research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of tetra­meric [2-(4,4-di­methyl-2-oxazolin-2-yl)anilido]sodium and tris­­[2-(4,4-di­methyl-2-oxazolin-2-yl)anilido]ytterbium(III)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada, and bSchool of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
*Correspondence e-mail: djberg@uvic.ca

Edited by M. Zeller, Purdue University, USA (Received 31 March 2020; accepted 9 April 2020; online 21 April 2020)

Reaction of 2-(4,4-dimethyl-2-oxazolin-2-yl)aniline (H2-L1) with one equivalent of Na[N(SiMe3)2] in toluene afforded pale-yellow crystals of tetra­meric poly[bis­[μ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][μ2-2-(4,4-dimethyl-2-oxa­zolin-2-yl)aniline]tetra­sodium(I)], [Na4(C11H13N2O)4]n or [Na4(H-L1)4]n (2), in excellent yield. Subsequent reaction of [Na4(H-L1)4]n (2) with 1.33 equivalents of anhydrous YbCl3 in a 50:50 mixture of toluene–THF afforded yellow crystals of tris­[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III), [Yb(C11H13N2O)3] or Yb(H-L1)3 (3) in moderate yield. Direct reaction of three equivalents of 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (H2-L1) with Yb[N(SiMe3)2]3 in toluene resulted in elimination of hexa­methyl­disilazane, HN(SiMe3)2, and produced Yb(H-L1)3 (3) in excellent yield. The structure of 2 consists of tetra­meric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands and these subunits are connected into a polymeric chain by two of the four oxazoline O atoms bridging to Na+ cations in the adjacent tetra­mer. This results in two 4-coordinate and two 5-coordinate Na+ cations within each tetra­meric unit. The structure of 3 consists of a distorted octa­hedron where the bite angle of ligand L1 ranges between 74.72 (11) and 77.79 (11) degrees. The oxazoline (and anilide) N atoms occupy meridional sites such that for one ligand an anilide nitro­gen is trans to an oxazoline nitro­gen while for the other two oxazoline N atoms are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazoline N atoms trans to one another [2.376 (3), 2.390 (3) Å].

1. Chemical context

The parent ligand 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (H2-L1), easily prepared in high yield using established procedures (Gossage, 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), has been used as a precursor to biologically active quinilones [see, for example, Hong et al. (2018[He, J., Liu, Z., Du, G., Fu, Y., Zhang, S. & Li, X. (2014). Organometallics, 33, 6103-6112.])] and to make catalytically active transition-metal complexes (Saiyed et al., 2011[Saiyed, A. S., Joshi, R. S. & Bedekar, A. V. (2011). J. Chem. Res. (S), 35, 408-411.]; Resanović et al., 2011[Resanović, S., Wylie, R. S., Quail, J. W., Foucher, D. A. & Gossage, R. A. (2011). Inorg. Chem. 50, 9930-9932.]; Decken et al., 2005[Hong, W. D., Leung, S. C., Amporndanai, K., Davies, J., Priestley, R. S., Nixon, G. L., Berry, N. G., Samar Hasnain, S., Antonyuk, S., Ward, S. A., Biagini, G. A. & O'Neill, P. M. (2018). ACS Med. Chem. Lett. 9, 1205-1210.]). There are many examples of transition metals containing N-substituted variants of L1, either as neutral ligands (HR-L1) or as deprotonated anilido anions (R-L1). However, the only example of a transition-metal structure containing the deprotonated and unsubstituted anilido parent ligand (H-L1) is an Ru carbonyl hydride dimer (Cabeza et al., 2006[Cabeza, J. A., da Silva, I., del Río, I., Gossage, R. A., Miguel, D. & Suárez, M. (2006). Dalton Trans. pp. 2450-2455.]). No lanthanide complexes of this ligand have been reported, although there are several related lanthanide and yttrium complexes bearing oxazoline groups ortho to an anilido-like anionic centre. These complexes fall into two main ligand frameworks: di­phenyl­amido ligands bearing ortho-oxazoline functionality (Fig. 1[link]a: Bennett et al., 2013[Bennett, S. D., Pope, S. J. A. & Ward, B. D. (2013). Chem. Commun. 49, 6072-6074.], 2014[Bennett, S. D., Core, B. A., Blake, M. P., Pope, S. J. A., Mountford, P. & Ward, B. D. (2014). Dalton Trans. 43, 5871-5885.]; Liu et al., 2013[Lu, Z., Abbina, S., Sabin, J. R., Nemykin, V. N. & Du, G. (2013). Inorg. Chem. 52, 1454-1465.]) or carbazolide-bis­(oxazolines) (Fig. 1[link]b: Zou et al., 2011[Zou, J., Berg, D. J., Stuart, D., McDonald, R. & Twamley, B. (2011). Organometallics, 30, 4958-4967.], 2013[Zou, J., Berg, D. J., Oliver, A. & Twamley, B. (2013). Organometallics, 32, 6532-6540.]). The crystal structure of the tetra­meric sodium salt of this ligand, [Na4(H-L1)4]n (2), and its 6-coordinate, monomeric ytterbium complex, Yb(H-L1)3 (3) are reported in this communication. The ytterbium complex 3 can be prepared by either the salt metathesis reaction between 2 and YbCl3 or by the acid–base (protonolysis) reaction of Yb[N(SiMe3)2]3 with three equivalents of H2-L1. The yields and purity of 3 are better for the protonolysis reaction (Fig. 2[link]).

[Scheme 1]
[Figure 1]
Figure 1
Related ligand types: (a) oxazoline-di­phenyl­amides and (b) carbazolide-bis­(oxazolines).
[Figure 2]
Figure 2
Synthetic routes to [Na4(H-L1)4]n (2) and Yb(H-L1)3 (3) used in this work.

2. Structural commentary

The structure of 2 consists of tetra­meric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands (Fig. 3[link]a and 3b). The tetra­meric subunits are connected into polymeric chains by two of the four oxazoline oxygens (O9 and O37) bridging to Na+ cations (Na1 and Na3, respectively) in the adjacent tetra­mer (Fig. 4[link]). This results in two 4-coordinate (Na2, Na4) and two 5-coordinate (Na1, Na3) Na+ cations within each tetra­meric unit. There are only four examples of an oxazoline ligand bonding through the oxygen atom and in all cases this involves an electropositive metal ion [Li: Pawilkowski et al. (2009[Pawlikowski, A. V., Gray, T. S., Schoendorff, G., Baird, B., Ellern, A., Windus, T. & Sadow, A. D. (2009). Inorg. Chim. Acta, 362, 4517-4525.]) and Mukherjee et al. (2010[Nakada, M. & Inoue, M. (2007). Heterocycles, 72, 133-138.]); Na: Zou et al. (2013[Zou, J., Berg, D. J., Oliver, A. & Twamley, B. (2013). Organometallics, 32, 6532-6540.]); Nd: Kanbur et al. (2018[Kieltsch, I., Dubinina, G. G., Hamacher, C., Kaiser, A., Torres-Nieto, J., Hutchison, J. M., Klein, A., Budnikova, Y. & Vicic, D. A. (2010). Organometallics, 29, 1451-1456.])]. Significant bond lengths and angles for 2 are collected in Table 1[link]. The bridging Na—O(oxazoline) distances of 2.4003 (15) and 2.4099 (14) Å compare well the Na—O(oxazoline) distance of 2.432 (2) Å in NaCzx [Czx = 1,8-bis­(4′,4′-di­methyl­oxazolin-2′-yl)-3,6-di-tert-butyl­carbazole anion; Zou et al., 2013[Zou, J., Berg, D. J., Oliver, A. & Twamley, B. (2013). Organometallics, 32, 6532-6540.]]. The Na—N distances from the anilide N center to the 4- and 5-coordinate Na ions are essentially the same [2.3411 (18)–2.3701 (18) versus 2.3360 (18)–2.3611 (17) Å, respectively]. In sharp contrast, the distance between the oxazoline N and the Na ions is much shorter for the 4-coordinate Na centres [non-O-bridging oxazoline: 2.3626 (17), 2.3396 (17); O-bridging oxazoline: 2.4407 (17), 2.4035 (17) Å] than for the 5-coordinate Na [non-O-bridging oxazoline: 2.5515 (16), 2.7348 (17); O-bridging oxazoline: 2.9532 (18), 3.0327 (18) Å]. It is clear that the oxazoline nitro­gen is much more weakly coordinating to the 5-coordinate Na cation. In fact, for the O-bridging oxazoline, this distance is so long that it is debatable whether there is a significant bonding inter­action. However, this result is consistent with localization of electron density on the bridging oxygen at the expense of the nitro­gen atom in the same oxazoline ring.

Table 1
Selected geometric parameters (Å, °) for Na4(H-L1)4[link]

Na1—O9i 2.4003 (15) Na3—O37ii 2.4099 (14)
Na1—N1 2.3465 (18) Na3—N15 2.3360 (18)
Na1—N12 2.9532 (18) Na3—N26 2.5515 (16)
Na1—N43 2.3432 (17) Na3—N29 2.3611 (17)
Na1—N54 2.7348 (17) Na3—N40 3.0327 (18)
Na2—N1 2.3619 (18) Na4—N29 2.3701 (18)
Na2—N12 2.3626 (17) Na4—N40 2.3396 (17)
Na2—N15 2.3411 (18) Na4—N43 2.3519 (18)
Na2—N26 2.4407 (17) Na4—N54 2.4035 (17)
       
O9i—Na1—N12 107.61 (5) O37ii—Na3—N26 107.75 (5)
O9i—Na1—N54 103.04 (5) O37ii—Na3—N40 104.03 (5)
N1—Na1—O9i 105.11 (6) N15—Na3—O37ii 141.85 (6)
N1—Na1—N12 65.92 (5) N15—Na3—N26 72.56 (5)
N1—Na1—N54 92.92 (6) N15—Na3—N29 108.71 (6)
N43—Na1—O9i 142.94 (6) N15—Na3—N40 85.90 (5)
N43—Na1—N1 111.31 (6) N26—Na3—N40 147.75 (5)
N43—Na1—N12 93.51 (6) N29—Na3—O37ii 108.68 (6)
N43—Na1—N54 69.08 (5) N29—Na3—N26 100.25 (6)
N54—Na1—N12 146.27 (5) N29—Na3—N40 63.74 (5)
N1—Na2—N12 76.60 (6) N29—Na4—N54 119.12 (6)
N1—Na2—N26 125.43 (6) N40—Na4—N29 76.15 (6)
N12—Na2—N26 135.48 (6) N40—Na4—N43 113.77 (6)
N15—Na2—N1 138.81 (6) N40—Na4—N54 121.58 (6)
N15—Na2—N12 116.21 (7) N43—Na4—N29 156.58 (6)
N15—Na2—N26 74.56 (6) N43—Na4—N54 75.06 (6)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z.
[Figure 3]
Figure 3
Mol­ecular structure of polymeric [Na4(H-L1)4n (2): (a) asymmetric unit, top view and (b) asymmetric unit, side view. Probability ellipsoids are at 50% and hydrogen atoms are omitted for clarity (except the aniline NH).
[Figure 4]
Figure 4
Mol­ecular structure of polymeric [Na4(H-L1)4]n (2) showing the polymeric chain structure for three asymmetric units (top view). Probability ellipsoids are at 50% and hydrogen atoms are omitted for clarity (except the aniline NH).

The structure of Yb(H-L1)3 (3) is a distorted octa­hedron where all three H-L1 ligands are distinct (Fig. 5[link]). Significant geometric parameters for this compound are given in Table 2[link]. The bite angles of the H-L1 ligand range from 74.72 (11)–77.79 (11)°, which sits between that of the di­phenyl­amido-oxazoline [see Fig. 1[link]a: range 69.97 (11)–80.1 (5)°, median 74.3°; Bennett et al. (2013[Bennett, S. D., Pope, S. J. A. & Ward, B. D. (2013). Chem. Commun. 49, 6072-6074.], 2014[Bennett, S. D., Core, B. A., Blake, M. P., Pope, S. J. A., Mountford, P. & Ward, B. D. (2014). Dalton Trans. 43, 5871-5885.]); Liu et al. (2013[Lu, Z., Abbina, S., Sabin, J. R., Nemykin, V. N. & Du, G. (2013). Inorg. Chem. 52, 1454-1465.])] and carbazolide-bis­(oxazoline) [see Fig. 1[link]b: range 77.99 (4)–81.18 (10)°, median 80.3°; Zou et al. (2011[Zou, J., Berg, D. J., Stuart, D., McDonald, R. & Twamley, B. (2011). Organometallics, 30, 4958-4967.], 2013[Zou, J., Berg, D. J., Oliver, A. & Twamley, B. (2013). Organometallics, 32, 6532-6540.])] ligands. The oxazoline (and anilide) nitro­gens occupy meridional sites such that for one ligand an anilide nitro­gen is trans to an oxazoline nitro­gen while the other two oxazoline nitro­gens are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazolines trans to one another [2.376 (3), 2.390 (3) Å]. The Yb—N(anilide) distances [2.234 (3)–2.260 (3) Å] show less variation although the Yb—N(anilide) distance trans to the oxazoline N atom is slightly shorter than those trans to each other. Overall, this is consistent with a stronger trans influence for the anionic anilide nitro­gens as might be expected. The torsion angles representing twisting from coplanarity of the oxazoline and benzene units all fall between −9.3 (6) and +8.4 (6)° so the distortions from planarity of the H-L1 ligands in 3 are relatively small.

Table 2
Selected geometric parameters (Å, °) for Yb(H-L1)3[link]

N1—Yb1 2.252 (3) N26—Yb1 2.376 (3)
N12—Yb1 2.468 (3) N29—Yb1 2.234 (3)
N15—Yb1 2.260 (3) N40—Yb1 2.390 (3)
       
N1—Yb1—N12 74.72 (11) N26—Yb1—N40 153.87 (10)
N1—Yb1—N15 167.59 (12) N29—Yb1—N1 89.28 (12)
N1—Yb1—N26 109.02 (11) N29—Yb1—N12 159.71 (11)
N1—Yb1—N40 86.61 (11) N29—Yb1—N15 102.04 (12)
N15—Yb1—N12 95.23 (11) N29—Yb1—N26 82.94 (11)
N15—Yb1—N26 77.79 (11) N29—Yb1—N40 76.28 (11)
N15—Yb1—N40 91.10 (11) N40—Yb1—N12 114.28 (10)
N26—Yb1—N12 90.47 (10)    
       
C2—C7—C8—N12 8.6 (7) C30—C35—C36—N40 −9.3 (6)
C16—C21—C22—N26 8.4 (6)    
[Figure 5]
Figure 5
Mol­ecular structure of Yb(H-L1)3 (3). Probability ellipsoids are at 50% and hydrogen atoms are omitted for clarity (except the aniline NH).

3. Supra­molecular features

The structure of 2 consists of polymeric chains of Na4(H-L1)4 subunits connected through bridging oxazoline oxygen atoms (Fig. 4[link]). There are two different types of close contacts between adjacent polymer chains through the non-O-bridging oxazoline rings (Fig. 6[link], Table 3[link]). One type involves the close approach of one H atom of two different oxazoline CH2 groups to a non-bridging O atom of an adjacent chain (H10A⋯O51iii, 2.64 Å; H52B⋯O51iv, 2.58 Å; see Table 3[link] for symmetry operators). A C—H⋯π type contact is also observed between one H of the other non-O-bridged oxazoline ring and a carbon of an aromatic ring on a parallel chain (H24B⋯C20v, 2.82 Å; see Table 3[link] for symmetry operator). Similarly, the structure of 3 shows two types of close contacts between mol­ecules. One type is between a methyl hydrogen on an oxazoline ring and an oxazoline O atom of an adjacent mol­ecule (H28A⋯O9ii, 2.55 Å; see Table 4[link] for symmetry operator). Structure 3 also shows a close C—H⋯π contacts between the H atom of a CH2 group in one oxazoline ring with the aromatic ring of an adjacent mol­ecule (H38A⋯C17i, 3.01 Å; H38A⋯C18i, 2.58 Å; see Table 4[link] for symmetry operator), resulting in a zigzag chain of Yb(H-L1)3 units in the solid state (Fig. 7[link]).

Table 3
Significant inter­molecular inter­actions (Å) in (2) and (3)

Compound D—H⋯A H⋯A DA D—H⋯A
Na4(H-L1)4 (2) C10—H10A⋯O51iii 2.64 3.413 (2) 135.3
  C52—H52B⋯O51iv 2.58 3.439 (2) 145.2
  C24—H24B⋯C20v 2.82 3.720 (3) 151.4
         
Yb(H-L1)3 (3) C28—H28A⋯O9ii 2.55 3.382 (5) 142.8
  C38—H38A⋯C17i 3.01 3.501 (6) 149.0
  C38—H38A⋯C18i 2.58 3.548 (6) 165.8
Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) x, y − 1, z; (iii) x, y + 1, z; (iv) −x + 2, −y, −z + 1; (v) −x + 2, −y + 1, −z.

Table 4
Experimental details

  Na4(H-L1)4 Yb(H-L1)3
Crystal data
Chemical formula [Na4(C11H13N2O)4] [Yb(C11H13N2O)3]
Mr 848.89 740.74
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 87 86
a, b, c (Å) 10.9545 (5), 11.8785 (5), 18.8415 (8) 10.9428 (5), 9.8253 (5), 28.6089 (14)
α, β, γ (°) 105.266 (1), 97.446 (1), 106.120 (1) 90, 94.722 (1), 90
V3) 2217.20 (17) 3065.5 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.12 3.10
Crystal size (mm) 0.26 × 0.18 × 0.15 0.22 × 0.18 × 0.05
 
Data collection
Diffractometer SMART APEX CCD area detector SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.776, 0.983 0.219, 0.262
No. of measured, independent and observed [I > 2σ(I)] reflections 33551, 12487, 8858 39651, 7061, 5882
Rint 0.054 0.059
(sin θ/λ)max−1) 0.704 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.158, 1.05 0.032, 0.073, 1.07
No. of reflections 12487 7061
No. of parameters 565 394
No. of restraints 4 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.31 0.83, −1.19
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Decken, A., Gossage, R. A. & Yadav, P. N. (2005). Can. J. Chem. 83, 1185-1189.]).
[Figure 6]
Figure 6
Close contacts between polymeric chains of Na4(H-L1)4 (2): inter­chain contacts consisting of C—H⋯O and C—H⋯π inter­actions are shown in teal; the chain direction is indicated by the arrow.
[Figure 7]
Figure 7
Close contacts between mol­ecules of Yb(H-L1)3 (3) in the solid state: C—H⋯O and C—H⋯π inter­actions between adjacent mol­ecules are shown in teal.

4. Database survey

There are 68 structure in the CSD (version 5.39, update of November, 2018; Groom et al., 2016[Gossage, R. A. (2009). Experiments in Green and Sustainable Chemistry, edited by H. W. Roesky & D. K. Kennepohl, pp. 19-24. Weinheim: Wiley-VCH.]) containing a substituted anilido-oxazoline ligand (R-L1) coordinated to a transition or main group metal. [COZFIH (Coeffard et al., 2009[Coeffard, V., Müller-Bunz, H. & Guiry, P. J. (2009). Org. Biomol. Chem. 7, 1723-1734.]); DEJHIK (Cabeza et al., 2006[Cabeza, J. A., da Silva, I., del Río, I., Gossage, R. A., Miguel, D. & Suárez, M. (2006). Dalton Trans. pp. 2450-2455.]); EDEBOG (Niwa & Nakada, 2012[Niwa, T. & Nakada, M. (2012). J. Am. Chem. Soc. 134, 13538-13541.]); EFICON (Bian et al., 2014[Bian, S., Abbina, S., Lu, Z., Kolodka, E. & Du, G. (2014). Organometallics, 33, 2489-2495.]); FONYAI (Mikami et al., 1999[Mukherjee, D., Ellern, A. & Sadow, A. D. (2010). J. Am. Chem. Soc. 132, 7582-7583.]); GIWYES (Chen et al., 2014[Chen, C.-T., Liao, C.-H., Peng, K.-F., Chen, M.-T. & Huang, T.-L. (2014). J. Organomet. Chem. 753, 9-19.]); GUTTOF (Inagaki et al., 2010[Inagaki, T., Phong, le T., Furuta, A., Ito, J. & Nishiyama, H. (2010). Chem. Eur. J. 16, 3090-3096.]); ISEWAG (Abbina et al., 2016[Abbina, S., Chidara, V. K., Bian, S., Ugrinov, A. & Du, G. (2016). Chem. Sel. 1, 3175-3183.]); LUNGOS (Bauer et al., 2015a[Bauer, G., Scopelliti, R. & Hu, X. (2015a). Private communications (refcodes LUNGOS and LUNHAF). CCDC, Cambridge, England.]); LUNHAF (Bauer et al., 2015a[Bauer, G., Scopelliti, R. & Hu, X. (2015a). Private communications (refcodes LUNGOS and LUNHAF). CCDC, Cambridge, England.]); MALVUS, MALWAZ and MALWED (Kieltsch et al., 2010[Liu, H., He, J., Liu, Z., Lin, Z., Du, G., Zhang, S. & Li, X. (2013). Macromolecules, 46, 3257-3265.]); MICTID, MICTOJ, MICTUP, MICVAX and MICVEB (Lu et al., 2013[McKeon, S. C., Muller-Bunz, H. & Guiry, P. J. (2011). Eur. J. Org. Chem. pp. 7107-7115.]); MUQNAN and MUQNER (Wan et al., 2002[Wan, Z.-K., Choi, H.-W., Kang, F.-A., Nakajima, K., Demeke, D. & Kishi, Y. (2002). Org. Lett. 4, 4431-4434.]); NANFEP, NANFIT, NANFOZ, NANFUF, NANGAM, NANGEQ, NANGIU and NANGOA (Peng & Chen, 2011[Peng, K.-F. & Chen, C.-T. (2011). Eur. J. Inorg. Chem. pp. 5182-5195.]); OCIHOX, OCIHUD and OCIJAL (Cabaleiro et al., 2001[Cabaleiro, S., Pérez-Lourido, P., Castro, J., Romero, J., García-Vázquez, J. A. & Sousa, A. (2001). Transition Met. Chem. 26, 709-716.]); PUDKUV, PUDLAC, PUDLEG and PUDLIK (Chen et al., 2009a[Chen, C.-T., Weng, H.-J., Chen, M.-T., Huang, C.-A. & Peng, K.-F. (2009a). Eur. J. Inorg. Chem. pp. 2129-2135.]); QIFFES and QIFFIW (Abbina & Du, 2012[Abbina, S. & Du, G. (2012). Organometallics, 31, 7394-7403.]); RAKTAA (McKeon et al., 2011[Mikami, K., Hatano, H. & Terada, M. (1999). Chem. Lett. 28, 55-56.]); RAMFIW, RAMFOC, RAMFUI, RAMGAP and RAMGET (Chen & Chen, 2011[Chen, M.-T. & Chen, C.-T. (2011). Dalton Trans. 40, 12886-12894.]); RAMKEY (Huang et al., 2017[Huang, Y., He, J., Liu, Z., Cai, G., Zhang, S. & Li, X. (2017). Polym. Chem. 8, 1217-1222.]); ROGWAM (Nakada & Inoue, 2007[Kanbur, U., Ellern, A. & Sadow, A. D. (2018). Organometallics, 37, 4409-4414.]); SELVIQ (Nixon & Ward, 2012[Nixon, T. D. & Ward, B. D. (2012). Chem. Commun. 48, 11790-11792.]); SUYQOS, SUYQUY, SUYRAF and SUYREJ (Castro et al., 2001[Castro, J., Cabaleiro, S., Pérez-Lourido, P., Romero, J., García-Vázquez, J. A. & Sousa, A. (2001). Polyhedron, 20, 2329-2337.]); TIMLIL and TIMLOR (Chen et al., 2007[Chen, C.-T., Chan, C.-Y., Huang, C.-A., Chen, M.-T. & Peng, K.-F. (2007). Dalton Trans. pp. 4073-4078.]); VOZZOB, VOZZUH and VUBBAX (Bauer et al., 2015b[Bauer, G., Wodrich, M. D., Scopelliti, R. & Hu, X. (2015b). Organometallics, 34, 289-298.]); VUQZAK (O'Reilly et al., 2015[O'Reilly, S., Aylward, M., Keogh-Hansen, C., Fitzpatrick, B., McManus, H. A., Müller-Bunz, H. & Guiry, P. J. (2015). J. Org. Chem. 80, 10177-10186.]); WUGQOF, WUGQUL, WUGRAS and WUGREW (Chen et al., 2009b[Chen, M.-T., Chang, P.-J., Huang, C.-A., Peng, K.-F. & Chen, C.-T. (2009b). Dalton Trans. pp. 9068-9074.]); XIGYEU (Wu et al., 2018[Wu, X., Yang, Z., Yan, X., Zhang, P., Wang, L., Guo, G., Dong, Y. & Li, X. (2018). Polym. Chem. 9, 4856-4865.]); XOQVEG and XOQVIK (He et al., 2014[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]); XOYVOW, XOYVUC, XOYWAJ, XOYWEN and XOYWIR (Castro et al., 2002[Castro, J., Cabaleiro, S., Pérez-Lourido, P., Romero, J., García-Vázquez, J. A. & Sousa, A. (2002). Z. Anorg. Allg. Chem. 628, 1210-1210.])]. In contrast, there is only one structure of an unsubstituted anilido-oxazoline ligand (H-L1) coordinated to a transition metal (Cabeza et al., 2006[Cabeza, J. A., da Silva, I., del Río, I., Gossage, R. A., Miguel, D. & Suárez, M. (2006). Dalton Trans. pp. 2450-2455.]) and there are no structures of this type with a lanthanide metal. There are 10 lanthanide complexes that have been structurally characterized with the related ligands shown in Fig. 1[link]a and 1b as discussed in the Chemical context.

5. Synthesis and crystallization

General. All solvents were purchased from Sigma–Aldrich Chemicals and dried by distillation from sodium under nitro­gen. 2-(4′,4′-Dimethyl-2′-oxazolin­yl)aniline was prepared according to Gossage (2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and purified by recrystallization from hot toluene. Yb[N(SiMe)3)2]3 was prepared by analogy to the procedure of Bradley et al. (1973[Bradley, D. C., Ghotra, J. S. & Hart, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1021-1023.]) using NaN(SiMe3)2 and YbCl3 and was recrystallized from a hot mixture of hexane and toluene. NMR spectra were recorded on a Bruker AV III 300 MHz Spectrometer in sealable Teflon-valved tubes and were referenced to residual solvent resonances. The line widths at half maximum (ν1/2 in Hz) were measured for all paramagnetic resonances in 3 and are reported below. Elemental analyses were performed by Canadian Microanalytical Ltd.

Synthesis of [Na4(L1)4]n. One equivalent of Na[N(SiMe3)2] (0.183 g, 1.00 mmol) was dissolved in toluene (10 mL) and to this was added 1 equivalent of 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (H2-L1, 0.190 g, 1.00 mmol) in 20 mL toluene under vigorous stirring. The colourless reaction mixture was stirred overnight, filtered through Celite on a sintered glass frit and the solvent removed under reduced pressure to leave a tacky white solid. Recrystallization of the product from a hot mixture of toluene and hexane afforded clear pale-yellow crystals of [Na4(L1)4]n (2). Yield: 0.178 g (84%). 1H NMR (THF-d8, 300 MHz, 296 K): δ 7.568 (1H, d, 3-ar­ylH), 7.067 (1H, t, 5-ar­ylH), 6.635 (1H, d, 6-ar­ylH), 6.62 (1H, br s, NH, overlaps previous resonance), 6.459 (1H, t, 4-ar­ylH), 3.954 (2H, s, OCH2), 1.315 (6H, s, C(CH3)2); 13C{1H} (THF-d8, 75 MHz, 296 K): δ 163.12 (C=N), 150.79 (ar­ylCNH), 132.31 (5-ar­ylCH), 130.04 (3-ar­ylCH), 115.90 (6-ar­ylCH), 115.15 (4-ar­ylCH), 109.27 (2-ar­ylC—C=N), 77.82 (OCH2), 68.58 [NC(CH3)2], 28.99 [NC(CH3)2].

Synthesis of Yb(H-L1)3 (3) Method A: A solution of [Na4(L1)4]n (2) (0.250 g, 0.295 mmol) in THF (10 mL) was added to a suspension of YbCl3 (0.062 g, 0.22 mmol) in THF (5 mL) under vigorous stirring. The suspension was stirred overnight at room temperature, filtered through Celite on a sintered glass frit and the filtrate was evaporated to dryness under reduced pressure. The yellow solid was recrystallized from a mixture of toluene and hexane at 243 K overnight. Yield: 0.102 g (63%). Method B: A solution of 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (0.250 g, 1.31 mmol) in 25 mL toluene was prepared in the glovebox and added by Pasteur pipette to a vigorously stirred solution of Yb[N(SiMe)3)2]3 (0.287 g, 0.438 mmol) in 15 mL of toluene. The pale-yellow solution darkened to golden yellow on stirring overnight. The solution was filtered through Celite on a sintered glass frit and the filtrate was evaporated to dryness under reduced pressure. The orange–yellow solid was recrystallized from a mixture of toluene and hexane at 243 K yielding yellow crystals. Yield: 0.301 g (93%). 1H NMR (C6D6, 300 MHz, 296 K): δ 88.4 (6H, ν1/2 = 700 Hz), 49.4 (3H, overlaps next resonance), 47.9 (6H, ν1/2 = 350 Hz, overlaps previous resonance), 12.86 (2H, ν1/2 = 9 Hz), 11.70 (4H, ν1/2 = 12 Hz), 10.93 (4H, ν1/2 = 12 Hz), 10.00 (4H, ν1/2 = 25 Hz), 9.30 (4H, ν1/2 = 70 Hz), 1.26 (2H, t), 0.96 (2H, t), −2.77 (3H, ν1/2 = 100 Hz), −3.89 (2H, ν1/2 = 14 Hz), −5.38 (2H, ν1/2 = 20 Hz), −11.2 (6H, ν1/2 ∼150 Hz, overlaps next resonance), −11.4 (6H, ν1/2 ∼300 Hz, overlaps previous resonance), −16.0 (3H, ν1/2 = 140 Hz), −24.4 (3H, ν1/2 = 800 Hz), −77.2 (3H, ν1/2 = 600 Hz). Analysis calculated for C33H39N6O3Yb (%): C, 53.49; H, 5.31; N, 11.35. Found: C, 53.39; H, 5.22; N, 11.11.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In Na4(H-L1)4 (2), the H atoms on N1, N15, N29 and N43 were located in a difference map and refined with distance restraints of 0.88 (1) Å. Uiso(H) were freely refined. In Yb(H-L1)3 (3), the H atoms on N1, N15 were added geometrically and refined with distance restraints of 0.88 (1) Å, with Uiso(H) = 1.2Ueq(N). H29 was located in the difference map for geometrical considerations and refined with coordinates riding on N29 with Uiso(H) = 1.2Ueq(N). All the H atoms bonded to carbon were refined in geometrically calculated positions, with C—H= 0.95 (methine), 0.99 (methyl­ene), and 0.98 Å (meth­yl), and with Uiso(H) = 1.2Ueq(C) (methine and methyl­ene) or 1.5Ueq(C) (meth­yl).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[bis[µ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][µ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)] (Na4H-L142) top
Crystal data top
[Na4(C11H13N2O)4]Z = 2
Mr = 848.89F(000) = 896
Triclinic, P1Dx = 1.272 Mg m3
a = 10.9545 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8785 (5) ÅCell parameters from 9632 reflections
c = 18.8415 (8) Åθ = 2.2–29.9°
α = 105.266 (1)°µ = 0.12 mm1
β = 97.446 (1)°T = 87 K
γ = 106.120 (1)°Needle, pale yellow
V = 2217.20 (17) Å30.26 × 0.18 × 0.15 mm
Data collection top
SMART APEX CCD area detector
diffractometer
12487 independent reflections
Radiation source: sealed X-ray tube8858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 8.3 pixels mm-1θmax = 30.1°, θmin = 1.9°
φ and ω scansh = 1514
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1616
Tmin = 0.776, Tmax = 0.983l = 2626
33551 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: mixed
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0734P)2 + 0.1127P]
where P = (Fo2 + 2Fc2)/3
12487 reflections(Δ/σ)max < 0.001
565 parametersΔρmax = 0.49 e Å3
4 restraintsΔρmin = 0.31 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.0 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Donor N-H hydrogen atoms located on the difference map and refined with restraints (DFIX).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.95553 (8)0.27949 (7)0.39918 (4)0.02273 (18)
Na21.00695 (7)0.40238 (7)0.25656 (4)0.01977 (17)
Na31.01274 (8)0.22441 (7)0.09593 (4)0.01954 (17)
Na40.96731 (7)0.11951 (7)0.24031 (4)0.01974 (17)
O90.97838 (14)0.66218 (12)0.46616 (7)0.0223 (3)
O231.05206 (13)0.61390 (12)0.11145 (8)0.0240 (3)
O370.92170 (12)0.17535 (11)0.02263 (7)0.0172 (3)
O510.93031 (13)0.09390 (12)0.40245 (7)0.0190 (3)
N11.13690 (16)0.38393 (14)0.36039 (9)0.0194 (3)
H11.1910 (17)0.3417 (18)0.3515 (12)0.023 (6)*
N120.93307 (16)0.49954 (15)0.36081 (9)0.0210 (3)
N150.84608 (16)0.27468 (14)0.14907 (9)0.0188 (3)
H150.7835 (15)0.2151 (14)0.1541 (11)0.016 (5)*
N261.08503 (15)0.45903 (13)0.15111 (8)0.0154 (3)
N291.14745 (16)0.17884 (14)0.18512 (9)0.0187 (3)
H291.2125 (16)0.2441 (15)0.2135 (11)0.032 (6)*
N400.90467 (15)0.02419 (14)0.11936 (9)0.0188 (3)
N430.79137 (16)0.14194 (14)0.29563 (9)0.0177 (3)
H430.7403 (18)0.1721 (19)0.2724 (11)0.025 (6)*
N540.99785 (15)0.05812 (14)0.35133 (8)0.0157 (3)
C21.21029 (19)0.49537 (17)0.40943 (10)0.0185 (4)
C31.3480 (2)0.52674 (19)0.43478 (11)0.0240 (4)
H31.3876590.4659810.4174270.029*
C41.4255 (2)0.6402 (2)0.48287 (12)0.0294 (5)
H41.5166050.6561420.4972310.035*
C51.3727 (2)0.7324 (2)0.51099 (11)0.0307 (5)
H51.4267900.8111930.5439080.037*
C61.2407 (2)0.70662 (18)0.48998 (11)0.0244 (4)
H61.2042320.7689380.5095150.029*
C71.1568 (2)0.59127 (17)0.44049 (10)0.0192 (4)
C81.01968 (19)0.57690 (16)0.41890 (10)0.0179 (4)
C100.8393 (2)0.62951 (19)0.43632 (11)0.0235 (4)
H10A0.8162980.7033010.4332710.028*
H10B0.7879100.5912490.4684320.028*
C110.8141 (2)0.53719 (18)0.35752 (11)0.0210 (4)
C130.6923 (2)0.4263 (2)0.34069 (13)0.0300 (5)
H13A0.6820240.3694260.2903900.045*
H13B0.6161210.4540570.3424450.045*
H13C0.7003050.3840320.3783660.045*
C140.8081 (2)0.59894 (19)0.29623 (11)0.0285 (5)
H14A0.8866000.6708110.3081210.043*
H14B0.7310410.6255640.2937030.043*
H14C0.8027840.5400860.2475120.043*
C160.78884 (18)0.34087 (16)0.11669 (10)0.0159 (4)
C170.64991 (19)0.30802 (17)0.09628 (11)0.0214 (4)
H170.5983240.2365070.1052050.026*
C180.5880 (2)0.37338 (19)0.06493 (12)0.0256 (4)
H180.4955210.3476100.0533310.031*
C190.6594 (2)0.4787 (2)0.04951 (13)0.0289 (5)
H190.6165760.5246730.0274260.035*
C200.7927 (2)0.51362 (19)0.06716 (12)0.0251 (4)
H200.8414480.5843820.0563540.030*
C210.86026 (18)0.44926 (17)0.10054 (10)0.0169 (4)
C221.00186 (19)0.50168 (16)0.12171 (10)0.0165 (4)
C241.19172 (19)0.64358 (18)0.12865 (12)0.0226 (4)
H24A1.2346440.7309690.1598430.027*
H24B1.2252420.6286600.0818930.027*
C251.21513 (18)0.55680 (17)0.17229 (11)0.0191 (4)
C271.2462 (2)0.6203 (2)0.25726 (12)0.0300 (5)
H27A1.1765040.6528620.2708470.045*
H27B1.3289090.6881720.2719620.045*
H27C1.2530070.5604750.2835550.045*
C281.3196 (2)0.5025 (2)0.14974 (13)0.0284 (5)
H28A1.3259090.4429060.1763120.043*
H28B1.4034890.5686770.1631270.043*
H28C1.2970270.4606800.0952160.043*
C301.20008 (18)0.09568 (17)0.15045 (10)0.0157 (4)
C311.33777 (19)0.12026 (18)0.16195 (11)0.0215 (4)
H311.3933510.1984580.1948340.026*
C321.3932 (2)0.03672 (19)0.12792 (12)0.0253 (4)
H321.4853710.0583760.1377840.030*
C331.3172 (2)0.08002 (19)0.07886 (12)0.0254 (4)
H331.3561610.1381640.0557910.031*
C341.18429 (19)0.10787 (18)0.06512 (11)0.0200 (4)
H341.1315340.1866440.0315800.024*
C351.12306 (18)0.02447 (16)0.09871 (10)0.0153 (4)
C360.98178 (18)0.06778 (16)0.08327 (10)0.0148 (4)
C380.78300 (18)0.19763 (17)0.01536 (10)0.0176 (4)
H38A0.7360960.2856920.0074730.021*
H38B0.7470540.1739730.0273520.021*
C390.77194 (18)0.11577 (17)0.09051 (11)0.0192 (4)
C410.7463 (2)0.1871 (2)0.14685 (12)0.0301 (5)
H41A0.8104570.2296950.1508090.045*
H41B0.6585040.2477790.1294700.045*
H41C0.7533630.1294170.1963600.045*
C420.6701 (2)0.0533 (2)0.08068 (13)0.0298 (5)
H42A0.6670930.0018140.1300650.045*
H42B0.5846630.1162160.0572190.045*
H42C0.6928720.0015560.0484150.045*
C440.71576 (18)0.05709 (16)0.32088 (10)0.0165 (4)
C450.57763 (19)0.03168 (18)0.31010 (11)0.0233 (4)
H450.5385900.0741410.2827480.028*
C460.4998 (2)0.05047 (19)0.33726 (13)0.0285 (5)
H460.4088270.0635960.3283680.034*
C470.5513 (2)0.11577 (19)0.37792 (12)0.0274 (5)
H470.4969040.1713050.3979080.033*
C480.68180 (19)0.09766 (17)0.38817 (11)0.0210 (4)
H480.7172830.1424420.4153350.025*
C490.76637 (18)0.01501 (16)0.36004 (10)0.0157 (4)
C500.90186 (18)0.01006 (16)0.37005 (9)0.0149 (4)
C521.07034 (19)0.06290 (19)0.41603 (11)0.0210 (4)
H52A1.0958850.1382790.4041310.025*
H52B1.1112400.0128080.4691990.025*
C531.10936 (18)0.01097 (17)0.36303 (10)0.0172 (4)
C551.1135 (2)0.07327 (18)0.28694 (11)0.0220 (4)
H55A1.0300490.1401260.2661360.033*
H55B1.1835940.1083350.2939560.033*
H55C1.1295910.0252540.2520430.033*
C561.23701 (19)0.11658 (18)0.39697 (12)0.0262 (5)
H56A1.2601520.1577760.3595310.039*
H56B1.3058500.0841400.4119500.039*
H56C1.2273430.1759410.4413030.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0299 (4)0.0196 (4)0.0135 (4)0.0026 (3)0.0046 (3)0.0024 (3)
Na20.0246 (4)0.0207 (4)0.0128 (4)0.0069 (3)0.0036 (3)0.0040 (3)
Na30.0284 (4)0.0190 (4)0.0132 (4)0.0111 (3)0.0049 (3)0.0044 (3)
Na40.0248 (4)0.0210 (4)0.0134 (4)0.0075 (3)0.0063 (3)0.0044 (3)
O90.0364 (8)0.0185 (7)0.0140 (6)0.0137 (6)0.0065 (6)0.0028 (5)
O230.0216 (7)0.0206 (7)0.0333 (8)0.0055 (6)0.0045 (6)0.0163 (6)
O370.0198 (7)0.0163 (6)0.0137 (6)0.0057 (5)0.0036 (5)0.0019 (5)
O510.0212 (7)0.0197 (6)0.0201 (7)0.0083 (6)0.0038 (5)0.0111 (5)
N10.0244 (9)0.0151 (7)0.0181 (8)0.0072 (7)0.0044 (7)0.0037 (6)
N120.0238 (9)0.0190 (8)0.0191 (8)0.0081 (7)0.0062 (7)0.0025 (6)
N150.0197 (8)0.0137 (7)0.0219 (8)0.0022 (6)0.0036 (7)0.0076 (6)
N260.0159 (8)0.0129 (7)0.0157 (7)0.0030 (6)0.0023 (6)0.0039 (6)
N290.0207 (8)0.0160 (8)0.0162 (8)0.0050 (7)0.0011 (6)0.0022 (6)
N400.0178 (8)0.0199 (8)0.0160 (8)0.0048 (7)0.0033 (6)0.0025 (6)
N430.0234 (9)0.0169 (7)0.0152 (8)0.0108 (7)0.0015 (6)0.0057 (6)
N540.0153 (8)0.0162 (7)0.0158 (7)0.0058 (6)0.0023 (6)0.0052 (6)
C20.0253 (10)0.0165 (9)0.0153 (9)0.0040 (8)0.0053 (8)0.0100 (7)
C30.0244 (11)0.0277 (10)0.0219 (10)0.0082 (9)0.0048 (8)0.0114 (8)
C40.0234 (11)0.0357 (12)0.0221 (10)0.0005 (9)0.0001 (9)0.0108 (9)
C50.0346 (12)0.0255 (11)0.0178 (10)0.0072 (9)0.0033 (9)0.0029 (8)
C60.0349 (12)0.0184 (9)0.0143 (9)0.0016 (9)0.0069 (8)0.0029 (7)
C70.0281 (11)0.0155 (8)0.0115 (8)0.0024 (8)0.0045 (7)0.0051 (7)
C80.0311 (11)0.0117 (8)0.0135 (8)0.0076 (8)0.0084 (8)0.0057 (7)
C100.0350 (12)0.0239 (10)0.0184 (9)0.0161 (9)0.0109 (9)0.0085 (8)
C110.0279 (11)0.0195 (9)0.0200 (9)0.0124 (8)0.0084 (8)0.0071 (8)
C130.0275 (12)0.0257 (11)0.0405 (13)0.0120 (9)0.0083 (10)0.0125 (10)
C140.0452 (14)0.0234 (10)0.0173 (10)0.0123 (10)0.0067 (9)0.0057 (8)
C160.0197 (9)0.0127 (8)0.0124 (8)0.0050 (7)0.0026 (7)0.0000 (7)
C170.0194 (10)0.0155 (9)0.0254 (10)0.0028 (8)0.0047 (8)0.0032 (8)
C180.0170 (10)0.0257 (10)0.0317 (11)0.0089 (8)0.0022 (8)0.0046 (9)
C190.0252 (11)0.0305 (11)0.0373 (12)0.0143 (9)0.0038 (9)0.0168 (10)
C200.0267 (11)0.0251 (10)0.0291 (11)0.0108 (9)0.0064 (9)0.0150 (9)
C210.0203 (10)0.0164 (8)0.0135 (8)0.0063 (7)0.0034 (7)0.0037 (7)
C220.0227 (10)0.0123 (8)0.0142 (8)0.0036 (7)0.0062 (7)0.0048 (7)
C240.0217 (10)0.0189 (9)0.0267 (10)0.0031 (8)0.0046 (8)0.0104 (8)
C250.0184 (9)0.0153 (9)0.0198 (9)0.0011 (7)0.0004 (7)0.0059 (7)
C270.0312 (12)0.0237 (10)0.0235 (11)0.0032 (9)0.0030 (9)0.0058 (9)
C280.0193 (10)0.0258 (10)0.0429 (13)0.0077 (9)0.0075 (9)0.0147 (10)
C300.0188 (9)0.0173 (8)0.0132 (8)0.0051 (7)0.0029 (7)0.0095 (7)
C310.0181 (10)0.0207 (9)0.0227 (10)0.0023 (8)0.0009 (8)0.0080 (8)
C320.0165 (10)0.0299 (11)0.0329 (11)0.0081 (8)0.0057 (8)0.0145 (9)
C330.0244 (11)0.0261 (10)0.0318 (11)0.0137 (9)0.0102 (9)0.0111 (9)
C340.0228 (10)0.0194 (9)0.0183 (9)0.0077 (8)0.0044 (8)0.0059 (7)
C350.0172 (9)0.0178 (9)0.0131 (8)0.0065 (7)0.0036 (7)0.0074 (7)
C360.0214 (9)0.0135 (8)0.0105 (8)0.0063 (7)0.0023 (7)0.0054 (7)
C380.0168 (9)0.0178 (9)0.0156 (9)0.0035 (7)0.0009 (7)0.0045 (7)
C390.0177 (9)0.0172 (9)0.0185 (9)0.0032 (7)0.0046 (7)0.0015 (7)
C410.0381 (13)0.0269 (11)0.0210 (10)0.0044 (10)0.0120 (9)0.0045 (9)
C420.0164 (10)0.0243 (10)0.0412 (13)0.0054 (8)0.0034 (9)0.0007 (9)
C440.0197 (9)0.0156 (8)0.0106 (8)0.0066 (7)0.0021 (7)0.0018 (7)
C450.0201 (10)0.0223 (10)0.0234 (10)0.0098 (8)0.0018 (8)0.0007 (8)
C460.0149 (10)0.0254 (10)0.0363 (12)0.0032 (8)0.0040 (9)0.0007 (9)
C470.0217 (11)0.0253 (10)0.0290 (11)0.0001 (9)0.0083 (9)0.0055 (9)
C480.0233 (10)0.0183 (9)0.0179 (9)0.0031 (8)0.0033 (8)0.0045 (7)
C490.0180 (9)0.0152 (8)0.0107 (8)0.0040 (7)0.0021 (7)0.0009 (7)
C500.0200 (9)0.0132 (8)0.0100 (8)0.0055 (7)0.0005 (7)0.0025 (6)
C520.0203 (10)0.0259 (10)0.0191 (9)0.0110 (8)0.0017 (8)0.0083 (8)
C530.0179 (9)0.0161 (8)0.0178 (9)0.0077 (7)0.0019 (7)0.0041 (7)
C550.0232 (10)0.0239 (10)0.0214 (10)0.0116 (8)0.0062 (8)0.0066 (8)
C560.0169 (10)0.0215 (10)0.0355 (12)0.0059 (8)0.0026 (9)0.0031 (9)
Geometric parameters (Å, º) top
Na1—O9i2.4003 (15)C16—C171.434 (3)
Na1—N12.3465 (18)C16—C211.439 (3)
Na1—N122.9532 (18)C17—H170.9500
Na1—N432.3432 (17)C17—C181.357 (3)
Na1—N542.7348 (17)C18—H180.9500
Na2—N12.3619 (18)C18—C191.403 (3)
Na2—N122.3626 (17)C19—H190.9500
Na2—N152.3411 (18)C19—C201.370 (3)
Na2—N262.4407 (17)C20—H200.9500
Na3—O37ii2.4099 (14)C20—C211.405 (3)
Na3—N152.3360 (18)C21—C221.458 (3)
Na3—N262.5515 (16)C24—H24A0.9900
Na3—N292.3611 (17)C24—H24B0.9900
Na3—N403.0327 (18)C24—C251.531 (3)
Na4—N292.3701 (18)C25—C271.526 (3)
Na4—N402.3396 (17)C25—C281.516 (3)
Na4—N432.3519 (18)C27—H27A0.9800
Na4—N542.4035 (17)C27—H27B0.9800
O9—C81.381 (2)C27—H27C0.9800
O9—C101.457 (3)C28—H28A0.9800
O23—C221.369 (2)C28—H28B0.9800
O23—C241.443 (2)C28—H28C0.9800
O37—C361.393 (2)C30—C311.430 (3)
O37—C381.450 (2)C30—C351.444 (2)
O51—C501.380 (2)C31—H310.9500
O51—C521.445 (2)C31—C321.366 (3)
N1—H10.882 (9)C32—H320.9500
N1—C21.351 (2)C32—C331.398 (3)
N12—C81.288 (2)C33—H330.9500
N12—C111.490 (3)C33—C341.373 (3)
N15—H150.873 (9)C34—H340.9500
N15—C161.346 (2)C34—C351.407 (3)
N26—C221.291 (2)C35—C361.452 (3)
N26—C251.493 (2)C38—H38A0.9900
N29—H290.878 (10)C38—H38B0.9900
N29—C301.345 (2)C38—C391.533 (3)
N40—C361.285 (2)C39—C411.530 (3)
N40—C391.483 (2)C39—C421.519 (3)
N43—H430.873 (9)C41—H41A0.9800
N43—C441.349 (2)C41—H41C0.9800
N54—C501.288 (2)C42—H42A0.9800
N54—C531.493 (2)C42—H42B0.9800
C2—C31.432 (3)C42—H42C0.9800
C2—C71.446 (3)C44—C451.434 (3)
C3—H30.9500C44—C491.441 (3)
C3—C41.371 (3)C45—H450.9500
C4—H40.9500C45—C461.362 (3)
C4—C51.393 (3)C46—H460.9500
C5—H50.9500C46—C471.397 (3)
C5—C61.372 (3)C47—H470.9500
C6—H60.9500C47—C481.365 (3)
C6—C71.413 (3)C48—H480.9500
C7—C81.454 (3)C48—C491.414 (3)
C10—H10A0.9900C49—C501.454 (3)
C10—H10B0.9900C52—H52A0.9900
C10—C111.533 (3)C52—H52B0.9900
C11—C131.519 (3)C52—C531.521 (3)
C11—C141.526 (3)C53—C551.532 (3)
C13—H13A0.9800C53—C561.520 (3)
C13—H13B0.9800C55—H55B0.9800
C13—H13C0.9800C55—H55C0.9800
C14—H14A0.9800C56—H56A0.9800
C14—H14B0.9800C56—H56B0.9800
C14—H14C0.9800
O9i—Na1—N12107.61 (5)N15—C16—C21123.45 (17)
O9i—Na1—N54103.04 (5)C17—C16—C21114.92 (17)
N1—Na1—O9i105.11 (6)C16—C17—H17118.2
N1—Na1—N1265.92 (5)C18—C17—C16123.67 (18)
N1—Na1—N5492.92 (6)C18—C17—H17118.2
N43—Na1—O9i142.94 (6)C17—C18—H18119.7
N43—Na1—N1111.31 (6)C17—C18—C19120.53 (19)
N43—Na1—N1293.51 (6)C19—C18—H18119.7
N43—Na1—N5469.08 (5)C18—C19—H19120.9
N54—Na1—N12146.27 (5)C20—C19—C18118.25 (19)
N1—Na2—N1276.60 (6)C20—C19—H19120.9
N1—Na2—N26125.43 (6)C19—C20—H20118.6
N12—Na2—N26135.48 (6)C19—C20—C21122.87 (19)
N15—Na2—N1138.81 (6)C21—C20—H20118.6
N15—Na2—N12116.21 (7)C16—C21—C22122.91 (16)
N15—Na2—N2674.56 (6)C20—C21—C16119.76 (18)
O37ii—Na3—N26107.75 (5)C20—C21—C22117.22 (17)
O37ii—Na3—N40104.03 (5)O23—C22—C21114.87 (16)
N15—Na3—O37ii141.85 (6)N26—C22—O23116.13 (16)
N15—Na3—N2672.56 (5)N26—C22—C21128.95 (16)
N15—Na3—N29108.71 (6)O23—C24—H24A110.9
N15—Na3—N4085.90 (5)O23—C24—H24B110.9
N26—Na3—N40147.75 (5)O23—C24—C25104.31 (15)
N29—Na3—O37ii108.68 (6)H24A—C24—H24B108.9
N29—Na3—N26100.25 (6)C25—C24—H24A110.9
N29—Na3—N4063.74 (5)C25—C24—H24B110.9
N29—Na4—N54119.12 (6)N26—C25—C24102.30 (14)
N40—Na4—N2976.15 (6)N26—C25—C27108.12 (16)
N40—Na4—N43113.77 (6)N26—C25—C28111.12 (15)
N40—Na4—N54121.58 (6)C27—C25—C24111.40 (16)
N43—Na4—N29156.58 (6)C28—C25—C24112.81 (16)
N43—Na4—N5475.06 (6)C28—C25—C27110.72 (17)
C8—O9—Na1i121.72 (11)C25—C27—H27A109.5
C8—O9—C10106.14 (14)C25—C27—H27B109.5
C10—O9—Na1i115.61 (11)C25—C27—H27C109.5
C22—O23—C24106.11 (14)H27A—C27—H27B109.5
C36—O37—Na3ii125.75 (11)H27A—C27—H27C109.5
C36—O37—C38105.65 (13)H27B—C27—H27C109.5
C38—O37—Na3ii114.12 (10)C25—C28—H28A109.5
C50—O51—C52105.58 (14)C25—C28—H28B109.5
Na1—N1—Na293.03 (7)C25—C28—H28C109.5
Na1—N1—H1113.0 (14)H28A—C28—H28B109.5
Na2—N1—H1118.3 (14)H28A—C28—H28C109.5
C2—N1—Na1115.17 (12)H28B—C28—H28C109.5
C2—N1—Na2111.80 (12)N29—C30—C31122.19 (17)
C2—N1—H1105.6 (14)N29—C30—C35123.07 (17)
Na2—N12—Na179.12 (5)C31—C30—C35114.74 (17)
C8—N12—Na194.47 (11)C30—C31—H31118.4
C8—N12—Na2117.61 (13)C32—C31—C30123.14 (18)
C8—N12—C11108.22 (15)C32—C31—H31118.4
C11—N12—Na1124.85 (12)C31—C32—H32119.3
C11—N12—Na2126.23 (12)C31—C32—C33121.42 (19)
Na2—N15—H15117.9 (13)C33—C32—H32119.3
Na3—N15—Na287.12 (6)C32—C33—H33121.1
Na3—N15—H15118.1 (13)C34—C33—C32117.83 (19)
C16—N15—Na2111.22 (11)C34—C33—H33121.1
C16—N15—Na3115.06 (12)C33—C34—H34118.7
C16—N15—H15106.7 (14)C33—C34—C35122.67 (18)
Na2—N26—Na380.39 (5)C35—C34—H34118.7
C22—N26—Na2106.64 (12)C30—C35—C36122.34 (16)
C22—N26—Na3110.53 (11)C34—C35—C30120.20 (17)
C22—N26—C25107.27 (15)C34—C35—C36117.32 (16)
C25—N26—Na2114.75 (11)O37—C36—C35115.12 (15)
C25—N26—Na3132.60 (12)N40—C36—O37115.49 (16)
Na3—N29—Na488.98 (6)N40—C36—C35129.31 (16)
Na3—N29—H29112.6 (15)O37—C38—H38A110.9
Na4—N29—H29115.7 (15)O37—C38—H38B110.9
C30—N29—Na3110.70 (12)O37—C38—C39104.18 (14)
C30—N29—Na4121.06 (12)H38A—C38—H38B108.9
C30—N29—H29106.8 (16)C39—C38—H38A110.9
Na4—N40—Na374.97 (5)C39—C38—H38B110.9
C36—N40—Na391.91 (11)N40—C39—C38102.51 (14)
C36—N40—Na4125.10 (13)N40—C39—C41107.69 (16)
C36—N40—C39107.94 (15)N40—C39—C42111.29 (16)
C39—N40—Na3129.29 (11)C41—C39—C38111.86 (16)
C39—N40—Na4121.69 (11)C42—C39—C38112.55 (17)
Na1—N43—Na483.79 (6)C42—C39—C41110.59 (17)
Na1—N43—H43117.7 (15)C39—C41—H41A109.5
Na4—N43—H43114.4 (15)C39—C41—H41B109.5
C44—N43—Na1106.88 (11)C39—C41—H41C109.5
C44—N43—Na4125.00 (12)H41A—C41—H41B109.5
C44—N43—H43107.5 (15)H41A—C41—H41C109.5
Na4—N54—Na174.89 (5)H41B—C41—H41C109.5
C50—N54—Na199.29 (11)C39—C42—H42A109.5
C50—N54—Na4121.60 (12)C39—C42—H42B109.5
C50—N54—C53107.20 (15)C39—C42—H42C109.5
C53—N54—Na1136.32 (11)H42A—C42—H42B109.5
C53—N54—Na4116.25 (11)H42A—C42—H42C109.5
N1—C2—C3121.90 (18)H42B—C42—H42C109.5
N1—C2—C7123.10 (18)N43—C44—C45121.95 (17)
C3—C2—C7115.00 (17)N43—C44—C49123.11 (17)
C2—C3—H3118.4C45—C44—C49114.95 (17)
C4—C3—C2123.2 (2)C44—C45—H45118.5
C4—C3—H3118.4C46—C45—C44123.07 (19)
C3—C4—H4119.5C46—C45—H45118.5
C3—C4—C5121.0 (2)C45—C46—H46119.4
C5—C4—H4119.5C45—C46—C47121.23 (19)
C4—C5—H5120.8C47—C46—H46119.4
C6—C5—C4118.36 (19)C46—C47—H47120.9
C6—C5—H5120.8C48—C47—C46118.22 (19)
C5—C6—H6118.6C48—C47—H47120.9
C5—C6—C7122.8 (2)C47—C48—H48118.6
C7—C6—H6118.6C47—C48—C49122.72 (19)
C2—C7—C8122.39 (16)C49—C48—H48118.6
C6—C7—C2119.62 (19)C44—C49—C50122.67 (16)
C6—C7—C8117.86 (18)C48—C49—C44119.72 (17)
O9—C8—C7114.85 (16)C48—C49—C50117.57 (17)
N12—C8—O9115.72 (17)O51—C50—C49114.72 (15)
N12—C8—C7129.38 (17)N54—C50—O51115.49 (16)
O9—C10—H10A110.8N54—C50—C49129.76 (17)
O9—C10—H10B110.8O51—C52—H52A111.0
O9—C10—C11104.51 (15)O51—C52—H52B111.0
H10A—C10—H10B108.9O51—C52—C53103.90 (14)
C11—C10—H10A110.9H52A—C52—H52B109.0
C11—C10—H10B110.8C53—C52—H52A111.0
N12—C11—C10102.57 (16)C53—C52—H52B111.0
N12—C11—C13110.96 (16)N54—C53—C52102.01 (14)
N12—C11—C14108.21 (16)N54—C53—C55108.32 (15)
C13—C11—C10112.78 (17)N54—C53—C56111.15 (15)
C13—C11—C14110.34 (18)C52—C53—C55110.98 (16)
C14—C11—C10111.67 (16)C56—C53—C52112.86 (16)
C11—C13—H13A109.5C56—C53—C55111.09 (16)
C11—C13—H13B109.5C53—C55—H55A109.5
C11—C13—H13C109.5C53—C55—H55B109.5
H13A—C13—H13B109.5C53—C55—H55C109.5
H13A—C13—H13C109.5H55A—C55—H55B109.5
H13B—C13—H13C109.5H55A—C55—H55C109.5
C11—C14—H14A109.5H55B—C55—H55C109.5
C11—C14—H14B109.5C53—C56—H56A109.5
C11—C14—H14C109.5C53—C56—H56B109.5
H14A—C14—H14B109.5C53—C56—H56C109.5
H14A—C14—H14C109.5H56A—C56—H56B109.5
H14B—C14—H14C109.5H56A—C56—H56C109.5
N15—C16—C17121.62 (17)H56B—C56—H56C109.5
Na1i—O9—C8—N12139.42 (14)N43—C44—C45—C46177.71 (18)
Na1i—O9—C8—C743.15 (19)N43—C44—C49—C48176.76 (16)
Na1i—O9—C10—C11151.40 (11)N43—C44—C49—C505.4 (3)
Na1—N1—C2—C3127.34 (16)C2—C3—C4—C50.9 (3)
Na1—N1—C2—C752.4 (2)C2—C7—C8—O9164.80 (16)
Na1—N12—C8—O9121.99 (13)C2—C7—C8—N1218.2 (3)
Na1—N12—C8—C761.0 (2)C3—C2—C7—C62.0 (2)
Na1—N12—C11—C1094.69 (15)C3—C2—C7—C8177.76 (16)
Na1—N12—C11—C1326.0 (2)C3—C4—C5—C60.6 (3)
Na1—N12—C11—C14147.17 (13)C4—C5—C6—C70.7 (3)
Na1—N43—C44—C45125.50 (15)C5—C6—C7—C20.6 (3)
Na1—N43—C44—C4954.82 (19)C5—C6—C7—C8176.61 (18)
Na1—N54—C50—O51137.84 (12)C6—C7—C8—O919.3 (2)
Na1—N54—C50—C4944.4 (2)C6—C7—C8—N12157.67 (19)
Na1—N54—C53—C52105.62 (16)C7—C2—C3—C42.1 (3)
Na1—N54—C53—C55137.24 (14)C8—O9—C10—C1113.18 (18)
Na1—N54—C53—C5614.9 (2)C8—N12—C11—C1014.5 (2)
Na2—N1—C2—C3128.14 (16)C8—N12—C11—C13135.21 (18)
Na2—N1—C2—C752.2 (2)C8—N12—C11—C14103.60 (18)
Na2—N12—C8—O9157.96 (12)C10—O9—C8—N124.4 (2)
Na2—N12—C8—C719.0 (3)C10—O9—C8—C7178.22 (15)
Na2—N12—C11—C10162.31 (12)C11—N12—C8—O97.0 (2)
Na2—N12—C11—C1377.02 (19)C11—N12—C8—C7169.98 (18)
Na2—N12—C11—C1444.2 (2)C16—C17—C18—C190.9 (3)
Na2—N15—C16—C17130.62 (15)C16—C21—C22—O23171.28 (16)
Na2—N15—C16—C2148.8 (2)C16—C21—C22—N265.9 (3)
Na2—N26—C22—O23128.93 (14)C17—C16—C21—C200.0 (2)
Na2—N26—C22—C2148.2 (2)C17—C16—C21—C22175.84 (16)
Na2—N26—C25—C24133.65 (12)C17—C18—C19—C200.2 (3)
Na2—N26—C25—C2715.98 (19)C18—C19—C20—C210.6 (3)
Na2—N26—C25—C28105.72 (15)C19—C20—C21—C160.8 (3)
Na3ii—O37—C36—N40142.02 (13)C19—C20—C21—C22175.37 (19)
Na3ii—O37—C36—C3540.80 (19)C20—C21—C22—O234.7 (2)
Na3ii—O37—C38—C39158.32 (11)C20—C21—C22—N26178.11 (19)
Na3—N15—C16—C17132.37 (15)C21—C16—C17—C180.8 (3)
Na3—N15—C16—C2148.3 (2)C22—O23—C24—C2516.83 (19)
Na3—N26—C22—O23145.32 (13)C22—N26—C25—C2415.39 (19)
Na3—N26—C22—C2137.5 (2)C22—N26—C25—C27102.28 (18)
Na3—N26—C25—C24126.32 (14)C22—N26—C25—C28136.02 (17)
Na3—N26—C25—C27116.02 (16)C24—O23—C22—N267.7 (2)
Na3—N26—C25—C285.7 (2)C24—O23—C22—C21174.71 (15)
Na3—N29—C30—C31122.47 (16)C25—N26—C22—O235.5 (2)
Na3—N29—C30—C3557.2 (2)C25—N26—C22—C21171.62 (17)
Na3—N40—C36—O37124.35 (13)C30—C31—C32—C330.0 (3)
Na3—N40—C36—C3558.96 (19)C30—C35—C36—O37169.03 (15)
Na3—N40—C39—C3890.53 (16)C30—C35—C36—N4014.3 (3)
Na3—N40—C39—C41151.36 (13)C31—C30—C35—C341.2 (2)
Na3—N40—C39—C4230.0 (2)C31—C30—C35—C36176.71 (16)
Na4—N29—C30—C31135.69 (15)C31—C32—C33—C340.8 (3)
Na4—N29—C30—C3544.7 (2)C32—C33—C34—C350.5 (3)
Na4—N40—C36—O37162.73 (11)C33—C34—C35—C300.5 (3)
Na4—N40—C36—C3514.0 (3)C33—C34—C35—C36176.24 (18)
Na4—N40—C39—C38173.06 (11)C34—C35—C36—O3715.3 (2)
Na4—N40—C39—C4154.96 (19)C34—C35—C36—N40161.36 (19)
Na4—N40—C39—C4266.40 (19)C35—C30—C31—C321.0 (3)
Na4—N43—C44—C45140.23 (15)C36—O37—C38—C3916.11 (17)
Na4—N43—C44—C4939.4 (2)C36—N40—C39—C3817.54 (19)
Na4—N54—C50—O51144.26 (12)C36—N40—C39—C41100.57 (18)
Na4—N54—C50—C4933.5 (2)C36—N40—C39—C42138.07 (17)
Na4—N54—C53—C52158.89 (11)C38—O37—C36—N405.6 (2)
Na4—N54—C53—C5541.75 (17)C38—O37—C36—C35177.25 (14)
Na4—N54—C53—C5680.56 (17)C39—N40—C36—O378.2 (2)
O9—C10—C11—N1216.47 (18)C39—N40—C36—C35168.45 (17)
O9—C10—C11—C13135.88 (17)C44—C45—C46—C470.0 (3)
O9—C10—C11—C1499.20 (19)C44—C49—C50—O51174.02 (15)
O23—C24—C25—N2619.30 (18)C44—C49—C50—N543.8 (3)
O23—C24—C25—C2796.01 (18)C45—C44—C49—C483.5 (2)
O23—C24—C25—C28138.75 (16)C45—C44—C49—C50174.26 (16)
O37—C38—C39—N4020.13 (18)C45—C46—C47—C481.7 (3)
O37—C38—C39—C4194.98 (18)C46—C47—C48—C490.6 (3)
O37—C38—C39—C42139.79 (16)C47—C48—C49—C442.1 (3)
O51—C52—C53—N5423.61 (17)C47—C48—C49—C50175.82 (18)
O51—C52—C53—C5591.59 (18)C48—C49—C50—O513.8 (2)
O51—C52—C53—C56142.96 (16)C48—C49—C50—N54178.38 (18)
N1—C2—C3—C4178.15 (18)C49—C44—C45—C462.6 (3)
N1—C2—C7—C6178.33 (17)C50—O51—C52—C5320.39 (18)
N1—C2—C7—C82.5 (3)C50—N54—C53—C5219.05 (18)
N15—C16—C17—C18178.63 (19)C50—N54—C53—C5598.09 (17)
N15—C16—C21—C20179.45 (17)C50—N54—C53—C56139.59 (17)
N15—C16—C21—C223.6 (3)C52—O51—C50—N549.1 (2)
N29—C30—C31—C32179.32 (18)C52—O51—C50—C49172.80 (15)
N29—C30—C35—C34179.10 (17)C53—N54—C50—O517.0 (2)
N29—C30—C35—C363.6 (3)C53—N54—C50—C49170.76 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z.
Tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III) (YbH-L133) top
Crystal data top
[Yb(C11H13N2O)3]F(000) = 1492
Mr = 740.74Dx = 1.605 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.9428 (5) ÅCell parameters from 7270 reflections
b = 9.8253 (5) Åθ = 2.2–24.6°
c = 28.6089 (14) ŵ = 3.10 mm1
β = 94.722 (1)°T = 86 K
V = 3065.5 (3) Å3Plate, yellow
Z = 40.22 × 0.18 × 0.05 mm
Data collection top
SMART APEX CCD area detector
diffractometer
7061 independent reflections
Radiation source: sealed X-ray tube5882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 8.3 pixels mm-1θmax = 27.6°, θmin = 1.9°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1212
Tmin = 0.219, Tmax = 0.262l = 3737
39651 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0248P)2 + 4.5847P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
7061 reflectionsΔρmax = 0.83 e Å3
394 parametersΔρmin = 1.19 e Å3
0 restraints
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (20 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.0 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C21.0818 (3)0.2384 (4)0.10704 (13)0.0200 (8)
C31.2109 (4)0.2483 (4)0.11734 (15)0.0262 (9)
H31.2530650.1737180.1323940.031*
C41.2766 (4)0.3596 (5)0.10659 (16)0.0316 (10)
H41.3622440.3629060.1151910.038*
C51.2190 (4)0.4686 (5)0.08310 (17)0.0340 (11)
H51.2653450.5449400.0743640.041*
C61.0945 (4)0.4649 (4)0.07264 (16)0.0283 (10)
H61.0552570.5390880.0562470.034*
C71.0229 (4)0.3534 (4)0.08564 (13)0.0199 (8)
C80.8911 (4)0.3647 (4)0.07860 (14)0.0240 (9)
C100.7215 (4)0.4633 (5)0.0446 (2)0.0415 (13)
H10A0.7006540.4274340.0125610.050*
H10B0.6795480.5517160.0477740.050*
C110.6856 (4)0.3624 (4)0.08159 (16)0.0261 (9)
C130.6499 (4)0.4350 (5)0.12536 (18)0.0402 (12)
H13A0.7179920.4927350.1378520.060*
H13B0.6314650.3675510.1490130.060*
H13C0.5773740.4914810.1174360.060*
C140.5842 (4)0.2703 (4)0.06114 (15)0.0267 (9)
H14A0.5126280.3252500.0504050.040*
H14B0.5616170.2060750.0851920.040*
H14C0.6127220.2197440.0345750.040*
C160.5330 (3)0.0138 (4)0.14097 (13)0.0178 (8)
C170.4277 (3)0.0117 (4)0.16733 (14)0.0215 (8)
H170.4284480.0456690.1940880.026*
C180.3261 (4)0.0887 (4)0.15562 (15)0.0244 (9)
H180.2588880.0850950.1745720.029*
C190.3196 (4)0.1728 (4)0.11627 (15)0.0270 (9)
H190.2489100.2267540.1082880.032*
C200.4175 (4)0.1757 (4)0.08933 (14)0.0238 (9)
H200.4131710.2325250.0623880.029*
C210.5241 (3)0.0979 (4)0.09994 (13)0.0178 (8)
C220.6183 (4)0.0995 (4)0.06692 (13)0.0195 (8)
C240.6760 (4)0.1389 (5)0.00564 (14)0.0298 (10)
H24A0.6434680.0716230.0292440.036*
H24B0.7006490.2219400.0220580.036*
C250.7847 (3)0.0797 (4)0.02494 (13)0.0211 (8)
C270.8359 (4)0.0464 (4)0.00316 (14)0.0243 (9)
H27A0.8702640.0218910.0262750.036*
H27B0.9004840.0856640.0248440.036*
H27C0.7701820.1132600.0031780.036*
C280.8841 (4)0.1848 (4)0.03572 (15)0.0270 (9)
H28A0.8498320.2631960.0513090.041*
H28B0.9504540.1447680.0563800.041*
H28C0.9164540.2145320.0064520.041*
C300.9880 (3)0.1928 (4)0.18242 (13)0.0203 (8)
C311.0439 (4)0.3196 (4)0.17370 (15)0.0272 (9)
H311.0138380.3706650.1469900.033*
C321.1392 (4)0.3713 (5)0.20210 (16)0.0311 (10)
H321.1757250.4549140.1941210.037*
C331.1835 (4)0.3025 (5)0.24272 (16)0.0309 (10)
H331.2499630.3383610.2623850.037*
C341.1293 (4)0.1827 (5)0.25362 (15)0.0267 (9)
H341.1574260.1372720.2817800.032*
C351.0322 (3)0.1236 (4)0.22427 (14)0.0207 (8)
C360.9814 (3)0.0058 (4)0.23845 (13)0.0191 (8)
C380.9638 (5)0.1729 (5)0.29017 (16)0.0433 (13)
H38A1.0248300.2442970.2994620.052*
H38B0.9080830.1623600.3155040.052*
C390.8918 (4)0.2105 (4)0.24440 (13)0.0230 (8)
C410.9493 (5)0.3302 (4)0.22070 (15)0.0340 (11)
H41A0.9067940.3445540.1895830.051*
H41B1.0360970.3110410.2174690.051*
H41C0.9421350.4122840.2397520.051*
C420.7588 (4)0.2413 (6)0.2513 (2)0.0558 (17)
H42A0.7195100.1597550.2629470.084*
H42B0.7161790.2690400.2213830.084*
H42C0.7545800.3151230.2742100.084*
N11.0186 (3)0.1251 (3)0.11733 (12)0.0216 (7)
H11.0656910.0525900.1170920.026*
N120.8051 (3)0.2885 (3)0.09365 (11)0.0186 (7)
N150.6330 (3)0.0598 (3)0.15501 (11)0.0215 (7)
H150.6191570.1184430.1772290.026*
N260.7256 (3)0.0444 (3)0.06940 (11)0.0177 (7)
N290.8955 (3)0.1416 (3)0.15281 (11)0.0190 (7)
H290.8914400.2019640.1302480.023*
N400.9045 (3)0.0857 (3)0.21535 (11)0.0176 (7)
O90.8521 (3)0.4775 (3)0.05403 (12)0.0371 (8)
O230.5856 (3)0.1705 (3)0.02681 (9)0.0294 (7)
O371.0238 (3)0.0466 (3)0.28185 (10)0.0272 (7)
Yb10.82829 (2)0.06815 (2)0.13487 (2)0.01617 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0199 (19)0.026 (2)0.0154 (19)0.0011 (16)0.0074 (15)0.0038 (15)
C30.019 (2)0.034 (2)0.027 (2)0.0026 (17)0.0050 (16)0.0058 (18)
C40.022 (2)0.038 (3)0.036 (3)0.0077 (19)0.0092 (19)0.013 (2)
C50.031 (2)0.028 (2)0.046 (3)0.0154 (19)0.019 (2)0.012 (2)
C60.030 (2)0.022 (2)0.034 (2)0.0019 (17)0.0083 (19)0.0054 (18)
C70.027 (2)0.0137 (18)0.020 (2)0.0045 (16)0.0076 (16)0.0064 (15)
C80.027 (2)0.024 (2)0.021 (2)0.0000 (17)0.0040 (17)0.0031 (17)
C100.028 (2)0.036 (3)0.060 (3)0.002 (2)0.004 (2)0.020 (2)
C110.021 (2)0.020 (2)0.037 (2)0.0027 (17)0.0009 (18)0.0040 (18)
C130.027 (2)0.041 (3)0.051 (3)0.010 (2)0.007 (2)0.019 (2)
C140.021 (2)0.027 (2)0.031 (2)0.0041 (17)0.0044 (17)0.0010 (18)
C160.0172 (18)0.0188 (19)0.0175 (19)0.0030 (15)0.0036 (15)0.0049 (15)
C170.0190 (19)0.023 (2)0.023 (2)0.0040 (16)0.0076 (16)0.0048 (16)
C180.0184 (19)0.029 (2)0.027 (2)0.0004 (17)0.0082 (16)0.0060 (18)
C190.019 (2)0.029 (2)0.033 (2)0.0079 (17)0.0036 (17)0.0047 (18)
C200.024 (2)0.026 (2)0.022 (2)0.0082 (17)0.0027 (16)0.0005 (17)
C210.0153 (17)0.0195 (19)0.0188 (19)0.0020 (15)0.0025 (14)0.0048 (15)
C220.021 (2)0.022 (2)0.0148 (18)0.0023 (15)0.0011 (15)0.0010 (15)
C240.026 (2)0.045 (3)0.020 (2)0.011 (2)0.0099 (17)0.0054 (19)
C250.0186 (18)0.030 (2)0.0156 (18)0.0018 (17)0.0047 (14)0.0025 (16)
C270.022 (2)0.032 (2)0.021 (2)0.0011 (17)0.0077 (16)0.0048 (17)
C280.029 (2)0.026 (2)0.027 (2)0.0031 (18)0.0125 (18)0.0013 (18)
C300.0196 (19)0.021 (2)0.0220 (19)0.0042 (16)0.0103 (15)0.0046 (16)
C310.029 (2)0.023 (2)0.032 (2)0.0011 (17)0.0144 (18)0.0046 (18)
C320.028 (2)0.026 (2)0.042 (3)0.0071 (18)0.019 (2)0.015 (2)
C330.020 (2)0.035 (2)0.039 (3)0.0008 (18)0.0069 (18)0.021 (2)
C340.0170 (19)0.038 (3)0.025 (2)0.0059 (18)0.0050 (16)0.0090 (19)
C350.0177 (19)0.022 (2)0.024 (2)0.0038 (15)0.0083 (16)0.0059 (16)
C360.0165 (18)0.028 (2)0.0130 (18)0.0071 (16)0.0037 (14)0.0002 (16)
C380.082 (4)0.021 (2)0.025 (2)0.004 (2)0.006 (2)0.0028 (19)
C390.023 (2)0.026 (2)0.020 (2)0.0036 (17)0.0037 (16)0.0083 (17)
C410.054 (3)0.022 (2)0.026 (2)0.004 (2)0.001 (2)0.0008 (18)
C420.032 (3)0.072 (4)0.066 (4)0.006 (3)0.018 (3)0.048 (3)
N10.0143 (16)0.0217 (17)0.0293 (19)0.0022 (13)0.0052 (14)0.0059 (14)
N120.0147 (15)0.0190 (16)0.0220 (17)0.0015 (13)0.0012 (12)0.0013 (13)
N150.0207 (16)0.0261 (18)0.0183 (16)0.0050 (14)0.0057 (13)0.0072 (14)
N260.0175 (16)0.0219 (18)0.0143 (15)0.0006 (13)0.0040 (12)0.0007 (13)
N290.0249 (17)0.0176 (16)0.0149 (16)0.0008 (13)0.0035 (13)0.0014 (13)
N400.0203 (16)0.0175 (16)0.0154 (15)0.0047 (13)0.0038 (12)0.0019 (13)
O90.0285 (17)0.0294 (17)0.053 (2)0.0036 (13)0.0018 (15)0.0204 (15)
O230.0247 (15)0.0445 (19)0.0197 (15)0.0152 (13)0.0070 (12)0.0109 (13)
O370.0274 (15)0.0358 (18)0.0178 (14)0.0039 (13)0.0018 (12)0.0018 (12)
Yb10.01452 (8)0.01806 (9)0.01624 (9)0.00202 (7)0.00307 (6)0.00040 (7)
Geometric parameters (Å, º) top
C2—C31.423 (5)C25—C281.513 (6)
C2—C71.414 (5)C25—N261.514 (5)
C2—N11.356 (5)C27—H27A0.9800
C3—H30.9500C27—H27B0.9800
C3—C41.358 (6)C27—H27C0.9800
C4—H40.9500C28—H28A0.9800
C4—C51.388 (7)C28—H28B0.9800
C5—H50.9500C28—H28C0.9800
C5—C61.372 (6)C30—C311.419 (6)
C6—H60.9500C30—C351.427 (6)
C6—C71.414 (5)C30—N291.361 (5)
C7—C81.445 (6)C31—H310.9500
C8—N121.303 (5)C31—C321.366 (6)
C8—O91.362 (5)C32—H320.9500
C10—H10A0.9900C32—C331.396 (7)
C10—H10B0.9900C33—H330.9500
C10—C111.526 (6)C33—C341.365 (6)
C10—O91.439 (5)C34—H340.9500
C11—C131.519 (6)C34—C351.423 (6)
C11—C141.512 (6)C35—C361.458 (6)
C11—N121.511 (5)C36—N401.292 (5)
C13—H13A0.9800C36—O371.350 (4)
C13—H13B0.9800C38—H38A0.9900
C13—H13C0.9800C38—H38B0.9900
C14—H14A0.9800C38—C391.517 (6)
C14—H14B0.9800C38—O371.433 (5)
C14—H14C0.9800C39—C411.520 (6)
C16—C171.429 (5)C39—C421.516 (6)
C16—C211.432 (5)C39—N401.495 (5)
C16—N151.345 (5)C41—H41A0.9800
C17—H170.9500C41—H41B0.9800
C17—C181.364 (6)C41—H41C0.9800
C18—H180.9500C42—H42A0.9800
C18—C191.393 (6)C42—H42B0.9800
C19—H190.9500C42—H42C0.9800
C19—C201.371 (5)N1—H10.8800
C20—H200.9500N1—Yb12.252 (3)
C20—C211.406 (5)N12—Yb12.468 (3)
C21—C221.455 (5)N15—H150.8800
C22—N261.289 (5)N15—Yb12.260 (3)
C22—O231.366 (4)N26—Yb12.376 (3)
C24—H24A0.9900N29—H290.8749
C24—H24B0.9900N29—Yb12.234 (3)
C24—C251.532 (5)N40—Yb12.390 (3)
C24—O231.445 (5)Yb1—H292.7484
C25—C271.515 (5)
C7—C2—C3116.4 (4)H28B—C28—H28C109.5
N1—C2—C3121.8 (4)C31—C30—C35116.4 (4)
N1—C2—C7121.8 (3)N29—C30—C31121.6 (4)
C2—C3—H3118.6N29—C30—C35122.0 (4)
C4—C3—C2122.9 (4)C30—C31—H31118.6
C4—C3—H3118.6C32—C31—C30122.8 (4)
C3—C4—H4119.9C32—C31—H31118.6
C3—C4—C5120.3 (4)C31—C32—H32119.6
C5—C4—H4119.9C31—C32—C33120.7 (4)
C4—C5—H5120.4C33—C32—H32119.6
C6—C5—C4119.2 (4)C32—C33—H33120.7
C6—C5—H5120.4C34—C33—C32118.7 (4)
C5—C6—H6119.2C34—C33—H33120.7
C5—C6—C7121.7 (4)C33—C34—H34118.8
C7—C6—H6119.2C33—C34—C35122.3 (4)
C2—C7—C8122.4 (3)C35—C34—H34118.8
C6—C7—C2119.4 (4)C30—C35—C36122.6 (4)
C6—C7—C8118.2 (4)C34—C35—C30119.1 (4)
N12—C8—C7130.5 (4)C34—C35—C36118.4 (4)
N12—C8—O9115.7 (4)N40—C36—C35129.4 (4)
O9—C8—C7113.7 (3)N40—C36—O37116.7 (4)
H10A—C10—H10B109.0O37—C36—C35113.9 (3)
C11—C10—H10A111.0H38A—C38—H38B108.7
C11—C10—H10B111.0C39—C38—H38A110.5
O9—C10—H10A111.0C39—C38—H38B110.5
O9—C10—H10B111.0O37—C38—H38A110.5
O9—C10—C11103.9 (4)O37—C38—H38B110.5
C13—C11—C10111.4 (4)O37—C38—C39106.3 (3)
C14—C11—C10110.1 (4)C38—C39—C41111.7 (4)
C14—C11—C13111.7 (4)C42—C39—C38111.8 (4)
N12—C11—C10101.8 (3)C42—C39—C41110.0 (4)
N12—C11—C13108.3 (3)N40—C39—C38102.4 (3)
N12—C11—C14113.2 (3)N40—C39—C41109.0 (3)
C11—C13—H13A109.5N40—C39—C42111.8 (3)
C11—C13—H13B109.5C39—C41—H41A109.5
C11—C13—H13C109.5C39—C41—H41B109.5
H13A—C13—H13B109.5C39—C41—H41C109.5
H13A—C13—H13C109.5H41A—C41—H41B109.5
H13B—C13—H13C109.5H41A—C41—H41C109.5
C11—C14—H14A109.5H41B—C41—H41C109.5
C11—C14—H14B109.5C39—C42—H42A109.5
C11—C14—H14C109.5C39—C42—H42B109.5
H14A—C14—H14B109.5C39—C42—H42C109.5
H14A—C14—H14C109.5H42A—C42—H42B109.5
H14B—C14—H14C109.5H42A—C42—H42C109.5
C17—C16—C21115.9 (3)H42B—C42—H42C109.5
N15—C16—C17120.4 (4)C2—N1—H1110.7
N15—C16—C21123.7 (3)C2—N1—Yb1138.6 (3)
C16—C17—H17118.7Yb1—N1—H1110.7
C18—C17—C16122.6 (4)C8—N12—C11106.4 (3)
C18—C17—H17118.7C8—N12—Yb1127.8 (3)
C17—C18—H18119.5C11—N12—Yb1125.7 (2)
C17—C18—C19121.0 (4)C16—N15—H15112.5
C19—C18—H18119.5C16—N15—Yb1134.9 (3)
C18—C19—H19120.8Yb1—N15—H15112.5
C20—C19—C18118.4 (4)C22—N26—C25107.9 (3)
C20—C19—H19120.8C22—N26—Yb1127.4 (3)
C19—C20—H20118.7C25—N26—Yb1124.2 (2)
C19—C20—C21122.7 (4)C30—N29—H29101.5
C21—C20—H20118.7C30—N29—Yb1134.3 (3)
C16—C21—C22122.2 (3)Yb1—N29—H29117.4
C20—C21—C16119.3 (3)C36—N40—C39107.5 (3)
C20—C21—C22118.3 (3)C36—N40—Yb1127.6 (3)
N26—C22—C21130.6 (3)C39—N40—Yb1123.6 (2)
N26—C22—O23115.8 (3)C8—O9—C10106.4 (3)
O23—C22—C21113.6 (3)C22—O23—C24106.5 (3)
H24A—C24—H24B108.9C36—O37—C38106.4 (3)
C25—C24—H24A110.8N1—Yb1—N1274.72 (11)
C25—C24—H24B110.8N1—Yb1—N15167.59 (12)
O23—C24—H24A110.8N1—Yb1—N26109.02 (11)
O23—C24—H24B110.8N1—Yb1—H2989.3
O23—C24—C25104.8 (3)N1—Yb1—N4086.61 (11)
C27—C25—C24111.8 (3)N12—Yb1—H29147.2
C28—C25—C24111.6 (4)N15—Yb1—N1295.23 (11)
C28—C25—C27111.0 (3)N15—Yb1—N2677.79 (11)
C28—C25—N26109.6 (3)N15—Yb1—H29103.0
N26—C25—C24101.6 (3)N15—Yb1—N4091.10 (11)
N26—C25—C27110.9 (3)N26—Yb1—N1290.47 (10)
C25—C27—H27A109.5N26—Yb1—H2967.5
C25—C27—H27B109.5N26—Yb1—N40153.87 (10)
C25—C27—H27C109.5N29—Yb1—N189.28 (12)
H27A—C27—H27B109.5N29—Yb1—N12159.71 (11)
H27A—C27—H27C109.5N29—Yb1—N15102.04 (12)
H27B—C27—H27C109.5N29—Yb1—N2682.94 (11)
C25—C28—H28A109.5N29—Yb1—H2916.4
C25—C28—H28B109.5N29—Yb1—N4076.28 (11)
C25—C28—H28C109.5N40—Yb1—N12114.28 (10)
H28A—C28—H28B109.5N40—Yb1—H2992.7
H28A—C28—H28C109.5
C2—C3—C4—C52.3 (7)C30—C35—C36—O37171.8 (3)
C2—C7—C8—N128.6 (7)C31—C30—C35—C341.3 (5)
C2—C7—C8—O9174.9 (4)C31—C30—C35—C36178.4 (3)
C3—C2—C7—C64.7 (5)C31—C30—N29—Yb1152.8 (3)
C3—C2—C7—C8172.0 (4)C31—C32—C33—C340.3 (6)
C3—C2—N1—Yb1152.0 (3)C32—C33—C34—C352.1 (6)
C3—C4—C5—C62.7 (7)C33—C34—C35—C301.2 (6)
C4—C5—C6—C70.7 (7)C33—C34—C35—C36179.0 (4)
C5—C6—C7—C24.5 (6)C34—C35—C36—N40171.0 (4)
C5—C6—C7—C8172.4 (4)C34—C35—C36—O377.9 (5)
C6—C7—C8—N12168.2 (4)C35—C30—C31—C323.2 (6)
C6—C7—C8—O98.3 (5)C35—C30—N29—Yb128.5 (5)
C7—C2—C3—C41.5 (6)C35—C36—N40—C39175.0 (4)
C7—C2—N1—Yb127.8 (6)C35—C36—N40—Yb17.7 (6)
C7—C8—N12—C11171.3 (4)C35—C36—O37—C38179.2 (4)
C7—C8—N12—Yb17.9 (6)C38—C39—N40—C367.3 (4)
C7—C8—O9—C10172.1 (4)C38—C39—N40—Yb1175.2 (3)
C10—C11—N12—C817.7 (4)C39—C38—O37—C366.4 (5)
C10—C11—N12—Yb1163.1 (3)C41—C39—N40—C36111.1 (4)
C11—C10—O9—C821.3 (5)C41—C39—N40—Yb156.9 (4)
C13—C11—N12—C899.8 (4)C42—C39—N40—C36127.1 (4)
C13—C11—N12—Yb179.4 (4)C42—C39—N40—Yb164.9 (4)
C14—C11—N12—C8135.8 (4)N1—C2—C3—C4178.7 (4)
C14—C11—N12—Yb145.0 (5)N1—C2—C7—C6175.5 (4)
C16—C17—C18—C191.1 (6)N1—C2—C7—C87.8 (6)
C16—C21—C22—N268.4 (6)N12—C8—O9—C1010.8 (5)
C16—C21—C22—O23171.1 (3)N15—C16—C17—C18177.3 (4)
C17—C16—C21—C202.6 (5)N15—C16—C21—C20177.2 (4)
C17—C16—C21—C22173.4 (3)N15—C16—C21—C226.8 (6)
C17—C16—N15—Yb1168.1 (3)N26—C22—O23—C2411.2 (5)
C17—C18—C19—C200.4 (6)N29—C30—C31—C32178.0 (4)
C18—C19—C20—C210.3 (6)N29—C30—C35—C34179.9 (3)
C19—C20—C21—C161.3 (6)N29—C30—C35—C360.4 (6)
C19—C20—C21—C22174.8 (4)N40—C36—O37—C381.8 (5)
C20—C21—C22—N26175.7 (4)O9—C8—N12—C115.1 (5)
C20—C21—C22—O234.9 (5)O9—C8—N12—Yb1175.7 (3)
C21—C16—C17—C182.6 (6)O9—C10—C11—C1391.9 (4)
C21—C16—N15—Yb111.7 (6)O9—C10—C11—C14143.6 (4)
C21—C22—N26—C25179.8 (4)O9—C10—C11—N1223.3 (5)
C21—C22—N26—Yb17.3 (6)O23—C22—N26—C250.8 (5)
C21—C22—O23—C24168.3 (3)O23—C22—N26—Yb1173.3 (2)
C24—C25—N26—C2211.5 (4)O23—C24—C25—C27135.6 (4)
C24—C25—N26—Yb1175.7 (3)O23—C24—C25—C2899.4 (4)
C25—C24—O23—C2217.6 (4)O23—C24—C25—N2617.3 (4)
C27—C25—N26—C22130.5 (3)O37—C36—N40—C393.8 (4)
C27—C25—N26—Yb156.8 (4)O37—C36—N40—Yb1171.2 (2)
C28—C25—N26—C22106.7 (4)O37—C38—C39—C41108.3 (4)
C28—C25—N26—Yb166.1 (4)O37—C38—C39—C42128.0 (4)
C30—C31—C32—C332.5 (6)O37—C38—C39—N408.2 (5)
C30—C35—C36—N409.3 (6)
Significant intermolecular interactions (Å) in (2) and (3) top
CompoundD—H···AH···AD···AD—H···A
Na4(H-L1)4 (2)C10—H10A···O51iii2.643.413 (2)135.3
C52—H52B···O51iv2.583.439 (2)145.2
C24—H24B···C20v2.823.720 (3)151.4
Yb(H-L1)3 (3)C28—H28A···O9ii2.553.382 (5)142.8
C38—H38A···C17i3.013.501 (6)149.0
C38—H38A···C18i2.583.548 (6)165.8
Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (ii) x, y - 1, z; (iii) x, y + 1, z; (iv) -x + 2, -y, -z + 1; (v) -x + 2, -y + 1, -z.
 

Acknowledgements

The authors wish to acknowledge the assistance of Mrs Chris Greenwood in obtaining the NMR spectra and Karen Button for preliminary investigations of this ligand with lanthanide metals.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.

References

First citationAbbina, S., Chidara, V. K., Bian, S., Ugrinov, A. & Du, G. (2016). Chem. Sel. 1, 3175–3183.  CAS Google Scholar
First citationAbbina, S. & Du, G. (2012). Organometallics, 31, 7394–7403.  CSD CrossRef CAS Google Scholar
First citationBauer, G., Scopelliti, R. & Hu, X. (2015a). Private communications (refcodes LUNGOS and LUNHAF). CCDC, Cambridge, England.  Google Scholar
First citationBauer, G., Wodrich, M. D., Scopelliti, R. & Hu, X. (2015b). Organometallics, 34, 289–298.  CSD CrossRef CAS Google Scholar
First citationBennett, S. D., Core, B. A., Blake, M. P., Pope, S. J. A., Mountford, P. & Ward, B. D. (2014). Dalton Trans. 43, 5871–5885.  CSD CrossRef CAS PubMed Google Scholar
First citationBennett, S. D., Pope, S. J. A. & Ward, B. D. (2013). Chem. Commun. 49, 6072–6074.  CSD CrossRef CAS Google Scholar
First citationBian, S., Abbina, S., Lu, Z., Kolodka, E. & Du, G. (2014). Organometallics, 33, 2489–2495.  CSD CrossRef CAS PubMed Google Scholar
First citationBradley, D. C., Ghotra, J. S. & Hart, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1021–1023.  CrossRef Web of Science Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabaleiro, S., Pérez–Lourido, P., Castro, J., Romero, J., García–Vázquez, J. A. & Sousa, A. (2001). Transition Met. Chem. 26, 709–716.  CSD CrossRef CAS Google Scholar
First citationCabeza, J. A., da Silva, I., del Río, I., Gossage, R. A., Miguel, D. & Suárez, M. (2006). Dalton Trans. pp. 2450–2455.  CSD CrossRef Google Scholar
First citationCastro, J., Cabaleiro, S., Pérez-Lourido, P., Romero, J., García-Vázquez, J. A. & Sousa, A. (2001). Polyhedron, 20, 2329–2337.  CSD CrossRef CAS Google Scholar
First citationCastro, J., Cabaleiro, S., Pérez-Lourido, P., Romero, J., García-Vázquez, J. A. & Sousa, A. (2002). Z. Anorg. Allg. Chem. 628, 1210–1210.  CSD CrossRef CAS Google Scholar
First citationChen, C.-T., Chan, C.-Y., Huang, C.-A., Chen, M.-T. & Peng, K.-F. (2007). Dalton Trans. pp. 4073–4078.  CSD CrossRef Google Scholar
First citationChen, C.-T., Liao, C.-H., Peng, K.-F., Chen, M.-T. & Huang, T.-L. (2014). J. Organomet. Chem. 753, 9–19.  CSD CrossRef CAS Google Scholar
First citationChen, C.-T., Weng, H.-J., Chen, M.-T., Huang, C.-A. & Peng, K.-F. (2009a). Eur. J. Inorg. Chem. pp. 2129–2135.  CSD CrossRef Google Scholar
First citationChen, M.-T., Chang, P.-J., Huang, C.-A., Peng, K.-F. & Chen, C.-T. (2009b). Dalton Trans. pp. 9068–9074.  CSD CrossRef Google Scholar
First citationChen, M.-T. & Chen, C.-T. (2011). Dalton Trans. 40, 12886–12894.  CSD CrossRef CAS PubMed Google Scholar
First citationCoeffard, V., Müller-Bunz, H. & Guiry, P. J. (2009). Org. Biomol. Chem. 7, 1723–1734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDecken, A., Gossage, R. A. & Yadav, P. N. (2005). Can. J. Chem. 83, 1185–1189.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGossage, R. A. (2009). Experiments in Green and Sustainable Chemistry, edited by H. W. Roesky & D. K. Kennepohl, pp. 19–24. Weinheim: Wiley-VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, J., Liu, Z., Du, G., Fu, Y., Zhang, S. & Li, X. (2014). Organometallics, 33, 6103–6112.  CSD CrossRef CAS Google Scholar
First citationHong, W. D., Leung, S. C., Amporndanai, K., Davies, J., Priestley, R. S., Nixon, G. L., Berry, N. G., Samar Hasnain, S., Antonyuk, S., Ward, S. A., Biagini, G. A. & O'Neill, P. M. (2018). ACS Med. Chem. Lett. 9, 1205–1210.  PubMed Google Scholar
First citationHuang, Y., He, J., Liu, Z., Cai, G., Zhang, S. & Li, X. (2017). Polym. Chem. 8, 1217–1222.  CSD CrossRef CAS Google Scholar
First citationInagaki, T., Phong, le T., Furuta, A., Ito, J. & Nishiyama, H. (2010). Chem. Eur. J. 16, 3090–3096.  CSD CrossRef CAS PubMed Google Scholar
First citationKanbur, U., Ellern, A. & Sadow, A. D. (2018). Organometallics, 37, 4409–4414.  CSD CrossRef CAS Google Scholar
First citationKieltsch, I., Dubinina, G. G., Hamacher, C., Kaiser, A., Torres-Nieto, J., Hutchison, J. M., Klein, A., Budnikova, Y. & Vicic, D. A. (2010). Organometallics, 29, 1451–1456.  CSD CrossRef CAS Google Scholar
First citationLiu, H., He, J., Liu, Z., Lin, Z., Du, G., Zhang, S. & Li, X. (2013). Macromolecules, 46, 3257–3265.  CSD CrossRef CAS Google Scholar
First citationLu, Z., Abbina, S., Sabin, J. R., Nemykin, V. N. & Du, G. (2013). Inorg. Chem. 52, 1454–1465.  CSD CrossRef CAS PubMed Google Scholar
First citationMcKeon, S. C., Muller-Bunz, H. & Guiry, P. J. (2011). Eur. J. Org. Chem. pp. 7107–7115.  CSD CrossRef Google Scholar
First citationMikami, K., Hatano, H. & Terada, M. (1999). Chem. Lett. 28, 55–56.  CSD CrossRef Google Scholar
First citationMukherjee, D., Ellern, A. & Sadow, A. D. (2010). J. Am. Chem. Soc. 132, 7582–7583.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNakada, M. & Inoue, M. (2007). Heterocycles, 72, 133–138.  CrossRef Google Scholar
First citationNiwa, T. & Nakada, M. (2012). J. Am. Chem. Soc. 134, 13538–13541.  CSD CrossRef CAS PubMed Google Scholar
First citationNixon, T. D. & Ward, B. D. (2012). Chem. Commun. 48, 11790–11792.  CSD CrossRef CAS Google Scholar
First citationO'Reilly, S., Aylward, M., Keogh-Hansen, C., Fitzpatrick, B., McManus, H. A., Müller-Bunz, H. & Guiry, P. J. (2015). J. Org. Chem. 80, 10177–10186.  CAS PubMed Google Scholar
First citationPawlikowski, A. V., Gray, T. S., Schoendorff, G., Baird, B., Ellern, A., Windus, T. & Sadow, A. D. (2009). Inorg. Chim. Acta, 362, 4517–4525.  CSD CrossRef CAS Google Scholar
First citationPeng, K.-F. & Chen, C.-T. (2011). Eur. J. Inorg. Chem. pp. 5182–5195.  CSD CrossRef Google Scholar
First citationResanović, S., Wylie, R. S., Quail, J. W., Foucher, D. A. & Gossage, R. A. (2011). Inorg. Chem. 50, 9930–9932.  PubMed Google Scholar
First citationSaiyed, A. S., Joshi, R. S. & Bedekar, A. V. (2011). J. Chem. Res. (S), 35, 408–411.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWan, Z.-K., Choi, H.-W., Kang, F.-A., Nakajima, K., Demeke, D. & Kishi, Y. (2002). Org. Lett. 4, 4431–4434.  CSD CrossRef PubMed CAS Google Scholar
First citationWu, X., Yang, Z., Yan, X., Zhang, P., Wang, L., Guo, G., Dong, Y. & Li, X. (2018). Polym. Chem. 9, 4856–4865.  CSD CrossRef CAS Google Scholar
First citationZou, J., Berg, D. J., Oliver, A. & Twamley, B. (2013). Organometallics, 32, 6532–6540.  CSD CrossRef CAS Google Scholar
First citationZou, J., Berg, D. J., Stuart, D., McDonald, R. & Twamley, B. (2011). Organometallics, 30, 4958–4967.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds