research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy, DFT and anti­bacterial activity studies of (Z)-4-hexyl-2-(4-methyl­benzyl­­idene)-2H-benzo[b][1,4]thia­zin-3(4H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: sebbar.ghizlane@um5s.net.ma

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 7 April 2020; accepted 15 May 2020; online 22 May 2020)

The title compound, C22H25NOS, consists of methyl­benzyl­idene and benzo­thia­zine units linked to a hexyl moiety, where the thia­zine ring adopts a screw-boat conformation. In the crystal, inversion dimers are formed by weak C—HMthn⋯OBnzthz hydrogen bonds and are linked into chains extending along the a-axis direction by weak C—HBnz⋯OBnzthz (Bnz = benzene, Bnzthz = benzo­thia­zine and Mthn = methine) hydrogen bonds. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (59.2%) and H⋯C/C⋯H (27.9%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OBnzthz and C—HMthn⋯OBnzthz hydrogen-bond energies are 75.3 and 56.5 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. Moreover, the anti­bacterial activity of the title compound was evaluated against gram-positive and gram-negative bacteria.

1. Chemical context

1,4-Benzo­thia­zine derivatives constitute an important class of heterocyclic compounds which, even when part of a complex mol­ecule, possess a wide spectrum of biological activities (Sebbar et al., 2016a[Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). IUCrData, 1, x160863.]; Gupta et al., 2009[Gupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordan J. Chem. 4, 209-221.]). Various 1,4-benzo­thia­zine derivatives have been synthesized by several methods (Parai & Panda, 2009[Parai, M. K. & Panda, G. A. (2009). Tetrahedron Lett. 50, 4703-4705.]; Barange et al., 2007[Barange, D. K., Batchu, V. R., Gorja, D., Pattabiraman, V. R., Tatini, L. K., Babu, J. M. & Pal, M. (2007). Tetrahedron, 63, 1775-1789.]; Saadouni et al., 2014[Saadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun. 7, 77-84.]). 1,4-Benzo­thia­zine derivatives are important because of their inter­esting biological properties such as anti-bacterial (Olayinka, 2012[Olayinka, O. A. (2012). Arch. Pharm. Chem. Life Sci. pp. 1-11.]; Bhikan et al., 2012[Bhikan, J. K., Rahul, S. S., Premchand, B. P., Sanjay, A. P., Rajeshwar, J. K., Pravin, S. G. & Bhata, R. C. (2012). E-J. Chem. 9, 318-322.]), anti-fungal (Schiaffella et al., 2006[Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196-5203.]; Gupta & Wagh, 2006[Gupta, G. & Wagh, S. B. (2006). Indian J. Chem. Sect. B, 45, 697-702.]), anti­proliferative (Zieba et al., 2010[Zięba, A., Sochanik, A., Szurko, A., Rams, M., Mrozek, A. & Cmoch, P. (2010). Eur. J. Med. Chem. 45, 4733-4739.]), anti­malarial (Baraza­rte et al., 2009[Barazarte, A., Lobo, G., Gamboa, N., Rodrigues, J. R., Capparelli, M. V., Alvarez-Larena, A., López, S. E. & Charris, J. E. (2009). Eur. J. Med. Chem. 44, 1303-1310.]) and anti-inflammatory (Kaneko et al., 2002[Kaneko, T., Clark, R. S., Ohi, N., Kawahara, T., Akamatsu, H., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922-929.]) activities. The biological activities of some 1,4-benzo­thia­zines are similar to those of pheno­thia­zines, featuring the same structural specificity (Hni et al., 2019a,[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]b; Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.],b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170870.]; Sebbar et al., 2019a[Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721-727.],b[Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650-1656.]).

In a continuation of our research devoted to the development of substituted 1,4-benzo­thia­zine derivatives (Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.], 2019[Ellouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). Scientific Study & Res. 20, 563-574.]; Sebbar et al., 2015, 2017a[Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170695.]; Ellouz et al.), we have synthesized the title compound, I, by reaction of hexyl chloride with 2-(4- methyl­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3 -one and potassium carbonate in the presence of tetra-n-butyl­ammonium bromide (as catalyst). We report herein the synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis and inter­action energy calculation [using CE–B3LYP/6–31G(d,p) energy model] and the density functional theory (DFT) computational calculation carried out at the B3LYP/6–311 G(d,p) level for comparing with the experimentally determined mol­ecular structure in the solid state of the title compound. Moreover, the anti­bacterial activity of I is evaluated against gram-positive and gram-negative bacteria (viz., Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus fasciens).

[Scheme 1]

2. Structural commentary

The title compound, I, consists of methyl­benzyl­idene and benzo­thia­zine units linked to a hexyl moiety, where the thia­zine ring adopts a screw-boat conformation (Fig. 1[link]). The heterocyclic portion of the benzo­thia­zine moiety is folded about the S1⋯N1 axis with the dihedral angle between the planes defined by N1/C7/C8/S1 and S1/C1/C6/N1 being 30.28 (6)°. A puckering analysis of the thia­zine, B (N1/S1/C1/C6–C8), ring conformation gave the parameters QT = 0.4853 (12) Å, θ = 69.48 (15)° and φ = 329.03 (18)°, indicating a screw-boat conformation. The dihedral angle between the benzene rings A (C1–C6) and C (C16–C21) is 75.64 (5)°. The base of the n-hexyl chain is approximately perpendicular to the mean plane of the benzo­thia­zine unit, as indicated by the C6—N1—C9—C10 torsion angle of −96.2 (1)°. The remainder of this chain, with the exception of the terminal methyl group, is in an extended conformation (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, inversion dimers are formed by weak C—HMthn⋯OBnzthz hydrogen bonds (Table 1[link]) and are linked into chains extending along the a-axis direction by weak C—HBnz⋯OBnzthz hydrogen bonds (Table 1[link], Figs. 2[link] and 3[link]) (Bnz = benzene, Bnzthz = benzo­thia­zine and Mthn = methine).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.42 3.349 (2) 168
C15—H15⋯O1ii 0.95 2.45 3.2977 (17) 148
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
Detail of the chain of dimers viewed down the b-axis direction with the weak C—HMthn⋯OBnzthz and C—HBnz⋯OBnzthz (Bnz = benzene, Bnzthz = benzo­thia­zine and Mthn = methine) hydrogen bonds depicted by dashed lines.
[Figure 3]
Figure 3
A partial packing diagram down the a-axis direction giving an end view of three adjacent chains.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1 and hydrogen atoms H4 and H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 5[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggests that there are no ππ inter­actions in (I)[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2415 to 1.4195 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link] b--f, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 59.2% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.14 Å. In the absence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 7[link]c, 27.9% contribution to the HS) has the tips at de + di = 2.77 Å. The pair of spikes in the fingerprint plot delineated into H⋯S/S⋯H (Fig. 7[link]d, 5.6% contribution) has the tips at de + di = 2.98 Å. The H⋯O/O⋯H contacts (Fig. 7[link]e, 5.5% contribution) have a symmetrical distribution of points with the tips at de + di = 2.27 Å. Finally, the H⋯N/N⋯H contacts (Fig. 7[link]f), make only a 0.8% contribution to the HS with the tips at de + di = 3.28 Å.

[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯S/S⋯H, (e) H⋯O/O⋯H and (f) H⋯N/N⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H and H⋯O/O⋯H inter­actions in Fig. 8[link]a--d, respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯S/S⋯H and (d) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies are calculated using CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) are −15.5 (Eele), −2.9 (Epol), −109.6 (Edis), 62.8 (Erep) and −75.3 (Etot) for C4—H4⋯O1 and −24.8 (Eele), −9.3 (Epol), −60.1 (Edis), 46.9 (Erep) and −56.5 (Etot) for C15—H15⋯O1.

6. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 2[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3[link]. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9[link]. The HOMO and LUMO are localized in the plane extending from the whole (Z)-2-(4-methyl­benzyl­idene)-4-hexyl-2H-benzo[b][1,4]thia­zin-3(4H)-one ring. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 4.0189 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −5.8458 and −1.8269 eV, respectively.

Table 2
Comparison of the selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
S1—C8 1.7552 (13) 1.83796
S1—C1 1.7560 (14) 1.83324
O1—C7 1.2310 (15) 1.25561
N1—C7 1.3687 (17) 1.39823
N1—C6 1.4207 (17) 1.42632
N1—C9 1.4756 (17) 1.48630
C1—C2 1.3928 (19) 1.39451
C1—C6 1.3976 (19) 1.40423
C2—C3 1.380 (2) 1.39431
C3—C4 1.379 (2) 1.39578
C4—C5 1.387 (2) 1.39431
     
C8—S1—C1 99.20 (6) 99.87
C7—N1—C6 124.55 (11) 124.76
C7—N1—C9 115.97 (11) 116.02
C6—N1—C9 119.35 (11) 119.89
C2—C1—C6 120.33 (13) 120.89
C2—C1—S1 117.86 (11) 118.13
C6—C1—S1 121.81 (10) 121.30
C3—C2—C1 120.67 (14) 120.36
C4—C3—C2 119.39 (14) 120.16

Table 3
Calculated energies

Mol­ecular Energy (a.u.) (eV) Compound I
Total Energy, TE (eV) −37591.8507
EHOMO (eV) −5.8458
ELUMO (eV) −1.8269
Gap, ΔE (eV) 4.0189
Dipole moment, μ (Debye) 2.5702
Ionization potential, I (eV) 5.8458
Electron affinity, A 1.8269
Electronegativity, χ 3.8363
Hardness, η 2.0095
Electrophilicity index, ω 3.6621
Softness, σ 0.4976
Fraction of electron transferred, ΔN 0.7872
[Figure 9]
Figure 9
The energy band gap of the title compound.

7. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), for compounds containing the fragment II[link] (R1 = Ph, R2 = C), gave 15 hits, including with R1 = 4-ClC6H4 and R2 = CH2CH2CH2CH3 (IIa[link]) (Ellouz et al., 2017b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170870.]), R1 = 2,4-Cl2C6H3 and R2 = CH2Ph2 (IIb[link]) (Sebbar et al., 2019b[Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650-1656.]), and R1 = 2-ClC6H4, R2 = CH2C≡CH (IIc[link]) (Sebbar et al., 2017b[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170889.]), R1 = 4-FC6H4 and R2 = CH2C≡CH (IIc[link]) (Hni et al.,2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]), CH2COOH (Sebbar et al., 2016a[Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). IUCrData, 1, x160863.]), R1 = 2,4-Cl2C6H3 and R2 = (CH2)8CH3 (Hni et al., 2020[Hni, B., Sebbar, N. K., Hökelek, T., Redouane, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 281-287.]), R1 = 4-ClC6H4 and R2 = CH2Ph2 (IIb[link]) (Ellouz et al., 2016[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCrData, 1, x160764.]), R1 = 4-ClC6H4 and R2 = (IId[link]) (Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.]) or CH2C≡CH (IIc) (Sebbar et al., 2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.]), R1 = 2,4-Cl2C6H3 and R2 = IId[link] (Hni et al., 2019b[Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593-599.]), R1 = 2,4-Cl2C6H3 and R2 =CH2CH2CN (IIe[link]) (Sebbar et al., 2019a[Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721-727.]), IIf[link] (Sebbar et al., 2016b[Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016b). IUCrData, 1, x161823.]) and IIg[link] (Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]).

In the majority of these, the thia­zine ring is significantly folded about the S⋯N axis with dihedral angles between the two S/C/C/N planes ranging from ca 35° [IIf[link] (Sebbar et al., 2016b[Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016b). IUCrData, 1, x161823.]) and IId[link] (Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.])] to ca 27° [IIc[link] (Hni et al., 2019a[link][Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]) and IIc (Sebbar et al., 2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.])].

8. Anti­bacterial activity

To compare and analyse the anti­bacterial behaviour of the title compound and commercial anti­biotics such as Chloramphenicol (Chlor), we have tested I against Escherichia coli

[Scheme 2]

(ATTC-25922), Pseudomonas aeruginosa (ATCC-27853), Staphylococcus aureus (ATCC-25923) and Streptococcus fasciens (ATCC-29212) strains of bacteria using the diffusion method disk for evaluating the applicability of I as an anti­bacterial agent (Mabkhot et al., 2016[Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036.]; Hoffmann et al., 2017[Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34-45.]). Fig. 10[link] summarizes the diameter of inhibition (mm) values of I and the commercial anti­biotic Chlor. The determination of the minimum inhibition concentration MIC values of I against the bacteria are presented in Table 4[link]. The results of the anti­bacterial activity of the product I obtained by the alkyl­ation reaction under the conditions of catalysis by liquid–solid phase transfer of hexyl chloride with 2-(4-methyl­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one showed increases of MIC = 20 µg ml−1 for Staphylococcus aureus, MIC = 10 µg ml−1 for Escherichia coli and Pseudomonas aeruginosa and MIC = 5 µg ml−1 for Streptococcus fasciens, which corresponds to the best MIC activity as compared to the commercial anti­biotic. In addition, the maximum effect of I was recorded against Pseudomonas aeruginosa (diameter of inhibition 12.1 mm). Chlor presents an anti­bacterial activity diameter of inhibition of between 19 mm and 27 mm and no zone inhibition was observed with di­methyl­sulfoxide (DMSO) [(1%): 1 mL of DMSO added to 99 mL ofulltra-pure water] [The test samples were first dissolved in DMSO (1%), which did not affect the microbial growth.] On one hand, the chemical structure of I can explain this biological effect. The mechanism of action of I is not attributable to one specific mechanism, but there are several targets in the cell: degradation of the cell wall, damage to membrane proteins, damage to cytoplasmic membrane, leakage of cell contents and coagulation of cytoplasm. On the other hand, it should be noted that the functionalized derivatives by ester groups and benzene rings have the highest anti­bacterial coefficient (92% of pathogenic bacteria are sensitive). This study is expected to take anti-inflammatory, anti­fungal, anti-parasitic and anti-cancer activities, because the literature gives a lot of inter­esting results on these topics. Some other types of bacteria may possibly be tested by employing the same method so as eventually to generalize the suggested investigation method (Alderman & Smith, 2001[Alderman, D. & Smith, P. (2001). Aquaculture, 196, 211-243.]).

Table 4
Minimal inhibitory concentration [MIC (μg/ml)] of the title compound I

ATTC-25922 = Escherichia coli, ATCC-27853 = Pseudomonas aeruginosa, ATCC-25923 = Staphylococcus aureus, ATCC-29212 = Streptococcus fasciens and Chlor = Chloramphenicol.

Product I Chlor DMSO
ATCC-25922 10 6.25 0
ATTC-25953 10 6.25 0
ATCC-27823 20 12.5 0
ATCC-29212 5 12.5 0
[Figure 10]
Figure 10
Anti­bacterial activity of the title compound (I) and commercial anti­biotic Chloramphenicol (Chlor) against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus fasciens.

9. Synthesis and crystallization

To a solution of 2-(4-methyl­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one (0.70 g, 2 mmol), potassium carbonate (4 mmol) and tetra-n-butyl ammonium bromide (0.2 mmol) in DMF (15 ml) was added 1-chloro­hexane (0.48 g, 4 mmol). Stirring was continued at room temperature for 12 h. The reaction mixture was filtered and the solvent was removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel using the mixture ethyl acetate–hexane (9:1) as eluent. Colourless crystals of the title compound I[link], were isolated when the solvent was allowed to evaporate (yield: 60%), m.p. > 284 K.

1H NMR (300 MHz, DMSO-d6) δ ppm: 0.88 (t, 3H, –CH2–CH3, J = 6.3 Hz); 2.37 (s, 3H, =CH-C6H4–CH3); 2.37–2.52 (m, 8H, 4CH2); 4.08 (t, 2H, N-CH2, J = 7.1 Hz); 7.06–7.57 (m, 8H, CHarom); 7.77 (s, 1H; =CH–C6H4Cl); 13C NMR (62.5 MHz, DMSO-d6) δ ppm: 13.86 (–CH2–CH3); 20.98 (=CH–C6H4–CH3); 22.02, 25,83 26.48, 30.84, (CH2); 44.24 (NCH2); 117.26, 123.47, 126.36, 127.55, 129.15, 129.15, 130.03, 130.03, (CHarom); 133.77 (CHall­yl); 118.5, 119.31, 131.39, 135.77, 139.92, (Cq); 160.48 (C=O).

10. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 5[link]. The C-bound H atoms were positioned geometrically, with C—H = 0.95 Å (for aromatic and methine H atoms), 0.99 Å (for methyl­ene H atoms) and 0.98 Å (for methyl H atoms), and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 (for methyl H atoms) and k = 1.2 for other H atoms.

Table 5
Experimental details

Crystal data
Chemical formula C22H25NOS
Mr 351.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.8581 (19), 9.183 (2), 13.021 (3)
α, β, γ (°) 106.474 (3), 109.398 (3), 93.383 (3)
V3) 944.2 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.33 × 0.26 × 0.10
 
Data collection
Diffractometer Bruker Smart APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.83, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 17663, 4860, 3807
Rint 0.029
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.08
No. of reflections 4860
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Z)-4-Hexyl-2-(4-methylbenzylidene)-2H-benzo[b][1,4]thiazin-3(4H)-one top
Crystal data top
C22H25NOSZ = 2
Mr = 351.49F(000) = 376
Triclinic, P1Dx = 1.236 Mg m3
a = 8.8581 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.183 (2) ÅCell parameters from 7052 reflections
c = 13.021 (3) Åθ = 2.4–28.7°
α = 106.474 (3)°µ = 0.18 mm1
β = 109.398 (3)°T = 150 K
γ = 93.383 (3)°Plate, colourless
V = 944.2 (4) Å30.33 × 0.26 × 0.10 mm
Data collection top
Bruker Smart APEX CCD
diffractometer
4860 independent reflections
Radiation source: fine-focus sealed tube3807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.3333 pixels mm-1θmax = 28.8°, θmin = 1.8°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.83, Tmax = 0.98l = 1717
17663 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0868P)2]
where P = (Fo2 + 2Fc2)/3
4860 reflections(Δ/σ)max = 0.002
228 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48853 (4)0.62268 (4)0.80836 (3)0.02689 (12)
O10.14092 (11)0.34562 (11)0.54654 (8)0.0296 (2)
N10.40988 (13)0.34294 (13)0.59158 (9)0.0230 (2)
C10.62657 (16)0.53904 (15)0.74903 (11)0.0238 (3)
C20.79091 (16)0.60067 (17)0.80699 (13)0.0295 (3)
H20.8247260.6835880.8772490.035*
C30.90511 (17)0.54252 (18)0.76340 (14)0.0344 (3)
H31.0172930.5831760.8043340.041*
C40.85491 (18)0.42485 (19)0.65987 (14)0.0359 (4)
H40.9326960.3866640.6282340.043*
C50.69171 (17)0.36181 (17)0.60156 (13)0.0304 (3)
H50.6588380.2811070.5301520.037*
C60.57519 (15)0.41547 (15)0.64649 (11)0.0230 (3)
C70.28144 (15)0.41309 (15)0.60267 (11)0.0221 (3)
C80.31493 (15)0.57412 (15)0.68247 (11)0.0229 (3)
C90.36834 (18)0.18446 (15)0.51035 (12)0.0272 (3)
H9A0.2780670.1276850.5198760.033*
H9AB0.4632610.1319430.5300440.033*
C100.31894 (18)0.17657 (16)0.38509 (12)0.0292 (3)
H10A0.2221190.2263100.3641400.035*
H10B0.4081170.2342980.3750940.035*
C110.28073 (19)0.01127 (16)0.30521 (12)0.0321 (3)
H11A0.3815650.0337210.3201010.038*
H11B0.2024500.0493480.3230860.038*
C120.2103 (2)0.00319 (18)0.17853 (13)0.0370 (4)
H12A0.1110180.0442080.1645260.044*
H12B0.2896710.0565380.1609400.044*
C130.1679 (2)0.1666 (2)0.09621 (15)0.0470 (4)
H13A0.1120180.1646160.0170680.056*
H13B0.0908490.2274400.1149290.056*
C140.3135 (3)0.2469 (2)0.09928 (16)0.0522 (5)
H14A0.2783590.3481080.0395870.078*
H14B0.3624990.2599340.1748470.078*
H14C0.3935260.1844790.0853740.078*
C150.20651 (16)0.66746 (15)0.65716 (11)0.0240 (3)
H150.1125960.6219880.5897860.029*
C160.21350 (15)0.82914 (15)0.71914 (11)0.0237 (3)
C170.28006 (17)0.89520 (16)0.83901 (11)0.0270 (3)
H170.3203870.8323860.8853170.032*
C180.28781 (18)1.05119 (16)0.89087 (12)0.0299 (3)
H180.3324761.0933110.9723700.036*
C190.23138 (17)1.14756 (16)0.82588 (12)0.0275 (3)
C200.16120 (18)1.08124 (16)0.70733 (13)0.0301 (3)
H200.1197191.1440640.6612680.036*
C210.15056 (17)0.92502 (16)0.65499 (12)0.0287 (3)
H210.0994240.8822410.5737980.034*
C220.2467 (2)1.31839 (17)0.88163 (14)0.0363 (4)
H22A0.1721041.3607830.8275720.054*
H22B0.3584221.3684790.9027620.054*
H22C0.2195151.3370330.9508210.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02168 (18)0.0295 (2)0.02434 (19)0.00586 (14)0.00650 (13)0.00294 (14)
O10.0212 (5)0.0261 (5)0.0333 (5)0.0031 (4)0.0066 (4)0.0017 (4)
N10.0227 (5)0.0209 (6)0.0238 (5)0.0061 (4)0.0084 (4)0.0044 (4)
C10.0223 (6)0.0248 (7)0.0268 (7)0.0070 (5)0.0094 (5)0.0109 (5)
C20.0237 (7)0.0299 (7)0.0330 (8)0.0035 (6)0.0068 (6)0.0118 (6)
C30.0198 (6)0.0420 (9)0.0450 (9)0.0073 (6)0.0106 (6)0.0203 (7)
C40.0270 (7)0.0445 (9)0.0459 (9)0.0153 (7)0.0198 (7)0.0193 (8)
C50.0292 (7)0.0334 (8)0.0321 (7)0.0123 (6)0.0145 (6)0.0103 (6)
C60.0213 (6)0.0248 (7)0.0254 (6)0.0067 (5)0.0084 (5)0.0112 (5)
C70.0217 (6)0.0214 (6)0.0230 (6)0.0049 (5)0.0088 (5)0.0060 (5)
C80.0200 (6)0.0222 (6)0.0249 (6)0.0025 (5)0.0088 (5)0.0048 (5)
C90.0327 (7)0.0200 (6)0.0293 (7)0.0083 (5)0.0121 (6)0.0070 (5)
C100.0353 (7)0.0238 (7)0.0276 (7)0.0090 (6)0.0109 (6)0.0067 (6)
C110.0399 (8)0.0255 (7)0.0291 (7)0.0072 (6)0.0134 (6)0.0050 (6)
C120.0375 (8)0.0348 (8)0.0310 (8)0.0102 (7)0.0074 (6)0.0042 (6)
C130.0450 (10)0.0445 (10)0.0371 (9)0.0097 (8)0.0171 (7)0.0073 (8)
C140.0842 (14)0.0342 (9)0.0395 (10)0.0190 (9)0.0272 (10)0.0063 (7)
C150.0224 (6)0.0232 (7)0.0247 (6)0.0037 (5)0.0081 (5)0.0060 (5)
C160.0206 (6)0.0214 (6)0.0283 (7)0.0047 (5)0.0097 (5)0.0056 (5)
C170.0318 (7)0.0247 (7)0.0272 (7)0.0084 (6)0.0121 (6)0.0099 (6)
C180.0337 (7)0.0278 (7)0.0256 (7)0.0067 (6)0.0106 (6)0.0048 (6)
C190.0274 (7)0.0219 (7)0.0336 (7)0.0047 (5)0.0135 (6)0.0067 (6)
C200.0328 (7)0.0251 (7)0.0342 (8)0.0088 (6)0.0115 (6)0.0126 (6)
C210.0303 (7)0.0263 (7)0.0254 (7)0.0061 (6)0.0065 (5)0.0063 (6)
C220.0433 (9)0.0233 (7)0.0397 (9)0.0074 (6)0.0150 (7)0.0063 (6)
Geometric parameters (Å, º) top
S1—C81.7552 (13)C11—H11B0.9900
S1—C11.7560 (14)C12—C131.515 (2)
O1—C71.2310 (15)C12—H12A0.9900
N1—C71.3687 (17)C12—H12B0.9900
N1—C61.4207 (17)C13—C141.518 (3)
N1—C91.4756 (17)C13—H13A0.9900
C1—C21.3928 (19)C13—H13B0.9900
C1—C61.3976 (19)C14—H14A0.9800
C2—C31.380 (2)C14—H14B0.9800
C2—H20.9500C14—H14C0.9800
C3—C41.379 (2)C15—C161.4615 (18)
C3—H30.9500C15—H150.9500
C4—C51.387 (2)C16—C211.3963 (18)
C4—H40.9500C16—C171.4004 (18)
C5—C61.3958 (19)C17—C181.3862 (19)
C5—H50.9500C17—H170.9500
C7—C81.4922 (18)C18—C191.395 (2)
C8—C151.3464 (18)C18—H180.9500
C9—C101.5205 (19)C19—C201.387 (2)
C9—H9A0.9900C19—C221.5067 (19)
C9—H9AB0.9900C20—C211.3851 (19)
C10—C111.5201 (19)C20—H200.9500
C10—H10A0.9900C21—H210.9500
C10—H10B0.9900C22—H22A0.9800
C11—C121.520 (2)C22—H22B0.9800
C11—H11A0.9900C22—H22C0.9800
C8—S1—C199.20 (6)C13—C12—C11115.01 (14)
C7—N1—C6124.55 (11)C13—C12—H12A108.5
C7—N1—C9115.97 (11)C11—C12—H12A108.5
C6—N1—C9119.35 (11)C13—C12—H12B108.5
C2—C1—C6120.33 (13)C11—C12—H12B108.5
C2—C1—S1117.86 (11)H12A—C12—H12B107.5
C6—C1—S1121.81 (10)C12—C13—C14113.96 (15)
C3—C2—C1120.67 (14)C12—C13—H13A108.8
C3—C2—H2119.7C14—C13—H13A108.8
C1—C2—H2119.7C12—C13—H13B108.8
C4—C3—C2119.39 (14)C14—C13—H13B108.8
C4—C3—H3120.3H13A—C13—H13B107.7
C2—C3—H3120.3C13—C14—H14A109.5
C3—C4—C5120.51 (13)C13—C14—H14B109.5
C3—C4—H4119.7H14A—C14—H14B109.5
C5—C4—H4119.7C13—C14—H14C109.5
C4—C5—C6120.83 (14)H14A—C14—H14C109.5
C4—C5—H5119.6H14B—C14—H14C109.5
C6—C5—H5119.6C8—C15—C16128.87 (12)
C5—C6—C1118.17 (12)C8—C15—H15115.6
C5—C6—N1120.84 (12)C16—C15—H15115.6
C1—C6—N1120.95 (12)C21—C16—C17117.48 (12)
O1—C7—N1120.68 (12)C21—C16—C15118.10 (12)
O1—C7—C8120.59 (11)C17—C16—C15124.42 (12)
N1—C7—C8118.71 (11)C18—C17—C16120.77 (12)
C15—C8—C7118.49 (12)C18—C17—H17119.6
C15—C8—S1124.93 (10)C16—C17—H17119.6
C7—C8—S1116.43 (9)C17—C18—C19121.36 (13)
N1—C9—C10113.78 (11)C17—C18—H18119.3
N1—C9—H9A108.8C19—C18—H18119.3
C10—C9—H9A108.8C20—C19—C18117.81 (13)
N1—C9—H9AB108.8C20—C19—C22120.67 (13)
C10—C9—H9AB108.8C18—C19—C22121.52 (13)
H9A—C9—H9AB107.7C21—C20—C19121.14 (13)
C11—C10—C9111.74 (11)C21—C20—H20119.4
C11—C10—H10A109.3C19—C20—H20119.4
C9—C10—H10A109.3C20—C21—C16121.33 (13)
C11—C10—H10B109.3C20—C21—H21119.3
C9—C10—H10B109.3C16—C21—H21119.3
H10A—C10—H10B107.9C19—C22—H22A109.5
C12—C11—C10113.46 (12)C19—C22—H22B109.5
C12—C11—H11A108.9H22A—C22—H22B109.5
C10—C11—H11A108.9C19—C22—H22C109.5
C12—C11—H11B108.9H22A—C22—H22C109.5
C10—C11—H11B108.9H22B—C22—H22C109.5
H11A—C11—H11B107.7
C8—S1—C1—C2154.11 (11)N1—C7—C8—S135.27 (15)
C8—S1—C1—C625.32 (12)C1—S1—C8—C15139.90 (12)
C6—C1—C2—C31.0 (2)C1—S1—C8—C744.53 (11)
S1—C1—C2—C3178.44 (11)C7—N1—C9—C1079.89 (15)
C1—C2—C3—C41.7 (2)C6—N1—C9—C1096.17 (14)
C2—C3—C4—C52.0 (2)N1—C9—C10—C11178.84 (12)
C3—C4—C5—C60.3 (2)C9—C10—C11—C12172.66 (13)
C4—C5—C6—C12.9 (2)C10—C11—C12—C13178.97 (14)
C4—C5—C6—N1174.94 (13)C11—C12—C13—C1464.8 (2)
C2—C1—C6—C53.2 (2)C7—C8—C15—C16178.20 (12)
S1—C1—C6—C5176.17 (10)S1—C8—C15—C166.3 (2)
C2—C1—C6—N1174.59 (12)C8—C15—C16—C21144.09 (15)
S1—C1—C6—N15.99 (18)C8—C15—C16—C1735.5 (2)
C7—N1—C6—C5156.27 (13)C21—C16—C17—C182.2 (2)
C9—N1—C6—C519.42 (18)C15—C16—C17—C18177.39 (13)
C7—N1—C6—C125.95 (19)C16—C17—C18—C190.6 (2)
C9—N1—C6—C1158.36 (12)C17—C18—C19—C202.4 (2)
C6—N1—C7—O1175.34 (12)C17—C18—C19—C22177.10 (14)
C9—N1—C7—O10.48 (18)C18—C19—C20—C211.3 (2)
C6—N1—C7—C83.51 (19)C22—C19—C20—C21178.20 (14)
C9—N1—C7—C8179.33 (11)C19—C20—C21—C161.6 (2)
O1—C7—C8—C1530.00 (19)C17—C16—C21—C203.3 (2)
N1—C7—C8—C15148.85 (13)C15—C16—C21—C20176.31 (13)
O1—C7—C8—S1145.87 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.423.349 (2)168
C15—H15···O1ii0.952.453.2977 (17)148
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
S1—C81.7552 (13)1.83796
S1—C11.7560 (14)1.83324
O1—C71.2310 (15)1.25561
N1—C71.3687 (17)1.39823
N1—C61.4207 (17)1.42632
N1—C91.4756 (17)1.48630
C1—C21.3928 (19)1.39451
C1—C61.3976 (19)1.40423
C2—C31.380 (2)1.39431
C3—C41.379 (2)1.39578
C4—C51.387 (2)1.39431
C8—S1—C199.20 (6)99.87
C7—N1—C6124.55 (11)124.76
C7—N1—C9115.97 (11)116.02
C6—N1—C9119.35 (11)119.89
C2—C1—C6120.33 (13)120.89
C2—C1—S1117.86 (11)118.13
C6—C1—S1121.81 (10)121.30
C3—C2—C1120.67 (14)120.36
C4—C3—C2119.39 (14)120.16
Calculated energies top
Molecular Energy (a.u.) (eV)Compound I
Total Energy, TE (eV)-37591.8507
EHOMO (eV)-5.8458
ELUMO (eV)-1.8269
Gap, ΔE (eV)4.0189
Dipole moment, µ (Debye)2.5702
Ionization potential, I (eV)5.8458
Electron affinity, A1.8269
Electronegativity, χ3.8363
Hardness, η2.0095
Electrophilicity index, ω3.6621
Softness, σ0.4976
Fraction of electron transferred, ΔN0.7872
Minimal inhibitory concentration [MIC (µg/mL)] of the title compound I top
ATTC-25922 = Escherichia coli, ATCC-27853 = Pseudomonas aeruginosa, ATCC-25923 = Staphylococcus aureus, ATCC-29212 = Streptococcus fasciens and Chlor = Chloramphenicol.
ProductIChlorDMSO
ATCC-25922106.250
ATTC-25953106.250
ATCC-278232012.50
ATCC-29212512.50
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAlderman, D. & Smith, P. (2001). Aquaculture, 196, 211–243.  Web of Science CrossRef CAS Google Scholar
First citationBarange, D. K., Batchu, V. R., Gorja, D., Pattabiraman, V. R., Tatini, L. K., Babu, J. M. & Pal, M. (2007). Tetrahedron, 63, 1775–1789.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarazarte, A., Lobo, G., Gamboa, N., Rodrigues, J. R., Capparelli, M. V., Alvarez-Larena, A., López, S. E. & Charris, J. E. (2009). Eur. J. Med. Chem. 44, 1303–1310.  CrossRef PubMed CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBhikan, J. K., Rahul, S. S., Premchand, B. P., Sanjay, A. P., Rajeshwar, J. K., Pravin, S. G. & Bhata, R. C. (2012). E-J. Chem. 9, 318–322.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). Scientific Study & Res. 20, 563–574.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCrData, 1, x160764.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170870.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, G. & Wagh, S. B. (2006). Indian J. Chem. Sect. B, 45, 697–702.  Google Scholar
First citationGupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordan J. Chem. 4, 209–221.  CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., Redouane, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 281–287.  CrossRef IUCr Journals Google Scholar
First citationHoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKaneko, T., Clark, R. S., Ohi, N., Kawahara, T., Akamatsu, H., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922–929.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036.  Web of Science CrossRef Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOlayinka, O. A. (2012). Arch. Pharm. Chem. Life Sci. pp. 1–11.  Google Scholar
First citationParai, M. K. & Panda, G. A. (2009). Tetrahedron Lett. 50, 4703–4705.  Web of Science CrossRef CAS Google Scholar
First citationSaadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun. 7, 77–84.  Google Scholar
First citationSchiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196–5203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016b). IUCrData, 1, x161823.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170695.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). IUCrData, 1, x160863.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170889.  Google Scholar
First citationSebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationZięba, A., Sochanik, A., Szurko, A., Rams, M., Mrozek, A. & Cmoch, P. (2010). Eur. J. Med. Chem. 45, 4733–4739.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds