research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mol­ecular and crystal structure, lattice energy and DFT calculations of two 2′-(nitro­benzo­yl­oxy)aceto­phenone isomers

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, bDepartment of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California, 92617, USA, and cSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
*Correspondence e-mail: bogdgv@gmail.com

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 18 February 2020; accepted 9 May 2020; online 19 May 2020)

The two isomers 2′-(4-nitro­benzo­yloxy)aceto­phenone (systematic name: 2-acetyl­phenyl 4-nitro­benzoate) (I) and 2′-(2-nitro­benzo­yloxy)aceto­phenone (systematic name: 2-acetyl­phenyl 2-nitro­benzoate) (II), both C15H11NO5, with para and ortho positions of the nitro substituent have been crystallized and studied. It is evident that the variation in the position of the nitro group causes a significant difference in the mol­ecular conformations: the dihedral angle between the aromatic fragments in the mol­ecule of I is 84.80 (4)°, while that in the mol­ecule of II is 6.12 (7)°. Diffraction analysis revealed the presence of a small amount of water in the crystal of I. DFT calculations of the mol­ecular energy demonstrate that the ortho substituent causes a higher energy for isomer II, while crystal lattice energy calculations show that the values are almost equal for two isomers.

1. Chemical context

2′-Benzoyl­oxyaceto­phenones, also known as 2-acetyl­phenyl benzoates, with and without additional substituents are used in the synthesis of materials with different biomedical applications (Singh et al., 2017[Singh, M., Kaur, M., Vyas, B. & Silakari, O. (2017). J. Med. Chem. 27, 520-530.]; Vyas et al., 2016[Vyas, B., Singh, M., Kaur, M., Silakari, O., Bahia, M. S. & Singh, B. (2016). J. Med. Chem. 25, 609-626.]; Ali et al., 2017[Ali, N. M., Yeap, S. K., Abu, N., Lim, K. L., Ky, H., Pauzi, A. Z. M., Ho, W. Y., Tan, S. W., Alan-Ong, H. K., Zareen, S., Alitheen, N. B. & Akhtar, M. N. (2017). Cancer Cell Int. 17, 30-42.]). The two isomers presented here, 2′-(4-nitro­benzo­yloxy)aceto­phenone (I) and 2′-(2-nitro­benzo­yloxy)aceto­phenone (II), have been employed as starting materials for the Baker–Venkataraman rearrangement (Baker, 1933[Baker, W. (1933). J. Chem. Soc. 1381-1389.]; Mahal & Venkataraman, 1934[Mahal, H. S. & Venkataraman, K. (1934). J. Chem. Soc. pp. 1767-1769.]) to obtain 1,3-diketones, namely 1-(2-hy­droxy­phen­yl)-3-(nitro­phen­yl)propan-1,3-diones, with different positions of the nitro substituents. These diketones have been used to synthesize substituted nitro­flavones, which are potentially useful as pharmaceutical materials (Barros & Silva, 2006[Barros, A. I. R. N. A. & Silva, A. M. S. (2006). Monatsh. Chem. 137, 1505-1528.]). Recently, halogen- and/or nitro-substituted phenyl benzoates were found to be plastic crystals. This characteristic is related to the presence of the flexible –C—CO– synthon in the mol­ecules (Saha & Desiraju, 2017[Saha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975-1983.]; Saha et al., 2018[Saha, S., Mishra, M. K., Reddy, C. M. & Desiraju, G. R. (2018). Acc. Chem. Res. 51, 2957-2967.]).

[Scheme 1]

2. Structural commentary

The corresponding bond lengths and bond angles in isomers I and II are very similar in the two mol­ecules and are close to the standard values. The only unexpected value is angle O1—C14—C7, which is 111.42 (10)° (I) and 111.15 (9)° (II) for steric reasons, which is quite common for a bridging geometry in mol­ecules with the same mol­ecular core, such as phenyl benzoate and fluorinated phenyl benzoates (Dey & Chopra, 2017[Dey, D. & Chopra, D. (2017). Cryst. Growth Des. 17, 5117-5128.]).

In both isomers, the nitro groups lie in the plane of the corresponding phenyl ring [torsion angles C9—C10—N1—O4 = 0.32 (17)° and C7—C12—N1—O3 = 1.08 (14)°, in isomers I and II respectively], while the acetyl groups are slightly twisted from the phenyl planes [torsion angles C1—C6—C15—O5 = 8.35 (18)° and C1—C6—C15—O5 = 3.97 (16)°]. The conformations of the two mol­ecules are quite different (Fig. 1[link]). There are two short intra­molecular contacts between the oxygen atoms of the carbonyls and the ether group [O1⋯O5 = 2.694 (1) Å] and the oxygens of two carbonyl groups [O2⋯O5 = 3.008 (2) Å) in mol­ecule I; in mol­ecule II there are two short contacts between ether oxygen and carbonyl groups [O1⋯O3 and O1⋯O5 = 2.885 (1) and 2.704 (1) Å, respectively].

[Figure 1]
Figure 1
Views of the formula units of (a) isomer I and (b) isomer II with the atom-labeling schemes. Displacement ellipsoids are shown with 50% probability. H atoms are shown as fixed spheres of radius 0.15 Å.

In the mol­ecule of I, the dihedral angle between the phenyl rings is 84.84 (6)° (i.e. rings are almost perpendicular to each other), while in the mol­ecule of II the phenyl rings are almost parallel, the dihedral angle between them being 6.11 (4)°. It is possible that the significant difference in the mol­ecular conformations of the isomers is caused by the different positions of the nitro substituents.

3. DFT calculations

DFT calculations of isomers I and II at the B3LYP/6-311G(d,p) level of theory were carried out using GAUSSIAN 16 software (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2016). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com.]). The geometrical parameters of the two isomers were optimized starting from the mol­ecular geometry in the crystal. No significant differences between the experimental and optimized bond lengths and angles were found. As mentioned above, the observed O1—C14—C7 angles are smaller than the standard value, and the calculated values are also smaller [111.41° (I) and 110.04° (II), which are very close to experimental values of 111.42 (10)° (I) and 111.15 (9)° (II)]. A comparison of the conformational characteristics of isomers I and II according to X-ray data and quantum chemical DFT calculations is presented in Table 1[link]. This shows that the deviations of the nitro and acetyl groups from the planes of the corresponding aromatic rings are small and almost the same according to the X-ray and DFT data for isomer I. The data for isomer II indicate that the sterically stressed ortho position of the nitro group leads to larger differences between the mol­ecular conformation in the crystal and that calculated for an isolated mol­ecule. Hence, the deviations of the nitro and acetyl groups from the planes of aromatic rings are larger, as well as from the bridging plane, which is different in the isolated mol­ecule of II.

Table 1
Comparison of conformational characteristics (°) of isomers I and II from diffraction (X-ray) and computational (DFT) data

Conformational parameters Isomer I – X-ray Isomer I – DFT Isomer II – X-ray Isomer II – DFT
C9—C10—N1—O4 0.32 (17) 0.14
C11—C12—N1—O4 −1.10 (15) −21.06
C5—C6—C15—C13 7.54 (17) 6.03 −3.80 (15) −10.18
C12—C7—C14—O1 167.74 (11) 172.87 −85.81 (12) −65.72
C7—C14—O1—C1 −178.76 (10) 171.54 −178.19 (8) −175.37
C6—C1—O1—C14 −77.59 (14) −77.23 81.05 (12) 82.74
Ar/Ar 84.80 (4) 87.03 6.12 (7) 21.04

4. Supra­molecular features

As a result of the presence in isomers I and II of oxygen atoms of the carbonyl, nitro, and ether groups, the title mol­ecules are capable of forming C—H⋯O hydrogen bonds (Tables 2[link] and 3[link]). In the crystal of I, a low-occupancy [0.074 (2)] partial water mol­ecule forms a bridge between two mol­ecules of I (Fig. 2[link]). The O2⋯O6 distance of 2.912 (6) Å indicates that this inter­action is weak (Brown, 1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]). In addition, ππ inter­actions between phenyl rings are observed in both structures. In I, the ππ inter­actions lead to the formation of dimers (Fig. 3[link]a), while in II they lead to the formation of ladder-like chains along the [1 16 [\overline1]] direction (Fig. 3[link]b). The crystal packing is shown in Figs. 4[link] and 5[link]. Despite the differences in the packing in the crystals of the two isomers, their lattice energies are very similar (see below).

Table 2
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O2 0.94 (1) 1.98 (2) 2.912 (6) 173 (2)
C13—H13A⋯O2i 0.998 (19) 2.638 (19) 3.594 (2) 160.6 (14)
C11—H11⋯O5ii 0.960 (16) 2.600 (17) 3.4725 (17) 151.3 (12)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.941 (16) 2.646 (15) 3.2711 (19) 124.4 (12)
Symmetry code: (i) -x+2, -y, -z+2.
[Figure 2]
Figure 2
Structure of the dimeric associate in the crystal of I with the mol­ecules connected by a 0.074 (2) occupancy bridging water mol­ecule.
[Figure 3]
Figure 3
Mol­ecular associates connected by ππ inter­actions in the crystals of I (dimer) and II (ladder-like chain). In the dimer (I), the distance between parallel phenyl rings is given. In the chain (II), several short contacts between carbon atoms are indicated.
[Figure 4]
Figure 4
Mol­ecular packing in the crystal of isomer I. Mol­ecules of water with 0.074 (2) occupancy are shown.
[Figure 5]
Figure 5
Mol­ecular packing in the crystal of isomer II.

5. Lattice energy calculations

The crystal lattice energies (Table 4[link]) were calculated using the atom–atom force field implemented in the CLP-PIXEL program package (version 3.0, available from https://www.angelogavezzotti.it; Gavezzotti, 2011[Gavezzotti, A. (2011). New J. Chem. 35, 1360-1368.]). The hydrogen-atom positions for the lattice energy calculations were assigned by the software. In structure II, which has a higher packing coefficient, the repulsive and Coulombic components are larger than in the structure of I, which has a lower packing coefficient, although the dispersion energy is lower in I. The total contribution of all the components results in the lattice energy for the crystals of the two isomers being almost equal. As the amount of water in I is low (the water mol­ecule has 0.074 occupancy, see Refinement section), it was difficult to evaluate the effect of water on the total lattice energy. However, it is clear that the presence of water makes the structure of I less densely packed.

Table 4
Crystal packing characteristics, components of lattice energy and total lattice energy (kJ mol−1)

  I II
Cell volume, Å 2694.5 (10) 1294.2 (9)
Density, g cm−3 1.406 1.464
Packing coefficient 0.739 0.771
Coulombic −29.9 −35.5
Polarization −40.2 −40.2
Dispersion −147.4 −144.1
Repulsion 64.8 67.4
Total −152.6 −152.3

6. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the mol­ecules with the same structure as isomers I and II gave no entries. Three entries were found for the same core structure as in the title mol­ecules. (Adams & Morsi, 1976[Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.]; Dey & Chopra, 2017[Dey, D. & Chopra, D. (2017). Cryst. Growth Des. 17, 5117-5128.]; Shibakami & Sekiya, 1995[Shibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326-330.]). One is an inclusion compound of phenyl­benzoate with Ni complexes with isonicotinic acid and thio­cyanato coordination bridges (Sekiya et al., 2004[Sekiya, R., Nishikiori, S.-I. & Ogura, K. (2004). J. Am. Chem. Soc. 126, 16587-16600.]). Several methyl-substituted phenyl­benzoates have been described by Gowda and co-workers, in particular the 2,3-, 2,4- and 2,5-isomers (Gowda, Foro et al., 2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1587.]; Gowda et al., 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2599.]). Compounds with the same core and nitro-group substituents are rare and are mostly limited to halogen-substituted phenyl­benzoates. The dihedral angles between the two aromatic rings vary. The methyl-substituted compounds tend to have a near-perpendicular geometry with dihedral angles ranging from 73.04 (8) to 87.43 (5)° (Gowda, Tokarcík et al., 2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280.]; Gowda et al., 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2599.]), while pure phenyl­benzoate and many of its fluorinated derivatives have angles in the range 52.66 (7) to 62.76 (4)° (Adams & Morsi, 1976[Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.]; Dey & Chopra, 2017[Dey, D. & Chopra, D. (2017). Cryst. Growth Des. 17, 5117-5128.]). The number of entries in the database for nitro-substituted phenyl­benzoates is limited and is not sufficient for drawing final conclusions on the role of the nitro-group position on the mol­ecular geometry (Saha & Desiraju, 2017[Saha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975-1983.]). Finally, the presence of phenyl­benzoate in inclusion compounds seems to have a `flattening' effect on the mol­ecule, lowering the dihedral angle; such a compound was described by Sekiya et al. (2004[Sekiya, R., Nishikiori, S.-I. & Ogura, K. (2004). J. Am. Chem. Soc. 126, 16587-16600.]) with a dihedral angle between the aromatic rings of 20.9 (19)°. Careful analysis of substituted phenyl benzoate derivatives (415 entries in the CSD) presented by Saha & Desiraju (2017[Saha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975-1983.]) has shown a strong preference for Ar–Ar torsion angles of between 40 and 90° (91% of entries).

7. Synthesis and crystallization

The synthesis of isomers I and II was performed according to Barros & Silva (2006[Barros, A. I. R. N. A. & Silva, A. M. S. (2006). Monatsh. Chem. 137, 1505-1528.]). Crystals of both compounds were grown by slow evaporation from ethanol solution.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both structures, the C-bound hydrogen atoms were freely refined. A large residual electron density peak was found for I. It was modelled as a partial water mol­ecule. The O6 atom of the water mol­ecule occupies a site on a crystallographic C2 axis (Fig. 2[link]). The water mol­ecule was freely refined with a resulting occupation factor of 0.074 (2). The water H atoms were added geometrically taking into account the direction of potential hydrogen bonds in the structure of I.

Table 5
Experimental details

  I II
Crystal data
Chemical formula C15H11NO5·0.07H2O C15H11NO5
Mr 286.58 285.25
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 150 100
a, b, c (Å) 26.225 (6), 7.9955 (17), 13.772 (3) 12.209 (5), 14.307 (6), 7.418 (3)
β (°) 111.080 (3) 92.815 (7)
V3) 2694.5 (10) 1294.2 (9)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.11
Crystal size (mm) 0.21 × 0.18 × 0.12 0.15 × 0.15 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS, Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.687, 0.746 0.650, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22632, 4010, 2983 5087, 3620, 2913
Rint 0.056 0.016
(sin θ/λ)max−1) 0.711 0.741
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.05 0.040, 0.122, 1.06
No. of reflections 4010 3620
No. of parameters 244 234
No. of restraints 4 0
H-atom treatment Only H-atom coordinates refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.24 0.43, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Mercury (Macrae et al., 2020).

2-Acetylphenyl 4-nitrobenzoate 0.07-hydrate (I) top
Crystal data top
C15H11NO5·0.07H2OF(000) = 1190
Mr = 286.58Dx = 1.413 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.225 (6) ÅCell parameters from 5275 reflections
b = 7.9955 (17) Åθ = 2.7–29.6°
c = 13.772 (3) ŵ = 0.11 mm1
β = 111.080 (3)°T = 150 K
V = 2694.5 (10) Å3Block, yellow
Z = 80.21 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2983 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.4°, θmin = 2.7°
Tmin = 0.687, Tmax = 0.746h = 3637
22632 measured reflectionsk = 1111
4010 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116Only H-atom coordinates refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0487P)2 + 1.2105P]
where P = (Fo2 + 2Fc2)/3
4010 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.28 e Å3
4 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.35357 (3)0.44264 (11)0.29788 (7)0.0308 (2)
O20.42547 (3)0.33442 (12)0.26638 (7)0.0371 (2)
O50.40200 (4)0.22975 (12)0.45589 (8)0.0418 (2)
O30.24003 (4)0.15624 (13)0.10893 (8)0.0420 (2)
O40.17571 (4)0.07242 (14)0.05770 (8)0.0455 (3)
N10.22348 (4)0.07748 (13)0.04993 (8)0.0323 (2)
C60.42127 (4)0.52092 (15)0.46672 (9)0.0271 (2)
C70.33704 (5)0.21458 (15)0.18295 (9)0.0266 (2)
C10.38789 (5)0.56226 (15)0.36503 (9)0.0280 (2)
C140.37775 (5)0.33207 (15)0.25404 (9)0.0275 (2)
C100.26387 (5)0.01845 (14)0.03499 (9)0.0281 (2)
C120.35454 (5)0.11618 (16)0.11749 (10)0.0321 (3)
C150.42406 (5)0.34790 (16)0.51033 (10)0.0304 (3)
C90.24572 (5)0.10844 (16)0.10176 (10)0.0325 (3)
C50.45180 (5)0.65194 (17)0.52810 (10)0.0327 (3)
C110.31776 (5)0.01690 (16)0.04198 (10)0.0320 (3)
C80.28291 (5)0.20799 (16)0.17673 (10)0.0313 (3)
C40.44849 (6)0.81349 (17)0.48991 (11)0.0382 (3)
C20.38375 (6)0.72310 (17)0.32635 (11)0.0355 (3)
C30.41424 (6)0.84948 (17)0.38984 (12)0.0397 (3)
C130.45479 (7)0.3244 (2)0.62472 (11)0.0419 (3)
O60.5000000.0754 (11)0.2500000.040 (2)0.148 (2)
H60.474 (2)0.151 (3)0.256 (8)0.048*0.148 (2)
H50.4747 (7)0.626 (2)0.5957 (13)0.040 (4)*
H120.3931 (6)0.1215 (19)0.1236 (12)0.038 (4)*
H13A0.4407 (7)0.398 (2)0.6677 (14)0.054 (5)*
H20.3589 (7)0.745 (2)0.2553 (14)0.047 (4)*
H30.4122 (7)0.961 (2)0.3652 (13)0.051 (5)*
H110.3295 (6)0.048 (2)0.0046 (12)0.045 (4)*
H13B0.4515 (7)0.208 (2)0.6428 (14)0.057 (5)*
H90.2081 (7)0.1025 (19)0.0956 (12)0.040 (4)*
H40.4692 (7)0.901 (2)0.5340 (13)0.052 (5)*
H80.2717 (6)0.273 (2)0.2253 (12)0.041 (4)*
H13C0.4953 (9)0.353 (3)0.6436 (16)0.074 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (4)0.0308 (4)0.0320 (4)0.0018 (3)0.0072 (3)0.0082 (4)
O20.0277 (4)0.0466 (6)0.0372 (5)0.0066 (4)0.0119 (4)0.0124 (4)
O50.0580 (6)0.0288 (5)0.0387 (5)0.0050 (4)0.0177 (5)0.0028 (4)
O30.0455 (5)0.0399 (5)0.0357 (5)0.0030 (4)0.0085 (4)0.0104 (4)
O40.0296 (5)0.0521 (6)0.0491 (6)0.0116 (4)0.0072 (4)0.0051 (5)
N10.0325 (5)0.0279 (5)0.0311 (5)0.0047 (4)0.0050 (4)0.0009 (4)
C60.0260 (5)0.0281 (6)0.0286 (6)0.0013 (4)0.0116 (4)0.0052 (5)
C70.0277 (5)0.0264 (5)0.0256 (5)0.0025 (4)0.0096 (4)0.0011 (4)
C10.0262 (5)0.0282 (6)0.0297 (6)0.0021 (4)0.0101 (4)0.0067 (5)
C140.0285 (5)0.0289 (6)0.0243 (5)0.0018 (4)0.0088 (4)0.0023 (4)
C100.0276 (5)0.0243 (5)0.0292 (6)0.0046 (4)0.0064 (4)0.0012 (4)
C120.0261 (5)0.0355 (6)0.0358 (6)0.0024 (5)0.0127 (5)0.0067 (5)
C150.0327 (6)0.0312 (6)0.0304 (6)0.0023 (5)0.0152 (5)0.0021 (5)
C90.0263 (6)0.0346 (6)0.0386 (7)0.0053 (5)0.0139 (5)0.0032 (5)
C50.0312 (6)0.0370 (7)0.0309 (6)0.0041 (5)0.0124 (5)0.0086 (5)
C110.0312 (6)0.0316 (6)0.0335 (6)0.0012 (5)0.0120 (5)0.0070 (5)
C80.0303 (6)0.0333 (6)0.0336 (6)0.0038 (5)0.0153 (5)0.0063 (5)
C40.0428 (7)0.0335 (7)0.0429 (8)0.0110 (6)0.0212 (6)0.0148 (6)
C20.0390 (7)0.0313 (6)0.0354 (7)0.0028 (5)0.0125 (6)0.0002 (5)
C30.0508 (8)0.0262 (6)0.0471 (8)0.0023 (6)0.0238 (7)0.0027 (6)
C130.0488 (8)0.0444 (8)0.0318 (7)0.0086 (6)0.0138 (6)0.0034 (6)
O60.037 (5)0.033 (5)0.044 (5)0.0000.008 (4)0.000
Geometric parameters (Å, º) top
O1—C11.4076 (14)C15—C131.5010 (19)
O1—C141.3503 (14)C9—C81.3879 (17)
O2—C141.2011 (14)C9—H90.960 (16)
O5—C151.2154 (15)C5—C41.386 (2)
O3—N11.2242 (15)C5—H50.932 (17)
O4—N11.2192 (14)C11—H110.960 (16)
N1—C101.4788 (15)C8—H80.971 (16)
C6—C11.3981 (17)C4—C31.378 (2)
C6—C151.4994 (18)C4—H40.958 (18)
C6—C51.4022 (17)C2—C31.3865 (19)
C7—C141.4928 (16)C2—H20.976 (17)
C7—C121.3928 (17)C3—H30.945 (18)
C7—C81.3922 (16)C13—H13A0.998 (19)
C1—C21.3813 (18)C13—H13B0.976 (19)
C10—C91.3801 (18)C13—H13C1.02 (2)
C10—C111.3818 (17)O6—H60.941 (14)
C12—C111.3857 (17)O6—H6i0.941 (14)
C12—H120.985 (15)
C14—O1—C1116.52 (9)C8—C9—H9121.2 (9)
O3—N1—C10117.89 (10)C6—C5—H5117.4 (10)
O4—N1—O3123.86 (11)C4—C5—C6121.56 (13)
O4—N1—C10118.25 (11)C4—C5—H5121.1 (10)
C1—C6—C15122.83 (10)C10—C11—C12117.74 (11)
C1—C6—C5116.31 (11)C10—C11—H11121.6 (9)
C5—C6—C15120.85 (11)C12—C11—H11120.7 (9)
C12—C7—C14117.11 (10)C7—C8—H8119.4 (9)
C8—C7—C14122.48 (11)C9—C8—C7119.71 (11)
C8—C7—C12120.32 (11)C9—C8—H8120.9 (9)
C6—C1—O1121.30 (11)C5—C4—H4119.9 (10)
C2—C1—O1115.86 (11)C3—C4—C5120.25 (12)
C2—C1—C6122.72 (11)C3—C4—H4119.9 (10)
O1—C14—C7111.42 (10)C1—C2—C3119.19 (13)
O2—C14—O1124.01 (11)C1—C2—H2119.0 (10)
O2—C14—C7124.44 (11)C3—C2—H2121.8 (10)
C9—C10—N1118.48 (10)C4—C3—C2119.95 (13)
C9—C10—C11123.20 (11)C4—C3—H3119.2 (10)
C11—C10—N1118.30 (11)C2—C3—H3120.9 (10)
C7—C12—H12119.1 (9)C15—C13—H13A112.0 (10)
C11—C12—C7120.47 (11)C15—C13—H13B108.9 (11)
C11—C12—H12120.4 (9)C15—C13—H13C110.8 (11)
O5—C15—C6121.75 (11)H13A—C13—H13B109.1 (15)
O5—C15—C13120.46 (12)H13A—C13—H13C106.8 (16)
C6—C15—C13117.79 (11)H13B—C13—H13C109.1 (15)
C10—C9—C8118.44 (11)H6—O6—H6i99 (3)
C10—C9—H9120.3 (9)
O1—C1—C2—C3176.78 (11)C14—C7—C8—C9173.48 (12)
O3—N1—C10—C9179.69 (11)C10—C9—C8—C70.10 (19)
O3—N1—C10—C111.29 (17)C12—C7—C14—O1167.74 (11)
O4—N1—C10—C90.32 (17)C12—C7—C14—O28.35 (19)
O4—N1—C10—C11178.08 (12)C12—C7—C8—C92.88 (19)
N1—C10—C9—C8175.42 (11)C15—C6—C1—O11.58 (17)
N1—C10—C11—C12175.74 (11)C15—C6—C1—C2177.36 (12)
C6—C1—C2—C30.8 (2)C15—C6—C5—C4178.13 (12)
C6—C5—C4—C30.7 (2)C9—C10—C11—C122.58 (19)
C7—C12—C11—C100.5 (2)C5—C6—C1—O1177.11 (10)
C1—O1—C14—O22.64 (17)C5—C6—C1—C21.33 (18)
C1—O1—C14—C7178.76 (10)C5—C6—C15—O5173.02 (12)
C1—C6—C15—O58.35 (18)C5—C6—C15—C137.54 (17)
C1—C6—C15—C13171.09 (12)C5—C4—C3—C21.3 (2)
C1—C6—C5—C40.58 (18)C11—C10—C9—C82.9 (2)
C1—C2—C3—C40.5 (2)C8—C7—C14—O18.72 (16)
C14—O1—C1—C677.59 (14)C8—C7—C14—O2175.18 (12)
C14—O1—C1—C2106.36 (13)C8—C7—C12—C113.2 (2)
C14—C7—C12—C11173.34 (12)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O20.94 (1)1.98 (2)2.912 (6)173 (2)
C13—H13A···O2ii0.998 (19)2.638 (19)3.594 (2)160.6 (14)
C11—H11···O5iii0.960 (16)2.600 (17)3.4725 (17)151.3 (12)
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y, z1/2.
2-Acetylphenyl 2-nitrobenzoate (II) top
Crystal data top
C15H11NO5F(000) = 592
Mr = 285.25Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.209 (5) ÅCell parameters from 2439 reflections
b = 14.307 (6) Åθ = 2.2–31.6°
c = 7.418 (3) ŵ = 0.11 mm1
β = 92.815 (7)°T = 100 K
V = 1294.2 (9) Å3Prism, yellow
Z = 40.15 × 0.15 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
2913 reflections with I > 2σ(I)
φ and ω scansRint = 0.016
Absorption correction: multi-scan
(SADABS, Bruker, 2016)
θmax = 31.8°, θmin = 1.7°
Tmin = 0.650, Tmax = 0.746h = 1716
5087 measured reflectionsk = 2014
3620 independent reflectionsl = 310
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.122All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.172P]
where P = (Fo2 + 2Fc2)/3
3620 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.65734 (8)0.01262 (7)0.45205 (14)0.0158 (2)
O10.79222 (6)0.00491 (5)0.70582 (10)0.01756 (18)
O30.84475 (8)0.14564 (6)0.97495 (13)0.0314 (2)
C50.60515 (9)0.03010 (8)0.30108 (16)0.0193 (2)
O50.67276 (8)0.15066 (6)0.63086 (13)0.0319 (2)
C120.88232 (8)0.00579 (7)1.12279 (15)0.0166 (2)
N10.89918 (7)0.10690 (6)1.09597 (14)0.0207 (2)
C70.80754 (8)0.04285 (7)1.00989 (15)0.0164 (2)
C80.79381 (9)0.13811 (7)1.04287 (17)0.0214 (2)
C10.73215 (8)0.04200 (7)0.55600 (14)0.0160 (2)
O20.64412 (7)0.02330 (6)0.87287 (12)0.0282 (2)
C20.75414 (9)0.13411 (7)0.51264 (16)0.0201 (2)
C140.73772 (8)0.00042 (7)0.86012 (15)0.0174 (2)
C110.94230 (9)0.03733 (8)1.26288 (16)0.0212 (2)
C30.69989 (10)0.17469 (8)0.36297 (17)0.0237 (2)
O40.96613 (8)0.14724 (7)1.19635 (15)0.0395 (3)
C150.63287 (9)0.11279 (7)0.49603 (16)0.0191 (2)
C40.62600 (10)0.12258 (8)0.25762 (16)0.0226 (2)
C130.55711 (10)0.16657 (8)0.36771 (19)0.0268 (3)
C100.92771 (10)0.13212 (9)1.29225 (18)0.0258 (3)
C90.85407 (10)0.18239 (8)1.18253 (18)0.0255 (3)
H20.8073 (13)0.1705 (11)0.587 (2)0.035 (4)*
H80.7406 (12)0.1752 (10)0.968 (2)0.028 (4)*
H110.9935 (13)0.0017 (11)1.333 (2)0.032 (4)*
H50.5541 (13)0.0044 (10)0.226 (2)0.031 (4)*
H13A0.4825 (13)0.1366 (11)0.359 (2)0.040 (4)*
H100.9702 (14)0.1641 (12)1.387 (2)0.043 (5)*
H40.5886 (13)0.1483 (11)0.149 (2)0.039 (4)*
H30.7153 (12)0.2407 (11)0.337 (2)0.033 (4)*
H90.8436 (13)0.2498 (12)1.199 (2)0.041 (4)*
H13B0.5874 (14)0.1732 (12)0.248 (2)0.048 (5)*
H13C0.5493 (16)0.2303 (14)0.415 (3)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0176 (4)0.0157 (4)0.0141 (5)0.0014 (3)0.0002 (4)0.0012 (3)
O10.0176 (3)0.0212 (4)0.0135 (4)0.0011 (3)0.0029 (3)0.0015 (3)
O30.0479 (5)0.0180 (4)0.0272 (5)0.0031 (4)0.0111 (4)0.0016 (3)
C50.0222 (5)0.0208 (5)0.0145 (6)0.0019 (4)0.0033 (4)0.0015 (4)
O50.0454 (5)0.0182 (4)0.0307 (6)0.0037 (4)0.0132 (4)0.0063 (3)
C120.0171 (4)0.0169 (5)0.0155 (5)0.0000 (3)0.0006 (4)0.0006 (4)
N10.0220 (4)0.0186 (4)0.0213 (5)0.0013 (3)0.0006 (4)0.0030 (3)
C70.0178 (4)0.0180 (5)0.0133 (5)0.0013 (3)0.0016 (4)0.0003 (3)
C80.0252 (5)0.0185 (5)0.0201 (6)0.0016 (4)0.0030 (4)0.0003 (4)
C10.0171 (4)0.0178 (5)0.0129 (5)0.0010 (3)0.0003 (4)0.0004 (4)
O20.0227 (4)0.0441 (5)0.0177 (5)0.0094 (3)0.0019 (3)0.0001 (4)
C20.0243 (5)0.0173 (5)0.0186 (6)0.0030 (4)0.0006 (4)0.0010 (4)
C140.0197 (5)0.0180 (5)0.0141 (6)0.0003 (4)0.0040 (4)0.0016 (4)
C110.0195 (5)0.0262 (5)0.0174 (6)0.0004 (4)0.0048 (4)0.0003 (4)
C30.0340 (6)0.0169 (5)0.0202 (6)0.0003 (4)0.0019 (5)0.0032 (4)
O40.0411 (5)0.0269 (5)0.0484 (7)0.0120 (4)0.0185 (5)0.0045 (4)
C150.0210 (5)0.0153 (5)0.0207 (6)0.0008 (4)0.0006 (4)0.0024 (4)
C40.0311 (5)0.0211 (5)0.0152 (6)0.0044 (4)0.0029 (4)0.0029 (4)
C130.0288 (6)0.0190 (5)0.0319 (7)0.0034 (4)0.0064 (5)0.0058 (5)
C100.0267 (5)0.0291 (6)0.0209 (7)0.0042 (4)0.0052 (5)0.0079 (5)
C90.0314 (6)0.0193 (5)0.0256 (7)0.0013 (4)0.0004 (5)0.0052 (4)
Geometric parameters (Å, º) top
C6—C51.4014 (16)C1—C21.3860 (15)
C6—C11.4036 (15)O2—C141.1969 (14)
C6—C151.5031 (15)C2—C31.3914 (17)
O1—C11.4053 (13)C2—H20.981 (16)
O1—C141.3534 (14)C11—C101.3865 (17)
O3—N11.2232 (13)C11—H110.941 (16)
C5—C41.3884 (17)C3—C41.3824 (18)
C5—H50.954 (15)C3—H30.984 (16)
O5—C151.2179 (15)C15—C131.5057 (17)
C12—N11.4762 (15)C4—H40.981 (17)
C12—C71.3943 (15)C13—H13A1.006 (16)
C12—C111.3864 (16)C13—H13B0.986 (18)
N1—O41.2230 (13)C13—H13C0.98 (2)
C7—C81.3961 (16)C10—C91.3843 (19)
C7—C141.5004 (15)C10—H100.969 (17)
C8—C91.3932 (17)C9—H90.981 (17)
C8—H80.987 (15)
C5—C6—C1117.02 (9)O2—C14—O1124.38 (10)
C5—C6—C15120.13 (10)O2—C14—C7124.35 (10)
C1—C6—C15122.85 (10)C12—C11—C10119.06 (11)
C14—O1—C1115.32 (8)C12—C11—H11118.9 (9)
C6—C5—H5120.0 (9)C10—C11—H11122.0 (9)
C4—C5—C6121.32 (11)C2—C3—H3118.0 (9)
C4—C5—H5118.7 (9)C4—C3—C2119.87 (10)
C7—C12—N1119.98 (9)C4—C3—H3122.2 (9)
C11—C12—N1117.71 (9)C6—C15—C13118.20 (10)
C11—C12—C7122.30 (10)O5—C15—C6121.78 (10)
O3—N1—C12117.94 (9)O5—C15—C13120.02 (10)
O4—N1—O3123.77 (10)C5—C4—H4117.8 (9)
O4—N1—C12118.29 (10)C3—C4—C5120.31 (11)
C12—C7—C8117.55 (10)C3—C4—H4121.9 (9)
C12—C7—C14124.77 (9)C15—C13—H13A110.4 (9)
C8—C7—C14117.64 (10)C15—C13—H13B112.0 (10)
C7—C8—H8120.5 (8)C15—C13—H13C108.5 (11)
C9—C8—C7120.71 (11)H13A—C13—H13B111.2 (14)
C9—C8—H8118.8 (8)H13A—C13—H13C108.4 (15)
C6—C1—O1121.64 (9)H13B—C13—H13C106.1 (15)
C2—C1—C6122.01 (10)C11—C10—H10120.5 (10)
C2—C1—O1116.30 (9)C9—C10—C11120.04 (11)
C1—C2—C3119.46 (10)C9—C10—H10119.5 (10)
C1—C2—H2120.3 (9)C8—C9—H9118.1 (10)
C3—C2—H2120.3 (9)C10—C9—C8120.33 (11)
O1—C14—C7111.15 (9)C10—C9—H9121.5 (10)
C6—C5—C4—C30.37 (17)C8—C7—C14—O279.61 (14)
C6—C1—C2—C30.77 (16)C1—C6—C5—C40.55 (16)
O1—C1—C2—C3178.27 (9)C1—C6—C15—O53.97 (16)
C5—C6—C1—O1177.39 (9)C1—C6—C15—C13175.80 (10)
C5—C6—C1—C20.02 (15)C1—O1—C14—C7178.19 (8)
C5—C6—C15—O5176.43 (10)C1—O1—C14—O21.95 (15)
C5—C6—C15—C133.80 (15)C1—C2—C3—C40.95 (17)
C12—C7—C8—C90.76 (16)C2—C3—C4—C50.40 (18)
C12—C7—C14—O185.81 (12)C14—O1—C1—C681.05 (12)
C12—C7—C14—O297.95 (14)C14—O1—C1—C2101.44 (11)
C12—C11—C10—C90.02 (18)C14—C7—C8—C9178.50 (10)
N1—C12—C7—C8179.17 (9)C11—C12—N1—O3178.49 (10)
N1—C12—C7—C141.61 (15)C11—C12—N1—O41.10 (15)
N1—C12—C11—C10179.57 (10)C11—C12—C7—C80.38 (15)
C7—C12—N1—O31.08 (14)C11—C12—C7—C14177.94 (10)
C7—C12—N1—O4179.33 (10)C11—C10—C9—C80.36 (18)
C7—C12—C11—C100.01 (16)C15—C6—C5—C4179.82 (10)
C7—C8—C9—C100.76 (18)C15—C6—C1—O12.23 (15)
C8—C7—C14—O196.63 (11)C15—C6—C1—C2179.60 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.941 (16)2.646 (15)3.2711 (19)124.4 (12)
Symmetry code: (i) x+2, y, z+2.
Comparison of conformational characteristics (°) of isomers I and II from diffraction (X-ray) and computational (DFT) data top
Conformational parametersIsomer I – X-rayIsomer I – DFTIsomer II – X-rayIsomer II – DFT
C9—C10—N1—O40.32 (17)0.14
C11—C12—N1—O4-1.10 (15)-21.06
C5—C6—C15—C137.54 (17)6.03-3.80 (15)-10.18
C12—C7—C14—O1167.74 (11)172.87-85.81 (12)-65.72
C7—C14—O1—C1-178.76 (10)171.54-178.19 (8)-175.37
C6—C1—O1—C14-77.59 (14)-77.2381.05 (12)82.74
Ar/Ar84.80 (4)87.036.12 (7)21.04
Crystal packing characteristics, components of lattice energy and total lattice energy (kJ mol-1) top
III
Cell volume, Å2694.5 (10)1294.2 (9)
Density, g cm-31.4061.464
Packing coefficient0.7390.771
Coulombic-29.9-35.5
Polarization-40.2-40.2
Dispersion-147.4-144.1
Repulsion64.867.4
Total-152.6-152.3
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. DMR-1523611).

References

First citationAdams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAli, N. M., Yeap, S. K., Abu, N., Lim, K. L., Ky, H., Pauzi, A. Z. M., Ho, W. Y., Tan, S. W., Alan-Ong, H. K., Zareen, S., Alitheen, N. B. & Akhtar, M. N. (2017). Cancer Cell Int. 17, 30–42.  CrossRef PubMed Google Scholar
First citationBaker, W. (1933). J. Chem. Soc. 1381–1389.  Google Scholar
First citationBarros, A. I. R. N. A. & Silva, A. M. S. (2006). Monatsh. Chem. 137, 1505–1528.  CrossRef CAS Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, D. & Chopra, D. (2017). Cryst. Growth Des. 17, 5117–5128.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2016). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com.  Google Scholar
First citationGavezzotti, A. (2011). New J. Chem. 35, 1360–1368.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1587.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahal, H. S. & Venkataraman, K. (1934). J. Chem. Soc. pp. 1767–1769.  CrossRef Google Scholar
First citationSaha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975–1983.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaha, S., Mishra, M. K., Reddy, C. M. & Desiraju, G. R. (2018). Acc. Chem. Res. 51, 2957–2967.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSekiya, R., Nishikiori, S.-I. & Ogura, K. (2004). J. Am. Chem. Soc. 126, 16587–16600.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326–330.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSingh, M., Kaur, M., Vyas, B. & Silakari, O. (2017). J. Med. Chem. 27, 520–530.  Google Scholar
First citationVyas, B., Singh, M., Kaur, M., Silakari, O., Bahia, M. S. & Singh, B. (2016). J. Med. Chem. 25, 609–626.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds