research communications
The
and Hirshfeld surface analysis of 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidineaInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction.
Keywords: crystal structure; piperidine; hydrogen bonding; Hirshfeld surface analysis; energy frameworks.
CCDC reference: 2000223
1. Chemical context
During research on phytotoxins produced by the Ceratocystis fimbriata species (Tiouabi, 2005), the pathogenic agents responsible for the infections of plane, coffee and elm trees, analytical and spectroscopic studies enabled the isolation of a number of in small quantities. In order to confirm their molecular structures and especially to study their phytotoxicity and pathogenicity it was necessary to develop efficient methods for the total syntheses of these various The title compound (3) was synthesized as a side product during the synthesis of the intermediate, methyl 3,6-dimethoxy-2-(2-methoxy-2-oxoethyl)benzoate (2) (see Fig. 1), necessary for the total synthesis of the isocoumarin 5,8-dimethoxy-3-methyl-1H-isochromen-1-one (Tiouabi, 2005).
2. Structural commentary
The molecular structure of the title compound, 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine (3), is illustrated in Fig. 2. The piperidine ring has a chair conformation with atoms N1 and C11 being displaced by −0.5171 (12) and 0.6876 (15) Å, respectively, from the mean plane of the remaining four C atoms (C9/C10/C12/C13). This mean plane is normal to the plane of the benzene ring (C1–C6), with a dihedral angle of 88.34 (9)°. Planes C2/O1/C7 and C5/O2/C8, involving the methoxy groups, are inclined to the benzene ring by 13.23 (15) and 10.45 (15)°, respectively.
3. Supramolecular features
In the crystal of 3, molecules related by the glide plane are linked by C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction (Fig. 3 and Table 1). There are no other significant intermolecular interactions present in the crystal.
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17.5 (Turner et al., 2017). For an excellent explanation of the use of Hirshfeld surface analysis and other calculations, such as energy frameworks, to study the molecular packing see the recent article by Tiekink and collaborators (Tan et al., 2019). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The energy frameworks (Turner et al., 2015; Tan et al., 2019) are represented by cylinders joining the centroids of molecular pairs using red, green and blue colour codes for the Eelectrostatic, Edispersion and Etotal energy components, respectively. The radius of the cylinder is proportional to the magnitude of the interaction energy.
A view of the Hirshfeld surface of 3 mapped over dnorm is shown in Fig. 4. The short interatomic O⋯H/H⋯O contacts are indicated by the faint red spots. A full list of short interatomic contacts in the crystal of 3 are given in Table 2. The most significant contacts, apart from H⋯H contacts, are O⋯H and C⋯H contacts as confirmed by the two-dimensional fingerprint plots (Fig. 5). The principal intermolecular contacts for 3, are delineated into H⋯H at 84.1% (Fig. 5b), O⋯H/H⋯O at 8.3% (Fig. 5c) and C⋯H/H⋯C at 7.6% (Fig. 5d) contacts. The intermolecular contacts are therefore dominated by dispersion forces (H⋯H at 84.1%; Fig. 5b). This is confirmed by the energy frameworks shown in Fig. 6. The energy frameworks were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells, and obtained using the wave function calculated at the HF/3-21G level of theory.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016) for 1-(phenyl)-2,2,6,6-tetramethylpiperidines gave 26 hits (see file S1 in the supporting information). A number of these structures involve heteroaryl and heterocyclic aluminium compounds, see for example CSD refcodes CEGLUY, CEGMF, CEGMEJ, CEGMIN, CEGMOT and CEGMUZ (Chen et al., 2017). They also include a number of borohydride derivatives, see for example CSD refcodes JAKZON, JAKZUT, JALBAC and JALBEG (Chernichenko et al., 2017). Only one compound has a methoxy substituent, viz. 1-(2-iodo-3-methoxyphenyl)-2,2,6,6-tetramethylpiperidine (VAPCUM; Crosbie et al., 2012). In these eleven compounds, the piperidine ring has a chair conformation with the mean plane of the four planar C atoms being inclined to the plane of the benzene ring by dihedral angles varying from ca 83.0 to 90.0°. In compound 3 this dihedral angle is similar at 88.34 (9)°.
6. Synthesis and crystallization
The synthesis of compound 3 is illustrated in Fig. 1. It arises as a result of the condensation of 2-bromo-1,4-dimethoxybenzene (1) with tetramethylpiperidene (HTMP). It is a side product obtained during the synthesis of methyl 3,6-dimethoxy-2-(2-methoxy-2-oxoethyl)benzoate (2) (Tiouabi, 2005). Colourless rod-like crystals of 3 were obtained by slow evaporation at room temperature of a solution in acetone.There are no analytical or spectroscopic data available for compound 3.
7. details
Crystal data, data collection and structure . The hydrogen atoms were fixed geometrically (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2000223
https://doi.org/10.1107/S2056989020005952/dj2006sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020005952/dj2006Isup2.hkl
CSD search S1. DOI: https://doi.org/10.1107/S2056989020005952/dj2006sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989020005952/dj2006Isup4.cml
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C17H27NO2 | F(000) = 608 |
Mr = 277.39 | Dx = 1.182 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8817 (10) Å | Cell parameters from 4940 reflections |
b = 28.249 (4) Å | θ = 1.4–25.5° |
c = 8.1369 (13) Å | µ = 0.08 mm−1 |
β = 99.649 (12)° | T = 173 K |
V = 1559.4 (4) Å3 | Rod, colourless |
Z = 4 | 0.40 × 0.10 × 0.10 mm |
STOE IPDS 2 diffractometer | 1695 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.085 |
Plane graphite monochromator | θmax = 25.2°, θmin = 1.4° |
φ + ω scans | h = −8→8 |
10596 measured reflections | k = −33→33 |
2770 independent reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0237P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.83 | (Δ/σ)max < 0.001 |
2770 reflections | Δρmax = 0.13 e Å−3 |
188 parameters | Δρmin = −0.13 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0127 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.15231 (15) | 0.11464 (4) | 0.48898 (14) | 0.0359 (3) | |
O2 | 0.47503 (17) | 0.23289 (4) | 0.44354 (15) | 0.0389 (3) | |
N1 | 0.17336 (17) | 0.10517 (4) | 0.72612 (15) | 0.0239 (3) | |
C1 | 0.1701 (2) | 0.14010 (5) | 0.59863 (18) | 0.0240 (4) | |
C2 | 0.0023 (2) | 0.14458 (5) | 0.4777 (2) | 0.0274 (4) | |
C3 | −0.0050 (2) | 0.17837 (6) | 0.3529 (2) | 0.0320 (4) | |
H3 | −0.120713 | 0.181465 | 0.271592 | 0.038* | |
C4 | 0.1545 (2) | 0.20752 (6) | 0.3461 (2) | 0.0326 (4) | |
H4 | 0.148437 | 0.230424 | 0.259885 | 0.039* | |
C5 | 0.3219 (2) | 0.20347 (5) | 0.4637 (2) | 0.0286 (4) | |
C6 | 0.3285 (2) | 0.17020 (5) | 0.58934 (19) | 0.0264 (4) | |
H6 | 0.443892 | 0.167808 | 0.671343 | 0.032* | |
C7 | −0.3053 (2) | 0.11190 (7) | 0.3485 (2) | 0.0420 (5) | |
H7C | −0.398183 | 0.086893 | 0.366432 | 0.063* | |
H7B | −0.248449 | 0.104630 | 0.248721 | 0.063* | |
H7A | −0.374711 | 0.142279 | 0.333365 | 0.063* | |
C8 | 0.6384 (3) | 0.23518 (6) | 0.5748 (2) | 0.0407 (5) | |
H8A | 0.703032 | 0.204187 | 0.588607 | 0.061* | |
H8B | 0.592985 | 0.244041 | 0.678454 | 0.061* | |
H8C | 0.732223 | 0.258909 | 0.548061 | 0.061* | |
C9 | 0.1554 (2) | 0.12313 (5) | 0.89467 (19) | 0.0269 (4) | |
C10 | 0.0977 (2) | 0.08181 (6) | 0.9977 (2) | 0.0342 (4) | |
H10A | 0.103522 | 0.092378 | 1.114443 | 0.041* | |
H10B | −0.040201 | 0.072692 | 0.954118 | 0.041* | |
C11 | 0.2287 (2) | 0.03873 (6) | 0.9958 (2) | 0.0381 (5) | |
H11A | 0.365874 | 0.046683 | 1.046272 | 0.046* | |
H11B | 0.182345 | 0.012857 | 1.061593 | 0.046* | |
C12 | 0.2215 (3) | 0.02299 (6) | 0.8172 (2) | 0.0364 (4) | |
H12B | 0.084985 | 0.013326 | 0.770843 | 0.044* | |
H12A | 0.307259 | −0.005084 | 0.815714 | 0.044* | |
C13 | 0.2870 (2) | 0.06129 (5) | 0.7049 (2) | 0.0294 (4) | |
C14 | −0.0136 (2) | 0.15863 (6) | 0.8748 (2) | 0.0352 (4) | |
H14C | −0.039727 | 0.167933 | 0.985055 | 0.053* | |
H14B | −0.132032 | 0.144135 | 0.810935 | 0.053* | |
H14A | 0.022371 | 0.186676 | 0.815626 | 0.053* | |
C15 | 0.3403 (2) | 0.14765 (6) | 0.9888 (2) | 0.0361 (4) | |
H15C | 0.316036 | 0.157724 | 1.098873 | 0.054* | |
H15B | 0.371277 | 0.175361 | 0.925566 | 0.054* | |
H15A | 0.451420 | 0.125506 | 1.002183 | 0.054* | |
C16 | 0.5112 (2) | 0.06636 (6) | 0.7429 (2) | 0.0350 (4) | |
H16C | 0.572685 | 0.036915 | 0.713805 | 0.053* | |
H16B | 0.552574 | 0.072901 | 0.861923 | 0.053* | |
H16A | 0.552219 | 0.092519 | 0.677366 | 0.053* | |
C17 | 0.2301 (2) | 0.04478 (6) | 0.5248 (2) | 0.0387 (5) | |
H17A | 0.280543 | 0.067303 | 0.450547 | 0.058* | |
H17B | 0.086213 | 0.042978 | 0.495777 | 0.058* | |
H17C | 0.287008 | 0.013449 | 0.512256 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0285 (6) | 0.0478 (7) | 0.0295 (7) | −0.0066 (5) | −0.0007 (5) | 0.0043 (6) |
O2 | 0.0453 (7) | 0.0328 (7) | 0.0391 (7) | −0.0084 (6) | 0.0085 (6) | 0.0091 (6) |
N1 | 0.0296 (7) | 0.0217 (7) | 0.0205 (7) | 0.0021 (6) | 0.0045 (6) | 0.0027 (6) |
C1 | 0.0292 (9) | 0.0225 (8) | 0.0210 (9) | 0.0038 (7) | 0.0058 (7) | −0.0006 (7) |
C2 | 0.0276 (9) | 0.0319 (9) | 0.0233 (9) | 0.0011 (7) | 0.0063 (8) | −0.0023 (7) |
C3 | 0.0353 (10) | 0.0384 (10) | 0.0218 (9) | 0.0095 (8) | 0.0032 (8) | 0.0026 (8) |
C4 | 0.0465 (11) | 0.0275 (9) | 0.0256 (9) | 0.0094 (8) | 0.0111 (9) | 0.0059 (7) |
C5 | 0.0362 (9) | 0.0229 (8) | 0.0283 (9) | 0.0011 (7) | 0.0098 (8) | 0.0005 (7) |
C6 | 0.0304 (9) | 0.0230 (8) | 0.0251 (8) | 0.0027 (7) | 0.0024 (7) | −0.0004 (7) |
C7 | 0.0308 (10) | 0.0594 (12) | 0.0329 (10) | −0.0019 (9) | −0.0032 (8) | −0.0076 (9) |
C8 | 0.0476 (11) | 0.0392 (11) | 0.0374 (11) | −0.0115 (9) | 0.0136 (10) | −0.0044 (8) |
C9 | 0.0334 (9) | 0.0276 (9) | 0.0197 (8) | 0.0020 (7) | 0.0045 (7) | 0.0017 (7) |
C10 | 0.0368 (10) | 0.0400 (10) | 0.0266 (9) | 0.0011 (8) | 0.0082 (8) | 0.0080 (8) |
C11 | 0.0397 (10) | 0.0337 (10) | 0.0409 (11) | 0.0013 (8) | 0.0068 (9) | 0.0146 (8) |
C12 | 0.0379 (10) | 0.0248 (9) | 0.0472 (11) | 0.0019 (8) | 0.0088 (9) | 0.0065 (8) |
C13 | 0.0318 (9) | 0.0225 (8) | 0.0340 (10) | 0.0007 (7) | 0.0063 (8) | 0.0014 (7) |
C14 | 0.0428 (10) | 0.0355 (10) | 0.0284 (10) | 0.0095 (8) | 0.0093 (8) | 0.0006 (8) |
C15 | 0.0427 (10) | 0.0369 (10) | 0.0270 (9) | −0.0030 (8) | 0.0010 (8) | −0.0032 (8) |
C16 | 0.0343 (9) | 0.0309 (9) | 0.0403 (10) | 0.0064 (8) | 0.0076 (8) | 0.0036 (8) |
C17 | 0.0426 (11) | 0.0301 (9) | 0.0437 (11) | 0.0007 (8) | 0.0085 (9) | −0.0079 (9) |
O1—C2 | 1.3743 (19) | C9—C15 | 1.536 (2) |
O1—C7 | 1.4204 (18) | C10—C11 | 1.516 (2) |
O2—C5 | 1.3732 (19) | C10—H10A | 0.9900 |
O2—C8 | 1.416 (2) | C10—H10B | 0.9900 |
N1—C1 | 1.4293 (19) | C11—C12 | 1.513 (2) |
N1—C9 | 1.4867 (19) | C11—H11A | 0.9900 |
N1—C13 | 1.4908 (19) | C11—H11B | 0.9900 |
C1—C2 | 1.392 (2) | C12—C13 | 1.532 (2) |
C1—C6 | 1.394 (2) | C12—H12B | 0.9900 |
C2—C3 | 1.388 (2) | C12—H12A | 0.9900 |
C3—C4 | 1.381 (2) | C13—C17 | 1.526 (2) |
C3—H3 | 0.9500 | C13—C16 | 1.529 (2) |
C4—C5 | 1.374 (2) | C14—H14C | 0.9800 |
C4—H4 | 0.9500 | C14—H14B | 0.9800 |
C5—C6 | 1.384 (2) | C14—H14A | 0.9800 |
C6—H6 | 0.9500 | C15—H15C | 0.9800 |
C7—H7C | 0.9800 | C15—H15B | 0.9800 |
C7—H7B | 0.9800 | C15—H15A | 0.9800 |
C7—H7A | 0.9800 | C16—H16C | 0.9800 |
C8—H8A | 0.9800 | C16—H16B | 0.9800 |
C8—H8B | 0.9800 | C16—H16A | 0.9800 |
C8—H8C | 0.9800 | C17—H17A | 0.9800 |
C9—C14 | 1.524 (2) | C17—H17B | 0.9800 |
C9—C10 | 1.528 (2) | C17—H17C | 0.9800 |
C2—O1—C7 | 117.22 (13) | C9—C10—H10B | 108.9 |
C5—O2—C8 | 117.75 (13) | H10A—C10—H10B | 107.7 |
C1—N1—C9 | 116.13 (11) | C12—C11—C10 | 108.78 (14) |
C1—N1—C13 | 115.76 (12) | C12—C11—H11A | 109.9 |
C9—N1—C13 | 121.11 (11) | C10—C11—H11A | 109.9 |
C2—C1—C6 | 118.02 (14) | C12—C11—H11B | 109.9 |
C2—C1—N1 | 119.07 (14) | C10—C11—H11B | 109.9 |
C6—C1—N1 | 122.90 (13) | H11A—C11—H11B | 108.3 |
O1—C2—C3 | 122.57 (14) | C11—C12—C13 | 113.56 (14) |
O1—C2—C1 | 117.18 (14) | C11—C12—H12B | 108.9 |
C3—C2—C1 | 120.24 (15) | C13—C12—H12B | 108.9 |
C4—C3—C2 | 120.51 (15) | C11—C12—H12A | 108.9 |
C4—C3—H3 | 119.7 | C13—C12—H12A | 108.9 |
C2—C3—H3 | 119.7 | H12B—C12—H12A | 107.7 |
C5—C4—C3 | 120.13 (15) | N1—C13—C17 | 108.08 (12) |
C5—C4—H4 | 119.9 | N1—C13—C16 | 115.46 (12) |
C3—C4—H4 | 119.9 | C17—C13—C16 | 108.10 (14) |
O2—C5—C4 | 115.91 (14) | N1—C13—C12 | 107.81 (13) |
O2—C5—C6 | 124.65 (14) | C17—C13—C12 | 107.65 (13) |
C4—C5—C6 | 119.42 (15) | C16—C13—C12 | 109.49 (13) |
C5—C6—C1 | 121.67 (14) | C9—C14—H14C | 109.5 |
C5—C6—H6 | 119.2 | C9—C14—H14B | 109.5 |
C1—C6—H6 | 119.2 | H14C—C14—H14B | 109.5 |
O1—C7—H7C | 109.5 | C9—C14—H14A | 109.5 |
O1—C7—H7B | 109.5 | H14C—C14—H14A | 109.5 |
H7C—C7—H7B | 109.5 | H14B—C14—H14A | 109.5 |
O1—C7—H7A | 109.5 | C9—C15—H15C | 109.5 |
H7C—C7—H7A | 109.5 | C9—C15—H15B | 109.5 |
H7B—C7—H7A | 109.5 | H15C—C15—H15B | 109.5 |
O2—C8—H8A | 109.5 | C9—C15—H15A | 109.5 |
O2—C8—H8B | 109.5 | H15C—C15—H15A | 109.5 |
H8A—C8—H8B | 109.5 | H15B—C15—H15A | 109.5 |
O2—C8—H8C | 109.5 | C13—C16—H16C | 109.5 |
H8A—C8—H8C | 109.5 | C13—C16—H16B | 109.5 |
H8B—C8—H8C | 109.5 | H16C—C16—H16B | 109.5 |
N1—C9—C14 | 107.86 (12) | C13—C16—H16A | 109.5 |
N1—C9—C10 | 108.36 (12) | H16C—C16—H16A | 109.5 |
C14—C9—C10 | 107.30 (14) | H16B—C16—H16A | 109.5 |
N1—C9—C15 | 115.10 (13) | C13—C17—H17A | 109.5 |
C14—C9—C15 | 108.04 (13) | C13—C17—H17B | 109.5 |
C10—C9—C15 | 109.90 (13) | H17A—C17—H17B | 109.5 |
C11—C10—C9 | 113.44 (14) | C13—C17—H17C | 109.5 |
C11—C10—H10A | 108.9 | H17A—C17—H17C | 109.5 |
C9—C10—H10A | 108.9 | H17B—C17—H17C | 109.5 |
C11—C10—H10B | 108.9 | ||
C9—N1—C1—C2 | −106.25 (16) | C1—N1—C9—C14 | 46.76 (17) |
C13—N1—C1—C2 | 102.61 (16) | C13—N1—C9—C14 | −163.75 (13) |
C9—N1—C1—C6 | 73.77 (19) | C1—N1—C9—C10 | 162.62 (12) |
C13—N1—C1—C6 | −77.38 (18) | C13—N1—C9—C10 | −47.89 (17) |
C7—O1—C2—C3 | 13.5 (2) | C1—N1—C9—C15 | −73.91 (16) |
C7—O1—C2—C1 | −166.84 (14) | C13—N1—C9—C15 | 75.58 (17) |
C6—C1—C2—O1 | −179.96 (14) | N1—C9—C10—C11 | 50.81 (17) |
N1—C1—C2—O1 | 0.1 (2) | C14—C9—C10—C11 | 167.03 (14) |
C6—C1—C2—C3 | −0.3 (2) | C15—C9—C10—C11 | −75.74 (17) |
N1—C1—C2—C3 | 179.71 (14) | C9—C10—C11—C12 | −57.94 (18) |
O1—C2—C3—C4 | −179.64 (15) | C10—C11—C12—C13 | 58.42 (18) |
C1—C2—C3—C4 | 0.7 (2) | C1—N1—C13—C17 | −46.30 (16) |
C2—C3—C4—C5 | −0.4 (2) | C9—N1—C13—C17 | 164.11 (13) |
C8—O2—C5—C4 | 170.51 (15) | C1—N1—C13—C16 | 74.85 (17) |
C8—O2—C5—C6 | −11.2 (2) | C9—N1—C13—C16 | −74.74 (18) |
C3—C4—C5—O2 | 177.94 (15) | C1—N1—C13—C12 | −162.40 (12) |
C3—C4—C5—C6 | −0.4 (2) | C9—N1—C13—C12 | 48.01 (17) |
O2—C5—C6—C1 | −177.36 (15) | C11—C12—C13—N1 | −51.42 (17) |
C4—C5—C6—C1 | 0.9 (2) | C11—C12—C13—C17 | −167.79 (14) |
C2—C1—C6—C5 | −0.5 (2) | C11—C12—C13—C16 | 74.93 (18) |
N1—C1—C6—C5 | 179.49 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O2i | 0.98 | 2.51 | 3.495 (2) | 180 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Atom1···Atom2 | Length | Length - vdW |
O2···H8Bii | 2.515 | -0.205 |
C4···H15Ciii | 2.830 | -0.070 |
O2···H15Bii | 2.686 | -0.034 |
C2···H8Aiv | 2.918 | 0.018 |
C3···H14Ciii | 2.977 | 0.077 |
H7C···H17Aiv | 2.484 | 0.084 |
O1···H16Aiv | 2.814 | 0.094 |
Note: (a) Calculated using Mercury (Macrae et al., 2020). Symmetry codes: (ii) x, -y + 1/2, z - 1/2; (iii) x, y, z - 1; (iv) x - 1, y, z. |
Acknowledgements
RT and HSE are grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.
References
Chen, S., Li, B., Wang, X., Huang, Y., Li, J., Zhu, H., Zhao, L., Frenking, G. & Roesky, H. W. (2017). Chem. Eur. J. 23, 13633–13637. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chernichenko, K., Kótai, B., Nieger, M., Heikkinen, S., Pápai, I. & Repo, T. (2017). Dalton Trans. 46, 2263–2269. Web of Science CSD CrossRef CAS PubMed Google Scholar
Crosbie, E., Kennedy, A. R., Mulvey, R. E. & Robertson, S. D. (2012). Dalton Trans. 41, 1832–1839. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.