research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The missing crystal structure in the series of N,N′,N′′-tris­­(pyridinyl)benzene-1,3,5-tricarbox­amides: the 2-pyridinyl derivative

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
*Correspondence e-mail: anthony.linden@chem.uzh.ch

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 April 2020; accepted 21 April 2020; online 1 May 2020)

In the first reported crystal structure involving the potential ligand N,N′,N′′-tris­(pyridin-2-­yl)benzene-1,3,5-­tricarboxamide, C24H18N6O3, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules via their amide groups into slanted ladder-like chains, in which the uprights of the ladder are formed by the hydrogen-bonding inter­actions and the benzene ring cores of the mol­ecules act as the rungs of the ladder. Only two of the three amide groups in the mol­ecule are involved in hydrogen bonding and this influences the degree of out-of-plane twisting at each amide group, with the twist being more significant for those amide groups participating in hydrogen bonds.

1. Chemical context

Branched coordinating ligands with potential donor atoms on each branch can be useful as spacers in the synthesis of coordination polymers and metal–organic frameworks. A frequently used starting material is benzene-1,3,5-tri­carb­oxy­lic acid (trimesic acid), which can act as a three-way planar node-connector. A related, less frequently employed, ligand system is N,N′,N′′-tris­(n-pyridin­yl)-1,3,5-benzene­tricarboxamide (n = 2, 3 or 4), which has potential donor atoms on each pyridinyl ring and at the amide function.

[Scheme 1]

We are inter­ested in constructing bis­muth(III) coordination polymers (Senior & Linden, 2020a[Senior, L. & Linden, A. (2020a). Polyhedron, https://doi.org/10.1016/j.poly.2020.114564.],b[Senior, L. & Linden, A. (2020b). Acta Cryst. C76, 562-571.]) and have synthesized the above three amides as potential spacer ligands, although, so far, experiments involving these have not produced any BiIII coordination polymers. The crystal structure of the 2-pyridinyl derivative, N,N′,N′′-tris­(2-pyridin­yl)-1,3,5-benzene­tricarboxamide, C24H18N6O3, (I)[link], has not previously been reported and is described here.

2. Structural commentary

The asymmetric unit of (I)[link], shown in Fig. 1[link], contains one mol­ecule, which, despite its chemical threefold symmetry, does not adopt any crystallographic symmetry, nor does it have a propeller-like conformation in which the orientations of the amide groups all lie with the same relative orientation as one progresses around the benzene ring. This may be related to the absence of any hydrogen-bonding inter­actions at one of the amide groups, while the other amide groups act as both hydrogen-bond donors and acceptors (see Supra­molecular features). The 2-pyridinyl rings all lie with the ring N atom approximately cis to the amide N—H group.

[Figure 1]
Figure 1
View of the asymmetric unit of (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

The bond lengths and angles in the mol­ecule have normal values and the bond lengths around the amide groups (Table 1[link]) are not significantly influenced by the presence or absence of hydrogen-bonding inter­actions. Of more inter­est are the deviations from the central benzene ring plane of the amide and 2-pyridinyl groups. The torsion angles listed in Table 1[link] indicate that each of the amide C(O)—N bonds is twisted by approximately 27° out of the plane of the benzene ring. On the other hand, for the amide group not involved in hydrogen bonding, the amide C7(O1)—N1 bond is twisted by less than 8° from the plane of the 2-pyridinyl ring, while for the other two amide groups, the magnitude of the C(O)—N twist is in the range 25–34°. This suggests that the hydrogen-bonding inter­actions significantly influence the orientation of the adjacent 2-pyridinyl ring; where inter­actions occur, the ring is rotated more to accommodate the inter­molecular hydrogen bonds. The dihedral angles between the planes of the benzene ring and the 2-pyridinyl rings adjacent to the amide groups involving atoms N1, N3 and N5 are 20.41 (5), 3.11 (5) and 7.50 (5)°, respectively, which again highlights the difference attributable to the absence of hydrogen-bonding inter­actions at the amide group involving atom N1.

Table 1
Selected geometric parameters (Å, °)

N1—C7 1.3578 (14) N2—C14 1.4163 (12)
N1—C8 1.4085 (14) N3—C19 1.3468 (13)
N2—C13 1.3499 (13) N3—C20 1.4195 (12)
       
N1—C7—C1—C6 −28.16 (15) C13—N2—C14—C15 25.72 (15)
C7—N1—C8—C9 7.5 (2) N3—C19—C5—C4 −27.77 (13)
N2—C13—C3—C4 −26.51 (13) C19—N3—C20—C21 33.81 (15)

3. Supra­molecular features

In the extended structure of (I)[link], the mol­ecules are linked into slanted ladder-like chains by N—H⋯O hydrogen bonds, which involve the amide groups as donors and acceptors (Table 2[link], Fig. 2[link]). The 2-pyridinyl N atoms are not involved in these inter­actions. The ladders progress parallel to the [100] direction. The uprights of the ladder are formed by the hydrogen-bonding inter­actions and the benzene ring cores of the mol­ecules act as the rungs of the ladder. Considered separately, amide group N2—H inter­acts with the O atom of the N3—H amide group of an adjacent mol­ecule and continuing the same path brings one back to the original mol­ecule, thereby completing a loop that can be described by a graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) of R22(16). Similarly, the amide group N3—H inter­acts with the O atom of the N2—H amide group of the adjacent mol­ecule on the other side to give the same loop motif. These two loops alternate as one progresses along the ladder. The rungs of the ladder can be described by the chain graph-set motif of C22(8), because it involves the N2—H and N3—H amide groups in an alternating sequence.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.898 (14) 2.108 (14) 2.9866 (11) 165.6 (13)
N3—H3⋯O2ii 0.857 (14) 2.054 (14) 2.8781 (11) 160.9 (13)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
One of the hydrogen-bonded supra­molecular ladders in (I)[link] viewed down the b axis. H atoms bonded to C atoms have been omitted for clarity.

The slanted stacking of the mol­ecules as the rungs of the hydrogen-bonded ladder only allow weak ππ inter­actions, which occur between the central benzene ring and the 2-pyridinyl ring containing atom N5 in the centrosym­metrically related adjacent mol­ecule on one side at 1 − x, 1 − y, 1 − z, and with the 2-pyridinyl ring containing atom N6 in the centrosymmetrically related adjacent mol­ecule on the other side at −x, 1 − y, 1 − z. These inter­actions reinforce the ladder structure, rather than linking adjacent ladders. For the inter­actions involving the 2-pyridinyl rings containing atoms N5 and N6, respectively, the distances between the centroids of the benzene and 2-pyridinyl rings are 3.8956 (6) and 3.8409 (6) Å, the perpendicular distances between the centroid of the benzene ring and the planes of the 2-pyridinyl rings are 3.4522 (5) and 3.4610 (4) Å, while the slippages of the centroids are 1.735 and 2.097 Å and the angles between the benzene and 2-pyridinyl ring planes are 3.11 (5) and 7.50 (5)°.

4. Database survey

The Cambridge Structural Database (CSD, version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) has no entries for (I)[link], its salts, nor for its use as a ligand. There are six crystal structures reported for the tris­(3-pyridin­yl) analogue; the pure ansolvate (Palmans et al., 1997[Palmans, A. R. A., Vekemans, J. A. J. M., Meijer, E. W., Palmans, A. R. A., Kooijman, H. & Spek, A. L. (1997). Chem. Commun. pp. 2247-2248.]), and five reports of the monohydrate, which occurs in two polymorphic forms with space groups Cc and Pbca (Rajput & Biradha, 2008[Rajput, L. & Biradha, K. (2008). J. Mol. Struct. 876, 339-343.], 2011[Rajput, L. & Biradha, K. (2011). J. Mol. Struct. 991, 97-102.]; Jia et al., 2009[Jia, T., Zhao, Y., Xing, F., Shao, M., Zhu, S. & Li, M. (2009). J. Mol. Struct. 920, 18-22.]; Zhang et al., 2016[Zhang, L., Dang, L., Luo, F. & Feng, X. (2016). J. Mol. Struct. 1106, 114-120.]). In the ansolvate, the 3-pyridinyl rings all lie with the ring N atom approximately cis to the adjacent amide N—H group, as in (I)[link], but is the only example among the 2- and 3-pyridinyl analogues where a propellor-like sequence of the three arms of the mol­ecule is observed. In the Cc polymorph of the monohydrate, two of the 3-pyridinyl rings lie approximately trans to their adjacent amide N—H groups, while in the Pbca polymorph, all three of the 3-pyridinyl rings have the trans arrangement. Surprisingly, there are only three crystal structures reported for the tris­(4-pyridin­yl) analogue; the monohydrate (Rajput & Biradha, 2011[Rajput, L. & Biradha, K. (2011). J. Mol. Struct. 991, 97-102.]), its chloro­form solvate monohydrate (Luo et al., 2013[Luo, X.-Z., Jia, X.-J., Deng, J.-H., Zhong, J.-L., Liu, H.-J., Wang, K.-J. & Zhong, D.-C. (2013). J. Am. Chem. Soc. 135, 11684-11687.]) and its di­methyl­sulfoxide methanol solvate (Kumar et al., 2004[Kumar, D. K., Jose, D. A., Dastidar, P. & Das, A. (2004). Chem. Mater. 16, 2332-2335.]). Only the latter two display a propeller-like sequence of the three arms of the mol­ecule

The CSD contains 28 entries for coordination complexes where the tris­(3-pridin­yl) analogue acts as a ligand. In most of these, the ligand coordinates through the pyridinyl N atom, although the amide O atom is involved in a few examples. The tris­(4-pyridin­yl) analogue occurs as a ligand in six coordination complexes, all of which involve coordination through the pyridinyl N atom. Given the propensity of the pyridinyl N atom to act as the coordinating atom in these examples, the steric congestion between the 2-pyridinyl ring and the adjacent amide group of (I)[link] might indicate why it has not appeared as a ligand in any coordination complexes so far. Presumably for similar reasons, the CSD does not contain entries involving analogous mol­ecules or ligands where the 2-pyridinyl rings have been replaced by 2-benzoic acid or 2-benzoate substituents and there are no known reports of their synthesis. The CSD contains entries for seven and 19 complexes with the 3-and 4-benzoate ligands, respectively, but only one crystal structure involving a neutral acid, that of the tris­(4-benzoic acid) analogue, is known (Zhang et al., 2012[Zhang, Y., Wang, Q., Xiao, Y.-J., Han, J. & Zhao, X.-L. (2012). Polyhedron, 33, 127-136.]).

5. Synthesis and crystallization

A solution of 2-amino­pyridine (0.96 g) in di­chloro­methane (DCM) (12 ml) and tri­methyl­amine (TEA) (1.4 ml) was added dropwise to a solution of benzene-1,3,5-tri­carb­oxy­lic acid trichloride in DCM (3.4 ml) at 273 K. A further 1.5 ml of TEA were added and reaction mixture stirred at room temperature for approximately 5 days until the dark-brown–red slurry turned yellow–orange. The reaction mixture was filtered under vacuum and washed with DCM. It proved difficult to isolate a purified product until the product was washed with copious amounts of water, then collected as a precipitate via filtration through fluted filter paper and dried in air between filter papers. Crystals were grown by dissolving the product in warm methanol, filtering and allowing slow evaporation of solvent overnight. A small qu­antity of orange–yellow crystals was recovered from a yellow oil. 1H NMR δ: 11.03 (s, 3H), 8.76 (s, 3H), 8.44 (d, 3H, J = 4.82), 8.28 (d, 3H, J = 8.48), 7.90 (t, 3H, J = 7.90), 7.22 (t, 3H, J = 6.16); ESI m/z: 438.14335 (predicted 438.14).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The amide H atoms were located in a difference-Fourier map and their positions were refined together with individual isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.95 Å) with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C24H18N6O3
Mr 438.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 160
a, b, c (Å) 8.2807 (1), 14.1554 (1), 17.5020 (2)
β (°) 98.920 (1)
V3) 2026.71 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.81
Crystal size (mm) 0.24 × 0.09 × 0.09
 
Data collection
Diffractometer Oxford Diffraction SuperNova, dual radiation diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO software system. Rigaku Corporation, Wroclaw, Poland.])
Tmin, Tmax 0.898, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19285, 4020, 3786
Rint 0.018
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.05
No. of reflections 4020
No. of parameters 311
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.17
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO software system. Rigaku Corporation, Wroclaw, Poland.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.], 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and PLATON (Spek, 2015, 2020).

N,N',N''-Tris(pyridinyl)benzene-1,3,5-tricarboxamide top
Crystal data top
C24H18N6O3F(000) = 912
Mr = 438.44Dx = 1.437 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.2807 (1) ÅCell parameters from 12896 reflections
b = 14.1554 (1) Åθ = 3.1–74.1°
c = 17.5020 (2) ŵ = 0.81 mm1
β = 98.920 (1)°T = 160 K
V = 2026.71 (4) Å3Prism, pale yellow
Z = 40.24 × 0.09 × 0.09 mm
Data collection top
Oxford Diffraction SuperNova, dual radiation
diffractometer
4020 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray source3786 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.3801 pixels mm-1θmax = 74.2°, θmin = 4.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
k = 1717
Tmin = 0.898, Tmax = 1.000l = 2118
19285 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.5699P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4020 reflectionsΔρmax = 0.27 e Å3
311 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL-2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0012 (2)
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: methanol Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 1718 Seconds exposure per frame: 1.0-5.0 Degrees rotation per frame: 1.0 Crystal-detector distance (mm): 55.0 Client: Levi Senior Sample code: LS002

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36342 (11)0.88417 (6)0.60262 (5)0.0380 (2)
O20.64957 (8)0.57226 (5)0.62868 (4)0.02469 (18)
O30.13032 (8)0.61942 (5)0.39693 (4)0.02547 (18)
N10.22689 (12)0.90845 (6)0.48097 (6)0.0286 (2)
H10.1826 (19)0.8797 (11)0.4388 (9)0.044 (4)*
N20.47719 (10)0.44612 (6)0.62364 (5)0.02113 (19)
H20.3752 (17)0.4245 (10)0.6088 (8)0.034 (4)*
N30.02167 (10)0.49006 (6)0.37699 (5)0.02058 (19)
H30.1165 (18)0.4642 (10)0.3849 (8)0.033 (4)*
N40.12823 (13)1.03623 (7)0.41011 (6)0.0330 (2)
N50.53774 (11)0.28992 (6)0.64545 (6)0.0271 (2)
N60.07968 (11)0.34722 (6)0.32839 (5)0.0249 (2)
C10.27688 (12)0.74907 (7)0.52677 (6)0.0211 (2)
C20.39380 (12)0.69079 (7)0.56837 (6)0.0208 (2)
H2010.4819260.7178410.6025960.025*
C30.38289 (11)0.59313 (7)0.56032 (5)0.0185 (2)
C40.25660 (11)0.55341 (7)0.50819 (6)0.0183 (2)
H40.2499230.4868070.5018360.022*
C50.14014 (11)0.61163 (7)0.46542 (6)0.0187 (2)
C60.14907 (12)0.70904 (7)0.47598 (6)0.0205 (2)
H60.0673810.7485210.4483460.025*
C70.29370 (12)0.85343 (7)0.54121 (6)0.0245 (2)
C80.21855 (13)1.00767 (7)0.47569 (6)0.0250 (2)
C90.29662 (15)1.06853 (8)0.53146 (7)0.0338 (3)
H90.3607911.0452290.5772970.041*
C100.27774 (16)1.16473 (8)0.51797 (8)0.0375 (3)
H100.3291251.2087820.5549080.045*
C110.18406 (15)1.19619 (8)0.45073 (7)0.0335 (3)
H110.1693931.2617780.4404130.040*
C120.11257 (15)1.12956 (8)0.39909 (7)0.0351 (3)
H120.0480821.1510960.3527130.042*
C130.51468 (11)0.53603 (7)0.60758 (6)0.0189 (2)
C140.58508 (12)0.37816 (7)0.66292 (6)0.0213 (2)
C150.72325 (13)0.40119 (8)0.71560 (6)0.0278 (2)
H150.7505390.4651050.7281640.033*
C160.81959 (14)0.32752 (9)0.74906 (7)0.0354 (3)
H160.9162220.3402770.7844290.043*
C170.77409 (14)0.23553 (9)0.73062 (7)0.0367 (3)
H170.8390250.1840350.7524190.044*
C180.63199 (14)0.22034 (8)0.67976 (7)0.0331 (3)
H180.5990030.1569560.6683790.040*
C190.00171 (11)0.57413 (7)0.40961 (6)0.0194 (2)
C200.09362 (11)0.44064 (7)0.32296 (6)0.0201 (2)
C210.20550 (13)0.48708 (8)0.26842 (6)0.0284 (2)
H210.2087590.5541010.2658130.034*
C220.31225 (14)0.43239 (9)0.21791 (7)0.0352 (3)
H220.3914560.4614490.1801110.042*
C230.30220 (14)0.33527 (9)0.22314 (7)0.0338 (3)
H230.3746460.2962190.1895040.041*
C240.18422 (14)0.29632 (8)0.27848 (7)0.0301 (2)
H240.1765910.2294190.2813870.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0526 (5)0.0223 (4)0.0315 (5)0.0017 (3)0.0178 (4)0.0036 (3)
O20.0165 (3)0.0221 (4)0.0330 (4)0.0004 (3)0.0039 (3)0.0040 (3)
O30.0167 (3)0.0225 (4)0.0345 (4)0.0024 (3)0.0045 (3)0.0016 (3)
N10.0375 (5)0.0185 (4)0.0254 (5)0.0017 (4)0.0088 (4)0.0016 (4)
N20.0151 (4)0.0218 (4)0.0246 (4)0.0011 (3)0.0029 (3)0.0014 (3)
N30.0142 (4)0.0212 (4)0.0243 (4)0.0006 (3)0.0033 (3)0.0009 (3)
N40.0390 (5)0.0252 (5)0.0306 (5)0.0004 (4)0.0080 (4)0.0027 (4)
N50.0246 (4)0.0237 (5)0.0316 (5)0.0024 (3)0.0002 (4)0.0032 (4)
N60.0235 (4)0.0226 (4)0.0269 (5)0.0015 (3)0.0011 (3)0.0019 (3)
C10.0214 (5)0.0191 (5)0.0220 (5)0.0002 (4)0.0010 (4)0.0009 (4)
C20.0187 (4)0.0217 (5)0.0211 (5)0.0012 (4)0.0002 (4)0.0021 (4)
C30.0157 (4)0.0208 (5)0.0184 (5)0.0016 (4)0.0011 (3)0.0003 (4)
C40.0167 (4)0.0181 (4)0.0198 (5)0.0003 (3)0.0017 (4)0.0006 (4)
C50.0152 (4)0.0209 (5)0.0194 (5)0.0008 (3)0.0007 (4)0.0002 (4)
C60.0187 (4)0.0200 (5)0.0217 (5)0.0020 (4)0.0002 (4)0.0016 (4)
C70.0250 (5)0.0203 (5)0.0260 (5)0.0008 (4)0.0033 (4)0.0013 (4)
C80.0264 (5)0.0199 (5)0.0271 (5)0.0004 (4)0.0010 (4)0.0007 (4)
C90.0409 (6)0.0229 (5)0.0330 (6)0.0010 (5)0.0090 (5)0.0006 (4)
C100.0456 (7)0.0224 (6)0.0411 (7)0.0032 (5)0.0042 (5)0.0048 (5)
C110.0385 (6)0.0201 (5)0.0419 (7)0.0033 (4)0.0064 (5)0.0044 (5)
C120.0399 (6)0.0283 (6)0.0344 (6)0.0050 (5)0.0032 (5)0.0074 (5)
C130.0166 (4)0.0206 (5)0.0185 (5)0.0022 (3)0.0000 (3)0.0039 (4)
C140.0181 (5)0.0244 (5)0.0209 (5)0.0025 (4)0.0020 (4)0.0033 (4)
C150.0242 (5)0.0328 (6)0.0241 (5)0.0008 (4)0.0033 (4)0.0053 (4)
C160.0256 (5)0.0469 (7)0.0305 (6)0.0014 (5)0.0057 (4)0.0143 (5)
C170.0303 (6)0.0399 (7)0.0389 (7)0.0108 (5)0.0025 (5)0.0185 (5)
C180.0327 (6)0.0260 (6)0.0402 (7)0.0056 (5)0.0042 (5)0.0082 (5)
C190.0162 (4)0.0198 (5)0.0210 (5)0.0014 (3)0.0006 (4)0.0031 (4)
C200.0159 (4)0.0234 (5)0.0203 (5)0.0013 (4)0.0007 (4)0.0011 (4)
C210.0283 (5)0.0277 (5)0.0262 (6)0.0026 (4)0.0049 (4)0.0005 (4)
C220.0298 (6)0.0438 (7)0.0272 (6)0.0041 (5)0.0103 (5)0.0030 (5)
C230.0266 (5)0.0411 (7)0.0310 (6)0.0065 (5)0.0039 (4)0.0110 (5)
C240.0296 (5)0.0261 (5)0.0332 (6)0.0054 (4)0.0005 (4)0.0064 (4)
Geometric parameters (Å, º) top
O1—C71.2189 (13)C5—C61.3916 (13)
O2—C131.2325 (12)C5—C191.5032 (13)
O3—C191.2334 (12)C6—H60.9500
N1—C71.3578 (14)C8—C91.3846 (15)
N1—C81.4085 (14)C9—C101.3867 (16)
N1—H10.872 (16)C9—H90.9500
N2—C131.3499 (13)C10—C111.3792 (18)
N2—C141.4163 (12)C10—H100.9500
N2—H20.898 (14)C11—C121.3751 (17)
N3—C191.3468 (13)C11—H110.9500
N3—C201.4195 (12)C12—H120.9500
N3—H30.857 (14)C14—C151.3923 (14)
N4—C81.3319 (14)C15—C161.3864 (16)
N4—C121.3384 (15)C15—H150.9500
N5—C141.3304 (14)C16—C171.3798 (19)
N5—C181.3395 (14)C16—H160.9500
N6—C201.3295 (14)C17—C181.3778 (18)
N6—C241.3406 (14)C17—H170.9500
C1—C21.3890 (14)C18—H180.9500
C1—C61.3927 (13)C20—C211.3883 (14)
C1—C71.5015 (14)C21—C221.3855 (16)
C2—C31.3910 (14)C21—H210.9500
C2—H2010.9500C22—C231.3795 (18)
C3—C41.3951 (13)C22—H220.9500
C3—C131.4996 (13)C23—C241.3795 (16)
C4—C51.3949 (13)C23—H230.9500
C4—H40.9500C24—H240.9500
C7—N1—C8129.27 (9)C12—C11—C10117.85 (11)
C7—N1—H1117.2 (10)C12—C11—H11121.1
C8—N1—H1113.5 (10)C10—C11—H11121.1
C13—N2—C14126.40 (8)N4—C12—C11124.06 (11)
C13—N2—H2119.8 (9)N4—C12—H12118.0
C14—N2—H2113.8 (9)C11—C12—H12118.0
C19—N3—C20126.29 (8)O2—C13—N2123.84 (9)
C19—N3—H3119.8 (9)O2—C13—C3119.29 (9)
C20—N3—H3113.7 (9)N2—C13—C3116.86 (8)
C8—N4—C12116.92 (10)N5—C14—C15123.69 (10)
C14—N5—C18117.19 (10)N5—C14—N2112.64 (9)
C20—N6—C24116.60 (9)C15—C14—N2123.65 (10)
C2—C1—C6119.46 (9)C16—C15—C14117.61 (11)
C2—C1—C7117.21 (9)C16—C15—H15121.2
C6—C1—C7123.31 (9)C14—C15—H15121.2
C1—C2—C3120.54 (9)C17—C16—C15119.52 (11)
C1—C2—H201119.7C17—C16—H16120.2
C3—C2—H201119.7C15—C16—H16120.2
C2—C3—C4119.81 (9)C18—C17—C16118.25 (11)
C2—C3—C13116.71 (8)C18—C17—H17120.9
C4—C3—C13123.44 (9)C16—C17—H17120.9
C5—C4—C3119.91 (9)N5—C18—C17123.69 (11)
C5—C4—H4120.0N5—C18—H18118.2
C3—C4—H4120.0C17—C18—H18118.2
C6—C5—C4119.73 (9)O3—C19—N3124.04 (9)
C6—C5—C19117.15 (8)O3—C19—C5119.95 (9)
C4—C5—C19123.07 (9)N3—C19—C5116.00 (8)
C5—C6—C1120.49 (9)N6—C20—C21124.15 (9)
C5—C6—H6119.8N6—C20—N3113.61 (9)
C1—C6—H6119.8C21—C20—N3122.20 (9)
O1—C7—N1124.07 (10)C22—C21—C20117.76 (11)
O1—C7—C1121.24 (9)C22—C21—H21121.1
N1—C7—C1114.69 (9)C20—C21—H21121.1
N4—C8—C9123.85 (10)C23—C22—C21119.24 (11)
N4—C8—N1111.99 (9)C23—C22—H22120.4
C9—C8—N1124.15 (10)C21—C22—H22120.4
C8—C9—C10117.58 (11)C24—C23—C22118.28 (10)
C8—C9—H9121.2C24—C23—H23120.9
C10—C9—H9121.2C22—C23—H23120.9
C11—C10—C9119.74 (11)N6—C24—C23123.93 (11)
C11—C10—H10120.1N6—C24—H24118.0
C9—C10—H10120.1C23—C24—H24118.0
C6—C1—C2—C30.78 (15)C2—C3—C13—O225.12 (13)
C7—C1—C2—C3177.55 (9)C4—C3—C13—O2152.69 (9)
C1—C2—C3—C42.12 (14)C2—C3—C13—N2155.68 (9)
C1—C2—C3—C13179.99 (9)N2—C13—C3—C426.51 (13)
C2—C3—C4—C51.17 (14)C18—N5—C14—C151.58 (16)
C13—C3—C4—C5178.92 (9)C18—N5—C14—N2179.99 (9)
C3—C4—C5—C61.09 (14)C13—N2—C14—N5155.86 (10)
C3—C4—C5—C19178.46 (9)C13—N2—C14—C1525.72 (15)
C4—C5—C6—C12.44 (14)N5—C14—C15—C162.67 (16)
C19—C5—C6—C1179.97 (9)N2—C14—C15—C16179.09 (10)
C2—C1—C6—C51.51 (15)C14—C15—C16—C171.39 (17)
C7—C1—C6—C5179.73 (9)C15—C16—C17—C180.75 (18)
C8—N1—C7—O11.7 (2)C14—N5—C18—C170.81 (17)
C8—N1—C7—C1178.72 (10)C16—C17—C18—N51.96 (19)
C2—C1—C7—O125.98 (15)C20—N3—C19—O30.87 (16)
C6—C1—C7—O1152.27 (11)C20—N3—C19—C5179.93 (9)
C2—C1—C7—N1153.59 (10)C6—C5—C19—O326.11 (13)
N1—C7—C1—C628.16 (15)C4—C5—C19—O3151.33 (10)
C12—N4—C8—C90.62 (18)C6—C5—C19—N3154.80 (9)
C12—N4—C8—N1179.82 (11)N3—C19—C5—C427.77 (13)
C7—N1—C8—N4173.33 (11)C24—N6—C20—C211.56 (15)
C7—N1—C8—C97.5 (2)C24—N6—C20—N3179.45 (9)
N4—C8—C9—C100.56 (19)C19—N3—C20—N6148.25 (10)
N1—C8—C9—C10179.66 (11)C19—N3—C20—C2133.81 (15)
C8—C9—C10—C110.2 (2)N6—C20—C21—C221.87 (16)
C9—C10—C11—C120.1 (2)N3—C20—C21—C22179.58 (10)
C8—N4—C12—C110.30 (19)C20—C21—C22—C230.70 (17)
C10—C11—C12—N40.1 (2)C21—C22—C23—C240.59 (18)
C14—N2—C13—O23.35 (16)C20—N6—C24—C230.12 (16)
C14—N2—C13—C3175.81 (9)C22—C23—C24—N60.93 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.898 (14)2.108 (14)2.9866 (11)165.6 (13)
N3—H3···O2ii0.857 (14)2.054 (14)2.8781 (11)160.9 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Department of Chemistry, University of Zurich.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJia, T., Zhao, Y., Xing, F., Shao, M., Zhu, S. & Li, M. (2009). J. Mol. Struct. 920, 18–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, D. K., Jose, D. A., Dastidar, P. & Das, A. (2004). Chem. Mater. 16, 2332–2335.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, X.-Z., Jia, X.-J., Deng, J.-H., Zhong, J.-L., Liu, H.-J., Wang, K.-J. & Zhong, D.-C. (2013). J. Am. Chem. Soc. 135, 11684–11687.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalmans, A. R. A., Vekemans, J. A. J. M., Meijer, E. W., Palmans, A. R. A., Kooijman, H. & Spek, A. L. (1997). Chem. Commun. pp. 2247–2248.  CSD CrossRef Web of Science Google Scholar
First citationRajput, L. & Biradha, K. (2008). J. Mol. Struct. 876, 339–343.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajput, L. & Biradha, K. (2011). J. Mol. Struct. 991, 97–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2017). CrysAlis PRO software system. Rigaku Corporation, Wroclaw, Poland.  Google Scholar
First citationSenior, L. & Linden, A. (2020a). Polyhedron, https://doi.org/10.1016/j.poly.2020.114564.  Google Scholar
First citationSenior, L. & Linden, A. (2020b). Acta Cryst. C76, 562–571.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, L., Dang, L., Luo, F. & Feng, X. (2016). J. Mol. Struct. 1106, 114–120.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y., Wang, Q., Xiao, Y.-J., Han, J. & Zhao, X.-L. (2012). Polyhedron, 33, 127–136.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds