research communications
Molecular and
lattice energy and DFT calculations of two 2′-(nitrobenzoyloxy)acetophenone isomersaDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, bDepartment of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California, 92617, USA, and cSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
*Correspondence e-mail: bogdgv@gmail.com
The two isomers 2′-(4-nitrobenzoyloxy)acetophenone (systematic name: 2-acetylphenyl 4-nitrobenzoate) (I) and 2′-(2-nitrobenzoyloxy)acetophenone (systematic name: 2-acetylphenyl 2-nitrobenzoate) (II), both C15H11NO5, with para and ortho positions of the nitro substituent have been crystallized and studied. It is evident that the variation in the position of the nitro group causes a significant difference in the molecular conformations: the dihedral angle between the aromatic fragments in the molecule of I is 84.80 (4)°, while that in the molecule of II is 6.12 (7)°. revealed the presence of a small amount of water in the crystal of I. DFT calculations of the molecular energy demonstrate that the ortho substituent causes a higher energy for isomer II, while energy calculations show that the values are almost equal for two isomers.
1. Chemical context
2′-Benzoyloxyacetophenones, also known as 2-acetylphenyl benzoates, with and without additional substituents are used in the synthesis of materials with different biomedical applications (Singh et al., 2017; Vyas et al., 2016; Ali et al., 2017). The two isomers presented here, 2′-(4-nitrobenzoyloxy)acetophenone (I) and 2′-(2-nitrobenzoyloxy)acetophenone (II), have been employed as starting materials for the Baker–Venkataraman rearrangement (Baker, 1933; Mahal & Venkataraman, 1934) to obtain 1,3-diketones, namely 1-(2-hydroxyphenyl)-3-(nitrophenyl)propan-1,3-diones, with different positions of the nitro substituents. These diketones have been used to synthesize substituted nitroflavones, which are potentially useful as pharmaceutical materials (Barros & Silva, 2006). Recently, halogen- and/or nitro-substituted phenyl benzoates were found to be plastic crystals. This characteristic is related to the presence of the flexible –C—CO– synthon in the molecules (Saha & Desiraju, 2017; Saha et al., 2018).
2. Structural commentary
The corresponding bond lengths and bond angles in isomers I and II are very similar in the two molecules and are close to the standard values. The only unexpected value is angle O1—C14—C7, which is 111.42 (10)° (I) and 111.15 (9)° (II) for steric reasons, which is quite common for a bridging geometry in molecules with the same molecular core, such as phenyl benzoate and fluorinated phenyl benzoates (Dey & Chopra, 2017).
In both isomers, the nitro groups lie in the plane of the corresponding phenyl ring [torsion angles C9—C10—N1—O4 = 0.32 (17)° and C7—C12—N1—O3 = 1.08 (14)°, in isomers I and II respectively], while the acetyl groups are slightly twisted from the phenyl planes [torsion angles C1—C6—C15—O5 = 8.35 (18)° and C1—C6—C15—O5 = 3.97 (16)°]. The conformations of the two molecules are quite different (Fig. 1). There are two short intramolecular contacts between the oxygen atoms of the carbonyls and the ether group [O1⋯O5 = 2.694 (1) Å] and the oxygens of two carbonyl groups [O2⋯O5 = 3.008 (2) Å) in molecule I; in molecule II there are two short contacts between ether oxygen and carbonyl groups [O1⋯O3 and O1⋯O5 = 2.885 (1) and 2.704 (1) Å, respectively].
In the molecule of I, the dihedral angle between the phenyl rings is 84.84 (6)° (i.e. rings are almost perpendicular to each other), while in the molecule of II the phenyl rings are almost parallel, the dihedral angle between them being 6.11 (4)°. It is possible that the significant difference in the molecular conformations of the isomers is caused by the different positions of the nitro substituents.
3. DFT calculations
DFT calculations of isomers I and II at the B3LYP/6-311G(d,p) level of theory were carried out using GAUSSIAN 16 software (Frisch et al., 2016). The geometrical parameters of the two isomers were optimized starting from the molecular geometry in the crystal. No significant differences between the experimental and optimized bond lengths and angles were found. As mentioned above, the observed O1—C14—C7 angles are smaller than the standard value, and the calculated values are also smaller [111.41° (I) and 110.04° (II), which are very close to experimental values of 111.42 (10)° (I) and 111.15 (9)° (II)]. A comparison of the conformational characteristics of isomers I and II according to X-ray data and quantum chemical DFT calculations is presented in Table 1. This shows that the deviations of the nitro and acetyl groups from the planes of the corresponding aromatic rings are small and almost the same according to the X-ray and DFT data for isomer I. The data for isomer II indicate that the sterically stressed ortho position of the nitro group leads to larger differences between the molecular conformation in the crystal and that calculated for an isolated molecule. Hence, the deviations of the nitro and acetyl groups from the planes of aromatic rings are larger, as well as from the bridging plane, which is different in the isolated molecule of II.
|
4. Supramolecular features
As a result of the presence in isomers I and II of oxygen atoms of the carbonyl, nitro, and ether groups, the title molecules are capable of forming C—H⋯O hydrogen bonds (Tables 2 and 3). In the crystal of I, a low-occupancy [0.074 (2)] partial water molecule forms a bridge between two molecules of I (Fig. 2). The O2⋯O6 distance of 2.912 (6) Å indicates that this interaction is weak (Brown, 1976). In addition, π–π interactions between phenyl rings are observed in both structures. In I, the π–π interactions lead to the formation of dimers (Fig. 3a), while in II they lead to the formation of ladder-like chains along the [1 16 ] direction (Fig. 3b). The crystal packing is shown in Figs. 4 and 5. Despite the differences in the packing in the crystals of the two isomers, their lattice energies are very similar (see below).
5. Lattice energy calculations
The ) were calculated using the atom–atom force field implemented in the CLP-PIXEL program package (version 3.0, available from https://www.angelogavezzotti.it; Gavezzotti, 2011). The hydrogen-atom positions for the lattice energy calculations were assigned by the software. In structure II, which has a higher packing coefficient, the repulsive and Coulombic components are larger than in the structure of I, which has a lower packing coefficient, although the dispersion energy is lower in I. The total contribution of all the components results in the lattice energy for the crystals of the two isomers being almost equal. As the amount of water in I is low (the water molecule has 0.074 occupancy, see Refinement section), it was difficult to evaluate the effect of water on the total lattice energy. However, it is clear that the presence of water makes the structure of I less densely packed.
energies (Table 4
|
6. Database survey
A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016) for the molecules with the same structure as isomers I and II gave no entries. Three entries were found for the same core structure as in the title molecules. (Adams & Morsi, 1976; Dey & Chopra, 2017; Shibakami & Sekiya, 1995). One is an of phenylbenzoate with Ni complexes with isonicotinic acid and thiocyanato coordination bridges (Sekiya et al., 2004). Several methyl-substituted phenylbenzoates have been described by Gowda and co-workers, in particular the 2,3-, 2,4- and 2,5-isomers (Gowda, Foro et al., 2008; Gowda et al., 2009). Compounds with the same core and nitro-group substituents are rare and are mostly limited to halogen-substituted phenylbenzoates. The dihedral angles between the two aromatic rings vary. The methyl-substituted compounds tend to have a near-perpendicular geometry with dihedral angles ranging from 73.04 (8) to 87.43 (5)° (Gowda, Tokarcík et al., 2008; Gowda et al., 2009), while pure phenylbenzoate and many of its fluorinated derivatives have angles in the range 52.66 (7) to 62.76 (4)° (Adams & Morsi, 1976; Dey & Chopra, 2017). The number of entries in the database for nitro-substituted phenylbenzoates is limited and is not sufficient for drawing final conclusions on the role of the nitro-group position on the molecular geometry (Saha & Desiraju, 2017). Finally, the presence of phenylbenzoate in inclusion compounds seems to have a `flattening' effect on the molecule, lowering the dihedral angle; such a compound was described by Sekiya et al. (2004) with a dihedral angle between the aromatic rings of 20.9 (19)°. Careful analysis of substituted phenyl benzoate derivatives (415 entries in the CSD) presented by Saha & Desiraju (2017) has shown a strong preference for Ar–Ar torsion angles of between 40 and 90° (91% of entries).
7. Synthesis and crystallization
The synthesis of isomers I and II was performed according to Barros & Silva (2006). Crystals of both compounds were grown by slow evaporation from ethanol solution.
8. Refinement
Crystal data, data collection and structure . For both structures, the C-bound hydrogen atoms were freely refined. A large residual electron density peak was found for I. It was modelled as a partial water molecule. The O6 atom of the water molecule occupies a site on a crystallographic C2 axis (Fig. 2). The water molecule was freely refined with a resulting occupation factor of 0.074 (2). The water H atoms were added geometrically taking into account the direction of potential hydrogen bonds in the structure of I.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989020006295/dj2001sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020006295/dj2001Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020006295/dj2001IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020006295/dj2001Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989020006295/dj2001IIsup5.cml
For both structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Mercury (Macrae et al., 2020).C15H11NO5·0.07H2O | F(000) = 1190 |
Mr = 286.58 | Dx = 1.413 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 26.225 (6) Å | Cell parameters from 5275 reflections |
b = 7.9955 (17) Å | θ = 2.7–29.6° |
c = 13.772 (3) Å | µ = 0.11 mm−1 |
β = 111.080 (3)° | T = 150 K |
V = 2694.5 (10) Å3 | Block, yellow |
Z = 8 | 0.21 × 0.18 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2983 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.056 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 30.4°, θmin = 2.7° |
Tmin = 0.687, Tmax = 0.746 | h = −36→37 |
22632 measured reflections | k = −11→11 |
4010 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | Only H-atom coordinates refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0487P)2 + 1.2105P] where P = (Fo2 + 2Fc2)/3 |
4010 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.28 e Å−3 |
4 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.35357 (3) | 0.44264 (11) | 0.29788 (7) | 0.0308 (2) | |
O2 | 0.42547 (3) | 0.33442 (12) | 0.26638 (7) | 0.0371 (2) | |
O5 | 0.40200 (4) | 0.22975 (12) | 0.45589 (8) | 0.0418 (2) | |
O3 | 0.24003 (4) | −0.15624 (13) | −0.10893 (8) | 0.0420 (2) | |
O4 | 0.17571 (4) | −0.07242 (14) | −0.05770 (8) | 0.0455 (3) | |
N1 | 0.22348 (4) | −0.07748 (13) | −0.04993 (8) | 0.0323 (2) | |
C6 | 0.42127 (4) | 0.52092 (15) | 0.46672 (9) | 0.0271 (2) | |
C7 | 0.33704 (5) | 0.21458 (15) | 0.18295 (9) | 0.0266 (2) | |
C1 | 0.38789 (5) | 0.56226 (15) | 0.36503 (9) | 0.0280 (2) | |
C14 | 0.37775 (5) | 0.33207 (15) | 0.25404 (9) | 0.0275 (2) | |
C10 | 0.26387 (5) | 0.01845 (14) | 0.03499 (9) | 0.0281 (2) | |
C12 | 0.35454 (5) | 0.11618 (16) | 0.11749 (10) | 0.0321 (3) | |
C15 | 0.42406 (5) | 0.34790 (16) | 0.51033 (10) | 0.0304 (3) | |
C9 | 0.24572 (5) | 0.10844 (16) | 0.10176 (10) | 0.0325 (3) | |
C5 | 0.45180 (5) | 0.65194 (17) | 0.52810 (10) | 0.0327 (3) | |
C11 | 0.31776 (5) | 0.01690 (16) | 0.04198 (10) | 0.0320 (3) | |
C8 | 0.28291 (5) | 0.20799 (16) | 0.17673 (10) | 0.0313 (3) | |
C4 | 0.44849 (6) | 0.81349 (17) | 0.48991 (11) | 0.0382 (3) | |
C2 | 0.38375 (6) | 0.72310 (17) | 0.32635 (11) | 0.0355 (3) | |
C3 | 0.41424 (6) | 0.84948 (17) | 0.38984 (12) | 0.0397 (3) | |
C13 | 0.45479 (7) | 0.3244 (2) | 0.62472 (11) | 0.0419 (3) | |
O6 | 0.500000 | 0.0754 (11) | 0.250000 | 0.040 (2) | 0.148 (2) |
H6 | 0.474 (2) | 0.151 (3) | 0.256 (8) | 0.048* | 0.148 (2) |
H5 | 0.4747 (7) | 0.626 (2) | 0.5957 (13) | 0.040 (4)* | |
H12 | 0.3931 (6) | 0.1215 (19) | 0.1236 (12) | 0.038 (4)* | |
H13A | 0.4407 (7) | 0.398 (2) | 0.6677 (14) | 0.054 (5)* | |
H2 | 0.3589 (7) | 0.745 (2) | 0.2553 (14) | 0.047 (4)* | |
H3 | 0.4122 (7) | 0.961 (2) | 0.3652 (13) | 0.051 (5)* | |
H11 | 0.3295 (6) | −0.048 (2) | −0.0046 (12) | 0.045 (4)* | |
H13B | 0.4515 (7) | 0.208 (2) | 0.6428 (14) | 0.057 (5)* | |
H9 | 0.2081 (7) | 0.1025 (19) | 0.0956 (12) | 0.040 (4)* | |
H4 | 0.4692 (7) | 0.901 (2) | 0.5340 (13) | 0.052 (5)* | |
H8 | 0.2717 (6) | 0.273 (2) | 0.2253 (12) | 0.041 (4)* | |
H13C | 0.4953 (9) | 0.353 (3) | 0.6436 (16) | 0.074 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0267 (4) | 0.0308 (4) | 0.0320 (4) | −0.0018 (3) | 0.0072 (3) | −0.0082 (4) |
O2 | 0.0277 (4) | 0.0466 (6) | 0.0372 (5) | −0.0066 (4) | 0.0119 (4) | −0.0124 (4) |
O5 | 0.0580 (6) | 0.0288 (5) | 0.0387 (5) | −0.0050 (4) | 0.0177 (5) | −0.0028 (4) |
O3 | 0.0455 (5) | 0.0399 (5) | 0.0357 (5) | −0.0030 (4) | 0.0085 (4) | −0.0104 (4) |
O4 | 0.0296 (5) | 0.0521 (6) | 0.0491 (6) | −0.0116 (4) | 0.0072 (4) | −0.0051 (5) |
N1 | 0.0325 (5) | 0.0279 (5) | 0.0311 (5) | −0.0047 (4) | 0.0050 (4) | 0.0009 (4) |
C6 | 0.0260 (5) | 0.0281 (6) | 0.0286 (6) | −0.0013 (4) | 0.0116 (4) | −0.0052 (5) |
C7 | 0.0277 (5) | 0.0264 (5) | 0.0256 (5) | −0.0025 (4) | 0.0096 (4) | −0.0011 (4) |
C1 | 0.0262 (5) | 0.0282 (6) | 0.0297 (6) | −0.0021 (4) | 0.0101 (4) | −0.0067 (5) |
C14 | 0.0285 (5) | 0.0289 (6) | 0.0243 (5) | −0.0018 (4) | 0.0088 (4) | −0.0023 (4) |
C10 | 0.0276 (5) | 0.0243 (5) | 0.0292 (6) | −0.0046 (4) | 0.0064 (4) | −0.0012 (4) |
C12 | 0.0261 (5) | 0.0355 (6) | 0.0358 (6) | −0.0024 (5) | 0.0127 (5) | −0.0067 (5) |
C15 | 0.0327 (6) | 0.0312 (6) | 0.0304 (6) | 0.0023 (5) | 0.0152 (5) | −0.0021 (5) |
C9 | 0.0263 (6) | 0.0346 (6) | 0.0386 (7) | −0.0053 (5) | 0.0139 (5) | −0.0032 (5) |
C5 | 0.0312 (6) | 0.0370 (7) | 0.0309 (6) | −0.0041 (5) | 0.0124 (5) | −0.0086 (5) |
C11 | 0.0312 (6) | 0.0316 (6) | 0.0335 (6) | −0.0012 (5) | 0.0120 (5) | −0.0070 (5) |
C8 | 0.0303 (6) | 0.0333 (6) | 0.0336 (6) | −0.0038 (5) | 0.0153 (5) | −0.0063 (5) |
C4 | 0.0428 (7) | 0.0335 (7) | 0.0429 (8) | −0.0110 (6) | 0.0212 (6) | −0.0148 (6) |
C2 | 0.0390 (7) | 0.0313 (6) | 0.0354 (7) | 0.0028 (5) | 0.0125 (6) | −0.0002 (5) |
C3 | 0.0508 (8) | 0.0262 (6) | 0.0471 (8) | −0.0023 (6) | 0.0238 (7) | −0.0027 (6) |
C13 | 0.0488 (8) | 0.0444 (8) | 0.0318 (7) | 0.0086 (6) | 0.0138 (6) | 0.0034 (6) |
O6 | 0.037 (5) | 0.033 (5) | 0.044 (5) | 0.000 | 0.008 (4) | 0.000 |
O1—C1 | 1.4076 (14) | C15—C13 | 1.5010 (19) |
O1—C14 | 1.3503 (14) | C9—C8 | 1.3879 (17) |
O2—C14 | 1.2011 (14) | C9—H9 | 0.960 (16) |
O5—C15 | 1.2154 (15) | C5—C4 | 1.386 (2) |
O3—N1 | 1.2242 (15) | C5—H5 | 0.932 (17) |
O4—N1 | 1.2192 (14) | C11—H11 | 0.960 (16) |
N1—C10 | 1.4788 (15) | C8—H8 | 0.971 (16) |
C6—C1 | 1.3981 (17) | C4—C3 | 1.378 (2) |
C6—C15 | 1.4994 (18) | C4—H4 | 0.958 (18) |
C6—C5 | 1.4022 (17) | C2—C3 | 1.3865 (19) |
C7—C14 | 1.4928 (16) | C2—H2 | 0.976 (17) |
C7—C12 | 1.3928 (17) | C3—H3 | 0.945 (18) |
C7—C8 | 1.3922 (16) | C13—H13A | 0.998 (19) |
C1—C2 | 1.3813 (18) | C13—H13B | 0.976 (19) |
C10—C9 | 1.3801 (18) | C13—H13C | 1.02 (2) |
C10—C11 | 1.3818 (17) | O6—H6 | 0.941 (14) |
C12—C11 | 1.3857 (17) | O6—H6i | 0.941 (14) |
C12—H12 | 0.985 (15) | ||
C14—O1—C1 | 116.52 (9) | C8—C9—H9 | 121.2 (9) |
O3—N1—C10 | 117.89 (10) | C6—C5—H5 | 117.4 (10) |
O4—N1—O3 | 123.86 (11) | C4—C5—C6 | 121.56 (13) |
O4—N1—C10 | 118.25 (11) | C4—C5—H5 | 121.1 (10) |
C1—C6—C15 | 122.83 (10) | C10—C11—C12 | 117.74 (11) |
C1—C6—C5 | 116.31 (11) | C10—C11—H11 | 121.6 (9) |
C5—C6—C15 | 120.85 (11) | C12—C11—H11 | 120.7 (9) |
C12—C7—C14 | 117.11 (10) | C7—C8—H8 | 119.4 (9) |
C8—C7—C14 | 122.48 (11) | C9—C8—C7 | 119.71 (11) |
C8—C7—C12 | 120.32 (11) | C9—C8—H8 | 120.9 (9) |
C6—C1—O1 | 121.30 (11) | C5—C4—H4 | 119.9 (10) |
C2—C1—O1 | 115.86 (11) | C3—C4—C5 | 120.25 (12) |
C2—C1—C6 | 122.72 (11) | C3—C4—H4 | 119.9 (10) |
O1—C14—C7 | 111.42 (10) | C1—C2—C3 | 119.19 (13) |
O2—C14—O1 | 124.01 (11) | C1—C2—H2 | 119.0 (10) |
O2—C14—C7 | 124.44 (11) | C3—C2—H2 | 121.8 (10) |
C9—C10—N1 | 118.48 (10) | C4—C3—C2 | 119.95 (13) |
C9—C10—C11 | 123.20 (11) | C4—C3—H3 | 119.2 (10) |
C11—C10—N1 | 118.30 (11) | C2—C3—H3 | 120.9 (10) |
C7—C12—H12 | 119.1 (9) | C15—C13—H13A | 112.0 (10) |
C11—C12—C7 | 120.47 (11) | C15—C13—H13B | 108.9 (11) |
C11—C12—H12 | 120.4 (9) | C15—C13—H13C | 110.8 (11) |
O5—C15—C6 | 121.75 (11) | H13A—C13—H13B | 109.1 (15) |
O5—C15—C13 | 120.46 (12) | H13A—C13—H13C | 106.8 (16) |
C6—C15—C13 | 117.79 (11) | H13B—C13—H13C | 109.1 (15) |
C10—C9—C8 | 118.44 (11) | H6—O6—H6i | 99 (3) |
C10—C9—H9 | 120.3 (9) | ||
O1—C1—C2—C3 | 176.78 (11) | C14—C7—C8—C9 | 173.48 (12) |
O3—N1—C10—C9 | 179.69 (11) | C10—C9—C8—C7 | −0.10 (19) |
O3—N1—C10—C11 | 1.29 (17) | C12—C7—C14—O1 | 167.74 (11) |
O4—N1—C10—C9 | 0.32 (17) | C12—C7—C14—O2 | −8.35 (19) |
O4—N1—C10—C11 | −178.08 (12) | C12—C7—C8—C9 | −2.88 (19) |
N1—C10—C9—C8 | −175.42 (11) | C15—C6—C1—O1 | 1.58 (17) |
N1—C10—C11—C12 | 175.74 (11) | C15—C6—C1—C2 | 177.36 (12) |
C6—C1—C2—C3 | 0.8 (2) | C15—C6—C5—C4 | −178.13 (12) |
C6—C5—C4—C3 | 0.7 (2) | C9—C10—C11—C12 | −2.58 (19) |
C7—C12—C11—C10 | −0.5 (2) | C5—C6—C1—O1 | −177.11 (10) |
C1—O1—C14—O2 | −2.64 (17) | C5—C6—C1—C2 | −1.33 (18) |
C1—O1—C14—C7 | −178.76 (10) | C5—C6—C15—O5 | −173.02 (12) |
C1—C6—C15—O5 | 8.35 (18) | C5—C6—C15—C13 | 7.54 (17) |
C1—C6—C15—C13 | −171.09 (12) | C5—C4—C3—C2 | −1.3 (2) |
C1—C6—C5—C4 | 0.58 (18) | C11—C10—C9—C8 | 2.9 (2) |
C1—C2—C3—C4 | 0.5 (2) | C8—C7—C14—O1 | −8.72 (16) |
C14—O1—C1—C6 | −77.59 (14) | C8—C7—C14—O2 | 175.18 (12) |
C14—O1—C1—C2 | 106.36 (13) | C8—C7—C12—C11 | 3.2 (2) |
C14—C7—C12—C11 | −173.34 (12) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6···O2 | 0.94 (1) | 1.98 (2) | 2.912 (6) | 173 (2) |
C13—H13A···O2ii | 0.998 (19) | 2.638 (19) | 3.594 (2) | 160.6 (14) |
C11—H11···O5iii | 0.960 (16) | 2.600 (17) | 3.4725 (17) | 151.3 (12) |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x, −y, z−1/2. |
C15H11NO5 | F(000) = 592 |
Mr = 285.25 | Dx = 1.464 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.209 (5) Å | Cell parameters from 2439 reflections |
b = 14.307 (6) Å | θ = 2.2–31.6° |
c = 7.418 (3) Å | µ = 0.11 mm−1 |
β = 92.815 (7)° | T = 100 K |
V = 1294.2 (9) Å3 | Prism, yellow |
Z = 4 | 0.15 × 0.15 × 0.1 mm |
Bruker APEXII CCD diffractometer | 2913 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.016 |
Absorption correction: multi-scan (SADABS, Bruker, 2016) | θmax = 31.8°, θmin = 1.7° |
Tmin = 0.650, Tmax = 0.746 | h = −17→16 |
5087 measured reflections | k = −20→14 |
3620 independent reflections | l = −3→10 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.122 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0675P)2 + 0.172P] where P = (Fo2 + 2Fc2)/3 |
3620 reflections | (Δ/σ)max < 0.001 |
234 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C6 | 0.65734 (8) | 0.01262 (7) | 0.45205 (14) | 0.0158 (2) | |
O1 | 0.79222 (6) | −0.00491 (5) | 0.70582 (10) | 0.01756 (18) | |
O3 | 0.84475 (8) | −0.14564 (6) | 0.97495 (13) | 0.0314 (2) | |
C5 | 0.60515 (9) | −0.03010 (8) | 0.30108 (16) | 0.0193 (2) | |
O5 | 0.67276 (8) | 0.15066 (6) | 0.63086 (13) | 0.0319 (2) | |
C12 | 0.88232 (8) | −0.00579 (7) | 1.12279 (15) | 0.0166 (2) | |
N1 | 0.89918 (7) | −0.10690 (6) | 1.09597 (14) | 0.0207 (2) | |
C7 | 0.80754 (8) | 0.04285 (7) | 1.00989 (15) | 0.0164 (2) | |
C8 | 0.79381 (9) | 0.13811 (7) | 1.04287 (17) | 0.0214 (2) | |
C1 | 0.73215 (8) | −0.04200 (7) | 0.55600 (14) | 0.0160 (2) | |
O2 | 0.64412 (7) | −0.02330 (6) | 0.87287 (12) | 0.0282 (2) | |
C2 | 0.75414 (9) | −0.13411 (7) | 0.51264 (16) | 0.0201 (2) | |
C14 | 0.73772 (8) | −0.00042 (7) | 0.86012 (15) | 0.0174 (2) | |
C11 | 0.94230 (9) | 0.03733 (8) | 1.26288 (16) | 0.0212 (2) | |
C3 | 0.69989 (10) | −0.17469 (8) | 0.36297 (17) | 0.0237 (2) | |
O4 | 0.96613 (8) | −0.14724 (7) | 1.19635 (15) | 0.0395 (3) | |
C15 | 0.63287 (9) | 0.11279 (7) | 0.49603 (16) | 0.0191 (2) | |
C4 | 0.62600 (10) | −0.12258 (8) | 0.25762 (16) | 0.0226 (2) | |
C13 | 0.55711 (10) | 0.16657 (8) | 0.36771 (19) | 0.0268 (3) | |
C10 | 0.92771 (10) | 0.13212 (9) | 1.29225 (18) | 0.0258 (3) | |
C9 | 0.85407 (10) | 0.18239 (8) | 1.18253 (18) | 0.0255 (3) | |
H2 | 0.8073 (13) | −0.1705 (11) | 0.587 (2) | 0.035 (4)* | |
H8 | 0.7406 (12) | 0.1752 (10) | 0.968 (2) | 0.028 (4)* | |
H11 | 0.9935 (13) | 0.0017 (11) | 1.333 (2) | 0.032 (4)* | |
H5 | 0.5541 (13) | 0.0044 (10) | 0.226 (2) | 0.031 (4)* | |
H13A | 0.4825 (13) | 0.1366 (11) | 0.359 (2) | 0.040 (4)* | |
H10 | 0.9702 (14) | 0.1641 (12) | 1.387 (2) | 0.043 (5)* | |
H4 | 0.5886 (13) | −0.1483 (11) | 0.149 (2) | 0.039 (4)* | |
H3 | 0.7153 (12) | −0.2407 (11) | 0.337 (2) | 0.033 (4)* | |
H9 | 0.8436 (13) | 0.2498 (12) | 1.199 (2) | 0.041 (4)* | |
H13B | 0.5874 (14) | 0.1732 (12) | 0.248 (2) | 0.048 (5)* | |
H13C | 0.5493 (16) | 0.2303 (14) | 0.415 (3) | 0.061 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C6 | 0.0176 (4) | 0.0157 (4) | 0.0141 (5) | −0.0014 (3) | −0.0002 (4) | 0.0012 (3) |
O1 | 0.0176 (3) | 0.0212 (4) | 0.0135 (4) | −0.0011 (3) | −0.0029 (3) | −0.0015 (3) |
O3 | 0.0479 (5) | 0.0180 (4) | 0.0272 (5) | −0.0031 (4) | −0.0111 (4) | −0.0016 (3) |
C5 | 0.0222 (5) | 0.0208 (5) | 0.0145 (6) | −0.0019 (4) | −0.0033 (4) | 0.0015 (4) |
O5 | 0.0454 (5) | 0.0182 (4) | 0.0307 (6) | 0.0037 (4) | −0.0132 (4) | −0.0063 (3) |
C12 | 0.0171 (4) | 0.0169 (5) | 0.0155 (5) | 0.0000 (3) | −0.0006 (4) | 0.0006 (4) |
N1 | 0.0220 (4) | 0.0186 (4) | 0.0213 (5) | 0.0013 (3) | −0.0006 (4) | 0.0030 (3) |
C7 | 0.0178 (4) | 0.0180 (5) | 0.0133 (5) | −0.0013 (3) | −0.0016 (4) | 0.0003 (3) |
C8 | 0.0252 (5) | 0.0185 (5) | 0.0201 (6) | 0.0016 (4) | −0.0030 (4) | 0.0003 (4) |
C1 | 0.0171 (4) | 0.0178 (5) | 0.0129 (5) | −0.0010 (3) | −0.0003 (4) | −0.0004 (4) |
O2 | 0.0227 (4) | 0.0441 (5) | 0.0177 (5) | −0.0094 (3) | −0.0019 (3) | −0.0001 (4) |
C2 | 0.0243 (5) | 0.0173 (5) | 0.0186 (6) | 0.0030 (4) | −0.0006 (4) | 0.0010 (4) |
C14 | 0.0197 (5) | 0.0180 (5) | 0.0141 (6) | 0.0003 (4) | −0.0040 (4) | 0.0016 (4) |
C11 | 0.0195 (5) | 0.0262 (5) | 0.0174 (6) | 0.0004 (4) | −0.0048 (4) | −0.0003 (4) |
C3 | 0.0340 (6) | 0.0169 (5) | 0.0202 (6) | 0.0003 (4) | 0.0019 (5) | −0.0032 (4) |
O4 | 0.0411 (5) | 0.0269 (5) | 0.0484 (7) | 0.0120 (4) | −0.0185 (5) | 0.0045 (4) |
C15 | 0.0210 (5) | 0.0153 (5) | 0.0207 (6) | −0.0008 (4) | −0.0006 (4) | 0.0024 (4) |
C4 | 0.0311 (5) | 0.0211 (5) | 0.0152 (6) | −0.0044 (4) | −0.0029 (4) | −0.0029 (4) |
C13 | 0.0288 (6) | 0.0190 (5) | 0.0319 (7) | 0.0034 (4) | −0.0064 (5) | 0.0058 (5) |
C10 | 0.0267 (5) | 0.0291 (6) | 0.0209 (7) | −0.0042 (4) | −0.0052 (5) | −0.0079 (5) |
C9 | 0.0314 (6) | 0.0193 (5) | 0.0256 (7) | −0.0013 (4) | −0.0004 (5) | −0.0052 (4) |
C6—C5 | 1.4014 (16) | C1—C2 | 1.3860 (15) |
C6—C1 | 1.4036 (15) | O2—C14 | 1.1969 (14) |
C6—C15 | 1.5031 (15) | C2—C3 | 1.3914 (17) |
O1—C1 | 1.4053 (13) | C2—H2 | 0.981 (16) |
O1—C14 | 1.3534 (14) | C11—C10 | 1.3865 (17) |
O3—N1 | 1.2232 (13) | C11—H11 | 0.941 (16) |
C5—C4 | 1.3884 (17) | C3—C4 | 1.3824 (18) |
C5—H5 | 0.954 (15) | C3—H3 | 0.984 (16) |
O5—C15 | 1.2179 (15) | C15—C13 | 1.5057 (17) |
C12—N1 | 1.4762 (15) | C4—H4 | 0.981 (17) |
C12—C7 | 1.3943 (15) | C13—H13A | 1.006 (16) |
C12—C11 | 1.3864 (16) | C13—H13B | 0.986 (18) |
N1—O4 | 1.2230 (13) | C13—H13C | 0.98 (2) |
C7—C8 | 1.3961 (16) | C10—C9 | 1.3843 (19) |
C7—C14 | 1.5004 (15) | C10—H10 | 0.969 (17) |
C8—C9 | 1.3932 (17) | C9—H9 | 0.981 (17) |
C8—H8 | 0.987 (15) | ||
C5—C6—C1 | 117.02 (9) | O2—C14—O1 | 124.38 (10) |
C5—C6—C15 | 120.13 (10) | O2—C14—C7 | 124.35 (10) |
C1—C6—C15 | 122.85 (10) | C12—C11—C10 | 119.06 (11) |
C14—O1—C1 | 115.32 (8) | C12—C11—H11 | 118.9 (9) |
C6—C5—H5 | 120.0 (9) | C10—C11—H11 | 122.0 (9) |
C4—C5—C6 | 121.32 (11) | C2—C3—H3 | 118.0 (9) |
C4—C5—H5 | 118.7 (9) | C4—C3—C2 | 119.87 (10) |
C7—C12—N1 | 119.98 (9) | C4—C3—H3 | 122.2 (9) |
C11—C12—N1 | 117.71 (9) | C6—C15—C13 | 118.20 (10) |
C11—C12—C7 | 122.30 (10) | O5—C15—C6 | 121.78 (10) |
O3—N1—C12 | 117.94 (9) | O5—C15—C13 | 120.02 (10) |
O4—N1—O3 | 123.77 (10) | C5—C4—H4 | 117.8 (9) |
O4—N1—C12 | 118.29 (10) | C3—C4—C5 | 120.31 (11) |
C12—C7—C8 | 117.55 (10) | C3—C4—H4 | 121.9 (9) |
C12—C7—C14 | 124.77 (9) | C15—C13—H13A | 110.4 (9) |
C8—C7—C14 | 117.64 (10) | C15—C13—H13B | 112.0 (10) |
C7—C8—H8 | 120.5 (8) | C15—C13—H13C | 108.5 (11) |
C9—C8—C7 | 120.71 (11) | H13A—C13—H13B | 111.2 (14) |
C9—C8—H8 | 118.8 (8) | H13A—C13—H13C | 108.4 (15) |
C6—C1—O1 | 121.64 (9) | H13B—C13—H13C | 106.1 (15) |
C2—C1—C6 | 122.01 (10) | C11—C10—H10 | 120.5 (10) |
C2—C1—O1 | 116.30 (9) | C9—C10—C11 | 120.04 (11) |
C1—C2—C3 | 119.46 (10) | C9—C10—H10 | 119.5 (10) |
C1—C2—H2 | 120.3 (9) | C8—C9—H9 | 118.1 (10) |
C3—C2—H2 | 120.3 (9) | C10—C9—C8 | 120.33 (11) |
O1—C14—C7 | 111.15 (9) | C10—C9—H9 | 121.5 (10) |
C6—C5—C4—C3 | −0.37 (17) | C8—C7—C14—O2 | −79.61 (14) |
C6—C1—C2—C3 | −0.77 (16) | C1—C6—C5—C4 | 0.55 (16) |
O1—C1—C2—C3 | −178.27 (9) | C1—C6—C15—O5 | −3.97 (16) |
C5—C6—C1—O1 | 177.39 (9) | C1—C6—C15—C13 | 175.80 (10) |
C5—C6—C1—C2 | 0.02 (15) | C1—O1—C14—C7 | −178.19 (8) |
C5—C6—C15—O5 | 176.43 (10) | C1—O1—C14—O2 | −1.95 (15) |
C5—C6—C15—C13 | −3.80 (15) | C1—C2—C3—C4 | 0.95 (17) |
C12—C7—C8—C9 | 0.76 (16) | C2—C3—C4—C5 | −0.40 (18) |
C12—C7—C14—O1 | −85.81 (12) | C14—O1—C1—C6 | 81.05 (12) |
C12—C7—C14—O2 | 97.95 (14) | C14—O1—C1—C2 | −101.44 (11) |
C12—C11—C10—C9 | 0.02 (18) | C14—C7—C8—C9 | 178.50 (10) |
N1—C12—C7—C8 | 179.17 (9) | C11—C12—N1—O3 | 178.49 (10) |
N1—C12—C7—C14 | 1.61 (15) | C11—C12—N1—O4 | −1.10 (15) |
N1—C12—C11—C10 | −179.57 (10) | C11—C12—C7—C8 | −0.38 (15) |
C7—C12—N1—O3 | −1.08 (14) | C11—C12—C7—C14 | −177.94 (10) |
C7—C12—N1—O4 | 179.33 (10) | C11—C10—C9—C8 | 0.36 (18) |
C7—C12—C11—C10 | −0.01 (16) | C15—C6—C5—C4 | −179.82 (10) |
C7—C8—C9—C10 | −0.76 (18) | C15—C6—C1—O1 | −2.23 (15) |
C8—C7—C14—O1 | 96.63 (11) | C15—C6—C1—C2 | −179.60 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O1i | 0.941 (16) | 2.646 (15) | 3.2711 (19) | 124.4 (12) |
Symmetry code: (i) −x+2, −y, −z+2. |
Conformational parameters | Isomer I – X-ray | Isomer I – DFT | Isomer II – X-ray | Isomer II – DFT |
C9—C10—N1—O4 | 0.32 (17) | 0.14 | – | – |
C11—C12—N1—O4 | – | – | -1.10 (15) | -21.06 |
C5—C6—C15—C13 | 7.54 (17) | 6.03 | -3.80 (15) | -10.18 |
C12—C7—C14—O1 | 167.74 (11) | 172.87 | -85.81 (12) | -65.72 |
C7—C14—O1—C1 | -178.76 (10) | 171.54 | -178.19 (8) | -175.37 |
C6—C1—O1—C14 | -77.59 (14) | -77.23 | 81.05 (12) | 82.74 |
Ar/Ar | 84.80 (4) | 87.03 | 6.12 (7) | 21.04 |
I | II | |
Cell volume, Å | 2694.5 (10) | 1294.2 (9) |
Density, g cm-3 | 1.406 | 1.464 |
Packing coefficient | 0.739 | 0.771 |
Coulombic | -29.9 | -35.5 |
Polarization | -40.2 | -40.2 |
Dispersion | -147.4 | -144.1 |
Repulsion | 64.8 | 67.4 |
Total | -152.6 | -152.3 |
Funding information
Funding for this research was provided by: National Science Foundation (grant No. DMR-1523611).
References
Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ali, N. M., Yeap, S. K., Abu, N., Lim, K. L., Ky, H., Pauzi, A. Z. M., Ho, W. Y., Tan, S. W., Alan-Ong, H. K., Zareen, S., Alitheen, N. B. & Akhtar, M. N. (2017). Cancer Cell Int. 17, 30–42. CrossRef PubMed Google Scholar
Baker, W. (1933). J. Chem. Soc. 1381–1389. Google Scholar
Barros, A. I. R. N. A. & Silva, A. M. S. (2006). Monatsh. Chem. 137, 1505–1528. CrossRef CAS Google Scholar
Brown, I. D. (1976). Acta Cryst. A32, 24–31. CrossRef IUCr Journals Web of Science Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dey, D. & Chopra, D. (2017). Cryst. Growth Des. 17, 5117–5128. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2016). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com. Google Scholar
Gavezzotti, A. (2011). New J. Chem. 35, 1360–1368. Web of Science CrossRef CAS Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1587. CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahal, H. S. & Venkataraman, K. (1934). J. Chem. Soc. pp. 1767–1769. CrossRef Google Scholar
Saha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975–1983. Web of Science CSD CrossRef CAS PubMed Google Scholar
Saha, S., Mishra, M. K., Reddy, C. M. & Desiraju, G. R. (2018). Acc. Chem. Res. 51, 2957–2967. Web of Science CrossRef CAS PubMed Google Scholar
Sekiya, R., Nishikiori, S.-I. & Ogura, K. (2004). J. Am. Chem. Soc. 126, 16587–16600. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326–330. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Singh, M., Kaur, M., Vyas, B. & Silakari, O. (2017). J. Med. Chem. 27, 520–530. Google Scholar
Vyas, B., Singh, M., Kaur, M., Silakari, O., Bahia, M. S. & Singh, B. (2016). J. Med. Chem. 25, 609–626. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.