research communications
Z)-4-hexyl-2-(4-methylbenzylidene)-2H-benzo[b][1,4]thiazin-3(4H)-one
Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of (aLaboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: sebbar.ghizlane@um5s.net.ma
The title compound, C22H25NOS, consists of methylbenzylidene and benzothiazine units linked to a hexyl moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, inversion dimers are formed by weak C—HMthn⋯OBnzthz hydrogen bonds and are linked into chains extending along the a-axis direction by weak C—HBnz⋯OBnzthz (Bnz = benzene, Bnzthz = benzothiazine and Mthn = methine) hydrogen bonds. A Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (59.2%) and H⋯C/C⋯H (27.9%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OBnzthz and C—HMthn⋯OBnzthz hydrogen-bond energies are 75.3 and 56.5 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound was evaluated against gram-positive and gram-negative bacteria.
Keywords: crystal structure; hydrogen bond; benzothiazine; antibacterial activity; Hirshfeld surface.
CCDC reference: 2004559
1. Chemical context
1,4-Benzothiazine derivatives constitute an important class of et al., 2016a; Gupta et al., 2009). Various 1,4-benzothiazine derivatives have been synthesized by several methods (Parai & Panda, 2009; Barange et al., 2007; Saadouni et al., 2014). 1,4-Benzothiazine derivatives are important because of their interesting biological properties such as anti-bacterial (Olayinka, 2012; Bhikan et al., 2012), anti-fungal (Schiaffella et al., 2006; Gupta & Wagh, 2006), antiproliferative (Zieba et al., 2010), antimalarial (Barazarte et al., 2009) and anti-inflammatory (Kaneko et al., 2002) activities. The biological activities of some 1,4-benzothiazines are similar to those of phenothiazines, featuring the same structural specificity (Hni et al., 2019a,b; Ellouz et al., 2017a,b; Sebbar et al., 2019a,b).
which, even when part of a complex molecule, possess a wide spectrum of biological activities (SebbarIn a continuation of our research devoted to the development of substituted 1,4-benzothiazine derivatives (Ellouz et al., 2015, 2019; Sebbar et al., 2015, 2017a; Ellouz et al.), we have synthesized the title compound, I, by reaction of hexyl chloride with 2-(4- methylbenzylidene)-3,4-dihydro-2H-1,4-benzothiazin-3 -one and potassium carbonate in the presence of tetra-n-butylammonium bromide (as catalyst). We report herein the synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis and interaction energy calculation [using CE–B3LYP/6–31G(d,p) energy model] and the density functional theory (DFT) computational calculation carried out at the B3LYP/6–311 G(d,p) level for comparing with the experimentally determined molecular structure in the solid state of the title compound. Moreover, the antibacterial activity of I is evaluated against gram-positive and gram-negative bacteria (viz., Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus fasciens).
2. Structural commentary
The title compound, I, consists of methylbenzylidene and benzothiazine units linked to a hexyl moiety, where the thiazine ring adopts a screw-boat conformation (Fig. 1). The heterocyclic portion of the benzothiazine moiety is folded about the S1⋯N1 axis with the dihedral angle between the planes defined by N1/C7/C8/S1 and S1/C1/C6/N1 being 30.28 (6)°. A puckering analysis of the thiazine, B (N1/S1/C1/C6–C8), ring conformation gave the parameters QT = 0.4853 (12) Å, θ = 69.48 (15)° and φ = 329.03 (18)°, indicating a screw-boat conformation. The dihedral angle between the benzene rings A (C1–C6) and C (C16–C21) is 75.64 (5)°. The base of the n-hexyl chain is approximately perpendicular to the mean plane of the benzothiazine unit, as indicated by the C6—N1—C9—C10 torsion angle of −96.2 (1)°. The remainder of this chain, with the exception of the terminal methyl group, is in an extended conformation (Fig. 1).
3. Supramolecular features
In the crystal, inversion dimers are formed by weak C—HMthn⋯OBnzthz hydrogen bonds (Table 1) and are linked into chains extending along the a-axis direction by weak C—HBnz⋯OBnzthz hydrogen bonds (Table 1, Figs. 2 and 3) (Bnz = benzene, Bnzthz = benzothiazine and Mthn = methine).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1 and hydrogen atoms H4 and H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggests that there are no π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 7 b--f, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 59.2% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.14 Å. In the absence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 7c, 27.9% contribution to the HS) has the tips at de + di = 2.77 Å. The pair of spikes in the fingerprint plot delineated into H⋯S/S⋯H (Fig. 7d, 5.6% contribution) has the tips at de + di = 2.98 Å. The H⋯O/O⋯H contacts (Fig. 7e, 5.5% contribution) have a symmetrical distribution of points with the tips at de + di = 2.27 Å. Finally, the H⋯N/N⋯H contacts (Fig. 7f), make only a 0.8% contribution to the HS with the tips at de + di = 3.28 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H and H⋯O/O⋯H interactions in Fig. 8a--d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies are calculated using CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) are −15.5 (Eele), −2.9 (Epol), −109.6 (Edis), 62.8 (Erep) and −75.3 (Etot) for C4—H4⋯O1 and −24.8 (Eele), −9.3 (Epol), −60.1 (Edis), 46.9 (Erep) and −56.5 (Etot) for C15—H15⋯O1.
6. DFT calculations
The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, (χ), hardness (η), potential (μ), (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole (Z)-2-(4-methylbenzylidene)-4-hexyl-2H-benzo[b][1,4]thiazin-3(4H)-one ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is 4.0189 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −5.8458 and −1.8269 eV, respectively.
|
|
7. Database survey
A search in the Cambridge Structural Database (Groom et al., 2016), for compounds containing the fragment II (R1 = Ph, R2 = C), gave 15 hits, including with R1 = 4-ClC6H4 and R2 = CH2CH2CH2CH3 (IIa) (Ellouz et al., 2017b), R1 = 2,4-Cl2C6H3 and R2 = CH2Ph2 (IIb) (Sebbar et al., 2019b), and R1 = 2-ClC6H4, R2 = CH2C≡CH (IIc) (Sebbar et al., 2017b), R1 = 4-FC6H4 and R2 = CH2C≡CH (IIc) (Hni et al.,2019a), CH2COOH (Sebbar et al., 2016a), R1 = 2,4-Cl2C6H3 and R2 = (CH2)8CH3 (Hni et al., 2020), R1 = 4-ClC6H4 and R2 = CH2Ph2 (IIb) (Ellouz et al., 2016), R1 = 4-ClC6H4 and R2 = (IId) (Ellouz et al., 2017a) or CH2C≡CH (IIc) (Sebbar et al., 2014), R1 = 2,4-Cl2C6H3 and R2 = IId (Hni et al., 2019b), R1 = 2,4-Cl2C6H3 and R2 =CH2CH2CN (IIe) (Sebbar et al., 2019a), IIf (Sebbar et al., 2016b) and IIg (Ellouz et al., 2015).
In the majority of these, the thiazine ring is significantly folded about the S⋯N axis with dihedral angles between the two S/C/C/N planes ranging from ca 35° [IIf (Sebbar et al., 2016b) and IId (Ellouz et al., 2017a)] to ca 27° [IIc (Hni et al., 2019a) and IIc (Sebbar et al., 2014)].
8. Antibacterial activity
To compare and analyse the antibacterial behaviour of the title compound and commercial antibiotics such as Chloramphenicol (Chlor), we have tested I against Escherichia coli
(ATTC-25922), Pseudomonas aeruginosa (ATCC-27853), Staphylococcus aureus (ATCC-25923) and Streptococcus fasciens (ATCC-29212) strains of bacteria using the diffusion method disk for evaluating the applicability of I as an antibacterial agent (Mabkhot et al., 2016; Hoffmann et al., 2017). Fig. 10 summarizes the diameter of inhibition (mm) values of I and the commercial antibiotic Chlor. The determination of the minimum inhibition concentration MIC values of I against the bacteria are presented in Table 4. The results of the antibacterial activity of the product I obtained by the alkylation reaction under the conditions of catalysis by liquid–solid phase transfer of hexyl chloride with 2-(4-methylbenzylidene)-3,4-dihydro-2H-1,4-benzothiazin-3-one showed increases of MIC = 20 µg ml−1 for Staphylococcus aureus, MIC = 10 µg ml−1 for Escherichia coli and Pseudomonas aeruginosa and MIC = 5 µg ml−1 for Streptococcus fasciens, which corresponds to the best MIC activity as compared to the commercial antibiotic. In addition, the maximum effect of I was recorded against Pseudomonas aeruginosa (diameter of inhibition 12.1 mm). Chlor presents an antibacterial activity diameter of inhibition of between 19 mm and 27 mm and no zone inhibition was observed with dimethylsulfoxide (DMSO) [(1%): 1 mL of DMSO added to 99 mL ofulltra-pure water] [The test samples were first dissolved in DMSO (1%), which did not affect the microbial growth.] On one hand, the chemical structure of I can explain this biological effect. The mechanism of action of I is not attributable to one specific mechanism, but there are several targets in the cell: degradation of the cell wall, damage to membrane proteins, damage to cytoplasmic membrane, leakage of cell contents and of cytoplasm. On the other hand, it should be noted that the functionalized derivatives by ester groups and benzene rings have the highest antibacterial coefficient (92% of pathogenic bacteria are sensitive). This study is expected to take anti-inflammatory, antifungal, anti-parasitic and anti-cancer activities, because the literature gives a lot of interesting results on these topics. Some other types of bacteria may possibly be tested by employing the same method so as eventually to generalize the suggested investigation method (Alderman & Smith, 2001).
|
9. Synthesis and crystallization
To a solution of 2-(4-methylbenzylidene)-3,4-dihydro-2H-1,4-benzothiazin-3-one (0.70 g, 2 mmol), potassium carbonate (4 mmol) and tetra-n-butyl ammonium bromide (0.2 mmol) in DMF (15 ml) was added 1-chlorohexane (0.48 g, 4 mmol). Stirring was continued at room temperature for 12 h. The reaction mixture was filtered and the solvent was removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel using the mixture ethyl acetate–hexane (9:1) as Colourless crystals of the title compound I, were isolated when the solvent was allowed to evaporate (yield: 60%), m.p. > 284 K.
1H NMR (300 MHz, DMSO-d6) δ ppm: 0.88 (t, 3H, –CH2–CH3, J = 6.3 Hz); 2.37 (s, 3H, =CH-C6H4–CH3); 2.37–2.52 (m, 8H, 4CH2); 4.08 (t, 2H, N-CH2, J = 7.1 Hz); 7.06–7.57 (m, 8H, CHarom); 7.77 (s, 1H; =CH–C6H4Cl); 13C NMR (62.5 MHz, DMSO-d6) δ ppm: 13.86 (–CH2–CH3); 20.98 (=CH–C6H4–CH3); 22.02, 25,83 26.48, 30.84, (CH2); 44.24 (NCH2); 117.26, 123.47, 126.36, 127.55, 129.15, 129.15, 130.03, 130.03, (CHarom); 133.77 (CHallyl); 118.5, 119.31, 131.39, 135.77, 139.92, (Cq); 160.48 (C=O).
10. Refinement
The experimental details including the crystal data, data collection and . The C-bound H atoms were positioned geometrically, with C—H = 0.95 Å (for aromatic and methine H atoms), 0.99 Å (for methylene H atoms) and 0.98 Å (for methyl H atoms), and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 (for methyl H atoms) and k = 1.2 for other H atoms.
are summarized in Table 5Supporting information
CCDC reference: 2004559
https://doi.org/10.1107/S205698902000657X/ex2032sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902000657X/ex2032Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902000657X/ex2032Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S205698902000657X/ex2032Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C22H25NOS | Z = 2 |
Mr = 351.49 | F(000) = 376 |
Triclinic, P1 | Dx = 1.236 Mg m−3 |
a = 8.8581 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.183 (2) Å | Cell parameters from 7052 reflections |
c = 13.021 (3) Å | θ = 2.4–28.7° |
α = 106.474 (3)° | µ = 0.18 mm−1 |
β = 109.398 (3)° | T = 150 K |
γ = 93.383 (3)° | Plate, colourless |
V = 944.2 (4) Å3 | 0.33 × 0.26 × 0.10 mm |
Bruker Smart APEX CCD diffractometer | 4860 independent reflections |
Radiation source: fine-focus sealed tube | 3807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.8°, θmin = 1.8° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.83, Tmax = 0.98 | l = −17→17 |
17663 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0868P)2] where P = (Fo2 + 2Fc2)/3 |
4860 reflections | (Δ/σ)max = 0.002 |
228 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.48853 (4) | 0.62268 (4) | 0.80836 (3) | 0.02689 (12) | |
O1 | 0.14092 (11) | 0.34562 (11) | 0.54654 (8) | 0.0296 (2) | |
N1 | 0.40988 (13) | 0.34294 (13) | 0.59158 (9) | 0.0230 (2) | |
C1 | 0.62657 (16) | 0.53904 (15) | 0.74903 (11) | 0.0238 (3) | |
C2 | 0.79091 (16) | 0.60067 (17) | 0.80699 (13) | 0.0295 (3) | |
H2 | 0.824726 | 0.683588 | 0.877249 | 0.035* | |
C3 | 0.90511 (17) | 0.54252 (18) | 0.76340 (14) | 0.0344 (3) | |
H3 | 1.017293 | 0.583176 | 0.804334 | 0.041* | |
C4 | 0.85491 (18) | 0.42485 (19) | 0.65987 (14) | 0.0359 (4) | |
H4 | 0.932696 | 0.386664 | 0.628234 | 0.043* | |
C5 | 0.69171 (17) | 0.36181 (17) | 0.60156 (13) | 0.0304 (3) | |
H5 | 0.658838 | 0.281107 | 0.530152 | 0.037* | |
C6 | 0.57519 (15) | 0.41547 (15) | 0.64649 (11) | 0.0230 (3) | |
C7 | 0.28144 (15) | 0.41309 (15) | 0.60267 (11) | 0.0221 (3) | |
C8 | 0.31493 (15) | 0.57412 (15) | 0.68247 (11) | 0.0229 (3) | |
C9 | 0.36834 (18) | 0.18446 (15) | 0.51035 (12) | 0.0272 (3) | |
H9A | 0.278067 | 0.127685 | 0.519876 | 0.033* | |
H9AB | 0.463261 | 0.131943 | 0.530044 | 0.033* | |
C10 | 0.31894 (18) | 0.17657 (16) | 0.38509 (12) | 0.0292 (3) | |
H10A | 0.222119 | 0.226310 | 0.364140 | 0.035* | |
H10B | 0.408117 | 0.234298 | 0.375094 | 0.035* | |
C11 | 0.28073 (19) | 0.01127 (16) | 0.30521 (12) | 0.0321 (3) | |
H11A | 0.381565 | −0.033721 | 0.320101 | 0.038* | |
H11B | 0.202450 | −0.049348 | 0.323086 | 0.038* | |
C12 | 0.2103 (2) | −0.00319 (18) | 0.17853 (13) | 0.0370 (4) | |
H12A | 0.111018 | 0.044208 | 0.164526 | 0.044* | |
H12B | 0.289671 | 0.056538 | 0.160940 | 0.044* | |
C13 | 0.1679 (2) | −0.1666 (2) | 0.09621 (15) | 0.0470 (4) | |
H13A | 0.112018 | −0.164616 | 0.017068 | 0.056* | |
H13B | 0.090849 | −0.227440 | 0.114929 | 0.056* | |
C14 | 0.3135 (3) | −0.2469 (2) | 0.09928 (16) | 0.0522 (5) | |
H14A | 0.278359 | −0.348108 | 0.039587 | 0.078* | |
H14B | 0.362499 | −0.259934 | 0.174847 | 0.078* | |
H14C | 0.393526 | −0.184479 | 0.085374 | 0.078* | |
C15 | 0.20651 (16) | 0.66746 (15) | 0.65716 (11) | 0.0240 (3) | |
H15 | 0.112596 | 0.621988 | 0.589786 | 0.029* | |
C16 | 0.21350 (15) | 0.82914 (15) | 0.71914 (11) | 0.0237 (3) | |
C17 | 0.28006 (17) | 0.89520 (16) | 0.83901 (11) | 0.0270 (3) | |
H17 | 0.320387 | 0.832386 | 0.885317 | 0.032* | |
C18 | 0.28781 (18) | 1.05119 (16) | 0.89087 (12) | 0.0299 (3) | |
H18 | 0.332476 | 1.093311 | 0.972370 | 0.036* | |
C19 | 0.23138 (17) | 1.14756 (16) | 0.82588 (12) | 0.0275 (3) | |
C20 | 0.16120 (18) | 1.08124 (16) | 0.70733 (13) | 0.0301 (3) | |
H20 | 0.119719 | 1.144064 | 0.661268 | 0.036* | |
C21 | 0.15056 (17) | 0.92502 (16) | 0.65499 (12) | 0.0287 (3) | |
H21 | 0.099424 | 0.882241 | 0.573798 | 0.034* | |
C22 | 0.2467 (2) | 1.31839 (17) | 0.88163 (14) | 0.0363 (4) | |
H22A | 0.172104 | 1.360783 | 0.827572 | 0.054* | |
H22B | 0.358422 | 1.368479 | 0.902762 | 0.054* | |
H22C | 0.219515 | 1.337033 | 0.950821 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02168 (18) | 0.0295 (2) | 0.02434 (19) | 0.00586 (14) | 0.00650 (13) | 0.00294 (14) |
O1 | 0.0212 (5) | 0.0261 (5) | 0.0333 (5) | 0.0031 (4) | 0.0066 (4) | 0.0017 (4) |
N1 | 0.0227 (5) | 0.0209 (6) | 0.0238 (5) | 0.0061 (4) | 0.0084 (4) | 0.0044 (4) |
C1 | 0.0223 (6) | 0.0248 (7) | 0.0268 (7) | 0.0070 (5) | 0.0094 (5) | 0.0109 (5) |
C2 | 0.0237 (7) | 0.0299 (7) | 0.0330 (8) | 0.0035 (6) | 0.0068 (6) | 0.0118 (6) |
C3 | 0.0198 (6) | 0.0420 (9) | 0.0450 (9) | 0.0073 (6) | 0.0106 (6) | 0.0203 (7) |
C4 | 0.0270 (7) | 0.0445 (9) | 0.0459 (9) | 0.0153 (7) | 0.0198 (7) | 0.0193 (8) |
C5 | 0.0292 (7) | 0.0334 (8) | 0.0321 (7) | 0.0123 (6) | 0.0145 (6) | 0.0103 (6) |
C6 | 0.0213 (6) | 0.0248 (7) | 0.0254 (6) | 0.0067 (5) | 0.0084 (5) | 0.0112 (5) |
C7 | 0.0217 (6) | 0.0214 (6) | 0.0230 (6) | 0.0049 (5) | 0.0088 (5) | 0.0060 (5) |
C8 | 0.0200 (6) | 0.0222 (6) | 0.0249 (6) | 0.0025 (5) | 0.0088 (5) | 0.0048 (5) |
C9 | 0.0327 (7) | 0.0200 (6) | 0.0293 (7) | 0.0083 (5) | 0.0121 (6) | 0.0070 (5) |
C10 | 0.0353 (7) | 0.0238 (7) | 0.0276 (7) | 0.0090 (6) | 0.0109 (6) | 0.0067 (6) |
C11 | 0.0399 (8) | 0.0255 (7) | 0.0291 (7) | 0.0072 (6) | 0.0134 (6) | 0.0050 (6) |
C12 | 0.0375 (8) | 0.0348 (8) | 0.0310 (8) | 0.0102 (7) | 0.0074 (6) | 0.0042 (6) |
C13 | 0.0450 (10) | 0.0445 (10) | 0.0371 (9) | −0.0097 (8) | 0.0171 (7) | −0.0073 (8) |
C14 | 0.0842 (14) | 0.0342 (9) | 0.0395 (10) | 0.0190 (9) | 0.0272 (10) | 0.0063 (7) |
C15 | 0.0224 (6) | 0.0232 (7) | 0.0247 (6) | 0.0037 (5) | 0.0081 (5) | 0.0060 (5) |
C16 | 0.0206 (6) | 0.0214 (6) | 0.0283 (7) | 0.0047 (5) | 0.0097 (5) | 0.0056 (5) |
C17 | 0.0318 (7) | 0.0247 (7) | 0.0272 (7) | 0.0084 (6) | 0.0121 (6) | 0.0099 (6) |
C18 | 0.0337 (7) | 0.0278 (7) | 0.0256 (7) | 0.0067 (6) | 0.0106 (6) | 0.0048 (6) |
C19 | 0.0274 (7) | 0.0219 (7) | 0.0336 (7) | 0.0047 (5) | 0.0135 (6) | 0.0067 (6) |
C20 | 0.0328 (7) | 0.0251 (7) | 0.0342 (8) | 0.0088 (6) | 0.0115 (6) | 0.0126 (6) |
C21 | 0.0303 (7) | 0.0263 (7) | 0.0254 (7) | 0.0061 (6) | 0.0065 (5) | 0.0063 (6) |
C22 | 0.0433 (9) | 0.0233 (7) | 0.0397 (9) | 0.0074 (6) | 0.0150 (7) | 0.0063 (6) |
S1—C8 | 1.7552 (13) | C11—H11B | 0.9900 |
S1—C1 | 1.7560 (14) | C12—C13 | 1.515 (2) |
O1—C7 | 1.2310 (15) | C12—H12A | 0.9900 |
N1—C7 | 1.3687 (17) | C12—H12B | 0.9900 |
N1—C6 | 1.4207 (17) | C13—C14 | 1.518 (3) |
N1—C9 | 1.4756 (17) | C13—H13A | 0.9900 |
C1—C2 | 1.3928 (19) | C13—H13B | 0.9900 |
C1—C6 | 1.3976 (19) | C14—H14A | 0.9800 |
C2—C3 | 1.380 (2) | C14—H14B | 0.9800 |
C2—H2 | 0.9500 | C14—H14C | 0.9800 |
C3—C4 | 1.379 (2) | C15—C16 | 1.4615 (18) |
C3—H3 | 0.9500 | C15—H15 | 0.9500 |
C4—C5 | 1.387 (2) | C16—C21 | 1.3963 (18) |
C4—H4 | 0.9500 | C16—C17 | 1.4004 (18) |
C5—C6 | 1.3958 (19) | C17—C18 | 1.3862 (19) |
C5—H5 | 0.9500 | C17—H17 | 0.9500 |
C7—C8 | 1.4922 (18) | C18—C19 | 1.395 (2) |
C8—C15 | 1.3464 (18) | C18—H18 | 0.9500 |
C9—C10 | 1.5205 (19) | C19—C20 | 1.387 (2) |
C9—H9A | 0.9900 | C19—C22 | 1.5067 (19) |
C9—H9AB | 0.9900 | C20—C21 | 1.3851 (19) |
C10—C11 | 1.5201 (19) | C20—H20 | 0.9500 |
C10—H10A | 0.9900 | C21—H21 | 0.9500 |
C10—H10B | 0.9900 | C22—H22A | 0.9800 |
C11—C12 | 1.520 (2) | C22—H22B | 0.9800 |
C11—H11A | 0.9900 | C22—H22C | 0.9800 |
C8—S1—C1 | 99.20 (6) | C13—C12—C11 | 115.01 (14) |
C7—N1—C6 | 124.55 (11) | C13—C12—H12A | 108.5 |
C7—N1—C9 | 115.97 (11) | C11—C12—H12A | 108.5 |
C6—N1—C9 | 119.35 (11) | C13—C12—H12B | 108.5 |
C2—C1—C6 | 120.33 (13) | C11—C12—H12B | 108.5 |
C2—C1—S1 | 117.86 (11) | H12A—C12—H12B | 107.5 |
C6—C1—S1 | 121.81 (10) | C12—C13—C14 | 113.96 (15) |
C3—C2—C1 | 120.67 (14) | C12—C13—H13A | 108.8 |
C3—C2—H2 | 119.7 | C14—C13—H13A | 108.8 |
C1—C2—H2 | 119.7 | C12—C13—H13B | 108.8 |
C4—C3—C2 | 119.39 (14) | C14—C13—H13B | 108.8 |
C4—C3—H3 | 120.3 | H13A—C13—H13B | 107.7 |
C2—C3—H3 | 120.3 | C13—C14—H14A | 109.5 |
C3—C4—C5 | 120.51 (13) | C13—C14—H14B | 109.5 |
C3—C4—H4 | 119.7 | H14A—C14—H14B | 109.5 |
C5—C4—H4 | 119.7 | C13—C14—H14C | 109.5 |
C4—C5—C6 | 120.83 (14) | H14A—C14—H14C | 109.5 |
C4—C5—H5 | 119.6 | H14B—C14—H14C | 109.5 |
C6—C5—H5 | 119.6 | C8—C15—C16 | 128.87 (12) |
C5—C6—C1 | 118.17 (12) | C8—C15—H15 | 115.6 |
C5—C6—N1 | 120.84 (12) | C16—C15—H15 | 115.6 |
C1—C6—N1 | 120.95 (12) | C21—C16—C17 | 117.48 (12) |
O1—C7—N1 | 120.68 (12) | C21—C16—C15 | 118.10 (12) |
O1—C7—C8 | 120.59 (11) | C17—C16—C15 | 124.42 (12) |
N1—C7—C8 | 118.71 (11) | C18—C17—C16 | 120.77 (12) |
C15—C8—C7 | 118.49 (12) | C18—C17—H17 | 119.6 |
C15—C8—S1 | 124.93 (10) | C16—C17—H17 | 119.6 |
C7—C8—S1 | 116.43 (9) | C17—C18—C19 | 121.36 (13) |
N1—C9—C10 | 113.78 (11) | C17—C18—H18 | 119.3 |
N1—C9—H9A | 108.8 | C19—C18—H18 | 119.3 |
C10—C9—H9A | 108.8 | C20—C19—C18 | 117.81 (13) |
N1—C9—H9AB | 108.8 | C20—C19—C22 | 120.67 (13) |
C10—C9—H9AB | 108.8 | C18—C19—C22 | 121.52 (13) |
H9A—C9—H9AB | 107.7 | C21—C20—C19 | 121.14 (13) |
C11—C10—C9 | 111.74 (11) | C21—C20—H20 | 119.4 |
C11—C10—H10A | 109.3 | C19—C20—H20 | 119.4 |
C9—C10—H10A | 109.3 | C20—C21—C16 | 121.33 (13) |
C11—C10—H10B | 109.3 | C20—C21—H21 | 119.3 |
C9—C10—H10B | 109.3 | C16—C21—H21 | 119.3 |
H10A—C10—H10B | 107.9 | C19—C22—H22A | 109.5 |
C12—C11—C10 | 113.46 (12) | C19—C22—H22B | 109.5 |
C12—C11—H11A | 108.9 | H22A—C22—H22B | 109.5 |
C10—C11—H11A | 108.9 | C19—C22—H22C | 109.5 |
C12—C11—H11B | 108.9 | H22A—C22—H22C | 109.5 |
C10—C11—H11B | 108.9 | H22B—C22—H22C | 109.5 |
H11A—C11—H11B | 107.7 | ||
C8—S1—C1—C2 | 154.11 (11) | N1—C7—C8—S1 | −35.27 (15) |
C8—S1—C1—C6 | −25.32 (12) | C1—S1—C8—C15 | −139.90 (12) |
C6—C1—C2—C3 | 1.0 (2) | C1—S1—C8—C7 | 44.53 (11) |
S1—C1—C2—C3 | −178.44 (11) | C7—N1—C9—C10 | 79.89 (15) |
C1—C2—C3—C4 | 1.7 (2) | C6—N1—C9—C10 | −96.17 (14) |
C2—C3—C4—C5 | −2.0 (2) | N1—C9—C10—C11 | 178.84 (12) |
C3—C4—C5—C6 | −0.3 (2) | C9—C10—C11—C12 | 172.66 (13) |
C4—C5—C6—C1 | 2.9 (2) | C10—C11—C12—C13 | −178.97 (14) |
C4—C5—C6—N1 | −174.94 (13) | C11—C12—C13—C14 | −64.8 (2) |
C2—C1—C6—C5 | −3.2 (2) | C7—C8—C15—C16 | −178.20 (12) |
S1—C1—C6—C5 | 176.17 (10) | S1—C8—C15—C16 | 6.3 (2) |
C2—C1—C6—N1 | 174.59 (12) | C8—C15—C16—C21 | 144.09 (15) |
S1—C1—C6—N1 | −5.99 (18) | C8—C15—C16—C17 | −35.5 (2) |
C7—N1—C6—C5 | −156.27 (13) | C21—C16—C17—C18 | −2.2 (2) |
C9—N1—C6—C5 | 19.42 (18) | C15—C16—C17—C18 | 177.39 (13) |
C7—N1—C6—C1 | 25.95 (19) | C16—C17—C18—C19 | −0.6 (2) |
C9—N1—C6—C1 | −158.36 (12) | C17—C18—C19—C20 | 2.4 (2) |
C6—N1—C7—O1 | 175.34 (12) | C17—C18—C19—C22 | −177.10 (14) |
C9—N1—C7—O1 | −0.48 (18) | C18—C19—C20—C21 | −1.3 (2) |
C6—N1—C7—C8 | −3.51 (19) | C22—C19—C20—C21 | 178.20 (14) |
C9—N1—C7—C8 | −179.33 (11) | C19—C20—C21—C16 | −1.6 (2) |
O1—C7—C8—C15 | −30.00 (19) | C17—C16—C21—C20 | 3.3 (2) |
N1—C7—C8—C15 | 148.85 (13) | C15—C16—C21—C20 | −176.31 (13) |
O1—C7—C8—S1 | 145.87 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.42 | 3.349 (2) | 168 |
C15—H15···O1ii | 0.95 | 2.45 | 3.2977 (17) | 148 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
S1—C8 | 1.7552 (13) | 1.83796 |
S1—C1 | 1.7560 (14) | 1.83324 |
O1—C7 | 1.2310 (15) | 1.25561 |
N1—C7 | 1.3687 (17) | 1.39823 |
N1—C6 | 1.4207 (17) | 1.42632 |
N1—C9 | 1.4756 (17) | 1.48630 |
C1—C2 | 1.3928 (19) | 1.39451 |
C1—C6 | 1.3976 (19) | 1.40423 |
C2—C3 | 1.380 (2) | 1.39431 |
C3—C4 | 1.379 (2) | 1.39578 |
C4—C5 | 1.387 (2) | 1.39431 |
C8—S1—C1 | 99.20 (6) | 99.87 |
C7—N1—C6 | 124.55 (11) | 124.76 |
C7—N1—C9 | 115.97 (11) | 116.02 |
C6—N1—C9 | 119.35 (11) | 119.89 |
C2—C1—C6 | 120.33 (13) | 120.89 |
C2—C1—S1 | 117.86 (11) | 118.13 |
C6—C1—S1 | 121.81 (10) | 121.30 |
C3—C2—C1 | 120.67 (14) | 120.36 |
C4—C3—C2 | 119.39 (14) | 120.16 |
Molecular Energy (a.u.) (eV) | Compound I |
Total Energy, TE (eV) | -37591.8507 |
EHOMO (eV) | -5.8458 |
ELUMO (eV) | -1.8269 |
Gap, ΔE (eV) | 4.0189 |
Dipole moment, µ (Debye) | 2.5702 |
Ionization potential, I (eV) | 5.8458 |
Electron affinity, A | 1.8269 |
Electronegativity, χ | 3.8363 |
Hardness, η | 2.0095 |
Electrophilicity index, ω | 3.6621 |
Softness, σ | 0.4976 |
Fraction of electron transferred, ΔN | 0.7872 |
ATTC-25922 = Escherichia coli, ATCC-27853 = Pseudomonas aeruginosa, ATCC-25923 = Staphylococcus aureus, ATCC-29212 = Streptococcus fasciens and Chlor = Chloramphenicol. |
Product | I | Chlor | DMSO |
ATCC-25922 | 10 | 6.25 | 0 |
ATTC-25953 | 10 | 6.25 | 0 |
ATCC-27823 | 20 | 12.5 | 0 |
ATCC-29212 | 5 | 12.5 | 0 |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Alderman, D. & Smith, P. (2001). Aquaculture, 196, 211–243. Web of Science CrossRef CAS Google Scholar
Barange, D. K., Batchu, V. R., Gorja, D., Pattabiraman, V. R., Tatini, L. K., Babu, J. M. & Pal, M. (2007). Tetrahedron, 63, 1775–1789. Web of Science CSD CrossRef CAS Google Scholar
Barazarte, A., Lobo, G., Gamboa, N., Rodrigues, J. R., Capparelli, M. V., Alvarez-Larena, A., López, S. E. & Charris, J. E. (2009). Eur. J. Med. Chem. 44, 1303–1310. CrossRef PubMed CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bhikan, J. K., Rahul, S. S., Premchand, B. P., Sanjay, A. P., Rajeshwar, J. K., Pravin, S. G. & Bhata, R. C. (2012). E-J. Chem. 9, 318–322. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA. Google Scholar
Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646. Google Scholar
Ellouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). Scientific Study & Res. 20, 563–574. Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCrData, 1, x160764. Google Scholar
Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170870. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, G. & Wagh, S. B. (2006). Indian J. Chem. Sect. B, 45, 697–702. Google Scholar
Gupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordan J. Chem. 4, 209–221. CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., Redouane, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 281–287. CrossRef IUCr Journals Google Scholar
Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Kaneko, T., Clark, R. S., Ohi, N., Kawahara, T., Akamatsu, H., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922–929. Web of Science CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036. Web of Science CrossRef Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Olayinka, O. A. (2012). Arch. Pharm. Chem. Life Sci. pp. 1–11. Google Scholar
Parai, M. K. & Panda, G. A. (2009). Tetrahedron Lett. 50, 4703–4705. Web of Science CrossRef CAS Google Scholar
Saadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun. 7, 77–84. Google Scholar
Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196–5203. Web of Science CrossRef PubMed CAS Google Scholar
Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016b). IUCrData, 1, x161823. Google Scholar
Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170695. Google Scholar
Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). IUCrData, 1, x160863. Google Scholar
Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170889. Google Scholar
Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Zięba, A., Sochanik, A., Szurko, A., Rams, M., Mrozek, A. & Cmoch, P. (2010). Eur. J. Med. Chem. 45, 4733–4739. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.