research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure and Hirshfeld surface analysis of 1-(2,5-di­meth­­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 29 April 2020; accepted 30 April 2020; online 5 May 2020)

In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction.

1. Chemical context

During research on phytotoxins produced by the Ceratocystis fimbriata species (Tiouabi, 2005[Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.]), the pathogenic agents responsible for the infections of plane, coffee and elm trees, analytical and spectroscopic studies enabled the isolation of a number of isocoumarins in small qu­anti­ties. In order to confirm their mol­ecular structures and especially to study their phytotoxicity and pathogenicity it was necessary to develop efficient methods for the total syntheses of these various isocoumarins. The title compound (3) was synthesized as a side product during the synthesis of the inter­mediate, methyl 3,6-dimeth­oxy-2-(2-meth­oxy-2-oxoeth­yl)benzoate (2) (see Fig. 1[link]), necessary for the total synthesis of the isocoumarin 5,8-dimeth­oxy-3-methyl-1H-isochromen-1-one (Tiouabi, 2005[Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.]).

[Figure 1]
Figure 1
The reaction scheme resulting in the formation of the title compound, 3.

2. Structural commentary

The mol­ecular structure of the title compound, 1-(2,5-di­meth­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine (3), is illus­trated in Fig. 2[link]. The piperidine ring has a chair conformation with atoms N1 and C11 being displaced by −0.5171 (12) and 0.6876 (15) Å, respectively, from the mean plane of the remaining four C atoms (C9/C10/C12/C13). This mean plane is normal to the plane of the benzene ring (C1–C6), with a dihedral angle of 88.34 (9)°. Planes C2/O1/C7 and C5/O2/C8, involving the meth­oxy groups, are inclined to the benzene ring by 13.23 (15) and 10.45 (15)°, respectively.

[Scheme 1]
[Figure 2]
Figure 2
The mol­ecular structure of compound 3, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of 3, mol­ecules related by the glide plane are linked by C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction (Fig. 3[link] and Table 1[link]). There are no other significant inter­molecular inter­actions present in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O2i 0.98 2.51 3.495 (2) 180
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of compound 3. The hydrogen bonds (Table 1[link]) are shown as dashed lines.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). For an excellent explanation of the use of Hirshfeld surface analysis and other calculations, such as energy frameworks, to study the mol­ecular packing see the recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The energy frameworks (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) are represented by cylinders joining the centroids of mol­ecular pairs using red, green and blue colour codes for the Eelectrostatic, Edispersion and Etotal energy components, respectively. The radius of the cylinder is proportional to the magnitude of the inter­action energy.

A view of the Hirshfeld surface of 3 mapped over dnorm is shown in Fig. 4[link]. The short inter­atomic O⋯H/H⋯O contacts are indicated by the faint red spots. A full list of short inter­atomic contacts in the crystal of 3 are given in Table 2[link]. The most significant contacts, apart from H⋯H contacts, are O⋯H and C⋯H contacts as confirmed by the two-dimensional fingerprint plots (Fig. 5[link]). The principal inter­molecular contacts for 3, are delineated into H⋯H at 84.1% (Fig. 5[link]b), O⋯H/H⋯O at 8.3% (Fig. 5[link]c) and C⋯H/H⋯C at 7.6% (Fig. 5[link]d) contacts. The inter­molecular contacts are therefore dominated by dispersion forces (H⋯H at 84.1%; Fig. 5[link]b). This is confirmed by the energy frameworks shown in Fig. 6[link]. The energy frameworks were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells, and obtained using the wave function calculated at the HF/3-21G level of theory.

Table 2
Short inter­atomic contacts (Å)a in the crystal of compound 3

Atom1⋯Atom2 Length Length − vdW
O2⋯H8Bii 2.515 −0.205
C4⋯H15Ciii 2.830 −0.070
O2⋯H15Bii 2.686 −0.034
C2⋯H8Aiv 2.918 0.018
C3⋯H14Ciii 2.977 0.077
H7C⋯H17Aiv 2.484 0.084
O1⋯H16Aiv 2.814 0.094
Note: (a) Calculated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Symmetry codes: (ii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iii) x, y, z − 1; (iv) x − 1, y, z.
[Figure 4]
Figure 4
The Hirshfeld surface of compound 3 mapped over dnorm, in the colour range −0.1434 to 1.2136 a.u..
[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot for compound 3, and fingerprint plots delineated into (b) H⋯H at 84.1%, (c) O⋯H/H⋯O at 8.3% and (d) C⋯H/H⋯C at 7.6% contacts.
[Figure 6]
Figure 6
The energy frameworks viewed down the b-axis direction comprising (a) electrostatic potential forces, (b) dispersion forces and (c) total energy for a cluster about a reference mol­ecule of 3. The energy frameworks were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1-(phen­yl)-2,2,6,6-tetra­methyl­piperidines gave 26 hits (see file S1 in the supporting information). A number of these structures involve heteroaryl and heterocyclic aluminium compounds, see for example CSD refcodes CEGLUY, CEGMF, CEGMEJ, CEGMIN, CEGMOT and CEGMUZ (Chen et al., 2017[Chen, S., Li, B., Wang, X., Huang, Y., Li, J., Zhu, H., Zhao, L., Frenking, G. & Roesky, H. W. (2017). Chem. Eur. J. 23, 13633-13637.]). They also include a number of borohydride derivatives, see for example CSD refcodes JAKZON, JAKZUT, JALBAC and JALBEG (Chernichenko et al., 2017[Chernichenko, K., Kótai, B., Nieger, M., Heikkinen, S., Pápai, I. & Repo, T. (2017). Dalton Trans. 46, 2263-2269.]). Only one compound has a meth­oxy substituent, viz. 1-(2-iodo-3-meth­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine (VAPCUM; Crosbie et al., 2012[Crosbie, E., Kennedy, A. R., Mulvey, R. E. & Robertson, S. D. (2012). Dalton Trans. 41, 1832-1839.]). In these eleven compounds, the piperidine ring has a chair conformation with the mean plane of the four planar C atoms being inclined to the plane of the benzene ring by dihedral angles varying from ca 83.0 to 90.0°. In compound 3 this dihedral angle is similar at 88.34 (9)°.

6. Synthesis and crystallization

The synthesis of compound 3 is illustrated in Fig. 1[link]. It arises as a result of the condensation of 2-bromo-1,4-di­meth­oxy­benzene (1) with tetra­methyl­piper­idene (HTMP). It is a side product obtained during the synthesis of methyl 3,6-dimeth­oxy-2-(2-meth­oxy-2-oxoeth­yl)benzoate (2) (Tiouabi, 2005[Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.]). Colourless rod-like crystals of 3 were obtained by slow evaporation at room temperature of a solution in acetone.There are no analytical or spectroscopic data available for compound 3.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were fixed geometrically (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C17H27NO2
Mr 277.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 6.8817 (10), 28.249 (4), 8.1369 (13)
β (°) 99.649 (12)
V3) 1559.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.10 × 0.10
 
Data collection
Diffractometer STOE IPDS 2
No. of measured, independent and observed [I > 2σ(I)] reflections 10596, 2770, 1695
Rint 0.085
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.073, 0.83
No. of reflections 2770
No. of parameters 188
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.13
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2005[Stoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

1-(2,5-Dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine top
Crystal data top
C17H27NO2F(000) = 608
Mr = 277.39Dx = 1.182 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8817 (10) ÅCell parameters from 4940 reflections
b = 28.249 (4) Åθ = 1.4–25.5°
c = 8.1369 (13) ŵ = 0.08 mm1
β = 99.649 (12)°T = 173 K
V = 1559.4 (4) Å3Rod, colourless
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
STOE IPDS 2
diffractometer
1695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Plane graphite monochromatorθmax = 25.2°, θmin = 1.4°
φ + ω scansh = 88
10596 measured reflectionsk = 3333
2770 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
2770 reflectionsΔρmax = 0.13 e Å3
188 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0127 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15231 (15)0.11464 (4)0.48898 (14)0.0359 (3)
O20.47503 (17)0.23289 (4)0.44354 (15)0.0389 (3)
N10.17336 (17)0.10517 (4)0.72612 (15)0.0239 (3)
C10.1701 (2)0.14010 (5)0.59863 (18)0.0240 (4)
C20.0023 (2)0.14458 (5)0.4777 (2)0.0274 (4)
C30.0050 (2)0.17837 (6)0.3529 (2)0.0320 (4)
H30.1207130.1814650.2715920.038*
C40.1545 (2)0.20752 (6)0.3461 (2)0.0326 (4)
H40.1484370.2304240.2598850.039*
C50.3219 (2)0.20347 (5)0.4637 (2)0.0286 (4)
C60.3285 (2)0.17020 (5)0.58934 (19)0.0264 (4)
H60.4438920.1678080.6713430.032*
C70.3053 (2)0.11190 (7)0.3485 (2)0.0420 (5)
H7C0.3981830.0868930.3664320.063*
H7B0.2484490.1046300.2487210.063*
H7A0.3747110.1422790.3333650.063*
C80.6384 (3)0.23518 (6)0.5748 (2)0.0407 (5)
H8A0.7030320.2041870.5886070.061*
H8B0.5929850.2440410.6784540.061*
H8C0.7322230.2589090.5480610.061*
C90.1554 (2)0.12313 (5)0.89467 (19)0.0269 (4)
C100.0977 (2)0.08181 (6)0.9977 (2)0.0342 (4)
H10A0.1035220.0923781.1144430.041*
H10B0.0402010.0726920.9541180.041*
C110.2287 (2)0.03873 (6)0.9958 (2)0.0381 (5)
H11A0.3658740.0466831.0462720.046*
H11B0.1823450.0128571.0615930.046*
C120.2215 (3)0.02299 (6)0.8172 (2)0.0364 (4)
H12B0.0849850.0133260.7708430.044*
H12A0.3072590.0050840.8157140.044*
C130.2870 (2)0.06129 (5)0.7049 (2)0.0294 (4)
C140.0136 (2)0.15863 (6)0.8748 (2)0.0352 (4)
H14C0.0397270.1679330.9850550.053*
H14B0.1320320.1441350.8109350.053*
H14A0.0223710.1866760.8156260.053*
C150.3403 (2)0.14765 (6)0.9888 (2)0.0361 (4)
H15C0.3160360.1577241.0988730.054*
H15B0.3712770.1753610.9255660.054*
H15A0.4514200.1255061.0021830.054*
C160.5112 (2)0.06636 (6)0.7429 (2)0.0350 (4)
H16C0.5726850.0369150.7138050.053*
H16B0.5525740.0729010.8619230.053*
H16A0.5522190.0925190.6773660.053*
C170.2301 (2)0.04478 (6)0.5248 (2)0.0387 (5)
H17A0.2805430.0673030.4505470.058*
H17B0.0862130.0429780.4957770.058*
H17C0.2870080.0134490.5122560.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0285 (6)0.0478 (7)0.0295 (7)0.0066 (5)0.0007 (5)0.0043 (6)
O20.0453 (7)0.0328 (7)0.0391 (7)0.0084 (6)0.0085 (6)0.0091 (6)
N10.0296 (7)0.0217 (7)0.0205 (7)0.0021 (6)0.0045 (6)0.0027 (6)
C10.0292 (9)0.0225 (8)0.0210 (9)0.0038 (7)0.0058 (7)0.0006 (7)
C20.0276 (9)0.0319 (9)0.0233 (9)0.0011 (7)0.0063 (8)0.0023 (7)
C30.0353 (10)0.0384 (10)0.0218 (9)0.0095 (8)0.0032 (8)0.0026 (8)
C40.0465 (11)0.0275 (9)0.0256 (9)0.0094 (8)0.0111 (9)0.0059 (7)
C50.0362 (9)0.0229 (8)0.0283 (9)0.0011 (7)0.0098 (8)0.0005 (7)
C60.0304 (9)0.0230 (8)0.0251 (8)0.0027 (7)0.0024 (7)0.0004 (7)
C70.0308 (10)0.0594 (12)0.0329 (10)0.0019 (9)0.0032 (8)0.0076 (9)
C80.0476 (11)0.0392 (11)0.0374 (11)0.0115 (9)0.0136 (10)0.0044 (8)
C90.0334 (9)0.0276 (9)0.0197 (8)0.0020 (7)0.0045 (7)0.0017 (7)
C100.0368 (10)0.0400 (10)0.0266 (9)0.0011 (8)0.0082 (8)0.0080 (8)
C110.0397 (10)0.0337 (10)0.0409 (11)0.0013 (8)0.0068 (9)0.0146 (8)
C120.0379 (10)0.0248 (9)0.0472 (11)0.0019 (8)0.0088 (9)0.0065 (8)
C130.0318 (9)0.0225 (8)0.0340 (10)0.0007 (7)0.0063 (8)0.0014 (7)
C140.0428 (10)0.0355 (10)0.0284 (10)0.0095 (8)0.0093 (8)0.0006 (8)
C150.0427 (10)0.0369 (10)0.0270 (9)0.0030 (8)0.0010 (8)0.0032 (8)
C160.0343 (9)0.0309 (9)0.0403 (10)0.0064 (8)0.0076 (8)0.0036 (8)
C170.0426 (11)0.0301 (9)0.0437 (11)0.0007 (8)0.0085 (9)0.0079 (9)
Geometric parameters (Å, º) top
O1—C21.3743 (19)C9—C151.536 (2)
O1—C71.4204 (18)C10—C111.516 (2)
O2—C51.3732 (19)C10—H10A0.9900
O2—C81.416 (2)C10—H10B0.9900
N1—C11.4293 (19)C11—C121.513 (2)
N1—C91.4867 (19)C11—H11A0.9900
N1—C131.4908 (19)C11—H11B0.9900
C1—C21.392 (2)C12—C131.532 (2)
C1—C61.394 (2)C12—H12B0.9900
C2—C31.388 (2)C12—H12A0.9900
C3—C41.381 (2)C13—C171.526 (2)
C3—H30.9500C13—C161.529 (2)
C4—C51.374 (2)C14—H14C0.9800
C4—H40.9500C14—H14B0.9800
C5—C61.384 (2)C14—H14A0.9800
C6—H60.9500C15—H15C0.9800
C7—H7C0.9800C15—H15B0.9800
C7—H7B0.9800C15—H15A0.9800
C7—H7A0.9800C16—H16C0.9800
C8—H8A0.9800C16—H16B0.9800
C8—H8B0.9800C16—H16A0.9800
C8—H8C0.9800C17—H17A0.9800
C9—C141.524 (2)C17—H17B0.9800
C9—C101.528 (2)C17—H17C0.9800
C2—O1—C7117.22 (13)C9—C10—H10B108.9
C5—O2—C8117.75 (13)H10A—C10—H10B107.7
C1—N1—C9116.13 (11)C12—C11—C10108.78 (14)
C1—N1—C13115.76 (12)C12—C11—H11A109.9
C9—N1—C13121.11 (11)C10—C11—H11A109.9
C2—C1—C6118.02 (14)C12—C11—H11B109.9
C2—C1—N1119.07 (14)C10—C11—H11B109.9
C6—C1—N1122.90 (13)H11A—C11—H11B108.3
O1—C2—C3122.57 (14)C11—C12—C13113.56 (14)
O1—C2—C1117.18 (14)C11—C12—H12B108.9
C3—C2—C1120.24 (15)C13—C12—H12B108.9
C4—C3—C2120.51 (15)C11—C12—H12A108.9
C4—C3—H3119.7C13—C12—H12A108.9
C2—C3—H3119.7H12B—C12—H12A107.7
C5—C4—C3120.13 (15)N1—C13—C17108.08 (12)
C5—C4—H4119.9N1—C13—C16115.46 (12)
C3—C4—H4119.9C17—C13—C16108.10 (14)
O2—C5—C4115.91 (14)N1—C13—C12107.81 (13)
O2—C5—C6124.65 (14)C17—C13—C12107.65 (13)
C4—C5—C6119.42 (15)C16—C13—C12109.49 (13)
C5—C6—C1121.67 (14)C9—C14—H14C109.5
C5—C6—H6119.2C9—C14—H14B109.5
C1—C6—H6119.2H14C—C14—H14B109.5
O1—C7—H7C109.5C9—C14—H14A109.5
O1—C7—H7B109.5H14C—C14—H14A109.5
H7C—C7—H7B109.5H14B—C14—H14A109.5
O1—C7—H7A109.5C9—C15—H15C109.5
H7C—C7—H7A109.5C9—C15—H15B109.5
H7B—C7—H7A109.5H15C—C15—H15B109.5
O2—C8—H8A109.5C9—C15—H15A109.5
O2—C8—H8B109.5H15C—C15—H15A109.5
H8A—C8—H8B109.5H15B—C15—H15A109.5
O2—C8—H8C109.5C13—C16—H16C109.5
H8A—C8—H8C109.5C13—C16—H16B109.5
H8B—C8—H8C109.5H16C—C16—H16B109.5
N1—C9—C14107.86 (12)C13—C16—H16A109.5
N1—C9—C10108.36 (12)H16C—C16—H16A109.5
C14—C9—C10107.30 (14)H16B—C16—H16A109.5
N1—C9—C15115.10 (13)C13—C17—H17A109.5
C14—C9—C15108.04 (13)C13—C17—H17B109.5
C10—C9—C15109.90 (13)H17A—C17—H17B109.5
C11—C10—C9113.44 (14)C13—C17—H17C109.5
C11—C10—H10A108.9H17A—C17—H17C109.5
C9—C10—H10A108.9H17B—C17—H17C109.5
C11—C10—H10B108.9
C9—N1—C1—C2106.25 (16)C1—N1—C9—C1446.76 (17)
C13—N1—C1—C2102.61 (16)C13—N1—C9—C14163.75 (13)
C9—N1—C1—C673.77 (19)C1—N1—C9—C10162.62 (12)
C13—N1—C1—C677.38 (18)C13—N1—C9—C1047.89 (17)
C7—O1—C2—C313.5 (2)C1—N1—C9—C1573.91 (16)
C7—O1—C2—C1166.84 (14)C13—N1—C9—C1575.58 (17)
C6—C1—C2—O1179.96 (14)N1—C9—C10—C1150.81 (17)
N1—C1—C2—O10.1 (2)C14—C9—C10—C11167.03 (14)
C6—C1—C2—C30.3 (2)C15—C9—C10—C1175.74 (17)
N1—C1—C2—C3179.71 (14)C9—C10—C11—C1257.94 (18)
O1—C2—C3—C4179.64 (15)C10—C11—C12—C1358.42 (18)
C1—C2—C3—C40.7 (2)C1—N1—C13—C1746.30 (16)
C2—C3—C4—C50.4 (2)C9—N1—C13—C17164.11 (13)
C8—O2—C5—C4170.51 (15)C1—N1—C13—C1674.85 (17)
C8—O2—C5—C611.2 (2)C9—N1—C13—C1674.74 (18)
C3—C4—C5—O2177.94 (15)C1—N1—C13—C12162.40 (12)
C3—C4—C5—C60.4 (2)C9—N1—C13—C1248.01 (17)
O2—C5—C6—C1177.36 (15)C11—C12—C13—N151.42 (17)
C4—C5—C6—C10.9 (2)C11—C12—C13—C17167.79 (14)
C2—C1—C6—C50.5 (2)C11—C12—C13—C1674.93 (18)
N1—C1—C6—C5179.49 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O2i0.982.513.495 (2)180
Symmetry code: (i) x, y+1/2, z+1/2.
Short interatomic contacts (Å)a in the crystal of compound 3 top
Atom1···Atom2LengthLength - vdW
O2···H8Bii2.515-0.205
C4···H15Ciii2.830-0.070
O2···H15Bii2.686-0.034
C2···H8Aiv2.9180.018
C3···H14Ciii2.9770.077
H7C···H17Aiv2.4840.084
O1···H16Aiv2.8140.094
Note: (a) Calculated using Mercury (Macrae et al., 2020). Symmetry codes: (ii) x, -y + 1/2, z - 1/2; (iii) x, y, z - 1; (iv) x - 1, y, z.
 

Acknowledgements

RT and HSE are grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.

References

First citationChen, S., Li, B., Wang, X., Huang, Y., Li, J., Zhu, H., Zhao, L., Frenking, G. & Roesky, H. W. (2017). Chem. Eur. J. 23, 13633–13637.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChernichenko, K., Kótai, B., Nieger, M., Heikkinen, S., Pápai, I. & Repo, T. (2017). Dalton Trans. 46, 2263–2269.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCrosbie, E., Kennedy, A. R., Mulvey, R. E. & Robertson, S. D. (2012). Dalton Trans. 41, 1832–1839.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds