) dichloromethane hemisolvate top
Crystal data top
[Co(C14H10S2)2(C6H12N3P)·0.5C2H4Cl2Z = 2
Mr = 750.24F(000) = 776
Triclinic, P1Dx = 1.467 Mg m3
a = 9.0954 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.4319 (9) ÅCell parameters from 9901 reflections
c = 14.7905 (10) Åθ = 3.5–34.9°
α = 97.074 (3)°µ = 0.91 mm1
β = 94.680 (3)°T = 113 K
γ = 107.354 (3)°Prism, black
V = 1698.1 (2) Å30.57 × 0.32 × 0.14 mm
Data collection top
Bruker D8 Venture Kappa
diffractometer
6778 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.045
φ and ω scansθmax = 27.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.661, Tmax = 0.746k = 1717
46909 measured reflectionsl = 1818
7487 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0327P)2 + 1.8472P]
where P = (Fo2 + 2Fc2)/3
7487 reflections(Δ/σ)max = 0.002
406 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2841 (2)0.44175 (16)0.13148 (14)0.0238 (4)
H1A0.3279540.4440290.0723810.029*
H1B0.2626440.3691030.1458840.029*
Co10.64640 (3)0.50794 (2)0.24515 (2)0.01404 (7)
N10.1384 (2)0.46794 (14)0.12245 (13)0.0265 (4)
Cl10.03998 (7)0.64232 (4)0.56103 (4)0.03132 (12)
S10.59835 (5)0.34986 (3)0.17196 (3)0.01709 (10)
P10.42620 (5)0.53418 (4)0.22219 (3)0.01466 (10)
C20.3048 (2)0.52908 (19)0.31626 (14)0.0262 (4)
H2A0.2846000.4598950.3378460.031*
H2B0.3602510.5849270.3684040.031*
S20.61456 (5)0.44452 (3)0.37252 (3)0.01757 (10)
N20.1566 (2)0.54440 (16)0.28436 (13)0.0279 (4)
C30.0688 (2)0.46267 (18)0.20808 (17)0.0319 (5)
H3A0.0582320.3926410.2263580.038*
H3B0.0369150.4685040.1967750.038*
S30.71513 (5)0.56935 (3)0.12089 (3)0.01568 (10)
N30.25473 (19)0.65989 (13)0.17147 (12)0.0225 (3)
C40.1799 (2)0.64750 (18)0.25548 (15)0.0276 (4)
H4A0.2442680.7026690.3057990.033*
H4B0.0778050.6592880.2454560.033*
S40.76992 (5)0.65936 (3)0.32479 (3)0.01744 (10)
C200.4388 (3)0.24991 (15)0.47931 (13)0.0238 (4)
H200.3735110.2924520.4709780.029*
C210.8023 (2)0.70357 (14)0.15445 (13)0.0156 (3)
C220.8262 (2)0.74384 (14)0.24571 (12)0.0150 (3)
C230.8953 (2)0.85744 (14)0.28453 (13)0.0169 (3)
C241.0120 (2)0.88975 (16)0.35854 (15)0.0265 (4)
H241.0511620.8391340.3828730.032*
C251.0716 (3)0.99529 (17)0.39707 (17)0.0330 (5)
H251.1519051.0164400.4473500.040*
C261.0157 (3)1.06997 (16)0.36321 (16)0.0291 (5)
H261.0572621.1422280.3898140.035*
C270.8984 (3)1.03871 (16)0.29017 (15)0.0279 (4)
H270.8586041.0896000.2668680.033*
C280.8388 (2)0.93339 (16)0.25086 (14)0.0228 (4)
H280.7587270.9126960.2004970.027*
C290.8531 (2)0.76591 (14)0.07994 (12)0.0159 (3)
C300.7460 (2)0.78816 (16)0.01894 (14)0.0229 (4)
H300.6384990.7635500.0251360.027*
C310.7949 (3)0.84572 (17)0.05041 (14)0.0293 (5)
H310.7213730.8618220.0906880.035*
C320.9510 (3)0.87993 (17)0.06125 (15)0.0300 (5)
H320.9845060.9184330.1095210.036*
C331.0578 (3)0.85777 (18)0.00151 (16)0.0311 (5)
H331.1649530.8813750.0087110.037*
C341.0094 (2)0.80118 (16)0.06902 (14)0.0240 (4)
H341.0836490.7865670.1099480.029*
C350.0253 (2)0.55372 (15)0.48550 (14)0.0226 (4)
H35A0.0197610.5496330.4214090.027*
H35B0.1398450.5796120.4887300.027*
C50.1638 (2)0.57416 (17)0.09845 (14)0.0252 (4)
H5A0.2179090.5793210.0429660.030*
H5B0.0616200.5840210.0828450.030*
C80.5691 (2)0.30997 (14)0.34348 (13)0.0173 (4)
C70.5610 (2)0.26674 (14)0.25345 (13)0.0173 (4)
C60.4165 (2)0.65983 (16)0.18756 (15)0.0232 (4)
H6A0.4749590.7190780.2363390.028*
H6B0.4657500.6705120.1307530.028*
C90.5189 (2)0.15214 (14)0.21930 (13)0.0183 (4)
C190.4218 (3)0.18900 (17)0.54991 (15)0.0341 (5)
H190.3426850.1884360.5881500.041*
C100.5971 (2)0.11500 (15)0.15203 (14)0.0215 (4)
H100.6801740.1633810.1297200.026*
C110.5548 (3)0.00803 (16)0.11733 (14)0.0252 (4)
H110.6086670.0162690.0714270.030*
C120.4341 (3)0.06324 (16)0.14966 (15)0.0273 (4)
H120.4056350.1364090.1262840.033*
C140.3962 (2)0.07902 (15)0.25086 (13)0.0216 (4)
H140.3409840.1026730.2963180.026*
C130.3552 (2)0.02763 (16)0.21590 (14)0.0260 (4)
H130.2721790.0765690.2377260.031*
C150.5509 (2)0.24862 (14)0.42110 (13)0.0190 (4)
C160.6491 (2)0.18828 (16)0.43625 (15)0.0268 (4)
H160.7268430.1871160.3973450.032*
C170.6331 (3)0.12979 (17)0.50830 (17)0.0356 (6)
H170.7011470.0896420.5188710.043*
C180.5191 (3)0.12967 (17)0.56452 (15)0.0367 (6)
H180.5078810.0888330.6130740.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (10)0.0219 (10)0.0265 (10)0.0092 (8)0.0051 (8)0.0047 (8)
Co10.01191 (12)0.01288 (12)0.01779 (13)0.00396 (9)0.00186 (9)0.00394 (9)
N10.0189 (8)0.0249 (9)0.0342 (10)0.0091 (7)0.0055 (7)0.0012 (7)
Cl10.0363 (3)0.0239 (2)0.0365 (3)0.0108 (2)0.0142 (2)0.0052 (2)
S10.0180 (2)0.0140 (2)0.0196 (2)0.00467 (17)0.00375 (16)0.00368 (16)
P10.0124 (2)0.0152 (2)0.0172 (2)0.00534 (17)0.00227 (16)0.00254 (17)
C20.0196 (10)0.0406 (12)0.0239 (10)0.0142 (9)0.0075 (8)0.0103 (9)
S20.0199 (2)0.0142 (2)0.0185 (2)0.00479 (17)0.00112 (16)0.00396 (16)
N20.0189 (8)0.0421 (11)0.0296 (9)0.0159 (8)0.0089 (7)0.0117 (8)
C30.0133 (9)0.0310 (11)0.0524 (14)0.0047 (8)0.0036 (9)0.0160 (10)
S30.0155 (2)0.0135 (2)0.0172 (2)0.00298 (16)0.00296 (16)0.00246 (16)
N30.0173 (8)0.0213 (8)0.0319 (9)0.0101 (7)0.0027 (7)0.0054 (7)
C40.0239 (10)0.0323 (11)0.0301 (11)0.0168 (9)0.0034 (8)0.0021 (9)
S40.0192 (2)0.0150 (2)0.0166 (2)0.00298 (17)0.00080 (16)0.00396 (16)
C200.0338 (11)0.0164 (9)0.0207 (9)0.0071 (8)0.0032 (8)0.0027 (7)
C210.0110 (8)0.0146 (8)0.0216 (9)0.0036 (6)0.0026 (6)0.0051 (7)
C220.0114 (8)0.0152 (8)0.0195 (8)0.0049 (7)0.0010 (6)0.0062 (7)
C230.0160 (8)0.0154 (8)0.0196 (9)0.0047 (7)0.0046 (7)0.0031 (7)
C240.0269 (11)0.0174 (9)0.0332 (11)0.0077 (8)0.0063 (8)0.0012 (8)
C250.0308 (12)0.0231 (11)0.0394 (12)0.0082 (9)0.0120 (9)0.0053 (9)
C260.0332 (12)0.0160 (9)0.0352 (12)0.0065 (8)0.0022 (9)0.0030 (8)
C270.0390 (12)0.0203 (10)0.0285 (10)0.0154 (9)0.0035 (9)0.0043 (8)
C280.0264 (10)0.0210 (9)0.0216 (9)0.0093 (8)0.0003 (8)0.0028 (7)
C290.0183 (9)0.0123 (8)0.0166 (8)0.0043 (7)0.0022 (7)0.0016 (6)
C300.0187 (9)0.0226 (10)0.0248 (10)0.0028 (8)0.0016 (7)0.0063 (8)
C310.0363 (12)0.0249 (10)0.0236 (10)0.0059 (9)0.0063 (9)0.0072 (8)
C320.0417 (13)0.0224 (10)0.0240 (10)0.0036 (9)0.0089 (9)0.0099 (8)
C330.0280 (11)0.0315 (11)0.0359 (12)0.0067 (9)0.0150 (9)0.0125 (9)
C340.0205 (10)0.0249 (10)0.0288 (10)0.0076 (8)0.0063 (8)0.0091 (8)
C350.0228 (10)0.0240 (10)0.0227 (9)0.0088 (8)0.0051 (7)0.0046 (8)
C50.0224 (10)0.0319 (11)0.0250 (10)0.0152 (9)0.0013 (8)0.0039 (8)
C80.0125 (8)0.0162 (8)0.0234 (9)0.0038 (7)0.0010 (7)0.0061 (7)
C70.0127 (8)0.0168 (9)0.0230 (9)0.0042 (7)0.0029 (7)0.0061 (7)
C60.0177 (9)0.0201 (9)0.0355 (11)0.0091 (8)0.0042 (8)0.0093 (8)
C90.0162 (9)0.0159 (9)0.0215 (9)0.0037 (7)0.0025 (7)0.0040 (7)
C190.0601 (16)0.0197 (10)0.0189 (10)0.0064 (10)0.0093 (10)0.0010 (8)
C100.0213 (9)0.0178 (9)0.0260 (10)0.0070 (7)0.0012 (7)0.0047 (7)
C110.0294 (11)0.0217 (10)0.0260 (10)0.0123 (8)0.0012 (8)0.0020 (8)
C120.0326 (11)0.0147 (9)0.0305 (11)0.0051 (8)0.0091 (9)0.0019 (8)
C140.0208 (9)0.0193 (9)0.0221 (9)0.0029 (8)0.0011 (7)0.0044 (7)
C130.0260 (10)0.0186 (9)0.0284 (10)0.0010 (8)0.0035 (8)0.0085 (8)
C150.0210 (9)0.0131 (8)0.0194 (9)0.0017 (7)0.0033 (7)0.0027 (7)
C160.0234 (10)0.0191 (9)0.0358 (11)0.0065 (8)0.0075 (8)0.0038 (8)
C170.0423 (13)0.0186 (10)0.0405 (13)0.0081 (9)0.0213 (11)0.0045 (9)
C180.0674 (17)0.0159 (10)0.0187 (10)0.0045 (10)0.0094 (10)0.0036 (8)
Geometric parameters (Å, º) top
C1—H1A0.9900C27—H270.9500
C1—H1B0.9900C27—C281.386 (3)
C1—N11.469 (3)C28—H280.9500
C1—P11.833 (2)C29—C301.396 (3)
Co1—S12.1620 (5)C29—C341.388 (3)
Co1—P12.1424 (5)C30—H300.9500
Co1—S22.1669 (5)C30—C311.383 (3)
Co1—S32.1685 (5)C31—H310.9500
Co1—S42.1487 (5)C31—C321.385 (3)
N1—C31.462 (3)C32—H320.9500
N1—C51.469 (3)C32—C331.382 (3)
Cl1—C351.794 (2)C33—H330.9500
S1—C71.7282 (18)C33—C341.389 (3)
P1—C21.841 (2)C34—H340.9500
P1—C61.847 (2)C35—C35i1.506 (4)
C2—H2A0.9900C35—H35A0.9900
C2—H2B0.9900C35—H35B0.9900
C2—N21.472 (3)C5—H5A0.9900
S2—C81.7192 (19)C5—H5B0.9900
N2—C31.463 (3)C8—C71.372 (3)
N2—C41.460 (3)C8—C151.486 (2)
C3—H3A0.9900C7—C91.482 (3)
C3—H3B0.9900C6—H6A0.9900
S3—C211.7286 (18)C6—H6B0.9900
N3—C41.468 (3)C9—C101.396 (3)
N3—C51.468 (3)C9—C141.405 (3)
N3—C61.471 (2)C19—H190.9500
C4—H4A0.9900C19—C181.377 (4)
C4—H4B0.9900C10—H100.9500
S4—C221.7307 (18)C10—C111.390 (3)
C20—H200.9500C11—H110.9500
C20—C191.395 (3)C11—C121.386 (3)
C20—C151.390 (3)C12—H120.9500
C21—C221.365 (3)C12—C131.381 (3)
C21—C291.486 (2)C14—H140.9500
C22—C231.485 (2)C14—C131.388 (3)
C23—C241.390 (3)C13—H130.9500
C23—C281.396 (3)C15—C161.395 (3)
C24—H240.9500C16—H160.9500
C24—C251.386 (3)C16—C171.392 (3)
C25—H250.9500C17—H170.9500
C25—C261.379 (3)C17—C181.380 (4)
C26—H260.9500C18—H180.9500
C26—C271.383 (3)
H1A—C1—H1B108.0C27—C28—C23120.67 (19)
N1—C1—H1A109.4C27—C28—H28119.7
N1—C1—H1B109.4C30—C29—C21121.23 (17)
N1—C1—P1111.30 (13)C34—C29—C21119.85 (17)
P1—C1—H1A109.4C34—C29—C30118.91 (17)
P1—C1—H1B109.4C29—C30—H30119.7
S1—Co1—S289.729 (19)C31—C30—C29120.58 (19)
S1—Co1—S388.927 (19)C31—C30—H30119.7
P1—Co1—S1101.94 (2)C30—C31—H31119.9
P1—Co1—S298.12 (2)C30—C31—C32120.1 (2)
P1—Co1—S390.975 (19)C32—C31—H31119.9
P1—Co1—S497.22 (2)C31—C32—H32120.2
S2—Co1—S3170.88 (2)C33—C32—C31119.68 (19)
S4—Co1—S1160.81 (2)C33—C32—H32120.2
S4—Co1—S288.415 (19)C32—C33—H33119.8
S4—Co1—S389.895 (19)C32—C33—C34120.4 (2)
C3—N1—C1110.66 (17)C34—C33—H33119.8
C3—N1—C5108.76 (17)C29—C34—C33120.29 (19)
C5—N1—C1111.36 (16)C29—C34—H34119.9
C7—S1—Co1106.05 (7)C33—C34—H34119.9
C1—P1—Co1116.49 (7)Cl1—C35—H35A110.0
C1—P1—C299.60 (10)Cl1—C35—H35B110.0
C1—P1—C699.16 (10)C35i—C35—Cl1108.53 (18)
C2—P1—Co1119.19 (7)C35i—C35—H35A110.0
C2—P1—C698.56 (10)C35i—C35—H35B110.0
C6—P1—Co1119.84 (6)H35A—C35—H35B108.4
P1—C2—H2A109.6N1—C5—H5A108.7
P1—C2—H2B109.6N1—C5—H5B108.7
H2A—C2—H2B108.2N3—C5—N1114.18 (16)
N2—C2—P1110.06 (14)N3—C5—H5A108.7
N2—C2—H2A109.6N3—C5—H5B108.7
N2—C2—H2B109.6H5A—C5—H5B107.6
C8—S2—Co1105.84 (7)C7—C8—S2119.61 (14)
C3—N2—C2111.82 (17)C7—C8—C15124.29 (17)
C4—N2—C2111.77 (17)C15—C8—S2115.98 (14)
C4—N2—C3108.62 (17)C8—C7—S1118.77 (14)
N1—C3—N2114.42 (17)C8—C7—C9124.82 (17)
N1—C3—H3A108.7C9—C7—S1116.40 (14)
N1—C3—H3B108.7P1—C6—H6A109.4
N2—C3—H3A108.7P1—C6—H6B109.4
N2—C3—H3B108.7N3—C6—P1111.14 (13)
H3A—C3—H3B107.6N3—C6—H6A109.4
C21—S3—Co1105.31 (6)N3—C6—H6B109.4
C4—N3—C6110.70 (16)H6A—C6—H6B108.0
C5—N3—C4108.50 (16)C10—C9—C7120.40 (17)
C5—N3—C6111.41 (16)C10—C9—C14118.51 (18)
N2—C4—N3114.23 (16)C14—C9—C7121.05 (17)
N2—C4—H4A108.7C20—C19—H19119.8
N2—C4—H4B108.7C18—C19—C20120.4 (2)
N3—C4—H4A108.7C18—C19—H19119.8
N3—C4—H4B108.7C9—C10—H10119.6
H4A—C4—H4B107.6C11—C10—C9120.75 (19)
C22—S4—Co1105.61 (6)C11—C10—H10119.6
C19—C20—H20119.9C10—C11—H11120.0
C15—C20—H20119.9C12—C11—C10120.1 (2)
C15—C20—C19120.3 (2)C12—C11—H11120.0
C22—C21—S3119.00 (13)C11—C12—H12120.1
C22—C21—C29124.87 (16)C13—C12—C11119.86 (19)
C29—C21—S3116.05 (13)C13—C12—H12120.1
C21—C22—S4119.29 (14)C9—C14—H14119.9
C21—C22—C23125.07 (16)C13—C14—C9120.25 (19)
C23—C22—S4115.62 (13)C13—C14—H14119.9
C24—C23—C22120.60 (17)C12—C13—C14120.58 (19)
C24—C23—C28118.51 (18)C12—C13—H13119.7
C28—C23—C22120.80 (17)C14—C13—H13119.7
C23—C24—H24119.8C20—C15—C8121.69 (17)
C25—C24—C23120.45 (19)C20—C15—C16119.03 (18)
C25—C24—H24119.8C16—C15—C8119.29 (18)
C24—C25—H25119.6C15—C16—H16120.0
C26—C25—C24120.7 (2)C17—C16—C15120.1 (2)
C26—C25—H25119.6C17—C16—H16120.0
C25—C26—H26120.3C16—C17—H17119.7
C25—C26—C27119.41 (19)C18—C17—C16120.5 (2)
C27—C26—H26120.3C18—C17—H17119.7
C26—C27—H27119.9C19—C18—C17119.7 (2)
C26—C27—C28120.24 (19)C19—C18—H18120.1
C28—C27—H27119.9C17—C18—H18120.1
C23—C28—H28119.7
C1—N1—C3—N268.0 (2)C21—C29—C34—C33178.76 (19)
C1—N1—C5—N367.8 (2)C22—C21—C29—C30108.8 (2)
C1—P1—C2—N249.64 (17)C22—C21—C29—C3472.5 (2)
C1—P1—C6—N349.67 (16)C22—C23—C24—C25177.3 (2)
Co1—S1—C7—C80.88 (16)C22—C23—C28—C27176.84 (19)
Co1—S1—C7—C9177.96 (12)C23—C24—C25—C260.5 (4)
Co1—P1—C2—N2177.43 (12)C24—C23—C28—C270.3 (3)
Co1—P1—C6—N3177.50 (11)C24—C25—C26—C270.2 (4)
Co1—S2—C8—C70.23 (16)C25—C26—C27—C280.6 (3)
Co1—S2—C8—C15176.41 (12)C26—C27—C28—C230.4 (3)
Co1—S3—C21—C226.17 (16)C28—C23—C24—C250.7 (3)
Co1—S3—C21—C29176.88 (12)C29—C21—C22—S4176.22 (14)
Co1—S4—C22—C216.88 (16)C29—C21—C22—C235.2 (3)
Co1—S4—C22—C23171.84 (12)C29—C30—C31—C321.4 (3)
N1—C1—P1—Co1179.98 (12)C30—C29—C34—C330.1 (3)
N1—C1—P1—C250.42 (17)C30—C31—C32—C331.1 (3)
N1—C1—P1—C649.96 (16)C31—C32—C33—C340.2 (3)
S1—C7—C9—C1041.3 (2)C32—C33—C34—C290.3 (3)
S1—C7—C9—C14136.15 (16)C34—C29—C30—C310.9 (3)
P1—C1—N1—C360.4 (2)C5—N1—C3—N254.7 (2)
P1—C1—N1—C560.7 (2)C5—N3—C4—N255.1 (2)
P1—C2—N2—C360.2 (2)C5—N3—C6—P159.98 (19)
P1—C2—N2—C461.8 (2)C8—C7—C9—C10140.0 (2)
C2—P1—C6—N351.58 (16)C8—C7—C9—C1442.6 (3)
C2—N2—C3—N168.7 (2)C8—C15—C16—C17179.60 (18)
C2—N2—C4—N368.5 (2)C7—C8—C15—C20123.2 (2)
S2—C8—C7—S10.4 (2)C7—C8—C15—C1657.0 (3)
S2—C8—C7—C9178.29 (14)C7—C9—C10—C11177.73 (18)
S2—C8—C15—C2060.8 (2)C7—C9—C14—C13177.89 (18)
S2—C8—C15—C16119.02 (17)C6—P1—C2—N251.23 (17)
C3—N1—C5—N354.4 (2)C6—N3—C4—N267.4 (2)
C3—N2—C4—N355.3 (2)C6—N3—C5—N167.6 (2)
S3—C21—C22—S40.4 (2)C9—C10—C11—C120.2 (3)
S3—C21—C22—C23178.16 (14)C9—C14—C13—C120.1 (3)
S3—C21—C29—C3074.4 (2)C19—C20—C15—C8178.12 (18)
S3—C21—C29—C34104.22 (18)C19—C20—C15—C162.0 (3)
C4—N2—C3—N155.1 (2)C10—C9—C14—C130.4 (3)
C4—N3—C5—N154.5 (2)C10—C11—C12—C130.5 (3)
C4—N3—C6—P160.85 (19)C11—C12—C13—C140.3 (3)
S4—C22—C23—C2448.6 (2)C14—C9—C10—C110.2 (3)
S4—C22—C23—C28127.87 (17)C15—C20—C19—C182.1 (3)
C20—C19—C18—C170.6 (3)C15—C8—C7—S1175.40 (14)
C20—C15—C16—C170.5 (3)C15—C8—C7—C95.9 (3)
C21—C22—C23—C24132.7 (2)C15—C16—C17—C180.9 (3)
C21—C22—C23—C2850.8 (3)C16—C17—C18—C190.9 (3)
C21—C29—C30—C31179.60 (18)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···C11ii0.952.833.575 (3)136
C19—H19···S4iii0.952.783.513 (3)135
C2—H2a···Cl1i0.992.883.582 (2)129
C35—H35a···N20.992.693.297 (3)120
C26—H26···Cl1iv0.952.953.824 (2)154
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1847926 to S. Chantal E. Stieber); U.S. Department of Defense, U.S. Army (grant No. W911NF-17-1-0537 to S. Chantal E. Stieber); MENTORES PPOHA (scholarship to Jacob P. Brannon); Lamar University [the Welch Foundation (V-0004) award to Perumalreddy Chandrasekaran].

References

First citationBilbrey, J. A., Kazez, A. H., Locklin, J. & Allen, W. D. (2013). J. Comput. Chem. 34, 1189–1197.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192–9205.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDarensbourg, D. J., Robertson, J. B., Larkins, D. L. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 2473–2481.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerriero, A., Peruzzini, M. & Gonsalvi, L. (2018). Coord. Chem. Rev. 355, 328–361.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNatarajan, M., Faujdar, H., Mobin, S. M., Stein, M. & Kaur-Ghumaan, S. (2017). Dalton Trans. 46, 10050–10056.  CSD CrossRef CAS PubMed Google Scholar
First citationPatra, A. K., Bill, E., Weyhermüller, T., Stobie, K., Bell, Z., Ward, M. D., McCleverty, J. A. & Wieghardt, K. (2006). Inorg. Chem. 45, 6541–6548.  CSD CrossRef PubMed CAS Google Scholar
First citationPhillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993.  Web of Science CrossRef CAS Google Scholar
First citationRay, K., Weyhermüller, T., Neese, F. & Wieghardt, K. (2005). Inorg. Chem. 44, 5345–5360.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 26, 2020).  Google Scholar
First citationSelby-Karney, T., Grossie, D. A., Arumugam, K., Wright, E. & Chandrasekaran, P. (2017). J. Mol. Struct. 1141, 477–483.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, R., Arumugam, K., Manepalli, A., Tran, Y., Schmehl, R., Jacobsen, H. & Donahue, J. P. (2007). Inorg. Chem. 46, 5131–5133.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds